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Abstract In this paper we consider game theoretic models of control on net-
works with application to marketing. We suppose that all strong subgroups
are determined in the stage of analysis of the in�uence digraph, and the
control impact is exerted only to the members of those subgroups because
they determine all stable �nal opinions. An agent's opinion is interpreted as
his expenses for buying goods (services) of a �rm. The following problem of
opinion control is being studied. A dynamic (di�erence) game in normal form
where the players solve the problem of maximization of the sum of opinions
of the members of a target audience by means of the closed-loop strategies
of impact to the current opinions of the members of strong subgroups. We
received the analytical solutions and conducted their comparative analysis.

Keywords: games in normal form, models of impact and control on net-
works, marketing.

1. Introduction

A basic model of in�uence in a social group was �rst considered in (French, 1956),
(Harary, 1959) and studied in more details in (De Groot, 1974). Then many gen-
eralizations and re�nements of this model were considered: dynamic interactions,
conditions of convergence, speed of convergence, conditions of uniqueness of the �nal
opinion, and so on (De Marzo et al., 2003), (Golub and Jackson, 2010), (Hegselman
and Krause, 2002). One of the most detailed monographs on network modeling is
(Jackson, 2008); see also (Jackson and Wolinsky, 1996). An application of the net-
work models to the analysis of political processes is described in the monograph
(Aleskerov et al., 2007). The issues of communication and coordination in social
networks are analyzed in (Chwe, 2000). The (Godes D., Mayzlin, 2004), (Golden-
berg et al., 2001) are concerned with the "word of mouth". A detailed analysis of the
models of in�uence in networks is presented in (Gubanov, 2011), (Chkhartishvili et
al., 2019).

Together with models of in�uence, the models of control in social groups with
given structure of interactions are of even more interests (Chkhartishvili et al., 2019).
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In turn, it is natural here to di�erentiate the models of optimal control (the only con-
trol agent) and the models of con�ict control (several interacting control agents with
di�erent interests). A mathematical formalization of the latter models generates
game theoretic setups on networks (Novikov, 2014), (Jackson and Zenou, 2014).
The di�erential game theoretic models in marketing are presented in the mono-
graph (Jorgensen and Zaccour, 2004) and review (Jorgensen and Zaccour, 2014).

In this paper we investigate an opinion control problem with application to
marketing. This is a dynamic (di�erence) game in normal form, where the players
maximize the sum of opinions of the members of a target audience by the closed-loop
strategies of impact to the current opinions of the members of strong subgroups.
The analytical solutions are received, and their comparative analysis is made.

Lagrange multipliers method is used to �nd players' strategies. This method is
used at each step of the iterative procedure for a control impact of the i-th �rm to
the j-th agent in the t-th period of time.

2. The principal information

The basic model of in�uence in a social network is a weighted directed graph
in which the vertices correspond to the members of the social group (agents), and
the arcs describe their mutual interaction. Each vertex is ascribed a real value (an
opinion of the member of the group) that can change in time, and each arc is
ascribed another real value (a weight) that characterizes a degree of in�uence of
one agent to another (or, that is the same, a degree of trust of the latter agent to
the former one).

Thus, a network is modeled by a digraph D = (Y,A), where Y = {y1, . . . , yn}
is a set of agents (vertices); yi → xi(t), i = 1, . . . , n � the agent's opinion; x0 =
(x01, . . . , x

0
n) � a vector of initial opinions of the agents; aij � a coe�cient of in�uence

of the i-th agent to the opinion of the j-th agent; A = ∥aij∥ � a matrix of in�uences
(determines the set of arcs of the network model). The opinions dynamics is de�ned
by the rule

xt+1
j =

n∑
i=1

aij x
t
i, x

0
j = xj0, j = 1, . . . , n. (1)

In (Roberts, 1976) it is shown that all members of each i-th strong subgroup (a
nondegenerated strong component of the network that belongs to the vertex base
of its condensation) come with time to the common stable �nal opinion de�ned by
the formula

x∞i =

ni∑
k=1

w
(i)
k x

(i)
k0 , (2)

where w
(i)
k � a component of the stationary vector for the Markov chain with the

transition matrix AT
i , ni � a number of members of the i-th strong subgroup. The

�nal opinions of other agents that do not belong to any strong subgroup ("compan-
ions") are calculated as

x∞j =

r∑
i=1

bjix
∞
i , (3)

where bji � a probability of transition of the agent j to the strong subgroup i as an
ergodic set of states of the Markov chain, r � a total number of strong subgroups
in the digraph of in�uences.
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Consider an application of the models of in�uence and control on net-works to
marketing. Our approach is presented in (Agieva et al., 2019), (Korolev and Ougol-
nitsky, 2020), (Agieva et al., 2020). There are m �rms that are capable to exert
in�uence to a target audience for the change of its opinion to the desirable direc-
tion. At least one of the �rms realizes marketing actions that are considered as an
impact to the opinions of the target audience. The pay-o� of each �rm consists
in the increase of the opinions. An agent's opinion is treated as the total costs of
buying goods (services) of a �rm - one of the agents of con�ict control.

Let us study di�erent game theoretic control problems setups. It is assumed that
the strong subgroups are already found, and only the members of strong subgroups
are in�uenced. Let us illustrate the solutions on the following test example (Fig.1).

Fig. 1. A test example. The market consists of 9 buyers (agents). Their e�ects on each
other are shown by arrows. There are two strong subgroups (i = 1, 2). There are two �rms
(k = 1, 2) that exert a control in�uence on the opinions of buyers. The control e�ect of
the k-th �rm on the j-th member of the i-th strong subgroup is denoted by ui,k

j

3. Dynamic model

The of impact in this model is to maximize the sum of opinions of the members of
target audience for the whole period from t = 1 till t = n. The impact in closed-loop
strategies is exerted on the current opinions of the members of strong subgroups.

3.1. Independent behavior of the players

There are N agents andm �rms. Each i-th �rm solves the following optimization
problem:

n∑
t=1

[
e−ρ(t−1)

N∑
j=1

(
xtj +

m∑
i=1

u
i(t)
j

(
xtj

))]
→ max,
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xt+1
j =

N∑
l=1

alj

(
xtl +

m∑
i=1

u
i(t)
l

(
xtl

))
, x0j = xj0, j = 1, 2, . . . , N, t = 1, 2, . . . , n− 1,

n∑
t=1

e−ρ(t−1)
N∑
j=1

[
u
i(t)
j

(
xtj

)]p
= Ri,

u
i(t)
j

(
xtj
)
≥ 0, j = 1, 2, . . . , N, t = 1, 2, . . . , n,

where u
i(t)
j

(
xtj
)
� a control impact of the i-th �rm to the j-th agent in the t-th

period of time. This value is positive if the j-th agent enters into one of the strong
subgroups and is one of the agents in this subgroup who are impacted by the i-th

�rm, otherwise u
i(t)
j

(
xtj
)
= 0. The total (by all strong subgroups of the network)

number of agents impacted by the i-th �rm is denoted by mi.
It is more convenient to describe the problem setup and its solution in a matrix

form. The problem for the i-th �rm is

ε

n∑
t=1

δt−1
(
Xt +Bui(t)

)
→ max

Xt+1 = AT
[
Xt +Bui(t)

]
, t = 1, 2, . . . , n− 1, X1 = X,

ui(t) ≥ 0, t = 1, 2, . . . , n,

n∑
t=1

δt−1
N∑
j=1

(
u
i(t)
j

(
xtj
))p

= Ri,

where T stands for transposing,
N∑
j=1

(
u
i(t)
j

(
xtj
))p

� a sum of the control impacts of

the i-th �rm in the t-th period. The matrix B consists of m blocks that is number of
�rms. Each block Bi describes impacts of the i-th �rm and has dimension N ×mi,
i.e. its number of rows is equal to the number of agents in the network, and the
number of columns is equal to the total number of members of the strong subgroups
that are impacted. The respective element of the matrix B is equal to one if the
impact holds, and to zero, otherwise. X � a column vector of the values of state
variables, u � a column vector of the control impacts of the �rms, ε � a row vector
from units of the length N , δ denotes a discount factor, i.e. δ = e−ρ.

Consider a one-step game (the recursion base).The i-th �rm maximizes the func-
tion

ε{X +Bu} → max

with constraint
N∑
j=1

(
uij
(
xj
))p

= Ri. (4)
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Solving this optimization problem we receive the relations

1

1
=
(uij1
uij2

)p−1

(5)

for any agents j1 and j2 that are impacted by the i-th �rm. Substituting (5) in (4),
we receive for all agents j impacted by the �rm i:

uij =
p

√
Ri

mi
.

Consider a two-step game. Each i-th �rm solves the problem

ε
{
X +Bu+ δ

[
AT (X +Bu) +Bu∗

]}
→ max,

where u∗ � the solution of the one-step game, with constraint

N∑
j=1

(
uij

)p
= Ri. (6)

Solving this optimization problem we receive the relations

1 + δAj1

1 + δAj2

=

(
uij1
uij2

)p−1

, (7)

for any agents j1 and j2 that are impacted by the i-th �rm, where Aj denotes the
sum of elements of the j-th row of the in�uence matrix A. Substitution of (7) to
(6) gives the solution

uij = p

√√√√√ Ri
mi∑
k=1

(1 + δAk)
p

p−1

(1 + δAj)
1

p−1 .

Consider a three-step game. Each i-th �rm solves the problem

ε
{
X+Bu+δ

[
AT (X+Bu)+Bu∗∗

]
+δ2

[
AT
(
AT (X+Bu)+Bu∗∗

)
+Bu∗

]}
→ max

with constraint
N∑
j=1

(
uij

)p
= Ri, (8)

where u∗ � the solution of the one-step game, u∗∗ � the solution of the two-step
game. The same actions as in the two-step case give the relations

1 + δAj1 + δ2A2
j1

1 + δAj2 + δ2A2
j2

=

(
uij1
uij2

)p−1

, (9)

for any agents j1 and j2 that are impacted by the i-th �rm, where A2
j denotes the

sum of elements of the j-th row of the square of the in�uence matrix. In general,
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denote by As
j the sum of elements of the j-th row of the s-th power of the matrix A.

The substitution of the received relations (9) into the budget con-straint (8) gives
the solution

uij = p

√√√√√ Ri
mi∑
k=1

(1 + δAk + δ2A2
k)

p
p−1

(1 + δAj + δ2A2
j )

1
p−1 .

Repeating this process, we receive for the n-step game

uij =

p

√√√√√ Ri
mi∑
k=1

(1 + δAk + δ2A2
k + · · ·+ δn−1An−1

k )
p

p−1

(1+δAj+δ
2A2

j+· · ·+δn−1An−1
j )

1
p−1 .

The summing by k in the denominator is made by all agents of strong subgroups
that are impacted by the i-th �rm.

Let us write down the payo� of each �rm. If any �rm does not exert impact to
any agent, the payo� is equal to

ε
[
I + δAT + δ2(AT )2 + ...+ δn−1(AT )n−1

]
X = ε

[
I −

(
δAT

)n](
I − δAT

)−1
X.

If at least one �rm impacts to a set of agents from the strong subgroups then the
payo� of each �rm increases. Let us calculate it sequentially. If in the �rst period
the i-th �rm solves the n-step problem then the payo� of each �rm increases by the
value

mi∑
j=1

n−1∑
s=0

δsAs
j p

√√√√√√√ R

(
1
)

i
mi∑
k=1

( n−1∑
s=0

δsAs
k

) p
p−1

( n−1∑
s=1

δsAs
j

) 1
p−1

=

=

mi∑
j=1

p

√√√√√√√ R

(
1
)

i
mi∑
k=1

( n−1∑
s=0

δsAs
k

) p
p−1

( n−1∑
s=1

δsAs
j

) p
p−1

=

= p

√√√√√√√ R

(
1
)

i
mi∑
k=1

( n−1∑
s=0

δsAs
k

) p
p−1

mi∑
j=1

( n−1∑
s=1

δsAs
j

) p
p−1

=

=
p

√
R

(
1
)

i

[
mi∑
j=1

( n−1∑
s=0

δsAs
j

) p
p−1

] p−1
p

,

where R

(
1
)

i � a budget of the i-th �rm in the �rst period of time. Here and elsewhere
the denotation

∑mi

j=1 or
∑mi

k=1 means that the summing is made by all agents
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impacted by the i-th �rm. Similarly, in the second period the i-th �rm solves (n−1)-
step optimization problem, and all �rms receive the additional payo�

p

√
R

(
2
)

i

[
mi∑
j=1

( n−2∑
s=0

δsAs
j

) p
p−1

] p−1
p

δ,

and so on. In the q-th period of time the i-th �rm solves (n−q+1)-step optimization
problem, and the payo� of each �rm is augmented by the value

p

√
R

(
q
)

i

[
mi∑
j=1

( n−q∑
s=0

δsAs
j

) p
p−1

] p−1
p

δq−1. (10)

In the (n − 2)-th period of time the i-th �rm solves the three-step optimization
problem, and the payo� of each �rm is augmented by the value

p

√
R

(
n−2
)

i

[
mi∑
j=1

(
1 + δAj + δ2A2

j

) p
p−1

] p−1
p

δn−3.

In the (n − 1)-th period of time the i-th �rm solves the two-step optimization
problem, and the payo� of each �rm is augmented by the value

p

√
R

(
n−1
)

i

[
mi∑
j=1

(
1 + δAj

) p
p−1

] p−1
p

δn−2.

In the n-th period of time the i-th �rm solves the one-step optimization problem,
and the payo� of each �rm is augmented by the value

p

√
R

(
n
)

i

(
mi

) p−1
p

δn−1.

Now it stays to allocate the budget between the time periods from the 1-st till
the n-th, i.e. to maximize the expression

p

√
R

(
1
)

i

[
mi∑
j=1

( n−1∑
s=0

δsAs
j

) p
p−1

] p−1
p

+ ...+
p

√
R

(
n−1
)

i δn−2

[
mi∑
j=1

( 1∑
s=0

δsAs
j

) p
p−1

] p−1
p

+

+
p

√
R

(
n
)

i

(
mi

)p−1
δn−1

with constraint

R

(
1
)

i + δR

(
2
)

i + ...+ δn−2R

(
n−1
)

i + δn−1R

(
n
)

i = Ri. (11)

The solution of this problem gives that for any q = 1, 2, ..., n the equality holds[
mi∑
j=1

( n−q∑
s=0

δsAs
j

) p
p−1

] p−1
p

δq−1

p
[
R

(
q
)

i

] p−1
p

= λδq−1,
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that implies that the budget should be allocated in time according the ratio

R

(
q1

)
i

R

(
q2

)
i

=

mi∑
j=1

( n−q1∑
s=0

δsAs
j

) p
p−1

mi∑
j=1

( n−q2∑
s=0

δsAs
j

) p
p−1

,

where 1 ≤ q1, q2 ≤ n. Expressing the budgets of all periods by the �rst-period
budget and substituting in the common budget constraint (11), we receive

R

(
1
)

i

( mi∑
j=1

( n−1∑
s=0

δsAs
j

) p
p−1

mi
+ ...+ δn−3

mi∑
j=1

( 2∑
s=0

δsAs
j

) p
p−1

mi
+

+δn−2

mi∑
j=1

( 1∑
s=0

δsAs
j

) p
p−1

mi
+ δn−1

)
= Ri,

that gives the optimal allocation of the budget of the i-th �rm in time periods

R

(
q
)

i =

mi∑
j=1

( n−q∑
s=0

δsAs
j

) p
p−1

mi∑
j=1

( n−1∑
s=0

δsAs
j

) p
p−1

+ ...+ δn−2
mi∑
j=1

( 1∑
s=0

δsAs
j

) p
p−1

+ δn−1mi

Ri. (12)

The substitution of the expression (12) in the formula (10) gives a �nal payo� of
each �rm when in the q-th (q = 1, 2, ..., n) period the i-th �rm solves (n−q+1)-step
optimization problem

p
√
Ri

[
mi∑
j=1

( n−q∑
s=0

δsAs
j

) p
p−1

] 1
p
[

mi∑
j=1

( n−q∑
s=0

δsAs
j

) p
p−1

] p−1
p

δq−1

p

√
mi∑
j=1

( n−1∑
s=0

δsAs
j

) p
p−1

+ ...+ δn−2
mi∑
j=1

( 1∑
s=0

δsAs
j

) p
p−1

+ δn−1mi

=

=

p
√
Ri

mi∑
j=1

( n−q∑
s=0

δsAs
j

) p
p−1

δq−1

p

√
mi∑
j=1

( n−1∑
s=0

δsAs
j

) p
p−1

+ ...+ δn−2
mi∑
j=1

( 1∑
s=0

δsAs
j

) p
p−1

+ δn−1mi

.

Summing the payo�s of each �rm from the e�orts of the i-th �rm in control of the
target audience in all n periods of time, we receive

p
√
Ri

{
mi∑
j=1

( n−1∑
s=0

δsAs
j

) p
p−1

+ ...+ δn−2
mi∑
j=1

( 1∑
s=0

δsAs
j

) p
p−1

+ δn−1mi

}

p

√
mi∑
j=1

( n−1∑
s=0

δsAs
j

) p
p−1

+ ...+ δn−2
mi∑
j=1

( 1∑
s=0

δsAs
j

) p
p−1

+ δn−1mi

=
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= p
√
Ri

[
mi∑
j=1

( n−1∑
s=0

δsAs
j

) p
p−1

+ ...+ δn−2
mi∑
j=1

( 1∑
s=0

δsAs
j

) p
p−1

+ δn−1mi

] p−1
p

.

Summing the control e�orts of all �rms, we receive the payo� of each i-th �rm

ε

[
I + δAT + δ2

(
AT
)2

+ ...+ δn−1
(
AT
)n−1

]
X −Ri+

+

m∑
i=1

{
p
√
Ri

[ mi∑
j=1

( n−1∑
s=0

δsAs
j

) p
p−1

+ ...+ δn−2
mi∑
j=1

( 1∑
s=0

δsAs
j

) p
p−1

+ δn−1mi

] p−1
p

}
.

(13)
Respectively, the total payo� of all �rms is equal to

ε

[
I + δAT + δ2

(
AT
)2

+ ...+ δn−1
(
AT
)n−1

]
X −

m∑
i=1

Ri+

+

m∑
i=1

{
p
√
Ri

[ mi∑
j=1

( n−1∑
s=0

δsAs
j

) p
p−1

+ ...+ δn−2
mi∑
j=1

( 1∑
s=0

δsAs
j

) p
p−1

+ δn−1mi

] p−1
p

}
.

3.2. Cooperative behavior of the players

There are N agents and m �rms. A control body in the name of all �rms solves
the following optimization problem:

n∑
t=1

[
e−ρ(t−1)

N∑
j=1

(
xtj +

m∑
i=1

u
i(t)
j

(
xtj

))]
→ max,

xt+1
j =

N∑
l=1

alj

(
xtl +

m∑
i=1

u
i(t)
l

(
xtl

))
, x0j = xj0, j = 1, 2, . . . , N, t = 1, 2, . . . , n− 1,

n∑
t=1

{
e−ρ(t−1)

m∑
i=1

N∑
j=1

[
u
i(t)
j

(
xtj

)]p}
= R, R =

m∑
i=1

Ri,

u
i(t)
j

(
xtj

)
≥ 0, j = 1, 2, . . . , N, i = 1, 2, . . . ,m, t = 1, 2, . . . , n,

where u
i(t)
j

(
xtj

)
is the value of impact of the i-th �rm on the j-th agent in the t-th

period of time. This value is positive if the j-th agent enters into one of the strong
subgroups and is one of the agents in this subgroup who are impacted by the i-th

�rm, otherwise u
i(t)
j

(
xtj

)
= 0. Denote mi total number of agents im-pacted by the

i-th �rm.
The cooperative solution is technically the same as in the case of independent

players, so we give at once the received evident result.
The total payo� is equal to

ε
[
I + δAT + δ2(AT )2 + ...+ δn−1(AT )n−1

]
X −

m∑
i=1

Ri+
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+ p

√√√√ m∑
i=1

Ri

{
m∑
i=1

[
mi∑
j=1

( n−1∑
s=0

δsAs
j

) p
p−1

+...+δn−2
mi∑
j=1

( 1∑
s=0

δsAs
j

) p
p−1

+δn−1mi

]} p−1
p

.

The di�erence between the total payo�s in the cooperative and independent cases
is equal to

p

√√√√ m∑
i=1

Ri

{
m∑
i=1

[
mi∑
j=1

( n−1∑
s=0

δsAs
j

) p
p−1

+...+δn−2
mi∑
j=1

( 1∑
s=0

δsAs
j

) p
p−1

+δn−1mi

]} p−1
p

−

−
m∑
i=1

{
p
√
Ri

[ mi∑
j=1

( n−1∑
s=0

δsAs
j

) p
p−1

+ ...+ δn−2
mi∑
j=1

( 1∑
s=0

δsAs
j

) p
p−1

+ δn−1mi

] p−1
p

}
.

(14)

Lemma 1. When p > 1 the value (14) is non-negative, and when p < 1 it is
non-positive.

Proof. Denote:

q =
p

p− 1
, Si =

mi∑
j=1

( n−1∑
s=0

δsAs
j

) p
p−1

+ ...+ δn−2
mi∑
j=1

( 1∑
s=0

δsAs
j

) p
p−1

+ δn−1mi.

Then the expression (14) takes the form( m∑
i=1

Ri

) 1
p
( m∑

i=1

Si

) 1
q −

m∑
i=1

(
Ri

) 1
p
(
Si

) 1
q .

According the Holder inequality, if p > 1 and 1
p + 1

q = 1 then

m∑
i=1

aibi ≤
( m∑

i=1

api

) 1
p
( m∑

i=1

bqi

) 1
q

,

or, that is the same,

m∑
i=1

(ai)
1
p (bi)

1
q ≤

( m∑
i=1

ai

) 1
p
( m∑

i=1

bi

) 1
q

.

Taking in the Holder inequality ai = Ri, bi = Si, we receive when p > 1:( m∑
i=1

Ri

) 1
p
( m∑

i=1

Si

) 1
q −

m∑
i=1

(Ri)
1
p (Si)

1
q ≥ 0.

Accordingly, in the case of p < 1 from the Holder inequality, we have( m∑
i=1

Ri

) 1
p
( m∑

i=1

Si

) 1
q −

m∑
i=1

(Ri)
1
p (Si)

1
q ≤ 0.

Thus, from the point of view of the total payo� the cooperation is more advan-
tageous than competition when the control cost is big, and vice versa, when the
control cost is small.
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4. Conclusion

In this paper we consider game theoretic models of control on networks with
application to marketing. We suppose that all strong subgroups are determined in
the stage of analysis of the in�uence digraph, and the control impact is exerted only
to the members of those subgroups because they determine all stable �nal opinions.
An agent's opinion is interpreted as his expenses for buying goods (services) of a
�rm. The following problem of opinion control is studied. problems of the opinions
control on networks are studied. A dynamic (di�erence) game in normal form where
the players solve the problem of maximization of the sum of opinions of the members
of a target audience by means of the closed-loop strategies of impact to the current
opinions of the members of strong subgroups. We received the analytical solutions
and conducted their comparative analysis.

The following directions of the further research are seemed to be interesting:
- analysis of the Stackelberg games on networks that re�ect a hierarchy in mar-

keting channels;
- analysis of the dynamic games in the form of characteristic function that model

the cooperation of players and the ways of allocation of the received income;
- development of the methods of identi�cation of the game theoretic models in

speci�c applications.
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