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Systems of ordinary differential equations partitioned on base of their right-hand side de-
pendencies on the unknown functions are considered. Explicit multischeme Runge —Kutta
methods for such systems are presented. These methods require fewer right-hand side com-
putations (stages) than classic single-scheme Runge —Kutta methods to provide the same
order of convergence. The full system of order conditions is presented. This system is reduced
to several independent linear systems with help of the simplifying relations. The algorithm
of computing the order conditions system solution with six free parameters is given. A par-
ticular choice of free parameters and the corresponding computational scheme are presented.
The advantage of the presented methods is shown by the numerical comparison to the known
classic six order method by J. C. Butcher.
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1. Introduction. In the current paper we consider systems of ordinary differential
equations (ODEs), which can be partitioned into several groups, and Runge — Kutta type
methods specially designed for them. These methods have several interconnected compu-
tational schemes, each applied to its own group of equations within the ODE system.

Usually textbooks describe Runge — Kutta methods for scalar ODEs, and a standard
way to extended them to an ODE system is formal interpretation of the scalar values as
vectors of corresponding lengths (e. g. [1, 2]). Such methods have a single scheme applied
simultaneously to all equations in the system. We’ll call the single-scheme methods and
their application to ODE systems as classic Runge — Kutta methods.

However there might be a lot of reasons to treat some of equations in an ODE system
differently from the other. This might be due to different physical nature of the variables,
which is typical for example for the Hamiltonian equations, or due to different scaling of
the variables, like in singular perturbation problems [3]. In early papers it was of interest to
separate linear and nonlinear parts or the “non-stiff” and “stiff” components of a differential
equation (e.g. [4]). Methods for the partitioned systems use two or more schemes, which
are in a certain way applied to different parts of the system, and thus sometimes are called
multischeme.

Multischeme methods are studied in directions of obtaining symplectic integrators
[5-7], accurate tracing of slow and fast processes in large systems [8-10], better treatment
of spatially discretized partial differential equations [11, 12].

We consider the partitioning of an ODE system based on how the right-hand side
functions depend on the unknown functions. For some types of dependencies structure
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explicit methods with several interconnected groups of coefficients, which are more effec-
tive, i. e. have fewer stages per step than classic explicit Runge —Kutta methods, can be
constructed.

As a basic example of such structure one can consider a system

yi = Y2,
{yé = [z ), @

equivalent to a second order equation y” = f(z,y) for which well-known explicit Runge —
Kutta— Nystréom methods require 2, 3 and 4 stages for orders 3, 4 and 5 respectively,
while classic Runge —Kutta method can be constructed with at least 3, 4 and 6 stages
respectively [1]. The noticeable structure of (1) is that ¢} depends only on y2 (and not on
y1) and vice versa.

Remark 1. The right-hand side of the first equation is just yo, but extensions of
Runge — Kutta—Nystrém methods with the same amount of stages can be made for the
system with y] = g(z,y2) as well (see [13, 14]).

In [15] we have considered a system partitioned into two groups of equations with the
following right-hand side dependencies structure:

Yi = fi(@, 91, Y, Yty ), =1, @
y;':fj(xayl7~-~7yj—l)7 j=l—|—1,...,n, n > 2.

The two groups (denoted i- and j-groups) are in fact structurally similar and can be
swapped. Every equation though has a certain position within its group, where the deriva-
tive of the corresponding unknown function y doesn’t depend on this and all the following
unknowns belonging to the same group. Notice, that every unknown y;, i = 1,...,n, can be
formally considered as a vector which components share the same dependency structure
against the other vectors of unknowns.

Due to the special structure of the considered systems we use the term structural
partitioning and call the methods exploiting this structural properties structural methods.
Some structural Runge —Kutta methods for (2) were constructed in [16, 17]. In [15] a
sixth order method with seven stages and last stage reuse, i. e. six new stages per step was
constructed. Recall that a classic Runge — Kutta of order six require seven stages at least.

In the present paper we construct a sixth order method for systems with the most
general structure consisting of three groups:

Yo = fo(z,90, Y1, -, Un),

y;:fi(mvy()aylv’"7yi717yl+17"'7yn)7 i:]-ulv (3)
y;:fj(xvymylw"ayjfl)v J:l

+

1,n.

As before any y,, s = 0,...,n, can be a vector. Since the equations of the general group
don’t have any structural properties they are collected into a single vector yg; still we
address to them as general group or 0-group. Two other groups are the same as in (2) and
we similarly call them ¢- and j-groups.

Remark 2. In fact, if no properties can be found in a system, only 0-group is formed
and the method studied in the paper is reduced to a classic Runge — Kutta method for
ODE systems.

This structure is the most general from the point of view of construction of explicit
methods with fewer stages than classic Runge — Kutta methods. This fact is shown in [17],
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and the algorithm to detect the structural properties and to transform a system into the
form (3) is presented there, as well as the methods for (3) of orders up to four. A method
of order five can be found in [18].

In Section 2 we describe the general form of a structurally partitioned Runge — Kutta
method for (3). In Section 3 we write down the conditions, which the order six method’s
parameters must satisfy. In Section 4 an algorithm to get the general solution of the order
conditions is presented and the method obtained by particular choice of free parameters

is given.

2. Structurally partitioned Runge — Kutta method. For the initial conditions
ys(20) = ys0, s =0, 1,...,n, we approximate the solution of (3) in z = xo + h with values
zs, s=0,1,...,n, computed as

mo
yo(xo +h) = 20 =yoo + h Z b0, Ko, w,

w=1

ma
yz($0+h)  Z; :yi0+hzb1,wKi,w, i=1,...,1, (4)

w=1

ma
yj(x0+h)%2j:yj0+hzb2,1qu,qu7 j:l+17,n

w=1

The stage functions are computed one by one
Ko, K11, Kn1, Ko, K2, ..., Ko 2, Ko, K13, K23, ..
with use of all the already found values:

Ko.w = fo(wo + cowh, Y0,0,ws Y0,1,05 - -+ Y0105 Y0,141,ws - -+ > Y0,n,0),

Kiw=fi(rvo+ c1,wh, Y1.0w, Y1 1,05 Y1,im1ws Y1041 - > Y1,mw)s

Kjw=fi(o+ c2,uh, Y20, Y2 1,0, s Y2 lws Y2 001,wy - - -5 Y2,j—1,w)5
i=1,..,0, j=Il+1,...,n,

()

where
w—1

Y0,0,w = Yoo + h E @0,0,w,0 K005

v=1

w—1

Yo,iw =Yi0+h Z a0, 1w i, 1=1,...,1,
v=1
w—1
Yo,5,w =Yjo +h Z 2wk, J=1+1,...,n, (6)
v=1
w
Y1 0w =Yoo +h Z a1,0,w,0Ko,vs

v=1

w
Yiiw=vio+hY a11wiKin, i=1,...,1-1,

v=1
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w—1

Yl,j,w = Yj0 + h Z a1,2,w,qu,V7 .] =1 + 17 ceey Ny
v=1
w

}/Z,O,w = Yoo + h § a2,0,w,uKO,ua

v=1

w
}/2,i,w :yio—'_hZaQ,l,w,yKi,y, ¢ = 1,...,[,

v=1

w
YYQ,j,w :yj0+hza2,2,w,qu,l/7 J:l+177n_1
v=1
Definition. As usual we say that the method (4)—(6) has local order p if for any suf-
ficiently smooth problem each component of the numerical approzimation satisfies

||y9(x0+h)_29” :O(hP+1)7 S:Oa17~-~an-

Remark 3. Since (4)—(6) is a Runge —Kutta method of order p, then it converges
with order p if for every step the problem remains smooth enough, i.e. the global error at
some fixed point zenq is O(hP), where h is the largest step-size.

The algorithm of the method (4)—(6) requires mg > my > ma. Typically we get
methods with m; = mo = mg — 1 which provides effectiveness of the method for systems
with structural groups.

Consider vectors of groupwise abscissas C, = (Cu1,- -+, Cum, )’ and weights B, =
(bt bum,)?, u=0,1,2, and matrices of stage weights
Qy,v,1,1
Quw,2,1  Ouw,2,2
Ay = | Fewdt Guo, . uv=0,1,2,
auﬂ];mu;l au,’u,mu,Q et au,’u,mu,mu

Remark 4. The structure of right-hand side dependencies on the unknown functions
is represented in upper summation indices in (6) (either w — 1 or w). Thus the matrices
Ago, Ap1, Ap2 and Ajs have zero diagonal, while the other five— Ajg, Az, A11, A21 and
Az — can have non-zero diagonal elements.

We collect all the coefficients in the block Butcher’s table:

Cu 'Au'U Bu
Co || Aoo Ao1 Aoz || Bo
Ci || Ao A A || By
Cy || Asg Ao Agp || By

which completely describes a method of the form (4)—(6).

Remark 5. If any of the groups in the original system is missing then the corre-
sponding groups of parameters are not used. If both structural groups are missing then
only general group with no structural properties exists and the method (4)—(6) reduces to
a classic (non-partitioned) explicit Runge —Kutta method of the same order with para-
meters Agg, Bg, Co and mg stages.

3. Conditions of order six. In this section we present the order six conditions,
the so-called simplifying conditions and the reduced system of order conditions. In the
next section we write down the algorithm of solving the reduced system by splitting it
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into a sequence of linear systems. As a result a general solution with six free parameters
is obtained. A particular one-parameter family of solutions was also presented in [19],
but here we give a wider class of solutions and are able to construct schemes with more
convenient values of ¢- and b-parameters and smaller absolute values of a-parameters.

First, we use the so-called basic simplifying conditions which provide stage order one
and are almost always used for Runge — Kutta methods construction:

w—1 w—1 w—1
E a0,0,w,v = § ap,1,w,y = E ag.2,w,v = Co,w, W = 1,...,mq,
v=1 v=1 v=1

w—1

w w

§ a1,0,w,v = E a1,1,w,y = § a1 2wy = Clw, W= 1, -..,Mmy, (7)
v=1 v=1 v=1

w w w

§ a2,0,w,v = E a2 1,w,v = E a2.2 w,v = C2w, w = 1a -.e, M.
v=1 v=1 v=1

For the full system (3) order six conditions form the system of 1224 non-linear equa-
tions (relations (7) are not counted). We write down the conditions for the case of mg = 7,
my1 = mg = 6, which gives 202 a- and b-parameters. The following compact form of the
order conditions contains all of them with all possible combinations of values u, ¢, r, e and
t from {0,1,2}. The summation is made for all possible (and meaningful) indices values:

1
Zbuyciy:—, s=0,1,...,5,
— s+1
1
Zbuycuyzauquucqu (3+ ), 52071,273,
b s 2 1 —0.1.2
Z uvycu,VZau7q7y7/icu,ﬂ_m7 s=4U, 1,4
v 2

1
Zbuucuyzauq, ,/Lzaqr,ugcrf 6(4+ ) 520,172,

1
Zyzbuvvci,u (%: auyquvucq,u> (%: aumwu%u) = 1G+9) s=0,1,
1
Zbu L/Cuyzauqu,/th’u (5+8) 82071,
. 1
2t Dt 2t a1

(5. ) € {(0,2),(0,3), (1,1), (1,2), (2, 1)}, (®)
1
s d P _

(s,d, p) €{(0,0,1),(1,0,1),(0,1, 1)},

1
Zbu,y (Z au,q,u,,u,cq,u> (Z au,r,u,pﬁ?«yy) = %7
v © H

Becraux CII6L'Y. [Ipuknaanas maremaruka. Uadopmaruka... 2021. T. 17. Beim. 4 357



1
§ § 4 _
bu,u auy‘]v”vﬂcq,,u - %’
v w

1

E :b’U«;V E :G’U;Q;V’ME :aq,T’M’ECTxf <§ :au,e,y,uce,u> = ﬁ’
v i 13 w

1

ZbuucuuZauquuzaqr#hgcrg 24(1+8) 821,27
1
; bu,v ; Qu,q,v,p g Qg,r,p,6Cr¢ ; Qq,e,u,&Cet | = 120°

1

; bu,ycu,u ; Qu,q,v,p ; QAq,r . ; Ar.e&pCeip = M7
1
; bu’y ; Qo q,v,p ; QAq,rp,& % ar,e,ﬁ,wcg,w = %7
Z bu,l/ Z Au,q,v,p Z Ag,r,p.€ Z r.e.&.¢ Z et ot = %0
v 1 13 W 12

Notice, that conditions (7) demand co1 = ¢1,1 = 0 due to the explicitness of the
method. We additionally set ¢ 1 = 0 and to construct further simplifying conditions we
also choose

bo,o =b12 =ba 2 =0.

To simplify the system (8) we introduce additional simplifying conditions some of
which are similar to the widely used conditions for construction of high-order Runge —
Kutta methods [20]. Due to the several groups of partition based parameters they also can
be attributed to each parameter group. They are presented in the Table 1 groupwise.

The total number of additional simplifying conditions is 198, which might seem quite
significant, but with their use the original system (8) is reduced to ounly 47 equations (as
before u is any of {0,1,2}):

%bu’ycivyz L7 s=0,1,...,5,

s+1
7 v—1 pn—1 1
> bowcow Z 40,0, Z 0,,1,6Ch.c = > 4=01
v=>5 : :
1
Zbo vCo,v Zao 0,0 uC = BYR

/L3

7 r—1 -
> bowcow Z 40,0,v, Z 0,0.11,6Cp g = o P=12
v=4 pn=3 =
1
ZbOUCOyZaOIVp,Clu 1_87

n=3
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Zbo ucoyzao VHCQM ]_18’
y - 1
g bl,yCl,V g a1,0,v,p g GO)O’M’SC?Lg = i’

1
prxl’cp, ZapOV,uCo# ﬂ’ p=172
pn=3

6 v u—1
1
Z bl’ycl’l’ Z 1,00, Z anP:HfC?},E = ﬁ? p= ]-7 27
v=3
pn—1 1

Z b1 2wvCly Z a1,0,v,u Z ao,1,u, 501 &= E (9)
ZbluclyZa&OVucou %87

pn=3
6 v—1 1% 1
b 2 =
1,0C1v a1,2,v,p a270%500)€ = 72’
v=4 n=3 £=3
6 v p—1 1
2
> bauCou Y 2000 Y G0.dueCes = 7 4=0L
v=4 pn=4 £=3

6 v pn—1
Z b2’yc2’l’ Z a2,0,v,u Z anP:HfC?},E = ﬁ? p= ]-7 27
v=3 n=3 —
1
ZblyclVZalll’Mclu = 1_87

pn=2

6
1
S e S ansnti, - L ai1ag
v=3 =2 (1 + T) (3 + T)

6 v—1 I 1
2 — —
: :blvyclxl’ 2 :a1a2;l’7ﬂ z a2)p)lu’!€c,07£ B i’ p= 17 2’
v=3 n=2 £=2
6 v—1 I 1
b 2 -
LvCly 2 120 2 021,06C¢ = 7o
v=4 n=3 £=3
2 2 _
§ :b27V62,u E Qaz2,p,v,uCp 1 = 1—8, p=1, 2.
v=3 n=2

The total number of equations in the reduced system together with conditions from
Table 1 is 245 which is five times fewer than in the original system (8). The reduced system
keeps the properties of the original system, namely noticeable partitioning into nine blocks
and polynomial character of equations.

The examination of the system’s consistency (partially presented in [15, 18, 21, 22])
gives important relations for c-parameters, which helps further simplify and finally solve
system of the order conditions.
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Table 1. Simplifying conditions for the system (8)
w=3,...,7, 7=0,1,2; 6=0,1; £=1,2; pu=2,...,6; s=1,...,6; p=3,...,6
wil cgt}l wil 0 cgt}l wZ—:I 0 g—z}l
aO,O,w,VCT = - ao,1,w,vC = : aop,2,w,v C = .
= 0,v T+17 = 1,v 0+17 = 2,v 0+11
7 . 7 , 7 ,
2= bo,vcg ,@0,0,0,2 =0, 2 bo,veg ,a0,1,0,2 =0, 2 bo,veg ,a0,2,0,2 =0,
v=3 v=3 v=3
7 7 . 7 .
> bowaoows = > bo,weg 00,105 = > bo,ucg 002,05 =
=s+1 =s+1 v=s+1
brs (1- 0t bas (1- 551
=bo,s (1 —co,s) = =
' ’ 0+1 0+1
. T . AN 1 o+1
Soa o7 = L Sa cf = L Sa cf — Lp
Z 1,0,p,0C0,0 1’ ) L,1,pu,vC1 0+1 ) 1,2,p,vCo 0+1’
6 3 6 2
2 biyei La1,00,2 =0, 2 bivef La11,02 =0,
v=2 v=2
6 6 ) 6
Z bl,ual,O,V,s = Z bl,ucl L1105 = Z bl,ual,Q,V,pdfl =
v=s v=s ! v=p
bi,p (1 - Cfﬁ?)
:bOs(l_COS) - : =bo 71(1—62 ,1)
, , 011 e e
& G | & ) _ & ) _
a2,0,u,vCh , = — as1,u,0C] , = — a2,2,u,vCs , = ——
U:61 I3 0,v ’T+1’ U:6 I 1,v 0+1’ = I3 2,v 9_,’_1’
> bz,ucguaz,o,u,z =0, bz,ucgyl,tlz,l,u,z =0,
v =2 6
> b2pazow,s = > b2uch a2 = > b2pch 220, =
v=s v=s 9 1 v=s 9 1
brs (1- 0t bas (1- 551
= bo,s (1 —Co s) = =
’ ’ 0+1 0+ 1

Theorem. If the conditions
2

Co,2 = 361,37

Cl,2 = C2,2 = C0,3 = C1,3,
C1,3
€23 = Co4 = 5 ; (10)
152, —10c15+2

s

B 20 Cig c2,4 — 15 C?,:} —15c13¢04+ 10 6%73 +2c4—cC13
o 70 C%,S +5 C1,3C2,4 — 20 C1,3 +2—-175 0:15’3 + 75 6113)3 C2.4 — 50 C%?) 62)4’

C1,4
B 45 6%73 c2,4 — 30 6%73 —35c13¢24+23c13+6c2q—4
75 Cig c2,4 — 45 C%,S —60c13¢24+35¢1,3+10c24 — 6’

C1,5 = C2;5
co,7=c16 =C26 =1

are satisfied, then the reduced system consisting of (9) and conditions from Table 1 is
divided into twelve systems, which can be solved by solving a certain sequence of linear

systems on parameters b, ,, Qv v+
The following section gives the constructive proof of this Theorem.
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4. Solving the reduced system. Weights. Consider that all the c-parameters
satisfy (7), (10) and coo = c1,0 = c2,0 = 0. We are left with four free parameters: cg s,
0,6, 1,3 and cg 4. Now solve three consistent linear systems on parameters b, , (with
we{0,1,2},v=1,...,my):

Mqy 1
Zbu’yc;ﬁl’:w—_’_l’ U]:O7...,5.
v=1
The weights depend on free parameters as bo, = bou(cos5,¢0,6,¢1,3), b1, =

biv(c1,3¢2,4), bay = bay(c1,3¢2,4). Additionally from simplifying conditions from Table 1
we get ag 2,1 = -c1,3 and a1 2,21 = ¢1,3. We choose the free parameters cg 5, o6, ¢1,3 and
C2,4 S0 that no denominators in (10) are zeros and also that all b, ,, € [0,1] and ¢, € [0, 1].

Stage weights. Now we find the parameters A,, = {au,u,,} group by solving
consistent linear systems. For each system on A,, we introduce notations Ny, for number
of equations and S, for number of unknowns in it.

e Ago: Nog = 20, Spg = 20. From the subsystem

w—1
§ ao,0,w,v — Co,w, W = 27”'777
v=1

w—1

1
2
E a0,0,w,vC0,v = 50071”7 w = 37 ey 67
v=2

w—1 1
0, = =C =4,...,6
Q0,0,w,vC0,, = gCO,un w=4%,...,0,
v=2
(11)

7

p _ _
g bo,u¢p ,a0,00,2 =0, p=1,2,
v=3

7
E b0,,G0,0,u,s =bos (L —cos), s=2,...,6,
v=s+1

7 v—1 1
b 3= o
0,0C0,v aO,O,D,HCO,,u - 24

v=4 n=3

we determine the values ag ., (v =3,...,7, 4 = 1,...,v — 1), which depend on free
parameters Co,5, €0,6 and C1,3-

Becraux CII6L'Y. [Ipuknaanas martemaruka. Madopmaruka... 2021. T. 17. Beim. 4 361



o Api: No1 = 20, So1 = 20. The parameters ap1,,, (v =3,...,7, p=1,...,v—1)
are found from

w—1
E ao,1,w,y = CO,w, W :3,...,77
v=1
w—1
=Ll =3,....5
a0,1,w,vCl,v = §CO,w’ W= 9,...,9,
v=1
7
bo,vCh =0
0,0Cp,,A0,1,1,2 = U,
v=3
7
§ bO,uaO,l,u,s = bl,s (1 - Cl,s) , S= 2a <. 76a (12)

v=s+1

7
1
2
§ bO,l/CO,l/aO,].,V,S = §b1,s (1 - Cl,s) , S=2,... s 5,
v=s+1

7 v—1 p—1 1
b 2
0,0€0,v @0,0,v,p 0,1,1,6C1,¢ = 72
v=4 n=3 £=2

7 v—1 p—1 1
b 2 _ -
0,0C0,v @0,0,v,1 ao,1,p,C1 ¢ = 7
v=>5 pn=4 £=3

o Apz: No2 = 20, So2 = 20. The parameters ap2,,, (v =3,...,7, p=1,...,v—1)
are found from

w—1
E @p,2,w,y = CO,w, W= 3, ceey 7,
v=1
w—1
~ 1l =3,...,5
a0,2,w,vC2,v = 260710’ W=9,...,9,
v=1
7
bo..ch =0
0,vC0,,@0,2,v,2 = U,
v=3
7
> bowao2ws =bas(1—c2s), s=2,...,6, (13)

v=s+1

7
1
2
D b0,uC0wa0,2,0,s = 32 (1-c3,), s=2,...,5
v=s+1

7 v—1 pn—1 1
b 2 -
0.0C0v ) Q0,00 ) 402,1EC0¢ = ro
v=4 n=3 £=2

7 v—1 1
b 2 2 _ -
0,0C0,1 0,2,v,uC2 1 = 18"
v=3 n=2
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[ ] Alol NlO = 20, SlO = 20. The values a1,0,v,u (V = 2, ‘e 76, o= 1, ‘e

from

s
E a1,0,s,v = Cl,s, 822,...,6,
v=1

"
1
2

E a1,0,u,0C0,0 = 501”“, ,U/:27...75,
v=1

nw

2

E a’l,o,/.l,,l/co’y = gcl);m n= 37"'75a
v=1

6

P — —

E bLVCLDCLLo’V’Q = 07 P = 1, 27
v=2

6
E b1,0100s =bos(1—cos), s=2,...,6,
vV=s

6 v
§ bl,ucl,u § al,O,V,,u,Cg W 21_4
v=3 n=3

,v) are found

(14)

o Ai1: Nip =19, S11 = 20. The parameters a11,,,, (v =2,...,6, p=1,...,v) are

found from

s
Zal,l,s,u =C,s, S= 2,...76,
v=1
m
S =2,...,5
a1,1,u,0C = 2017#, U= 2,...,9,
v=1
6
bivci =0
1,0C1 011,02 =0,
v=2
6
§ :bl,yal,l,u,s = blvs (1 - 0175) ’ § = 2a tee 76a
=s

6
1
E b1,,C1,,01,1,0,u = §b17u (1- C%u) . H=2,...
v=p

6 v
b 2 2 _ 1
1,00y a1,1,v,uC1 = Irh
v=3 n=2

This system is consistent with one additional free parameter a; 1,3 2.
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[ ] A123 N11 = 14, Sll = 14. The values a1,2,v,u (l/ = 3,...76, n = 1, sV — 1),
depending on ¢; 3 and ¢ 4, are found from
w—1 1
d d+1 _ —
Z a1,2,0,0C, = a7l €L s d=0,1, w=3,...,5,
v=1
6
D bivarapp1 =bau 1 (I=cap1), p=2,...,5,
v=p
6 v—1 1
DU S
v=3 pn=2
(16)
bluclu al u;LCQ#:ia
15
6 v—1 1
3 e
Z bl,ucl,u Z a1,2,l/,1402’u - 247
v=3 pn=2
1
Zblucluzal y;LCQ# - ]._8
o Asp: Nog = 20, Sa9 = 20. The parameters as o, (v =2,...,6, p=1,...,v) are
found from
S
Zag’o)s’V:CQ’s, 822,...,6,
v=1
M 1 )
Z a2,0,u,0C0,v = 562,;1,7 M= 27 ) 57
1
2 3
Z a2,O”LL7DCO)y = 302”“7 n= 3a L) 5a
6 (17)
> bouch a2002 =0, =12,
6
Z b2,l/a2,0,l/,5 = bO,s (]- - CO’S) , S= 2,... s 6,
vV=s
6 v
3
Z bQ,VCQ,V Z a2,0,1/,;4€0”u - ﬂ
v=3 n=3
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o Aot Noi = 20, So1 = 20. The values as1,,, (v =2,...,6, u=1,...,v) are found
from

s
§ az1,spv = C2s, S= 27~~~767
v=1
m
1
2
E a2.1,u,vC1,v = 56271“ ,u:27...,57
v=1
6
b2, C5 =0
2,0C 021,02 = U,
v=2

6

Z bava21vs =bis(l—cis),

v=>5

(18)

6
1
2 : b27ycg,va2717%# = d + 1b17H (1 - Ciljtl) ) H = 27 3a47 d = 07 1a
V=

6 v—1 ”w 1
b 2 =
1,0C1,v a1.2,v,u a2,1,4,6C1 ¢ = 72’
v=3 n=2 £=2
6 v—1 “w 1
b 2 ==
1,0C1,v a1.2,v,u a2,1,1,6C1 ¢ = 72’
v=4 n=3 £=3
6 Iz
b .2 a e i
2,12, 2,1,1,€ 1,6 — ].8
n=3 £=2
® Agy: Nog =19, S99 = 20. Finally, as 2., (v =2,...,6, u=1,...,v) are found from
S
§ a2 sy =Cs, S= 27”'767
v=1
I
1
Z 2
a’272v#71’c271’ = §CQ,M7 H = 27 ey 57
v=1
6
d+1 _
E ba,a2,2,0,s = b2s (1 — Cos ), s=2,...,6,
=S8
0 1
b Lco a0 =-b 1—c2 =2,3,4
2,vC2 VU272 v, — 9 2,10 2,1) H=24,9,4%,
v=p
6 v
b 2 2 _ i
2;1’02,1/ a2;2’VnU«CQ,M - 187
v=3 n=2

6 v—1 “w

) 1
Y biuCiy Y G120 Y 022 uCh, = -
v=3 n=2 u=2

This system is consistent with one additional free parameter as 2 4 3.
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The construction of the sixth order structural method finishes at this point. The
solution of the reduced system (9) under the constraints (10) is a six-parameter family in
respect of co 5, co6, C1,3, C2,4, 01,1,3,2, and az 2 4 3.

In Table 2 we present a method constructed by solving (11)-(19) with certain free
parameters values: Co5 = %, Co6 = %, C1,3 = %, C24 = %, a1,1,3,2 = 0 and a2.2.4,3 = 0. It’s
numerical comparison to the method by by J. C.Butcher (see [20, p. 192, the lowermost
table]) was presented at ICNAAM’20, September 17-23, 2020, Rhodes, Greece (the ex-
tended abstract accepted for publication). The results show that the constructed method
converges with order 6 and required smaller total number of right-hand side functions f,
s =0, ...,n, computations, thus confirming the effectiveness of the structural approach.

For efficient implementation of numerical methods they should be equipped with an
embedded error estimator, and in case of structural methods the corresponding estimator
must be a structural method as well, which results into the addition of another comparably
large system of order conditions (though smaller than the main system, since the estimator
order is usually lower). In [15] an embedded pair of structural methods of orders 6 and 4
for two-group systems (2) was presented. The embedded pair for the full system (3) (which
differs from the method of Table 2) was presented at IV Stability and Control Processes
Conference in memory of prof. Vladimir Zubov, October 5-9, 2020, Saint Petersburg, Rus-
sia (the extended abstract accepted for publication). The comparison to Dormand — Prince
pairs of orders 5 and 4, and 6 and 5 presented there also confirm the effectiveness of the
constructed method.

5. Conclusion. Any structural method from the constructed family applied to a
system of ODEs provides a computational cost reduction compared to the classic Runge —
Kutta methods if some of the equations in the system can be assigned to any of the
structural groups ¢ and j. The more equations belong to the structural groups the greater
is the cost reduction. However, if all the equations have to be included into the general
group, only one scheme of the constructed methods is applied to the system, and it has
the same characteristics as classic Runge — Kutta methods of order six with seven stages.
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AnropurMm KoHcTpyupoBaHUs 3P (PEKTUBHBIX SBHBIX METOJ0B JJisi CUCTEM
OOBIKHOBEHHBIX aud depeHnnaIbHbIX ypaBHEHUMN

H. B. Oaemexoti, A. C. Epemun

CankTt-IleTepOyprckuil rocy1apcTBeHHBIN YHUBepcUTeT, Poccuiickas Pengeparus,
199034, Cauxr-llerepbypr, YuuBepcurerckas Hab., 7-9

Juist yurupoBauusi: Olemskoy I. V., Eremin A. S. Algorithm of construction of effective explicit
methods for structurally partitioned systems of ordinary differential equations // Becruuk Cankt-
ITerepbyprckoro yuusepcurera. Ilpuknannas maremarnka. Undbopmaruka. IIpomeccst ymnpasite-
must. 2021. T. 17. Bem. 4. C. 353-369. https://doi.org/10.21638/11701 /spbul0.2021.404

PaccvarpuBarorcst cucteMbl OOBIKHOBEHHBIX auddepeHInaIbHbIX yPABHEHUN, pa3esIstio-
mrFecst Ha OCHOBE 3aBUCHMOCTEH WX MPABBIX YacTeil 0T Hem3BeCTHHIX (dyHknwmii. IIpencras-
steabl Meroapl Tuna Pynre —KyrTel, KOTOpblE IPUMEHSIOT PA3/IMYHbIE PACUETHBIE CXEMBbI
714 PAa3HBIX YacTedl pa3fieJIeHHBIX CHCTeM. B paMKax MCIOIB3yeMOro IIOJXO0[a MOXKHO IIO-
CTPOUTDH SIBHbIE METOABI C MEHBIIMM UHCJIOM JTANOB, YeM TPeOYIOT KJIACCHIECKHe MeTOIb
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Pynre — KyTre! Toro ke nmopsiaka. B pabore mpeacraBiena moOIHAst CUCTEMA YCIOBHUIM 10 IIIe-
CTOrO IOPs/iKa, HaKJIaJIblBaeMblX Ha Ko3(ddunmenrsl meroaa. Iloka3zaHo, KaK ¢ HOMOMIBIO
IOIOJHUTEIbHBIX IIPEAIIONIOXKEHUN pelleHne 3TON HeJIWHEeHHON CUCTEeMBI CBOOUTCA K IOCJIe-
OBaTEJIbHOMY PENIeHUI0 HECKOJIbKUX JIUHEHHBIX cucTeM. [IpuBOAATCS aropuTM moCcTpoeHnst
METO/IOB IIECTOrO IIOPHAIKA, a TAKKe 3HAYEHUs BCEX KOI(DOUIMEHTOB IPU KOHKPETHOM BbI-
6ope CBOOOIHBIX IIAPAMETPOB.

Karouesvie caosa: pa3menseMble METOIbI, CTPYKTYPHOE pa3/iesieHne, sBHble MeToabl PyHre —
KyTTo1, yenoBug nmopganka, mecToil mOPAI0K.
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