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The article considers the structure of the 2x2 matrix algebra set over a ground finite field
GF(p). It is shown that this algebra contains three types of commutative subalgebras of
order p?, which differ in the value of the order of their multiplicative group. Formulas
describing the number of subalgebras of every type are derived. A new post-quantum digital
signature scheme is introduced based on a novel form of the hidden discrete logarithm
problem. The scheme is characterized in using scalar multiplication as an additional operation
masking the hidden cyclic group in which the basic exponentiation operation is performed
when generating the public key. The advantage of the developed signature scheme is the
comparatively high performance of the signature generation and verification algorithms as
well as the possibility to implement a blind signature protocol on its base.

Keywords: digital signature, post-quantum cryptoscheme, blind signature, hidden logarithm
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1. Introduction. At present in the field of the public-key cryptography, considerable
attention of the cryptographic community is paid to the development of post-quantum
cryptoschemes [1-3]. Finite non-commutative associative algebras (FNAAs) represent sig-
nificant interest as algebraic support of practical post-quantum digital signature sche-
mes based on different forms of the hidden discrete logarithm problem (HDLP) [4, 5].
A unified method for setting FNAAs of arbitrary even dimensions is proposed in [6]. To
get faster post-quantum signature algorithms, the latter are developed on 4-dimensional
FNAAs [5, 7, §].

A finite m-dimensional vector space defined over a finite field (for example, GF(p)),
in which the vector multiplication operation (distributive at the left and at the right
relatively addition operation) is set, is called finite algebra. A vector A is denoted as

-1
A= (ag,a1,...,am-1) or as A =>"" " a;e;, where ag,a1,...,an—1 € GF(p) are called
coordinates; eq, €1, ..., €, _1 are basis vectors.
The vector multiplication operation (o) of two m-dimensional vectors A and B is set
as
m—1m—1
oB = a;bj(e; o ej),
i=0 ;=0

here every of the products e; o e; is to be substituted by a single-component vector
Aeg, where A € GF(p), indicated in the cell in the intersection of the i-th row and j-
th column of so called basis vector multiplication table (BVMT). To define associative
vector multiplication operation the BVMT should define associative multiplication of all
possible triples of the basis vectors (e;, e, ex):
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(eioej)oe =e€;0(ejoey).

The 2x2 matrix algebra set over GF(p) can be represented as the 4-dimensional
FNAA defined by Table for the case A\ = 1. This BVMT is sparse and the computational
difficulty of the vector multiplication is two times lower than in the 4-dimensional FNAA
presented in [5, 8]. Therefore development of the HDLP-based signature schemes on the
matrix algebra potentially gives higher performance. In this connection, it is of interest to
study the structure of the 2x2 matrix algebra from the point of view of identifying various
types of commutative multiplicative groups contained in the algebra.

Table. The BVMT setting
the 4-dimensional FNAAs (X # 0)
and the 2x2 matrix algebra (A =1)

o eg el e e3
€ €0 el 0 0
e] 0 0 )\e() el
e e )\eg 0 0
€e3 0 0 €2 e3

This paper considers the structure of the 2x2 matrix algebra and introduces a new
post-quantum signature algorithm based on a novel form of the HDLP.

2. Structure of the 2x2 matrix algebra set over GF(p). Consider the sructure of
the FNAAs set by Table for different values of the structural coefficient A. For an arbitrary
fixed value of X the algebra contains the global two-sided unit E = (1, 0,0, 1). The vectors
G = (90, 01, 92, 93) satisfying the non-equality gogs # Ag1g2 are invertible. The vectors
N = (ng,n1,n2,n3) satisfying the condition nong = Aniny are non-invertible. From the
latter equality one can easily show that the number of non-invertible vectors contained in
the algebra is equal to ny = p® + p? — p and the number of invertible vectors (the order
of the multiplicative group of the algebra) is equal to

Q=p'—nn=pp—-1)(pP*-1).

Consider the set of the vectors X that are permutable with a fixed vector A. The
vectors X = (zo,21,22,23) can be computed from the vector equation Ao X = X o A
that can be reduced to the following system of three linear equations with the unknowns
o, T1, %2, and xs:

)\a2$1 — )\ale = 07
arro + (a3 — agp) r1 — a1r3 = 0, (1)
asxo + (ag — a()) To — asxg = 0.
Depending on the coordinates of the vector A, the cases should be considered.
I. Case a3 = az = 0. The system (1) reduces to
(ag —ap) 1 =0,

(a3 - ao) Ty = 0.
If as # ag, then one gets the solution space
X = (1'0,1'1,1’2,.’Eg) = (d70707 h)7 (2)
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here d,h = 0,1,...,p — 1. The set (2) describes a commutative subalgebra of order p?
that contains 2p — 1 different non-invertible vectors of the forms (d,0,0,0) and (0,0,0, h).
Multiplicative group I'; of this subalgebra is cyclic and has order Q; = p*> — (2p — 1) =
(p—1)2. One can show that the group I'y possesses 2-dimensional cyclicity (in terms of [9]),
i. e., its minimum generator system includes two vectors of the order p — 1.

If a3 = ag, then A is a scalar vector and the solution space of the system (1) includes
all vectors of the algebra.

II. Case a; =0, az # 0. The system (1) reduces to

Tl = 07
(a3 — ap)

T3 = Tog+ —————T2
az

and the solution space of this system is described as follows:
X = (m07x17x27x3) = <d7 Oa h‘a d+ (asa;a())h> )
2

where d,h = 0,1,...,p — 1. The latter set includes non-invertible vectors satisfying the

condition d (d + Wh) = 0. The latter condition sets the two subsets of non-invertible

vectors: i) X = (0, 0, h, %h) and ii) X = (—%h, 0, h, 0), which intersect
in the zero vector (0,0,0,0).

IIa. Case ag # az. This subcase corresponds to commutative subalgabra of order p?
which includes 2p — 1 non-invertible vectors and multiplicative group I'y of order 3 =
(p—1)>%

IIb. Case ag = a3. This subcase corresponds to commutative subalgabra of order p?
which includes p non-invertible vectors of the form (0,0, h,0) and contains a multiplicative
group I'y of order Qy = p?> —p = p(p — 1).

III. Case a1 # 0, az = 0. The system (1) reduces to

1.2:07

as — a
oy =z 4 B3 00)
a

and the solution space of this system is described as follows:

X = ($0,$17$27$3) = (da h’a 07 d+ (6113;7010)d> )
1

where d,h = 0,1,...,p — 1. The latter set includes non-invertible vectors satisfying the

condition d (d + @h) = 0. The latter condition sets the two subsets of non-invertible
vectors: 1) X = (0, h, 0, @h) and i) X = (—(a?’a;lao)h, h, 0, 0).

IIIa. Case ag # az. This subcase corresponds to commutative subalgabra of order p?
which includes 2p — 1 non-invertible vectors and multiplicative group I'y of order 3 =
(p—1)%

IIIb. Case ag = asz. This subcase corresponds to commutative subalgabra of order p?
which includes p non-invertible vectors of the form (0, i, 0,0) and contains a multiplicative
group I's of order Q5 = p(p — 1). It is easy to show that I'y is a cyclic group.
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IV. Case a1 # 0, ag # 0. The system (1) reduces to

az
T2 = —IT1,
ai
(ag — ao)
r3 =Tg+ ——T1

a
and the solution space of the system (1) is described as follows:
X = (10,21, 2, 73) = (d, hy, Z2h, d+ Mh) : 3)
al al

here d,h = 0,1,...,p — 1. Taking into account the non-invertibility condition, for vectors
from the set (3) one can write

a2 + Mhd _ )\a_2h2 =0,
aq ail
d = (ag—ao):t\/zh’
2a1

where A = (ag — a0)2 +4Xaias.

IVa. Case A # 0 is a quadratic residue in GF(p). The number of non-invertible
vectors in the set (3) equals to 2p — 1 and the commutative subalgebra set by (3) includes
multiplicative group of the I'y type.

IVb. Case A # 01is a quadratic non-residue in GF(p). The commutative subalgebra set
by (3) includes the single non-invertible vector (0,0,0,0) and represents the field GF (p?)
with cyclic multiplicative group I's of order Q3 = p? — 1.

IVc. Case A = 0. The number of non-invertible vectors in the set (3) equals to
p and the commutative subalgebra set by (3) includes multiplicative group I's of order
Q2 =p(p—1).

Thus, the studied 4-dimensional FNAA contains exactly three types of commutative
subalgebras of order p?, which are characterized in type of multiplicative group. Arbitrary
two of the subalgebras intersect exactly in the subset on scalar vectors. Indeed, each of the
vectors that is not a scalar vector defines a single commutative subalgebra of order p?. Each
of the subalgebras contains p? — p unique non-scalar vectors and the 4-dimensional FNAA
contains p* — p different non-scalar vectors, therefore for number 7 of the commutative
subalgebras of all three types we get the following formula:

_p-p

p’—p

Suppose k, t, and u denote number of different commutative groups of the types I'1, I'o,
and I's correspondingly. Then we have n = k +t 4+ u and

=p’+p+1.

E+t+u=p>+p+1. (4)

Taking into account that the set of scalar vectors includes p — 1 invertible vectors, one can

)R (- ) (% (- 1) u= 0 (1),
(=1 =-D)k+@p-1D)-(@-Dt+ (P’ -1-(p-1)u =
=plp—D(P*-1)—(p—1),
(p—2)k+(p—-Dt+pu=p*—p—1.

()
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To find the value ¢, consider the number of non-invertible vectors A relating to the
CaseIVc,i.e. a1 #0, az # 0, A = 0, which define the commutative subalgebras containing
multiplicative groups of the 'y type. Such vectors satisfy the conditions agag — Aajas # 0
and A = (a3 — ao)2 + 4Xajaz = 0. From the condition A = 0 we have (a3 +a0)2 =
0 and az = —ag. Thus, the Case IVc gives (p — 1)? different vectors A that set the
subalgebras containing the I's type groups. Each of the subcases IIb and IIIb gives other
p — 1 unique vectors A setting the subalgebras containing the I's type groups. Totally, we
have (p—1)2+2(p—1) = (p—1)(p+1) of the said vectors A. Every of the said subalgebras
contains p — 1 of the said vectors A and ¢ algebras contain ¢(p — 1) = (p—1)(p+ 1) of the
said non-invertible vectors, therefore,

t=p+1.
From (4) and (5) we have

_plp+1) plp-1)
k= g v U= g -

3. The proposed post-quantum signature scheme. Suppose a 2x2 matrix
algebra is defined over the field GF(p) with prime p = 2¢ + 1, where ¢ is a 256-bit prime.
Generation of the public key in the form of matrices (Y, T, Z) is performed as follows:

1) select at random an invertible 2x2 matrix G contained in a cyclic group of the I'
type (using results of Section 2 one can easily to propose a method for implementing this
step);

2) generate a uniformly random invertible 2x2 matrix A and integer x < ¢ and
compute the matrix Y = AGTA™!;

3) generate a uniformly random invertible 2x2 matrix B and integer A < p and
compute the matrix Z = BGB™1\;

4) compute the matrix T'= AG*B~!.

The size of public key equals approximately to 384 bytes. The private key correspon-
ding to the calculated public key represents three matrices G, A, B, and two integers x
and A. The size of private key equals to about 448 bytes.

Procedure for generation of the signature (e, s, o) to the electronic document M:

e select at random integers k < ¢, p < p and calculate matrix R = AGFB~1p;

e using some specified 256-bit hash-function f; compute the hash value e from the
document M to which the matrix R is concatenated: e = f5(M, R). The value e is the
first signature element;

e calculate the second signature element s = k —u — ex mod ¢ and the third signature
element o = pA\™%.

The signature size equals near to 96 byte. Computaional difficulty of the signature
generation can be estimated as one exponentiation operation in the 2x2 matrix algebra
(approximately 3072 multiplications in GF(p)).

Signature verification procedure includes the three steps:

e compute the matrix R = YT Z*c;

e compute the value ¢’ = f, (M, R);

e if ¢/ = ¢, then the signature is accepted as genuine, else it is rejected.

Computaional difficulty of the signature verification can be estimated as 2 exponen-
tiations in the 2x2 matrix algebra (about 6142 multiplications in GF(p)).
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Correctness proof of the signature scheme is as follows:

R =Y°TZ% = (AG*A™")" (AG"B™") (BGB™')\) 0 =
— AG;veJrqustl)\s (p)\fs) _ AGIe+u+k:7ufea:Bflp _ R,
{R'=R}= fn(M,R)= fr((M,R) = ¢ =c.

Thus, the correctly computed signature (e, s, o) passes the verification procedure as a ge-
nuine signature.

4. Blind signature protocol. Blind digital signature is used to solve problems of
ensuring the anonymity (non-traceability) of users that arise in some special information
technologies [10, 11], for example, electronic money systems and secret electronic voting.
Blind signature is computed by a signer in the process of interacting with some user (client).
The signer uses his personal private key to calculate the blind signature and transfers it
to the client. Using the blind signature, the client computes an authentic signature of the
signer to some document to which the signer does not have access during the protocol
execution. In addition, the anonymity of the client is ensured by the fact that during the
protocol he introduces one or two random blinding factors into the blind signature. After
receiving a blind signature from the signer, the client removes the blinding factors, thereby
calculating the true signature.

Using the described signature scheme and applying a scalar blinding factor p and the
left Y¢ and right Z7 blinding factors in the form of two matrices, one can propose the
blind sinature protocol.

1. The signer selects at random integers k < ¢, p < p and calculate matrix R* =
AG¥B~!. The latter is send to the client.

2. The client generates random non-negative integers ¢ < ¢, 7 < ¢, and u < p
and calculates the matrix R = Y°*R*Z"u. Then he computes the first signature element
of a valid signer’s signature e = f,(M, R) and the first element of the blind signature
e* = e —emod q. The value e* is sent to the signer. (The document M is prepared by the
client.)

3. The signer calculates other elements of the blind signature: the second s* = k —
u — e*z mod ¢ and the third o* = pA~*" elements. Then he sends the values s* and o* to
the client.

4. The client calculates the second and third elements of the valid signer’s signature:
s=s"4+7mod qgand o =0c"p.

Correctness proof of this blind signature protocol is performed as proving that the
output signature (e, s,o) passes the verification procedure of the proposed signature
scheme as a genuine signature:

R =Y°TZ%c =Y tT72 "y =
= YEYG*TZS*J*ZT,U/ — YER*ZTM — R =
= fu(M,R") = fn (M,R) = ¢ =e.

5. Discussion and conclusion. The private value x can be considered as a logarithm
in a hidden cyclic group generated by the secret matrix G. Therefore, the signature scheme
introduced in Section 3 can be called a HDLP-based scheme, like the signature algorithms
described in [5, 7, 8]. The main contribution to the security of the proposed signature
scheme is introduced by the exponentiation operation G* performed in the hidden group
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generated by the matrix G. The value G” is contained in a hidden form in the first element
of the public key Y = AG*A~.

An important point of the proposed signature scheme is the use of the scalar
multiplication as an additional masking operation, when computing the element Z =
BGB~')\. Due to scalar multiplication, the permutable matrices Y and TZT~! are
contained in different cyclic groups. Therefore, construction of periodic functions on the
base of public key elements leads to the formation of periods with a length determined
by the values ¢ (order of the matrix G) and p — 1 (order of scalar value \) and the use
of quantum algorithms [12-14] to calculate the value of z does not seem computationally
possible. Thus, due to scalar multiplication and selecting the matrix G from one of the
I';1-type groups, the post-quantum security design criterion proposed in [15] is satisfied by
the proposed signature scheme. In the signature schemes [5, 8, 15] technique of doubling
the verification equation was applied to satisfy that criterion. The said techniques defines
larger sizes of public key and signature and lower performance of signature schemes.

Due to using the the 2x2 matrix algebra as algebraic support and a new design, the
proposed signature scheme possesses significantly higher performance and smaller signa-
ture size than the HDLP-based schemes presented in [5, 8, 15]. In addition, the introduced
signature scheme can be used to implement a blind signature protocol.

One can suppose that Table presents a particular case of sparse BVMTs which set
various 4-dimensional FNAAs with computationally efficient vector multiplication, which
represent interest as algebraic support of the HDLP-based signature schemes. Search of
other sparse BVMTs and investigation of the structure of the FNAA defined by them
represents a topic of a further research.
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PaccmarpuBaeTcs CTpyKTypa MaTpUIHOM aareOpsl 2 X 2, 33 JaHHON HA[ OCHOBHBIM KOHETHBIM
nosiem GF'(p). Iloka3ano, 4ro sta aare6pa CONEPKUT TPU TUIIA KOMMYTATHBHBIX HOAAJITe0p
HOpsAAKA p?, KOTOPHIE PABIMYIAIOTCS MEXKIY COOO0il 3HAMEHHEM TMOPSIKA WX MYJIbTHITIIKA-
TUBHON Tpymmbl. BeiBemensr (hOpMyJIbI, OMUCHIBAIONINE KOJIUIECTBO MOJAITe0p KaKI0TO TH-
na. Co3mana HOBas cxeMa IOCTKBAHTOBON 1udpPOBOI 1OIIMCH, OCHOBAHHAsA HA HOBOM (op-
Me CKPBITO 3a/1a9u IUCKPETHOTO JiorapudmupoBanns. CxeMa OTIMIaeTCs UCITOIb30BAHIEM
CKaJITPHOTO YMHOYKEHWS B Ka9eCTBE OTIOJHUTEIbHON OMeparuu, MAaCKUPYIOMEl CKPBITYIO
IMUKJINIECKY IO TPYIIILY, B KOTOPO# BBIIOJIHAETC 0230Bast OIEPAIHs BO3BEIEHN B CTEIIEHD [IPU
TeHepaIuy OTKPBITOrO Kjo4a. JlocTomHcTBaMy pa3pabOTAHHON CXEMBI MOIIUCH STBJISTIOTCS
CPaBHUTEJIHO BBICOKAsS MTPOM3BOIUTEIBHOCTH AJITOPUTMOB T'€HEPAITNN U MPOBEPKY MOIITUCH
¥ BO3MOXKHOCTD PEAJIN3AINU Ha €€ OCHOBE IIPOTOKOJIA CJIETION OIINCH.

Karowesoie caosa: nndpoBast MOAINCH, IOCTKBAHTOBAS KPUIITOCXEMA, CJIETIAsT IIOIINCH, CKPBI-
Tas 3aja4a JorapudMupOBaHUs, KOHEYHAs acCOlMaTUBHAsA aJrebpa, ajrebpa MaTpuii.
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