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Abstract

Sexual dimorphism (SD) in the threespine stickleback Gasterosteus aculeatus re-
flects the different roles of the sexes in reproduction and their adaptations to 
different ecological niches. We quantified SD in one population of marine stick-
leback from the White Sea, collected during the spawning period from three 
spawning grounds, each at a distance of 5 km or less from the others. We used 
a landmark-based approach to quantify variation in 44  morphometric linear 
traits. In total, 749  females and 693 males were analyzed. In males, anterior 
body parts are larger — the base of the caudal fin and armor structures such 
as the first and second dorsal spines and the pelvic spine. Females have larger 
posterior bodies — the abdomen, pelvic girdle and the third dorsal spine. The 
SD of caudal body parts exhibits complex patterns. In White Sea threespine 
stickleback, SD patterns are generally similar to other populations of the spe-
cies, but more often show male-biased patterns. Female-biased size SD may be 
associated with the female biased sex ratio of White Sea stickleback.
Keywords: threespine stickleback, sexual dimorphism, morphological varia-
tion, body shape, body size, White Sea

Introduction

The threespine stickleback Gasterosteus aculeatus is one of the most numerous 
fish species of the White Sea (Ivanova et al., 2016; Lajus et al., 2020a). During the 
summer spawning period, it comprises more than 90 % of total fish abundance in 
inshore areas (Ivanova, Lajus, and Ivanov, 2011). Stickleback play an important 
role in the ecosystem, actively consuming a variety of prey organisms (Demchuk 
et al., 2015), and serve as a food source for common predatory fish (Bakhvalova 
et al., 2016). It is also a key species in parasitic chains (Rybkina et al., 2016). Stick-
leback abundance has grown rapidly during the last quarter century and now is 
close to its historical maximum. Arctic warming is likely the main cause of the 
population’s exceptional growth (Lajus et al., 2021). Hence, studying the popula-
tion biology of threespine stickleback in the White Sea not only helps us to assess 
the effects of environmental changes on this species, but also to understand the 
mechanisms underlying climate’s impact on the entire ecosystem.

In the White Sea, stickleback spend most of their lives offshore feeding on 
plankton, coming inshore to spawn from late May or early June until mid-July. At 
that time they reach very high densities on spawning grounds, often exceeding 

Citation: Dorgham, A., Candolin, U., 
Ivanova, T., Ivanov, M., Nadtochii, E., 
Yurtseva, A., and Lajus, D. 2021. Sexual 
dimorphism patterns of the White Sea 
threespine stickleback (Gasterosteus 
aculeatus). Bio. Comm. 66(3): 256–267. 
https://doi.org/10.21638/spbu03.2021.307

Authors’ information: Ahmed Salem 
Dorgham, PhD, Associate Researcher, orcid.
org/0000-0003-4882-8379; Ulrika Candolin, 
PhD, Professor, orcid.org/0000-0001-8736-
7793; Tatiana Ivanova, PhD, Lecturer, orcid.
org/0000-0003-4186-7084; Mikhail Ivanov, 
PhD, Associate Professor, orcid.org/0000-
0002-8277-7387; Ekaterina Nadtochii, 
Laboratory Assistant, orcid.org/0000-
0001-8062-6078; Anastasia Yurtseva, PhD, 
Researcher, orcid.org/0000-0003-1404-7152; 
Dmitry Lajus, PhD, Associate Professor, 
orcid.org/0000-0002-2264-5825

Manuscript Editor: Pavel Skutschas, 
Department of Vertebrate Zoology, Faculty 
of Biology, Saint Petersburg State University, 
Saint Petersburg, Russia

Received: January 12, 2021; 

Revised: April 6, 2021; 

Accepted: April 19, 2021.

Copyright: © 2021 Dorgham et al. This is 
an open-access article distributed under 
the terms of the License Agreement with 
Saint Petersburg State University, which 
permits to the authors unrestricted 
distribution, and self-archiving free of 
charge.

Funding: The Russian Foundation for 
Basic Research Grant 18-04-01052A has 
supported this work. The participation 
of A. Yurtseva was supported by the 
Ministry of Science and Higher Education 
of the Russian Federation (State Task 
No. AAAA-A19-119020790033-9). D. Lajus 
was supported by the Russian Foundation 
for Basic Research grant 20-04-00035.

Ethics statement: The studies were carried 
out in accordance with the guidelines of 
FELASA (Mahler et al., 2014) and approved 
by the Commission on Bioethics of the 
Zoological Institute Russian Academy of 
Sciences (Approval No 1-1/09-09-2021). 

Competing interests: The authors have 
declared that no competing interests exist.

mailto:dlajus@gmail.com
https://doi.org/10.21638/spbu03.2021.307


BIOLOGICAL COMMUNICATIONS, vol. 66, issue 3, July–September, 2021 | https://doi.org/10.21638/spbu03.2021.307 257

ZO
O

LO
G

Y

100 ind/m2 (Ivanova et al., 2016; Lajus et al., 2020a). We 
found differences between male and female feeding pat-
terns (Demchuk et al., 2018) and both predator-related 
and predator-unrelated mortality (Golovin et al., 2019). 
Preliminary analyses of the spatial heterogeneity of the 
fish showed that males and females actively redistrib-
ute on spawning grounds during their spawning period 
(Dorgham et al., 2018).

White Sea threespine stickleback show ontogenetic 
changes in sex ratio. The results from a recent analysis of 
genetic markers show that in juveniles up to the age of 
1.5 months, sex ratio is not biased, but that females pre-
vail among older juveniles (Artamonova et al., in press). 
Female-based sex ratios are consistently observed at 
spawning grounds (Yershov and Sukhotin, 2015; Iva-
nova et al., 2016; Golovin et al., 2019; Lajus et al., 2020a) 
and in open waters within a few km from the shoreline 
among sexually mature fish during their spawning pe-
riod (T. Ivanova and M. Ivanov, unpublished data). Fe-
male prevalence is also reported for a number of other 
populations of this species (Aneer, 1974; Kynard, 1978; 
Wootton, 1984; Arnold et al., 2003; Pichugin, Sidorov 
and Gritsenko, 2003; Saat and Turovski, 2003; Niksirat, 
Hatef and Abdoli, 2010; Patimar, Najafabadi and Soura-
ki, 2010; Rollins et al., 2017). Sex ratio is an important 
population characteristic that directly influences popu-
lation fecundity and, therefore, plays an important role 
in population dynamics (Wootton, Fletcher, Whoriskey 
and Smith, 1995). Sex ratio is closely related to sexual 
dimorphism (SD; i.e., differences in appearance between 
males and females) and is associated with different sex 
roles in reproduction. SD is very common in threespine 
stickleback (Kitano, Mori and Peichel, 2007; Aguirre, El-
lis, Kusenda and Bell, 2008; Leinonen, Cano and Merilä, 
2011a). Male stickleback take care of their offspring by 
protecting their spawning territory, embryos and lar-
vae from other conspecifics and predators. The females’ 
need to develop and carry eggs is facilitated by their 
larger body size, which also influences their swimming 
performance and susceptibility to predators (Rodewald 
and Foster, 1998). SD in structures closely associated 
with reproduction is typically interpreted in terms of 
the adaptation of females and males to their particu-
lar reproductive roles (reviewed by Greenwood and  
Adams, 1987; Andersson, 1994; Short and Balabban, 
1994; Mealey, 2000; Fairbairn, Blanckenhorn and Széke-
ly, 2007). It has been suggested that SD in structures not 
directly related to reproduction result from adaptation 
of the sexes to different ecological niches (Slatkin, 1984; 
Hedrick and Temeles, 1989). Therefore, SD patterns can 
be interpreted in terms of local adaptation.

This study aims to quantify patterns of sexual di-
morphism in White Sea stickleback on spawning 
grounds and discusses its possible role in local adapta-
tion.

Material and methods
Sample collection

Stickleback were sampled from three spawning grounds in 
the Keret Archipelago, Kandalaksha Bay, White Sea, near 
the Belomorskaya Educational and Research Station of St. 
Petersburg State University (66°41′N; 33°45′E). Sampling 
took place five times during the spawning period from the 
end of May to the end of June 2018. In total, 1442 indi-
viduals (749 females and 693 males) were collected with 
a small beach seine (7.5 m in length, 1.5 m in height, with 
120 m2 of catchment area) at the approximate time of low 
tide. The specimens were stored in 10 % formalin accord-
ing to Reimchen and Nosil (2006). Altogether, we collect-
ed 15 samples, each comprising an approximately equal 
number (more often 50) of males and females.

For this study we selected three spawning grounds situ-
ated a distance of 5 km or less from each other (see Lajus et 
al., 2020b for more details). Seldianaya Inlet (SEL) is a tri-
angular bay with a wide entrance and a depth of up to 8 m. 
Tidal amplitude here and at the second site, Sukhaya Salma 
Strait (SSS), is up to 2.5 m, whereas depth at SSS is up to 
10  m. Predatory fish consuming stickleback (Atlantic cod 
Gadus morhua, European sculpin Myoxocephalus scorpius 
and navaga Eleginus nawaga) are quite abundant in these 
locations (Bakhvalova et al., 2016). The density of stickle-
back spawners on SEL is high (usually about 80 ind/m2) due 
to dense beds of eelgrass Zostera marina at the top of the 
inlet. Because SSS is deeper, with sparce eelgrass beds, its 
spawner density is notably lower. Koliushkovaya (KOL) is 
a small muddy lagoon (0.058 km2 in area) up to 4 m deep 
(averaging 1.5  m) with some eelgrass beds. The lagoon is 
characterized by a high density of filamentous algae, which 
stickleback frequently use for spawning. Due to limited con-
nection to the sea, tidal amplitude here is only 0.3 m, preda-
tory fish are virtually absent, and the water is warmer than 
at the two other sites. Spawning stickleback density in the 
lagoon is intermediate between that of the two other sites. 

The sex of collected stickleback was determined by 
visual examination and coloration, and, if necessary, by 
analysis of gonads.

Scanning setup

The “wooden pool” scanning technique (Herler et al., 
2007) used in this study relies on a quick setup that is less 
complicated than photography, and offers high resolution 
digital images of small fish in the laboratory, as well as — 
with some restrictions — in the field. The most important 
advantages of this technique are that specimens can be 
easily manipulated and positioned, expected image qual-
ity can be quickly controlled using the scanner’s preview 
mode and, compared to photographic techniques, image 
quality is high and processing is easy (Herler et al., 2007). 
The specimens were scanned using an Epson Perfection 
V600 Photo scanner at a resolution of 1200 dpi.
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Specimens, fully submerged in water, were scanned 
in the lateral position from the right and ventral sides. 
The wooden pool was made of a wooden frame, glass, 
and plasticine to fill gaps between the glass and wood 
(Herler et al., 2007). The pool was placed on the scanner 
glass and filled with fresh water about 2 cm deep. The 
water was allowed to settle for several hours before use 
to eliminate bubbles, which can stick to the glass bottom 
and the specimens, and mar images. Crooked fish spines 
were straightened using wooden sticks. 

Traits

Trait selection was based on those described in previ-
ous studies of threespine stickleback (Baumgartner, Bell 
and Weinberg, 1988; Hermida, Fernández, Amaro and 
Miguel, 2005; Zanella et al., 2015). In total, 27 landmarks 
were digitized using ImageJ software (Fig. 1 and Supple-
ment 1)1. Injured structures, in particular broken spines, 
were observed very rarely — about 0.1 % of their total 
number — and were excluded from the analyses. Only 
evenly tipped spines were measured. Based on the co-
ordinates of these landmarks, we created 44 linear traits 
(Supplement 2). Distances between the landmarks were 
calculated in Microsoft Excel. All traits of an individual 
were divided by standard length (SL) to minimize the 
effect of fish size (Allendorf et al., 1987). For one bilat-
eral structure, the pelvic spine, we measured both sides 
in order to analyze fluctuating asymmetry, representing 
deviation from perfect symmetry (Palmer, 1994).

All traits were a priori subdivided into several groups 
according to their position and function: 1) body (27 traits 
excluding standard length), 2)  head (6  traits), 3)  armor 
structures (6 traits) and 4) fins (4 traits) (Supplement 3).

Statistical analyses

Before analyses, all SL-standardized traits were checked 
for departure from normality using Shapiro-Wilk’s test 
separately on each sample; Levene and Box’s test was 
used to check homoscedasticity. Next, a Bonferroni cor-
rection for multiple comparisons (Rice, 1989) was ap-
plied. Principal component analysis (PCA) was used 
to analyze the data using IBM SPSS Statistics computer 
software V19.0  (Statistics Inc., version 19, 2011). We 
used only PCs with eigenvectors exceeding 1. Based 
upon differences from the standardized means for males 
and females of body SL, we computed an SD index (SDI) 
according to Borgognini and Repetto (1986):

 100,male female

female

X XSDI
X
-

= *
 

where X—male and X—female are mean trait values for males 
and females, respectively.

1 Supplemental material to the article is available at  
https://biocomm.spbu.ru/article/view/10125

This index shows differences in trait size as a percent-
age: male-biased traits are positive, female-biased traits 
are negative. Differences in SDI and PC between the sexes 
were tested for significance using a Student’s t-test.

Fluctuating asymmetry of pelvic spines was mea-
sured according to Palmer and Strobeck (2003):

 FA = |R – L| / 0.5 * (R + L), 

where R and L are a trait’s right and left values, respec-
tively. As this index is distributed non-normally, we used 
non-parametric Mann-Whitney and Kruskal-Wallis 
H-tests to estimate the significance of the effect of sex on 
fluctuating asymmetry.

Results

Sexual dimorphism in body size

Standard length (SL) in our samples ranged from 5.28 to 
7.18 cm for females with an overall average of 6.16 cm, 
and from 4.90 to 6.43 cm for males with an overall aver-
age of 5.63 cm; females exceeded males in SL by 8.6 % 
(Supplement 3, Fig. 2).

Sexual dimorphism of body shape

Among 43 SL-standardized traits, two (Pred-C and TD) 
showed significant departure from normality. Thus, 
we used non-parametric statistics for their analysis. Of 
the analyzed traits, 15 were significantly female-biased, 
23 were significantly male-biased, and 5 did not differ 
significantly between sexes (Supplement 3).

Principal component analysis (PCA) was conduct-
ed on 43 traits using orthogonal (or varimax) rotation. 
Eleven PCs with eigenvalues exceeding 1  explained 
76.4 % of the total variance (Supplement 4, Table 1). 
Among these PCs, four showed significant differences 
between sexes: PC1 (21.8 % of total variance) can be in-
terpreted as anterior body shape; PC4 (7.2 %) — length 
of spines; PC6  (5.2 %)  — size and shape of the caudal 
part, and PC8  (4.9 %)  — size and shape of the dorsal 
posterior part. Other PCs did not show significant dif-
ferences between the sexes (Table 1).

Comparing traits with higher loadings on these PCs 
with a priori groups of traits shows only partial coinci-
dence between them. Among armor traits, all spines ap-
pear in the same PC except DS3, which is in another PC 
describing variation in posterior parts of the back: PGL 
groups with traits describing the anterior body. Unpaired 
fins group with other traits describing adjacent parts of 
the body. Head traits are divided into two groups, one 
associated with length, and the other — with depth of 
the anterior body. Body shape traits, a heterogeneous 
group, belong to all PCs except PC4  (Table 1, Supple-
ment 2).

https://biocomm.spbu.ru/article/view/10125
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Fig. 1. Landmarks and linear measurements used for description of sexual dimorphism of threespine stickleback. A and B 
are lateral views and C is ventral view. See full description of landmarks and traits in Supplements 1 and 2.

A

B

C
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Table 1. Average scores of Principal Components (PCs) for males and females, and traits showing high absolute loadings on 
these PCs (varimax raw rotation)

PC and percentage 
of total variance 

explained 
(in brackets)

Description

Significance 
of sexual 

dimorphism, 
t-test

Traits with high 
(>0.4) positive 

loading

Traits with high 
(<–0.4) negative 

loading

PC1 (21.8) Size of anterior body P<0.001 Pred-PL, HL, SnL, 
Pred-1, Prev, 
Pred-2, T. 5, ED, ML 

PS-A, T. 8, BD3, 
T. 3, PGL

PC2(8.3) Body length NS Pred-C T. 10, T. 11

PC3 (7.6) Body depth NS BD1, BD2, EDp, 
HD, TD

PC4 (7.2)  Length of spines P<0.001 DS2, DS1, LPS, RPS

PC5 (6.0) Size of postanal body part NS Pred-A

PC6 (5.2)  Size and shape of caudal part P<0.001 LA T. 9, LPC 

PC7 (5.0) Size and shape of lower medial part NS PL-PS, T. 7, T. 6

PC8 (4.9) Size and shape of dorsal upper posterior part P<0.001 LD, Pred-E, T. 12

PC9 (3.9) Size and shape of medium back part NS Pred-S, T2

PC10 (3.3) Size and shape of third dorsal spine and 
adjacent body part

NS T. 4, DS3

PC11 (3.2) Size and shape of anterior back part NS T. 1

Fig. 2. Standard length distribution of stickleback males (n=693) and females (n=749) from Keret Archipelago, White Sea, May–July 2018.
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Males have larger anterior body parts, including 
heads, eyes and mouths, up to approximately the level 
of the pectoral fins. Preorbital distance (Pro) shows the 
highest SDI value (SDI = 21.1), followed by another prox-
ime trait — mouth length (SDI = 16.7). Pred-PL, head 
length (HL) and T. 5 also exhibit SDI values higher than 
10 — 10.2, 11.6 and 14.1, respectively (Supplement 3). In 
addition, males have larger tail fin bases and some armor 
structures, such as the first and second dorsal spines and 
the pelvic spine. SDI of these structures is lower than for 
the anterior part of the body; overall, it ranges between 
3.2 and 5.8. Three dorsal spines show a clear decrease in 
the absolute value of SD from the anterior to the poste-
rior part of the body, with SDI of 5.8, 3.9 and –2.8 for 
DS1, DS2 and DS3, respectively. The absolute length of 
the first dorsal spine (DS1) is 3–4 % less than that of the 
second (DS2), and the third dorsal spine (DS3) is notably 
smaller than the others: only 37 % as long as DS2.

Females have larger posterior body parts, except 
the caudal part. They have a larger abdomen (the dis-
tance between the base of the pelvic spine and anus (T. 8) 
shows the highest female-biased SDI [21.5]), deeper 
body (distance between the base of DS3 and the anus, 
BD3  [SDI = –14.8]), larger pelvic gridle (SDI = –8.9), 
and larger DS3  (SDI = –2.8). SD of the caudal part of 
the body exhibits complex patterns. Males have deep-
er (TD, SDI = 6.2) and longer (LPC, SDI = 4.0) caudal 
peduncles and larger tail bases (SDI = 9.2  and 7.9  for 
T. 10  and T. 11, respectively), but the distance between 
the end of the dorsal fin and beginning of tail is longer 
on females (T. 12 SDI = –8.0). This is likely because the 
upper parts of their caudal fins are smaller. Other fins 
show heterogeneous patterns: females have longer (SDI 
of PL = –1.5) but narrower (SDI of PLD = 4.8) pectoral 
fins, and smaller anal fins (SDI of LA = 10.4). Dorsal fin 
length does not differ between sexes.

For a bilateral trait, the length of pelvic spines, di-
rectional asymmetry tests did not reveal significant 
differences between the lengths of left and right pelvic 
spines (Mann-Whitney U-test, p = 0.665), and the dis-
tribution of R-L values showed no significant departure 
from normality, therefore, asymmetry of this trait is 
fluctuating. Fluctuating asymmetry was not associated 
with standard length (Spearman correlation coefficient, 
p = 0.321). No significant differences between males and 
females were found in the fluctuating asymmetry of the 
length of pelvic spines (t-test, p = 0.303).

Discussion

General patterns of sexual dimorphism

Additive genetic variances, covariances and heritability 
of both threespine stickleback sexes have been shown to 
be similar in terms of genetic architecture. This imposes 

limitations on developing SD (Leinonen, Cano and Mer-
ilä, 2011a). However, empirical data showing consider-
able heterogeneity in SD among different populations 
suggest that genetic limitations are not as strong as com-
monly thought (Leinonen, Cano and Merilä, 2011a). SD 
represents a major source of interpopulation heteroge-
neity in threespine stickleback, showing high variation 
in several morphological traits describing different as-
pects of body size and shape (Aguirre, Ellis, Kusenda 
and Bell, 2008).

Our sampling locations are situated within a few 
km of each other. They are filled with stickleback com-
ing from wintering locations likely situated only dozens 
of km apart during the spawning period (Lajus et al., 
2020a). Thus, we can say with a high level of confidence 
that the fish we analyzed belong to a single population. 
As this study aims to describe generic patterns of White 
Sea stickleback SD, we did not study within-population 
spatial and temporal variation. Such variation occurs 
(Dorgham et al., 2018), and may result in heterogeneity 
of SD, but as it is caused by spatial distribution patterns 
of individuals in the same population, it is not addressed 
in this study. 

Fluctuating asymmetry (FA) was examined in only 
one bilateral trait, pelvic spines, and showed no dif-
ferences between sexes. To the best of our knowledge, 
in this family the only example of difference in FA be-
tween sexes was reported for brook stickleback Culaea 
inconstans from Canada: there, males showed higher 
FA than females in a number of rays and pectoral fin 
lengths (Hechter, Moodie and Moodie, 2000; see also 
Lajus et al., 2019  for review of FA studies in stickle-
back). In animals, SD in FA is very rare, although there 
are several examples in humans, which are probably 
caused by social factors (Graham and Özener, 2016). 
An advantage in our study is its large sample size — al-
most 1500  specimens  — which increases confidence 
that there is actually no difference in FA between males 
and females. Our results were not caused by small sam-
ple size, which is often the case in FA studies (Palmer 
and Strobeck, 2003). Below, we discuss patterns and 
interpretation of SD in different trait groups of threes-
pine stickleback, comparing SD in White Sea fish with 
species-wide patterns.

Body size

Female-biased body size is reported in the overwhelm-
ing majority of studies on SD in threespine stickleback 
(Ikeda, 1933; Mori, 1984, 1990; Lavin and Mcphail, 
1993; Reimchen and Nosil, 2006; Kitano, Mori and 
Peichel, 2007, 2012; Leinonen, Cano and Merilä, 
2011a). Furthermore, other stickleback species such as 
Apeltes quadracus (Blouw and Hagen, 1984), Gasteros-
teus wheatlandi (Sargent et al., 1984), Culaea inconstans 
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(Moodie, 1986), P. sinensis, P. tymensis, and P. pungitius 
(Ikeda, 1933; Mckenzie and Keenleyside, 1970) have the 
same pattern. Unusual male-biased SD is reported for 
Canadian threespine stickleback lacustrine populations 
(Bentzen and McPhail, 1984; Schluter and McPhail, 
1992; Boughman, Rundle and Schluter, 2005), and there 
are additional examples (Kitano, Mori and Peichel, 2007, 
2012; Leinonen, Cano and Merilä, 2011a). 

Female-biased size SD is commonly explained by 
male preferences, as larger females can usually con-
sume larger amounts of nutrients, thus increasing fe-
cundity (Wootton, 1973; Bagenal, 1978; Baker, 1994; 
Kraak and Bakker, 1998; Bonnet et al., 2001). Kitano 
et al. suggested that larger females have higher repro-
ductive success because they produce larger numbers 
of eggs and are favored by courting males (2007). In-
deed, there is a positive correlation between female 
body length and fecundity in many wild populations 
(see Baker, 1994, for review). However, a negative as-
sociation may also occur, as is shown for Alaskan fish 
(Baker et al. 1998, 2005), suggesting a potential trade-
off between offspring number and quality (Smith and 
Fretwell, 1974; Wootton, 1979; Parker and Begon, 1986; 
Stearns, 1992). Size SD may be associated with life his-
tory patterns — it is more pronounced in lake popula-
tions than those in marine and river habitats (Spoljaric 
and Reimchen, 2008). 

The magnitude of stickleback body size SD may 
also be caused by size-dependent selection in males, 
which exhibits complicated patterns. Larger males are 
more likely to succeed in male-to-male competition for 
nesting grounds (Rowland, 1989; Dufresne, FitzGerald 
and Lachance, 1990; Candolin, 1999; Kraak, Bakker and 
Mundwiler, 1999b), less likely to be victims of sneaking 
than smaller males (Parker, 1992; Largiadèr, Fries and 
Bakker, 2001), and may have advantages in guarding 
nests (Parker, 1992). However, there are also advantages 
for smaller males, which can mature and start breeding 
earlier than larger ones (Andersson, 1994). Because an-
nual mortality in the White Sea is about 2/3 (Ivanova et 
al. 2016), this increases the probability of smaller males 
participating in spawning. Smaller males may start 
breeding earlier in the season, occupy better breeding 
territories, and eventually achieve higher reproductive 
success than later-breeding, larger males (Mori, 1993; 
Candolin and Voigt, 2003).

White Sea stickleback clearly exhibit the female-
biased size SD typical of the species. In addition to the 
factors considered above, this pattern may be associ-
ated with the almost two-fold, female-biased sex ratio 
observed on White Sea spawning grounds (Golovin et 
al., 2019; Lajus et al., 2020a). Normally, larger fish live 
longer than smaller fish. Therefore, if one sex is larger, 
its life span will likely be longer (Claisse et al., 2009; 
Charvet, Santana, De Lima and Lessa, 2018). Hence, 

larger female stickleback size may explain their preva-
lence in the White Sea population.

Anterior body

Sizes of the head, mouth and eyes (HL, HD, ML, Pro, 
ED, EDp) are frequently used in studies of stickleback 
SD (McPhail, 1992; Reimchen and Nosil, 2006; Kitano, 
Mori and Peichel, 2007, 2012; Aguirre and Akinpelu, 
2010; Kermoysan, 2013; Reimchen, Steeves and Berg-
strom, 2016). Mature males have larger heads than fe-
males in different parts of the world: in Japan (Mori 
and June, 1984; Mori, 1987a; Mori and Takamura, 2004; 
Kitano et al., 2007), Canada (McPhail, 1992; Reimchen 
and Nosil, 2006; Spoljaric and Reimchen, 2008), Ice-
land (Kristjansson et al., 2002a), the USA and Europe 
(Kristjánsson, Skúlason and Noakes, 2002b; Leinonen, 
Cano and Merilä, 2011a, 2011b). Notably, other related 
species Pungitius tymensis, P. sinensis, P. pungitius have 
similar SD patterns (Kobayashi, 1959; Chae and Yang, 
1990).

Mouth size, dentition, head size and shape, and 
body depth imply adaptation by males to a benthic 
trophic niche (Bentzen and McPhail, 1984; Caldecutt 
and Adams, 1998; Caldecutt, Bell and Buckland-Nicks, 
2001; Kristjánsson, Skúlason and Noakes, 2002b; Re-
imchen and Nosil, 2006; Kitano, Mori and Peichel, 
2007; Spoljaric and Reimchen, 2008). Males build nests 
using their mouths to collect sand and fibers. Also, they 
frequently manifest biting behavior in interactions with 
other males and during courtship, which is rare for fe-
males (Wootton, 1984). During breeding season, males 
mostly occur near the bottom protecting their territory 
and nests, while females spend additional time in the 
water column. This niche divergence results in differ-
ent food preferences, and also in different predation 
pressure. Males are more exposed to bottom predators, 
whereas females are vulnerable to avian predation (Re-
imchen, 1980; Reimchen and Nosil, 2004). In the White 
Sea, we also observed that males spend more time near 
the bottom during the spawning period (Lajus et al., 
2020a), consuming more benthic organisms than fe-
males (A. Demchuk, unpublished). More often than 
females, males are consumed by demersal predators 
such as cod and sculpin (Golovin et al., 2019). Thus, 
the above interpretations are in accordance with the life 
history of stickleback in the White Sea, despite the fact 
that they spend a small portion of their lives near shore, 
and the rest of their lives is spent in the water column of 
the open sea (Lajus et al., 2020a).

Deeper bodies imply male adaptation to benthic 
trophic niches, including increased protection from 
predators (Bentzen and McPhail, 1984; Caldecutt and 
Adams, 1998; Caldecutt, Bell and Buckland-Nicks, 
2001; Kristjánsson, Skúlason and Noakes, 2002b; Re-



BIOLOGICAL COMMUNICATIONS, vol. 66, issue 3, July–September, 2021 | https://doi.org/10.21638/spbu03.2021.307 263

ZO
O

LO
G

Y

imchen and Nosil, 2006; Kitano, Mori and Peichel, 
2007; Spoljaric and Reimchen, 2008). In the White 
Sea, selection towards larger male size may be caused 
by predation. Usually, body depth SD is positively as-
sociated with SD in the pectoral fins and caudal pe-
duncle. These results suggest an adaptation for rapid 
acceleration and maneuverability (Webb, 1984; Taylor 
and McPhail, 1986; Domenici and Blake, 1997; Walker, 
1997; Spoljaric and Reimchen, 2007, 2008), possibly fa-
cilitated by divergent predation regimes among the sex-
es (Reimchen, 1980, 1994; Reimchen and Nosil, 2004). 
In most stickleback populations, a greater body depth 
in males could also present an advantage during male-
to-male interactions, while during egg fanning, the 
larger pectoral fins associated with deeper bodies may 
promote trunk stability and also be attractive to females 
(Van Iersel, 1953; Wootton, 1976, 1984; Bell and Foster, 
1994; Kraak, Bakker and Mundwiler, 1999a).

Armor structures

Functionally, the dorsal and pelvic stickleback spines 
are important for display by males (Symons, 1966; Wilz, 
1970; Huntingford, 1976) and for predator defense 
(Hoogland, Morris and Tinbergen, 1956; Moodie, 1972). 
Hoogland et al. (1957) and Reimchen (1983) showed 
that the first dorsal spine is commonly shorter than the 
second one, and the latter works as a functional unit 
with the pelvic spines to protect the fish from predators. 
Reimchen suggested that highly developed armor in 
marine stickleback was due to more puncturing preda-
tors and post-capture adaptations than greater predation 
rates (1994). At the same time, niche breadth is larger in 
lakes than in smaller ponds, which can result in reduc-
ing SD magnitude (Spoljaric and Reimchen, 2008; Lei-
nonen, Cano and Merilä, 2011a).

In White Sea stickleback, three dorsal spines, from 
the first to the third, show a decrease in SDI from a 
strong male bias to a female bias. This is a good example 
of decrease in male-biased SD towards the posterior part 
of the body. This may reflect a greater necessity for fe-
males to protect the posterior parts of their bodies. We 
note this pattern for the first time because we did not 
find data on the SD of the third dorsal spine. Male-bi-
ased SD of the pelvic spine in our sample differed from 
a species-wide pattern, as authors more often report a 
female-biased pattern of this trait (Jones, Brown, Pem-
berton and Braithwaite, 2006; Kitano, Mori and Peichel, 
2007; Aguirre, Ellis, Kusenda and Bell, 2008; Leinonen, 
Cano and Merilä, 2011a). At the same time, the pelvic 
(or ventral) gridle in literature often shows a female-bi-
ased pattern, as we found in our study. Because this bony 
structure covers the ventral surface of the fish, the pelvic 
girdle may be a primary defensive mechanism to protect 
eggs in the abdominal cavity (Bell and Foster, 1994).

Caudal peduncle

Authors who reported male bias in caudal peduncle 
length SD explain this by males’ need for greater ma-
neuverability, which is important during the breeding 
season. At the same time, longer caudal peduncles can 
be additional manifestations of more fusiform female 
bodies, which lower friction during open water swim-
ming, as has been described for various taxa (Aleyev, 
1977; Vogel, 1981; Webb, 1984; Domenici and Blake, 
1997; Walker, 1997). Our data on White Sea stickleback 
show male bias in caudal peduncle length, which may 
be due to the need for greater maneuverability in males. 

Fins

SD of stickleback fins has attracted research attention 
to a different extent. SD of spines, originated from the 
fin rays of dorsal and pelvic fins, was discussed above. 
The most attention has been paid to the dorsal fin, which 
usually showed male bias (Leinonen, Cano and Merilä, 
2011a, Supplementary data), but in White Sea fish we did 
not find SD in this structure. SD of anal fins was stud-
ied by Kristjansson et al. (2002), who found male-biased 
SD in two samples, which is similar to our findings. As 
anal and dorsal fins are responsible for maneuverability 
(Aleyev, 1977), which is more important for stickleback 
males, these results are in accord with expectations. 

Pectoral fin length was reported to have female 
bias in one study (Aguirre, Ellis, Kusenda and Bell, 
2008), and White Sea fish demonstrate the same pat-
tern. Most probably, this is because pectoral fins in 
stickleback are important swimming structures, along 
with tails (Aleyev, 1977). At the same time, pectoral fin 
depth, which shows a male-biased SD in our study, may 
be beneficial for more effective egg fanning and maneu-
verability (see above).

Conclusion

Sexual dimorphism of threespine stickleback reflects 
the different roles of the sexes in reproduction. It also 
optimizes the use of available population resources. Fe-
male-biased sexual size dimorphism is very common in 
stickleback and probably serves to increase population 
fecundity. It might be an essential factor in the nearly 
twofold predominance of females in the White Sea. This 
preponderance is observed in juveniles only a few weeks 
old. In spawning fish, it may be caused by higher preda-
tion mortality in males, and high energy loss during the 
spawning period (Golovin et al., 2019).

In our study, most of the traits used in describing 
body shape show statistically significant SD. It is possible 
to distinguish several groups of structures where SD pat-
terns are similar. The anterior body is relatively larger in 



264 BIOLOGICAL  COMMUNICATIONS,  vol. 66,  issue 3,  July–September,  2021 | https://doi.org/10.21638/spbu03.2021.307

males. This is likely associated with their role in guard-
ing the nesting area and the offspring, which requires 
spending more time near the bottom during breeding 
season. Feeding on benthic organisms leads to special-
ized adaptations in males, such as larger mouths. Con-
versely, females spend more time in the water column, 
where a more fusiform body is more adaptive. The larger 
body posterior part also allows females to carry more 
eggs. 

Armor structures are more developed in male ante-
rior body parts due to their importance in male-to-male 
competition and in protecting nests and offspring. In 
contrast, female armor structures are more developed in 
their posterior body parts to protect large gonads. The 
three dorsal spines clearly manifest a pattern in which 
male-biased SD decreases from the first to the second 
spine and shifts to female-biased in the third (in White 
Sea fish). Larger ventral plates in females may provide 
stronger protection for their eggs, especially from at-
tacks from below. SD of the caudal peduncle and tail 
part of the body are rather heterogeneous in a species-
wide context.
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