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The article considers the problem of point control of the differential-difference equation with
distributed parameters on the graph in the class of summable functions. The differential-
difference system is closely related to the evolutionary differential system and moreover the
properties of the differential system are preserved. This connection is established by the
universal method of semi-discretization in a time variable for a differential system, which
provides an effective tool in order to find conditions for unique solvability and continuity on
the initial data for the differential-difference system. For this differential-difference system,
a special case of the optimal control problem is studied: the problem of point control action
on the controlled differential-difference system is considered by the control, concentrated at
all internal nodes of the graph. At the same time, the restrictive set of permissible controls
is set by the means of conditions depending on the nature of the applied tasks. In this
case, the controls are concentrated at the end points of the edges adjacent to each inner
node of the graph. This is a characteristic feature of the study presented, quite often used
in practice when building a mechanism for managing the processes of transportation of
different kinds of masses over network media. The study essentially uses the conjugate state
of the system and the conjugate system for a differential-difference system — obtained ratios
that determine optimal point control. The obtained results underlie the analysis of optimal
control problems for differential systems with distributed parameters on the graph, which
have interesting analogies with multi-phase problems of multidimensional hydrodynamics.

Keywords: differential-difference system, conjugate system, oriented graph, optimal point
control.

1. Introduction. The problems of control (optimal control) of differential systems
with distributed parameters on the graph were considered by the authors in the works
[1-11]. The transition to differential-difference systems was the next natural step of the
study [5], namely, an attempt to move closer to solving applied problems that have their
own specifics. The task of point control of the affect on the managed differential-difference
system is considered with the help of the controls, concentrated in all internal nodes of the
graph. In this case, the controls are concentrated at the end points of the edges abutting to
each inner node of the graph. At the same time, the restrictive set of permissible controls
is set by the means of conditions depending on the nature of the applied tasks. The
study essentially uses the conjugate state and conjugate system for the input differential-
difference system. The work also shows ways to spreading the results in case you analyze
the optimal control tasks for network-like processes.
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2. Basic concepts, statements used. Let I" is a bounded oriented graph whose
edges are parameterized by a segment [0, 1]; Ty is a set of all ribs that do not contain their
endpoints (I'y = I'); oI and J(I') are many boundary and interior nodes of the graph,
respectively (I is a set index of interior nodes, J is number of interior nodes).

In the work study the problems of optimal point control of the differential-difference
equation

Ly(k) —y(k—1) = & (a@) BE) +b@)y(k) = f(k), k=12,..0M, (1)

where y(k) := y(z; k) and f(k) := f(x;k), k = 1,2,..., M (equation (1) was studied in
detail in the work [5]).

Let’s introduce the state space y(k) (k = 1,2,..., M) for the equation (1). At the
same time, we will use standard notations for the spaces of Lebesque and Sobolev: L,(T")
(p = 1,2) is the Banach space of measurable on T’y functions summarized with a p degree
(similar to space L, (I'r)); W3(T) is the space of functions from Lo (T") having a generalized
first order derivative also from Lo(T").

Counsider a bilinear form

tp,v) = [ (a(2) B2 20D 4 p@)u(@)v(e) ) do (2)
I

with fixed measurable and bounded on I'y functions a(x), b(x) square integrable: 0 < a, <
a(z) < a*, |b(z)] < B, © € T'y. From the results of the work [2] it follows that the space
W1(T) contain set Q,(T") functions (y(z) € C(I'), where (C(T) is space of continuous
functions) that satisfy relations

dy(1 dy(0
> a(l)MEE = ¥ a(0),M5R
YER(E) yer(€)

in all nodes £ € J(T') (in here R(£) and r(€) as the sets of the edges ~ respectively oriented
“to node £’ and “from node £”, values 0 and 1 of variable = correspond to the left and right
endpoints of the edge v, symbol §(-), designated the narrowing of the function 6(-) on the
edge 7). The closing of the set ,(T) in norm W3(T) relabel W((a;T). If we assume that
the functions y(z) of Q,(T") are also satisfying and the condition u(z)|sr = 0, we will get
space Wi(a;T): Wi(a;T) € W(T).

Let the functions f(k) € Lo(T), k = 1,2,..., M, and y(k) satisfy the conditions

y(0) = (@), y(k) lseor=0, k=1,2,... M. (3)

Definition 1. A weak solution of class W(T') of the differential-difference equation
(1) with conditions (3) is called functions y(k) = W}(a,T') (k= 0,1,2,..., M), y(0) = o(z)
(p(z) € Lo(I")), satisfying an integral identity

fy z)dx + Ly ffT x)dz, k=1,2,... M,

for any n(z) € Wi(a,T), equality y(0) = ¢(x) in (3) is understood almost everywhere,
y(k): = L(y(k) — y(k — 1)); £(y(k),n) is bilinear form, defined by the ratio (2).

Remark 1. Definition 1 shows that for each fixed k = 1,2, ..., M ratios (1), (3) are a
boundary value problem in space W}(a,I') for the elliptical equation (1) relatively y(k).

For this equation, a weak uniqueness solvability is established in the work [5]. Thus, the
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solution to these boundary value problems determine the state y = {y(k), k=1,2,..., M}
of the system (1), (3).

We will formulate the fundamental statements, the proof of which is presented in the
work [5].

Theorem 1. For differential-difference system (1), (3) take place the following state-
ments:

1) for any ko > 1 and any ¢(z) € Lo(T') weak solution y = {y(k),k =1,2,..,M} is
uniquely defined at ko <k < M (ko < M < o0);

2) a weak solution of system (1), (3) continuously depends on the input data o(x),
7(k).

3. The problem of optimal point control. Let’s look at the task with point control
effects concentrated in all interior nodes of the set J(I') and for each node &; € J(I'), i € I,
fix one edge 7% € R(&;). For each fixed k = 1,2, ..., M the point control v(k) is determined
by a set of numbers v;(k): v(k) = {vi(k),i € I}. At the same time {v;(k),i € I} € U
(k=1,2,...,M) and U C R’ is set depending on the nature of the applied tasks. Thus,
the controls effects are concentrated at the endpoints of the fixed edges of each inner node
&,1el

Let the functions f(k) (k= 1,2,..., M) in the equation (1) be defined by ratios

f(k) = Z Uz(k)é(.lf - mi)‘mi:lé'y‘si (k =12, "'aM)7

icl

the state y(z, k;v(k)) (k= 1,2,..., M) of system (1), (2) defined by differential-difference
equation

ks o) = 1300k = )] = 1 (a0 LD ) s ppini o) =

dx dx
_sz §(z — x| lensis K =1,2,..., M, (4)
el
y(0;0(0)) = (@), y(k; v(k)) lacor=0, = 1,2,.., M. (5)

According to definition 1, we will define a weak solution of system (4), (5).

Definition 2. A weak solution of class W3(T") of the differential-difference equation
(4) with conditions (5) is called functions y(k;v(k)) = Wi(a,T') (k = 1,2,.... M),
y(0;v(0)) = ¢(x) (p(x) € La(I')), satisfying an integral identity

!y(k;v(k))t n(z)dz + L(y(k;v(k)),n) = > vi(k)ni, k=1,2,.., M,

iel
for any function n(z) € Wi(a,T'), equality y(0;v(0)) = ¢(z) in (5) is understood almost
everywhere; 1; = 1(z)|,—1¢4¢:, here § € J(I') and i € I; {(y(k;v(k)),n) is bilinear form,
defined by the ratio (2).

With a view to simple further presentation, we will assume that the observation of
the state y(k;v(k)) of the system (4), (5) is carried out throughout the domain T'. As
the statement of 2 theorems 1, linear mapping v(k) — y(k; v(k)) of the set U into space
W(a;T) continuously for any k = 1,2, ..., M.

Let’s define the minimizing functional ¥(v) by ratio

M
U() = T(0(1),0(2), ... (M) = 7 3 Ty (v(k))
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Ui (v(k)) = [ly(ks v(k)) = wo(k)|1Z,r) + (Nv(k), v(k))rs, (6)

where wo(k) (k = 1,2,..., M) are given elements of space Lo(I') and N : U — U is
positively defined Hermite matrix for which the conditions are met

(No(k), 0(k))zs > llo(k) |20, ¢ >0, Vo(k) €U, k=1,2,..., M; (7)

here and everywhere below the symbol (-,-) and (-,-)rs are denoted a scalars works in
spaces Lo(T") and R, respectively, unless it is specified specifically. The functional ¥(v) is
determined by an operator v — y(v) that establishes for all k = 1,2, ..., M the connection
of the control of the effect v(k) with the state y(k;v(k)) of the system (4), (5).

Let’s mark through Uy a non-empty bounded subset of set U.

The problem of optimal point control system (4), (5) is to determine

inf U(v), v={wk),k=1,2,..,M}.
veUp

Theorem 2. The task of optimal system control (4), (5) has the only solution v* € Uy,
i. e. U(v*) = rrenUn U(v), here v* = {v*(k), k =1,2,..., M} € Uy is the optimal control of
veUy

the system (4), (5).

P roof. As mentioned above, linear mapping v — y(v) of the set of admissible control
U in the space of the states W}(a,T') of the system (4), (5) continuously. Beginning this,
the property of coercive of the quadratic component of functional ¥(v) on a bounded set
Uy is used. For all £k =1,2,..., M correctly ratios

Ui(v(k)) = [ly(k; v(k)) — wo(k) 12,0y + (Nv(k), v(k))rs =
= ly(ks (k) = y(0;0(0)) +y(0;0(0)) — wo (k)17 ) + (Nv(k), v(k))s =
= Fu(v(k), v(k)) = 2L, (v(k)) + [|ly(0;v(0)) — wo (k)| (r):
where
Sk (v(k), v(k)) = (y(k;v(k)) = y(0;v(0)), y(k;v(k)) — y(0;v(0)) + (Nv(k), v(k)))rs
is a square form on U, relation
Li(v(k)) = (wo(k) —y(0;0(0)), y(k; v(k)) — y(0;v(0)))

determines the linear form on R”’. According to what has been said follows the view:

U(v) =F(v,0) + L), Flv,v) =71 %i:l Sr(v(k),v(k)), L) =71 %i Li(v(k)).

Conditions (7) guarantee the coercive of a square form §(v,v). Further reasoning almost

literally repeats the given in the work [12, p. 13]. O
Remark 2. In the case N = 0, it can be shown that when the conditions of the

theorem 1 are met, there is a nonempty closed and convex subset Ug C Up such that

U(v*) = inf ¥ 3.
(v™) Jnf (v) Yv e U,

The proof of this fact is similar to the presented in the work [12, theorem 5.2, p. 47]. O
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Next, let’s dwell on a detailed study of the conditions of optimal control and get
the ratios that determine optimal control. To simplify the representations of distinct
transformations, further operations is taken simultaneously for all states y(k;u(k)) and
control u(k), k = 1,2, ..., M; notations y(k; u(k)), y(k; u(k)); and u(k) are replace by y(u),
y(u); and u, respectively.

Let’s prove the following auxiliary statements (see also [12, pp. 16, 56]).

Lemma 1. Let the conditions of the theorem 1 be fulfilled and u* = {u*(k),k =
1,2,..., M} € Uy is the minimizing element of functional ¥(v), then inequality

U (u*)(v—u*) =20 (8)

is fulfilled for any v € Uy; derivative W' (u*) is understood in the sense of Frechet.
P r o o f. Since u* is a minimizing element of functional ¥(v), for any v € Uy and
any number 6 € (0, 1) is true inequality ¥(u*) < ¥((1 — §)u* + 6v), which means that
1 1
5[\1'((1 —0)u* +0v) — T(u")] = 7 [P(u*+0(v—u"))—T(u)] =0
and ¥'(u*)(v —u*) > 0 at § — 0 whence it should be (8).
The inverse statement is also true. Indeed, let for certain fixed u € Uy correctly
inequality ¥ (u)(v—wu) > 0 for any v € Us. Due to the convexity of the mapping v — ¥(v)
(see proof of the theorem 2) for any v € Uy has a place

1 1
5[\11((1 —0)u+6v) —¥(u)] = é[q/(u* +0w—u")) =P < ¥(v) — U(u),
that means 0 < U'(u)(v —u) < ¥(v) — ¥(u) at § — 0. It follows ¥(v) > ¥(u) for any
v € Uy, 1. €. u is a minimizing element of functional ¥(v). O
Lemma 2. For all v,u € Uy take place a ratio
Y (u)(v —u) = y(v) —y(u), (9)

here y'(u) is derivative in the sense of Frechet mapping u — y(u).
P r o o f. Based on definition 2, for control u(k),v(k) € Us (k =0,1,..., M) is a ratio

= [ w000 = gl () = (k= L300k = 1) = ylk = Liuk = V)] n(o)de +
; + Uy (ks v(k)) — y(ksu(k)),m) = Y (vi(k) — vi(k))m (10)
el
for any function n(x) € WO( I); 7 = n(x)|eec,, ¢ € J(I'). On the other hand, we have

f[ su(k) 19( (k) = u(k))) — y(k; u(k))) —

— (k= Luk —1)+19( (k—1) —u(k —1))) —y(k — Liu(k — 1)) n(x)dz +
+ Ly(ksu(k) + 0(v(k) = u(k))) = y(k;u(k)),n) = 19Z(vz( ) = vi(k)ni

for any ¥ € (0,1) and any function n(z) € W(a,I); i = n(z)|oesice;, & € J(T).

By dividing both parts of the received ratio by ¥ and calculating the limit at ¥ — 0,
come to the ratio

1
- / [y (ks u(k)) (v(k) = u(k)) =y (k = Lu(k — 1)) (v(k — 1) — u(k — 1))] n(z)dz +

' + Ly (ks u(k) (v(k) — u(k), n) = (B(v(k) — u(k),n))u (11)
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for any function n(z) € Wi(a,T); i = 0(z)|z=s;ce:, & € J(T'). Comparing the left parts
of the ratios (10) and (11), come to the equality

' (ks (k) (0(k) — u(k)) = y(k: v(k) — y(ki u(k)), k= 0,1,..., M,

that complete the proof of lemma. O
Let u(k) is the optimal control for each fixed k = 1,2, ..., M, then by virtue of (8) and
(9) we have

L0 (k) (oK) — u(k)) =
= (y(ksulk)) — wo(k), ' (ks u(k))(o(k) — u(k))) + (Nu(k), v(k) — u(k))gs =
= (y(ksu(k)) — wo(k), y(k; v(k)) — y(k: u(k)) + (Nu(k), v(k) —u(k))gs >0 (12)

for any v(k) € Us.
Ratios (12) follow inequality

(y(k; u(k)) — wo(k), y(k; v(k)) — y(k;u(k))) + (Nu(k), v(k) — u(k))rs 2 0, (13)

s0, based on the view (6) of functional ¥(v) and ratio (7), we come to inequality

ﬁ_% (ks (k) = wo(k), y(ks o(k)) = y(ksu(k)) + (Nulk), v(k) = u(k))zs] >0

(14)
for any v(k) € Us. Thus, inequality (13) is a necessary condition for existence of optimal
control of the system (4), (5) and occur the following statement.

Theorem 3. Let the approval of the theorem 2 be fulfilled. Optimal control is charac-
terized by ratios

for any function n(x) € Wg(a,T); n; = n(x)|,=1c4¢:, here & € J(T) and i € I;

> ik u(k))(vi(k) = ui(k)) + (Nu(k), v(k) —w(k))ps 2 0, k=0,1,.., M,
i€l
for any v(k) € Us.

Here y(k;u(k)) € Wi(a,T), k=0,1,....M, z € T.

To provide a more detailed description of the conditions of existence of optimal control,
we will introduce a conjugate state for the system (4), (5). In space W1 (a;T') the concept
of a conjugate state p(k;v(k)) (k = 1,2,..., M) and a conjugate system to a system (4),
(5) will be defined based on the next task

~Lip(k + Ly0(k + 1) = p(ks (k)] — 2 (a(@) 2ELED) 4 b(@)p(h; v(k) =
=y(k;v(k)) —wo(k), k=0,1,.... M — 1,

(15)

p(M;v(M)) =0, p(k;v(k)) lzeor =0, k=0,1,..., M — 1. (16)

Theorem 4. The solution of the system (15), (16) at small enough 7 is uniquely de-
fined as elements of space Wi(a;T).
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P r o0 o f. To be sure of this, it is enough to renumber the ratios of the system (15),
(16) and apply the statement of theorem 1. Indeed, by changing the numbering by law
l=M—-k,k=MM-—1,..,1,0, we get that [ change from 0 until M and we come to
the system

~ ~ dp(l;v(l ~
(1= 1300 = 1) = 5t (D)) = & (ala) LX) + ()5 0(01)) =
= y<l’ U(l)) - ’wo(l), l= 1a 27 ey M7

p(0;v(0)) =0, p(l;v(1)) |zeor=0, 1 =1,2,..., M,

of relative p(l;v(l)) (I = 1,2,..., M), for which the assertion of the theorem 1 is correct.
This completes the proof of the theorem. O
For each fixed k = 1,2, ..., M transform inequality (13). Considering the ratios

—7 MZ_:l[P(lC + Lu(k + 1) = p(ks w(k)]ly (ks o(k)) — y(k; u(k))] =

k=0
= %éﬁ {ly(k; v(k)) — y(k; u(k))] = [y(k = Lo(k = 1)) —y(k — Lu(k = 1))]} p(k; u(k)),
M—-1 M
kZ:IO U(p(k; u(k)), y(k;o(k)) — y(k;u(k))) = kZ:Ilf(y(k, v(k)) = y(k; u(k)), p(k; u(k)))

come to equality

M—-1

5= (o0 0(09) = un (), 0 () — (ks () =
= 5 S pals ) (wilR) — wi9) = 3 3 gk (k) (k) — wa(h)
k=1€l k=0 i€l

(here p;(k;u(k)) = p(k;
p(M;u(M)) and y(0;v(0

flows
> pilksu(k))(vi(k) — ui(k)) = X2 pi(k; u(k))(vi(k) — ui(k))

i€l i€l

su(k))|e=zice,, & € J(I'), in this connection y(0;v(0)) — y(0; u(0)),
))—y(0;u(0)) equality zero). Therefore, from the obtained equality

for each fixed k = 0,1, ..., M — 1, then inequality (13) can be rewritten in the form
Zpl k;u(k))(vi(k) — ui(k)) + (Nu(k), v(k) —u(k))rs 20, k=0,1,..., M, (17)
i€l

and inequality (14) is transformed to form

M—1
T {Z pi(k; w(k))(vi(k) = ui(k)) + (Nu(k), v(k) = u(k))v| =0 (18)
k=0 LicI
Vou(k) €Uy, k=0,1,... M
(as above is taken into account y(0;v(0)) — y(0;u(0)) = 0 and p(M;u(M)) =0).
Thus, the following statement has been received.

Theorem 5. Let the approval of the theorem 2 be fulfilled. Optimal control is charac-
terized by ratios
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for any function n(x) € Wg(a,D); n; = n(a)|y=1e4¢, here & € J(T) and i € I;

Ffp(k; u(k))en(z)dz + L(p(k; u(k)),n) = Ff(y(k; v(k)) = wo(k))n(x)dz, k=1,2,.., M,

for any function n(x) € Wi(a,T);

> pilk;u(k))(vi(k) — wi(k)) + (Nu(k), v(k) —u(k))ps 20, k=0,1,.., M,
il
for any v(k) € Us.

In these ratios y(k;u(k)),p(k;u(k)) € Wi(a,T) (k = 0,1,..., M), y(0;v(0)) = p(z),
p(M; v(M)) = 0.

The statements of the theorem 4 and 5 represent the conditions for determining
optimal point control and its corresponding states y(k;u(k)), p(k;u(k)), k = 1,2,.... M,
for the differential-difference system (4), (5) and the corresponding conjugate system (15),
(16).

4. Conclusion. The paper considers the task of control a differential-difference
parabolic equation with distributed parameters on the graph in the class of summed
functions. Namely, a special case is considered: the problem of point controlling effect on
the controlled differential-difference system (4), (5) with the help of controls concentrated
in all internal nodes of the graph. The study substantially uses the conjugate state and
conjugate system (15), (16) for differential-difference system (4), (5), obtained ratios (4),
(5), (15), (16) and (18) that determine optimal point control. It should be noted that
the results presented in the work can be used in the analysis of control problems [13-17],
stabilization [18-20] of differential systems, as well as in the study of network-like processes
of applied character [21-25].
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Toueunoe ynpasiienue nudepeHInaITbHO-PAa3HOCTHON CACTEMON
Cc pacmpeieJIeHHBIMU IapaMeTpaMu Ha rpade

B. B. Iposomopos*, C. M. Cepzees®, B. H. Xoanz"

1 Boponexxckuii rocymapcrsenuniit yumsepcurer, Poccutickas ®egepanus,
394006, Boponexk, YHUBEPCUTETCKAS ILJI., 1

2 Ierep6yprexuit mosmrexuuyeckuit yrusepcurer Ilerpa Besmuxoro, Poccuitckas ®egeparus,
195251, Cankrt-lleTrepOypr, yu. Ilonurexaudeckas, 29

s uurupoBanust: Provotorov V. V., Sergeev S. M., Hoang V. N. Point control of a differential-
difference system with distributed parameters on the graph // Becruuk Canxr-IlerepGyprckoro
yuuBepcurera. llpuknannas maremarnka. udopmaruka. Ilponeccsr yupasmenus. 2021. T. 17.

Bour. 3. C. 277-286. https://doi.org/10.21638/11701/spbul0.2021.305

PaccmarpuBaercs 3amada  ONTHMAJIBHOTO yIpaBieHus auddepeHnasbHO-Pa3HOCTHRIM
ypaBHeHHeM 11apabo/InuecKoro TUIA C PaclIpe/e/IeHHbIME [1apaMeTrpaMu Ha rpade B KJiacce
cymmupyembix ¢yukimit. luddepennuaasno-pa3HocTHAS CHCTEMA TECHBIM 00pa30M CBsI3a-
Ha C 9BOJIIONUOHHON 1 depeHInasibHOi CHCTEMOi U IIPU STOM COXPAHSIIOTCS CBOMCTBA Iud-
depenrmanpHoil cucreMbl. J[aHHYIO CBA3b yCTAaHABINBAET WCIOIb3yeMbIdl 1is auddepen-
IAAJIBHON CUCTEMBI YHUBEPCAJILHBINA METO MOy JMCKPETH3AMA 10 BPEMEHHON IIePEeMeHHOIA,
maromuit 3 ek TUBHBIN HHCTPYMEHT IIPU OTBICKAHUN YCJIOBUN OTHO3HAYHON PAa3pEeINMOCTH
¥ HEIIPEPBIBHOCTH 110 MCXOAHBIM JAHHBIM [t quddepeniuanbao-pa3sHocTHoi cucreMst. s
TaKOIl CUCTEMBI U3ydYaeTCd JaCTHBIN CIydail 3aJa9u ONTUMAJIbHOTO YIIPaBJIeHU: OUChIBAeT-
Cs 33/a9a TOYETHOIO YIPABJISIIONIET0 BO3EHCTBUS HA yIpaBiseMyio auddepeHnaabHO-
Pa3HOCTHYIO CUCTEMY C IIOMOIIBIO YIIPABJICHUNA, COCPEIOTOYCHHBIX BO BCEX BHY TPEHHUX y3J/1ax
rpada. IIpu 3TOM orpaHmYINTETIbHOE MHOXKECTBO JOIYCTHMBIX YIIPABJIEHUH 33aeTCs C I0-
MOIIBIO YCJIOBUI, 3aBUCAIINX OT XapaKTepa IPUKJIATHBIX 337a49. B paccMaTpuBaeMOM CJry-
qae yIpas/Idioniue Bo3AefiCTBAS COCPeJOTOMEHbl B KOHIIEBBIX TOUKAX pebep, IPUMbIKAIOIINX
K KaXJI0My BHYTDEHHeMY y3Jy rpada, ITo SBIISeTCsS XapaKTepPHON OCOOEHHOCTHIO IMPE-
CTaBJIEHHOI'0 UCCJIeJOBAHUd, JOCTATOYHO 4acTO IPUHUMAEMOH Ha IPAaKTUKe IIPU [IOCTPOeHUN

MeXaHW3Ma yIIPaBJIEeHUd IIPOIeCCaMy TPAHCIOPTHPOBKH PA3IWYIHOIO POAA MACC IIO CeTEBBIM
HocureaaM. CyIecTBEHHO UCTOIb3YIOTCS COMPSKEHHOE COCTOSHUNE CUCTEMBI W COTPSIKEHHAST
cucrema Ui auddepeHnuaaTbHO-PA3HOCTHON CUCTEMBI — BBEJIEHBI COOTHOMIEHUS, OIIPeIe-
JISTIONINE OUTUMAJIbHOE TOYedHOe yIpaByeHue. llosydueHHbie pe3ysibTaThl JI€)KAT B OCHOBE
aHAJIM3a, 3339 ONTUMAJIFHOTO yIpaBjeHus Aud depeHmaJbHbIMA CUCTEMAMU C PACIIpe/ie-
JIEHHBIMU IIapaMeTpaMu Ha rpade, IPU 3TOM BBISBJIEHBI NHTEPECHbIE AHAJIOTUU C MHOTOMa-

30BBIMU 33]a9aMU MHOTOMEPHOU THMAPOAUHAMUKY.

Karouesoie caosa: muddepeHImaabHO-pa3HOCTHAA CUCTEMA, CONPAXKEHHAsA CUCTEMA, OPUeH-

THUPOBAHHBIN rpad, ONTUMAIHHOE TOYETHOE YIIPABJICHUE.
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