
Contributions to Game Theory and Management, XIV, 302�311

Computation Problems for Envy Stable Solutions of

Allocation Problems with Public Resources

Natalia I. Naumova

St.Petersburg State University,
7/9 Universitetskaya nab., Saint Petersburg 199034, Russia,

E-mail: nataliai.naumova@mail.ru

Abstract We consider generalizations of TU games with restricted coopera-
tion in partition function form and propose their interpretation as allocation
problems with several public resources. Either all resources are goods or all
resources are bads. Each resource is distributed between points of its set and
permissible coalitions are subsets of the union of these sets. Each permissible
coalition estimates each allocation of resources by its gain/loss function, that
depends only on the restriction of the allocation on that coalition. A solution
concept of �fair� allocation (envy stable solution) was proposed by the au-
thor in (Naumova, 2019). This solution is a simpli�cation of the generalized
kernel of cooperative games and it generalizes the equal sacri�ce solution for
claim problems. An allocation belongs to this solution if there do not exist
special objections at this allocation between permissible coalitions. For sev-
eral classes of such problems we describe methods for computation selectors
of envy stable solutions.
Keywords:Wardrop equilibrium, envy stable solution, games with restricted
cooperation, equal sacri�ce solution.

1. Introduction

We consider a problem of �fair� distribution several public resources between
elements of a �nite set N . We suppose that either all distributing resources are
public goods or all resources are public bads.

There is a partition τ of N such that each resource is distributed between ele-
ments of its B ∈ τ . Similar allocations arise when di�erent coalitions from τ corre-
spond either to di�erent �nancial sources or to di�erent moments of distribution of
one resource.

There is a family A of permissible coalitions which estimate allocations. Each
coalition in A estimates an allocation by its gain/loss function GS and the result
of the estimation depends only on the restriction of the allocation on this coalition.
Note that permissible coalitions may intersect (persons from the same region, per-
sons of the same age, persons of the same sex can form permissible coalitions), but
this does not in�uence to gains/losses of coalitions because we suppose that each
resource is public one. A distributer needs to allocate resources as fair as possible.

One of the problems of a distributer is to �nd an allocation that seems fair
for permissible coalitions. Our model includes an undirected graph Γ , where per-
missible coalitions are its nodes, and two permissible coalitions can compare their
gains/losses at an allocation i� they are adjacent in Γ .

Envy stable allocations for such problems were introduced by the author in
(Naumova, 2019).

These solutions are modi�cations of the kernel of cooperative games (see Sud-
holter and Peleg, 2007) and they generalize the equal sacri�ce solution for claim
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problems (see Moulin, 2002 for example). We de�ne objections at an allocation be-
tween coalitions that are adjacent in Γ , and an allocation is envy stable i� there
are no objections at it.

Special cases of envy stable solutions w.r.t. (τ, Γ ) were considered by the author
(in Naumova, 2011, Naumova, 2012) for the cases, when τ = {N}, the gain functions
are either excesses or proportional excesses of cooperative games with restricted
cooperation, and either all di�erent coalitions in A are adjacent in Γ or all coalitions
with empty intersections are adjacent in Γ .

Conditions on Γ and τ that ensure the existence of the envy stable solution for
each collection of gain/loss functions of coalitions are described in (Naumova, 2019).
The obtained conditions generalize the results (in Naumova, 2011, Naumova, 2012).

In this paper we describe methods for computation selectors of envy stable
solutions for two classes of gain functions. For the case when the existence condition
on Γ and τ is ful�lled, all GS(0) = 0 and GS are linear functions, methods of linear
programming and Bregman's iterative method (Bregman, 1967) are suitable. The
results of Bregman's method seem more fair because they seem fair not only for
admissible coalitions but also for players.

The values of gain functions GS of the second class depend on total amounts of
resources. We propose computation methods that are correct under additional con-
ditions on Γ , τ that are stronger than the condition which guarantees the existence
result of envy stable solution.

The paper is organized as follows. In section 2 we give basic de�nitions and de-
scribe conditions on Γ , τ that guarantees existence result for envy stable solution.
In section 3 we describe Bregman's iterative method for some linear programming
problems. In section 4 for some linear gain functions, we formulate linear program-
ming problem and compare its solutions by linear programming methods and by
Bregman's iterative method. In section 5 we consider special cases of distribution of
a unique resource. In section 6 we describe iterative methods for obtaining selectors
of envy stable solutions under di�erent restrictions on the functions GS and the
graph Γ . The obtained results are discussed in section 7.

2. Allocation model

For N = {1, . . . , n}, let A be a collection of some subsets of N , A covers N , τ
be a partition of N , cB > 0 for each B ∈ τ . Denote C = {cB}B∈τ . Then

X = X(τ, C) = {x ∈ Rn : xi ≥ 0,
∑
i∈B

xi = cB , B ∈ τ}

is the set of allocations. For S ∈ A, x ∈ X, let xS = {xi}i∈S , and GS be a
continuous strictly increasing in each variable function de�ned on

XS = {xS : x ∈ X}.

We suppose that either all resources are public goods or all resources are public
bads and the function GS is a gain/loss utility function of the coalition S. Thus, for
each allocation x, each xi can be used by each S ∈ A such that i ∈ S, and GS(xS)
is the gain/loss of S at the allocation x.

A distributer needs to take an allocation in X that seems �fair� for a collection of
coalitions A. Such problems arise either if di�erent coalitions from τ have di�erent
resources or if di�erent coalitions from τ correspond to di�erent �nancial sources.
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Cooperative transferable utility games generate special allocation problems as
follows.

Denote x(S) =
∑
i∈S

xi.

Let (N, v) be a TU-cooperative game with v(N) > 0, τ = {N}, A be a collec-
tion of permited coalitions of N . Then (N, v) generates c = v(N), X is the set of
imputations and G1

S(xS) = x(S)− v(S).
If moreover v(S) > 0 for each S ∈ A, then (N, v) also generates G2

S(xS) =
x(S)/v(S). These models were considered in (Naumova, 2011, Naumova, 2012).

We consider the following concept of fair distribution.
Let Γ be an undirected graph, where A is the set of nodes and the nodes of each

link are di�erent.
An allocation x belongs to {GS}S∈A - envy stable solution w.r.t. Γ if for

each link {P,Q} of Γ , GP (xP ) > GQ(xQ) implies x(P ) = 0.
This notion has the following interpretation. Objections are possible only be-

tween the ends of links of Γ . For each link {P,Q} of Γ , if we distribute goods, then
Q envies to P at x, but it can't get anything from P , and if we distribute bads,
then P envies to Q at x, but P has no bads.

This de�nition generalizes equal sacri�ce solution for claim problems.
Existence condition on A for envy free solution with respect to undirected Γ

was obtained in (Naumova, 2019).

Theorem 1. Let A ⊂ 2N , τ , undirected Γ be given. For all continuous strictly in-
creasing in each variable functions GS (S ∈ A), the {GS}S∈A - envy stable solution
w.r.t. Γ is a nonempty set if and only if A satis�es the following condition
C0(Γ, τ). If in each component of Γ its arbitrary node is taken out from A, then
each B ∈ τ is not covered by the remaining elements of A.

The property C0(Γ, τ) is illustrated by the following examples.

Example 1. Let A cover N and all nodes of Γ be adjacent. Then C0(Γ, τ) is fulfulled
i� A minimally covers any B ∈ τ .

Example 2. K,L ∈ A are adjacent in Γ i� K ∩L = ∅. |N | = 4, τ = {N}, A consists
of no more than 5 two-person coalitions. Then C0(Γ, τ) is ful�lled.

Example 3. K,L ∈ A are adjacent in Γ i� K ∩L = ∅. |N | = 4, τ = {N}, A consists
of all two-person coalitions.Then C0(Γ, τ) is not ful�lled. Indeed, if we take o� the
coalitions {1, 2}, {1, 3}, {2, 3}, then the remaining elements of A cover N .

Example 4. K,L ∈ A are adjacent in Γ i� K ∩ L = ∅.
N = {1, . . . 6}, τ = {{1, 2, 3, 4}, {5, 6}},
A = {{1, 2, 5}, {3, 4, 6}, {1, 3}, {2, 4}}. Then C0(Γ, τ) is ful�lled.

3. Bregman's iterative method

Bregman (1967) proposed iterative methods for �nding admissible points of sys-
tems of linear equations with nonnegative coordinates. In particular, for x, y ∈ Rn

with xi, yi > 0, he de�ned a nonsymmetric �distance function�

ρ(x, y) =

n∑
i=1

xi(ln(xi/yi)− 1).
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Note that ρ is not a metric. If L is a hyperplane such that L ∩ Rn
+ ̸= ∅, then for

each y with yi > 0, there exists a unique solution of the problem

ρ(x, y)→ min
x∈L

.

This solution is called the entropy projection of y on L and can be found by
Lagrange method.

Bregman, 1967 proved that if L0 is an intersection of several hyperplanes and
L0 ∩Rn

++ ̸= ∅, then the solution of the problem

ρ(x, y)→ min
x∈L0∩Rn

++

is unique and it can be obtained as a limit of iterative entropy projections of y on
these hyperplanes.

For some hyperplanes, the entropy projection on them is easily calculated be-
cause

d

dxi
ρ(x, y) = lnxi − ln yi.

Example 5. L = {x ∈ Rn : x(S) = a}, a > 0, and z is an entropy projection of y
on L. Then zi = yi for i ̸∈ S, zi = a

y(S)yi for i ∈ S.

Example 6. Let L = {x : x(P )/aP = x(Q)/aQ}, where P,Q ⊂ N , P ∩ Q = ∅,
aP > 0, aQ > 0, z be the entropy projection of y on L.

Denote K(P,Q, y) = aP y(Q)/(aQy(P )). Then
zi = yi for i ∈ N \ (P ∪Q),
zi = K(P,Q, y)aQ/(aP+aQ) for i ∈ P ,
zi = K(P,Q, y)−aP /(aP+aQ) for i ∈ Q.

4. Computation methods for linear functions

Let GS(xS) =
∑

i∈S a
S
i xi, where a

S
i > 0. Let A satisfy Condition C0 then an

allocation x of envy stable solution is an admissible point of the following system∑
i∈S

aSi xi −
∑
i∈Q

aQi xi = 0 for each link {P,Q} ofΓ,

∑
i∈B

xi = c(B) for eachB ∈ τ,

xi ≥ 0 for each i ∈ N.

A solution of this system can be obtained by methods of linear programming.
Simplex method gives the results that do not look fair from the player's point

of view even for trivial problems.

Example 7. N = {1, 2, 3, 4}, A = {{1, 2}, {3, 4}, {1, 3}, {2, 4}}, τ = {N}, coali-
tions are adjacent in Γ i� they do not intersect, GS(xS) = x(S)/v(S), where
v(1, 2) = 10, v(3, 4) = 8, v(1, 3) = 6, v(2, 4) = 12, c = v(N) = 18.

Simplex method gives x0 = (0, 10, 6, 2), and x01 = 0 seems unfair for players.
The internal point method gives x1 = (3.5, 6.5, 2.5, 5.5) that seems fair both for
coalitions and for players.
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But for another example the internal point method also gives a vector that seems
unfair for players.

Example 8. N = {1, 2, 3, 4, 5, 6}, A = {{1, 2}, {3, 4, 5, 6}, {1, 3}, {2, 4, 5, 6}},
τ = {N}, coalitions are adjacent in Γ i� they do not intersect, GS(xS) = x(S)/v(S),
where v(1, 2) = 10, v(3, 4, 5, 6) = 8, v(1, 3) = 6, v(2, 4, 5, 6) = 12, c = v(N) = 18.

Simplex method gives x2 = (0, 10, 6, 0, 0, 2). The internal point method gives
x3 = (3.5, 6.5, 2.5, 0, 0, 5.5). The results of these methods seem unfair for players
because the players 4,5,6 are symmetric.

The advantage of Bregman's iterative method over simplex method and internal
point method is that it can ensure equal results for �symmetric� players of N if their
coordinates in y coincide.

Example 9. Consider the allocation problem from Example 8, where �symmetric�
players 4, 5, 6 get nonequal distriburtion results by simplex method and internal
point method. If y = (1, 1, 1, 1/3, 1/3, 1/3) then Bregman's metod gives x4 =
(3.5, 6.5, 2.5, 1.83, 1.83, 1.83).

Moreover, Bregman's method permits to take into account signi�cances of points
in N (if yi describes the signi�cance of i ∈ N).

However, Bregman's iterative method works if the solution of the problem exists.
Theorem 1 gives only su�cient condition for existence of admissible points of the
linear system. We can attempt to �nd an admissible point of the linear system by
linear programming methods and use Bregman's method if such point exists.

5. Gain functions of total amounts of one resource

In this section we consider two cases, where the values of gain functions GS

depend on total amounts of resources. If |τ | > 1, this is possible when one resource
is distributed from di�erent sources. We propose computation methods that are
correct under additional conditions on Γ , τ . These conditions are stronger than the
condition which guarantees the existence result of envy stable solution.

5.1. A is a union of several partitions

Let τ = {N}, coalitions in A be adjacent in Γ i� they do not intersect, and
each component of Γ be a partition of N . Let the condition C0(Γ, τ) be ful�lled.
(Such collections of coalitions A are called totally mixed colections of coalitions
in (Naumova, 2011).) Let, moreover, GS(xS) = gS(x(S)), where gS are strictly
increasing continuous functions. Then points of envy stable solution can be found
in two steps.

Step 1. For each component Bk of Γ , determine envy stable solution for the
problem, where Bk is the collection of admissible coalitions. The solutions of all
such problems assign a unique collection of numbers {aS}S∈A such that∑

S∈Bk
aS = c(N) for each component Bk of Γ and if P,Q ∈ Bk, then gP (ap) >

gQ(aQ) implies aP = 0.
Step 2. By Bregman's method, �nd a point x that satis�es the following condi-

tions.∑
i∈S xi = aS for each S ∈ A, xi ≥ 0 for all i ∈ N .

Such point x exists in view of Theorem 1.
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5.2. Several sources of the same resource

Now consider the case when |τ | > 1, but for each permissible coalition, the value
of its gain/loss function depends on the total amount of resources obtained by this
coalition. Such problems arise when the same resource is distributed from several
sources.

The following result was obtained in (Naumova, 2019, Proposition 1 and Theo-
rem 4). We take an optimization problem, which solution is Wardrop equilibria de-
�ned in (Wardrop, 1952) for road tra�c problems (see Krylatov and Zakharov, 2017
or Mazalov, 2010 for example), and give conditions on Γ , τ that ensure inclusion of
Wardrop equilibria in envy stable solution. Thus for (Γ, τ) described in the following
theorem, we reduce the problem of �nding a selector of envy stable solution to an
optimization problem.

Denote Ai = {T ∈ A : i ∈ T}.
A collection of coalitions A is a (Γ, τ)�mixed collection of coalitions if for

each B ∈ τ , i ∈ B, Q ∈ Ai, and a link {Q,S} of Γ , there exists j ∈ B such that
Aj = Ai ∪ {S} \ {Q}.

Theorem 2. Let Γ be an undirected graph, τ be a partition of N , GS(xS) =
gS(x(S)), (S ∈ A). For all strictly increasing continuous functions gS, the solu-
tions of the problem ∑

S∈A

z(S)∫
0

gS(t)dt→ min{z: z∈X}

are contained in the {GS}S∈A - envy stable solution w.r.t. Γ if and only if A is a
(Γ, τ)�mixed collection of coalitions.

Example 10. |N | = 4, τ = {N}, P and Q are adjacent in Γ i� P ∩ Q = ∅, A =
{{i, j}, {k, l}; {i, k}, {j, l}}, then A is a (Γ, τ)�mixed collection.

Other examples concerning mixed collections of coalitions are in the next section.

6. Dynamic systems for gain functions of total amounts for each
resources

Here we restrict the class of gain/loss functions of coalitions as follows. Let τ
be a partition of N , A be a collection of subsets of N . Denote by GτA the set of GS

such that S ∈ A and GS(xS) = gS({x(S ∩ B)}B∈τ ) for some continuous strictly
increasing in each of |τ | variables function gS . In this case resources of di�erent
types are possible.

6.1. Positive and negative mixed collections of coalitions

Computation methods of this section permit two classes of collections of coali-
tions which are larger than the class of mixed collections of coalitions, introduced
in the previous section.

A collection of coalitions A is a (Γ, τ)�positive mixed collection of coali-
tions if for each B ∈ τ , i ∈ B, P ∈ Ai, and a link {S, P} of Γ , there exists j ∈ B
such that Aj ⊃ Ai ∪ {S} \ {P}.

A collection of coalitions A is a (Γ, τ) � negative mixed collection of coali-
tions if for each B ∈ τ , i ∈ B, P ∈ Ai, and a link {P, S} of Γ , there exists j ∈ B
such that Aj ⊂ Ai ∪ {S} \ {P}.
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Each (Γ, τ)�mixed collection of coalitions is a (Γ, τ)�positive mixed collection
and a (Γ, τ)�negative mixed collection.

Example 11. |N | = 5, K,L ∈ A are adjacent in Γ i� K ∩ L = ∅, τ = {N},
A = {{i, j}, {k, l,m}, {i, k}, {j, l}},
A is a (Γ, τ)�positive mixed collection of coalitions.

Example 12. |N | = 4, K,L ∈ A are adjacent in Γ i� K ∩ L = ∅, τ = {N},
A = {{i, j}, {k}, {i,m}},
A is not a (Γ, τ)�positive mixed collection of coalitions. Indeed, take P = {i, j},
S = {k}.

Example 13. τ = {N}. If A is a minimal covering of N , then A is a (Γ, τ) � negative
mixed collection of coalitions for each Γ . Indeed, for a link {Q,S}, there exists j ∈ N
such that Aj = {S}.

Example 14. |N | = 5, K,L ∈ A are adjacent in Γ i� K ∩ L = ∅, τ = {N},
A = {{1, 2}, {3, 4, 5}, {1, 3}, {2, 4}},
A is not a (Γ, τ)�negative mixed collection of coalitions. Indeed, take P = {3, 4, 5},
i = 5, S = {1, 2}.

These collections were introduced in (Naumova, 2019) and it was proved that
(Γ, τ)�negative mixed collections satisfy the condition C0(Γ, τ), and (Γ, τ)-positive
mixed collections satisfy the condition C0(Γ, τ) under the additional condition (the
nodes of links of Γ do not intersect).

We shall describe an iterative procedure that converge to points in envy stable
solution for (Γ, τ)�negative mixed collections and (Γ, τ)-positive mixed collections
of coalitions. But there exist collections of coalitions such that Condition C0 is
ful�lled but such collections are neither weakly positive mixed nor weakly negative
mixed.

Example 15. A = {{i, j}, {k, l}, {i, k, n}, {j, l,m}, {i, k,m}, {j, l, n}}. Then A
satis�es Condition C0, but it is neither positive mixed nor negative mixed. Indeed,
if we take P = {i, k,m}, S = {j, l, n}, then Ai ∪ S \ P ̸⊂ Ap for each p, and if we
take P = {i, k, n}, S = {j, l,m} then An ∪ S \ P ̸⊃ Ap for each p.

6.2. Dynamic systems

The following de�nitions and notations are due to Sudholter and Peleg, 2007.
Let X be a metric space and d : X × X → R be a metric for X. A dynamic

system on X is a set-valued function φ : X → 2X .
A φ-sequence from x0 ∈ X is a sequence {xt}∞t=0 such that xt+1 ∈ φ(xt) for all

t = 0, 1, . . .. A point x ∈ X is called an endpoint of φ if φ(x) = {x}.
A set-valued function φ : X → X is lower hemicontinuous at x ∈ X if for every

open set U ⊂ X such that φ(x) ∩ U ̸= ∅, there exists an open set V ⊂ X such that
x ∈ V and φ(z) ∩ U ̸= ∅ for every z ∈ V .

φ is lower hemicontinuous, if it is lower hemicontinuous at each x ∈ X.
A valuation for φ is a continuous function Ψ : X → R such that

y ∈ φ(x) =⇒ Ψ(x)− Ψ(y) ≥ d(x, y) for all x, y ∈ X.

De�ne the function ρφ : X → R ∪ {∞} by

ρφ(x) = sup{d(x, y) : y ∈ φ(x)}.
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A φ�sequence {xt}∞t=0 is maximal if there exists α > 0 and a subsequence
{xtj}∞j=0 such that

d(xtj , xtj+1) ≥ αρφ(xtj ) for all j.

The proof of convergence of φ�sequence that will be de�ned in this paper is
based on the following results.

Corollary 10.1.9.in Sudholter and Peleg, 2007 Let X be a compact metric
space and φ be a lower hemicontinuous set-valued function. If φ has a valuation,
then every maximal φ�sequence converges to an endpoint of φ.

In order to prove the existence of valuations for our models, we shall exploit the
results in (Justman, 1977). The next de�nition use notations of that paper.

Let U = {ui}i∈M be a �nite set of real valued functions de�ned on X, φ be a
dynamic system on X. A pair {U,φ} is a nucleolar framework w.r.t. U , φ if for
some ϵ > 0 and all x ∈ X if y ∈ φ(x) then for some i ∈M ,
ui(x)− ui(y) ≥ ϵd(x, y),
for all j ∈M , uj(y) > ui(y) implies uj(y) ≤ uj(x).

Justman, 1977 proved in Theorem 2.2 (pp. 193-194) that if there exists K > 0
such that ui(x)−ui(y) ≥ −Kd(x, y) for all x, y ∈ X, i ∈M , then φ has a valuation.

Theorem 3. Let for {GS}S∈A ∈ GτA there exist K > 0, ϵ > 0 such that

ϵd(x, y) ≤ |GS(x)−GS(y)| ≤ Kd(x, y)

for all x, y ∈ X(τ, C), where d(x, y) = maxk∈N |xk − yk|,
(Γ, τ) satisfy one of the following conditions:
A is a (Γ, τ) � negative mixed collection of coalitions;
A is a (Γ, τ) � positive mixed collection of coalitions and S ∩ Q = ∅ for each link
{S,Q} of Γ .

Then there exists a dynamic system φ such that each maximal φ-sequence con-
verges to an allocation in {GS}S∈A - envy stable solution w.r.t. Γ .

Proof. Let us construct dynamic systems that satisfy the conditions of Justman's
theorem. (Here M ↔ A, U ↔ {GS}S∈A, uk(x)↔ GS(x).)

For i, j ∈ B ∈ τ , β ≥ 0, let x(i, j, β)i = xi−β, x(i, j, β)j = xj+β, x(i, j, β)k = xk
for k ̸= i, j. Then x(i, j, β) is an allocation if β ≤ xi.

For a link {P,Q} of Γ and an allocation x with GP (xP ) > GQ(xQ), B ∈ τ ,
i ∈ P ∩B, j ∈ B, let

δ(i, j, x) = min{xi, sup{β : GP (x(i, j, β)P ) > GQ(x(i, j, β)Q)}}.

We de�ne dynamic systems φ for the collection of {GS}S∈A ∈ GτA in 2 cases as
follows.

Case 1. A is a (Γ, τ)�negative mixed collection of coalitions.
Let x be an allocation. If x belongs to the {GS}S∈A - envy stable solution

w.r.t. Γ then take φ(x) = {x}. Else there exists a link {P 0, Q0} of Γ such that
GP 0(xP 0) > GQ0(xQ0) and x(P 0) > 0.

Then y ∈ φ(x) i� there exists a link {P,Q} of Γ such that GP (xP ) > GQ(xQ)
and x(P ) > 0, for this link there exists i0 ∈ P ∩B, where B ∈ τ with xi0 > 0, j0 ∈ B
with Aj0 ⊂ Ai0 ∪{Q}\{P} and β > 0 such that y = x(i0, j0, β) and β ≤ δ(i0, j0, x).
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Then φ(x) ̸= ∅ and x belongs to the {GS}S∈A - envy stable solution w.r.t. Γ i� x
is an endpoint of φ.

Note that j0 ̸∈ P , hence GP (xP ) − GP (yP ) ≥ ϵβ = ϵd(x, y). If for some S ∈
A, GS(xS) < GS(yS), then S = Q, and GQ(yQ) ≤ GP (yP ) by the de�nition of
δ(i0, j0, x). Thus, the conditions of Justman's theorem are veri�ed in this case (the
coalition P corresponfs to Justman's coordinate i).

Case 2. A is a (Γ, τ)�positive mixed collection of coalitions and S ∩ T = ∅ for
each link {S, T} of Γ . We construct φ(x) as follows. If x belongs to the {GS}S∈A
- envy stable solution w.r.t. Γ then take φ(x) = {x}. Else y ∈ φ(x) i� there exists
a link {P,Q} of Γ such that GP (xP ) > GQ(xQ) and x(P ) > 0, for this link there
exists i0 ∈ P ∩B, where B ∈ τ with xi0 > 0, j0 ∈ B with Aj0 ⊃ Ai0 ∪{Q}\{P} and
β > 0 such that y = x(i0, j0, β) and β ≤ δ(i0, j0, x). Then φ(x) ̸= ∅ and x belongs
to the {GS}S∈A - envy stable solution w.r.t. Γ i� x is an endpoint of φ.

In this case GQ(xQ) < GQ(yQ) because i0 ̸∈ Q as if P ∩ Q = ∅. If GS(xS) >
GS(yS) then S = P and GP (yP ) ≥ GQ(yQ). The conditions of Justman's theorem
are realized for uS = −GS and the coalition Q corresponds to Justman's coordinate
i.

By Justman's theorem, the constructed dynamic systems φ have valuations and
are lower hemicontinuous set-valued functions as if GS are continuous functions.
Then by Corollary 10.1.9.in Sudholter and Peleg, 2007, maximal φ�sequences con-
verge to endpoints of φ. By constructions of φ, these endpoints belong to {GS}S∈A
- envy stable solution w.r.t. Γ .

7. Conclusion

In this paper for generalized cooperative games with restricted cooperation and
several public resources, we consider envy stable solutions that were introduced
by the author in Naumova, 2019. The allocations of this solution seem �fair� for
admissible coalitions. We propose computation methods for the following classes of
the problem.

1. Each admissible coalition S has a linear gain function GS that is strictly
increasing in each variable and GS(0) = 0. If envy stable solution exists, its selector
can be found by linear programming methods or. by Bregman's iterative method.
The results of linear programming methods may seem unfair for players, and the
results of Bregman's method seem fair both for coalitions and for players.

2. We distribute one resource, a collection of admissible coalitions is a union
of several partitions of the set of players and the existence result for envy stable
solution is guaranteed. If we solve the problem for each partition separately, then
the solution of the whole problem can be obtained by Bregman's method.

3. There are several sources of the same resource, the value of each gain function
of a coalition depends on the total amount of resources obtained by this coalition,
and the collection of admissible coalitions is mixed. Then a selector of envy stable
solution is the solution of a special optimization problem.

4. There are several resources, the gain functions of coalitions depend on total
amounts of each resource, and the collection of admissible coalitions is either positive
mixed of negative mixed. Then we describe an iterative procedure (under some
restrictions on gain functions) that converges to an envy stable allocation.
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