Санкт-Петербургский государственный университет

БУДЕЕВ Антон Владимирович

Выпускная квалификационная работа

2-Диазо-4-хлорацетоацетаты в синтезе новых гетероаннелированных 1,2,3-триазолов

Уровень образования: магистратура Направление 04.04.01 «Химия» Основная образовательная программа ВМ.5512.2019 «Химия»

Научный руководитель: профессор, Кафедра химии природных соединений, д.х.н., Дарьин Дмитрий Викторович

Рецензент: в.н.с., ИОС УрО РАН, д.х.н., профессор РАН, Зырянов Григорий Васильевич

Санкт-Петербург 2021

Оглавление

Введение5
1 Обзор литературы
1.1 Синтез 1,2,3-триазолов путём циклизации α -иминодиазосоединений 8
1.2 Синтез 1,2,3-триазолов путём формального циклоприсоединения к кратным
СN-связям
1.3 Синтез конденсированных 1,2,3-триазолов путём внутримолекулярной
циклоконденсации Вольфа
2 Экспериментальная часть23
2.1 Синтез исходных соединений
2.1.1 Синтез α -диазо- β -кето- γ -галоэфиров ба-b
2.1.2 Синтез <i>N</i> -Вос-аминофенолов 78а-f
2.1.3 Синтез <i>N</i> -Вос-салициламинов 79а-е
2.1.4 Синтез <i>трет</i> -бутил(2-гидроксифенетил)карбамата 80 29
2.2 Синтез продуктов O -алкилирования аминоспиртов α -диазо- β -кето- γ -
галоэфирами30
2.2.1 O -алкилирование N -Вос-аминофенолов α -диазо- β -кето- γ -галоэфирами
30
2.2.2 <i>О</i> -алкилирование <i>N</i> -Вос-салициламинов этил-2-диазо-3-оксо-4-
хлорбутаноатом
2.2.3 Синтез этил-4-(2-(2-((<i>трет</i> -бутоксикарбонил)амино)этил)фенокси)-2-
диазо-3-оксобутаноата 83
2.3 Синтез конечных соединений
2.3.1 Синтез $4H$ -бензо $[b][1,2,3]$ триазоло $[1,5-d][1,4]$ оксазин- 3 -карбоксилатов
84a-g 38
2.3.2 Синтез $4H$, $10H$ -бензо[f][1 , 2 , 3]триазоло[5 , 1 - c][1 , 4]оксазепин- 3 -
карбоксилатов 85а-е
- 3 Обсуждение результатов46
3.1 Синтез исходных α -диазо- β -кето- γ -галоэфиров
3.2 Определение круга подходящих для реакции субстратов, содержащих
амино- и гидрокси-группы, подбор и оптимизация условий реакции

3.3	Синтез	1,2,3-триазолов,	аннелированных	c	кислородсодержащими
гете	роцилкам	и большего размер	oa	•••••	53
Выво,	ды			•••••	57
Списо	ок литерат	уры		••••	58
Прил	ожение А			••••	65
Прил	ожение Б.			••••	66
Прил	ожение В.			•••••	67
Прил	ожение Г.				68

Перечень условных обозначений

Me	Метил	DCM	Дихлорметан
Et	Этил	TFA	Трифторуксусная кислота
Ac	Ацетил	TFAA	Трифторуксусный ангидрид
Hal	Галоген	DMSO	Диметилсульфоксид (ДМСО)
Ph	Фенил	DMF	Диметилформамид (ДМФА)
Alk	Алкил	EDC·HCl	N=C=N ·HCI
Ar	Арил	THF	Тетрагидрофуран
(Het)Ar	(Гет)арил	DBU	N N
Ts	O, 32, 0	CuAAC	Медь-катализируемое азидалкиновое циклоприсоединение
Tol	Толил	RuAAC	Рутений-катализируемое азид- алкиновое циклоприсоединение
Bn	Бензил	[H]	Восстановление
Bz	Бензоил	[O]	Окисление
Boc		r. t.	Комнатная температура
Py	Пиридил	overnight	В течение ночи
<i>t</i> Bu	<i>трет</i> -Бутил	мол.%	Мольных процентов
PMP	пара-Метоксифенил	4Å MS	Молекулярные сита 4Å
imid	Имидазолил	% w/w	Массовых процентов
TMS	Триметилсилил	dr	Соотношение диастереомеров
nPr	н-Пропил	TCX	Тонкослойная хроматография
HOBt	OH OH	HRMS	Масс-спектрометрия высокого разрешения
DAST	N S F	Δ	Кипячение с обратным холодильником

Введение

1,2,3-Триазол-содержащие соединения нашли широкое применение во областях многих химической науки. Они применяются качестве функциональных покрытий [1], органических красителей и флуорофоров [2]. Наибольшее применение они нашли в медицинской химии – лекарственные агенты на основе триазолов обладают противораковым, антимикробным, противотуберкулёзным, противовирусным, антималярийным нейро-И протекторным действиями [3]. Среди биологически активных производных триазолов встречаются соединения, в которых триазольное кольцо аннелировано с другим частично насыщенным гетероциклом. Однако, несмотря на их многообещающий профиль активности, такие соединения ещё не получили широкого распространения. На схеме 1 приведены некоторые примеры таких производных (1-5) [3-5]. В связи с этим разработка новых методов синтеза 1,2,3триазолов, аннелированных с частично насыщенными гетероциклами, является актуальной задачей.

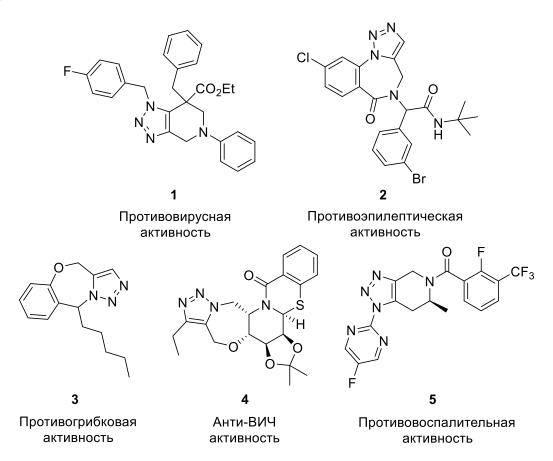


Схема 1. Примеры биологически активных соединений, содержащих 1,2,3-триазол, аннелированный с частично насыщенным гетероциклом.

Реакция медь-катализируемого азид-алкинового циклоприсоединения (CuAAC) с момента её открытия в 2002 году Мельдалем [6], Фокиным и Шарплессом [7] стала наиболее широко используемым методом получения 1,2,3триазолов благодаря своей универсальности и простоте в использовании. В классической процедуре CuAAC используются терминальные алкины, и в получаются 1,4-дизамещённые результате реакции триазолы. Однако, региоселективность может быть обращена при использовании рутениевого катализа (RuAAC), что открывает доступ к 1,5-дизамещённым триазолам. Более того, в реакцию RuAAC хорошо вступают внутренние алкины, давая полностью замещённые триазолы, однако, в этом случае не всегда удаётся надёжно контролировать региоселективность [8].

К настоящему времени был разработан ряд методологий региоселективного синтеза 1,2,3-триазолов, исключающих использование азидов [9-10]. К таким методам относится и «диазо»-подход, а именно реакция циклоконденсации по Вольфу. Более того, в данной реакции обычно используются типичные кислоты Льюиса, и часто не требуется применение катализаторов на основе переходных металлов.

Данная работа является продолжением ранее проведённого в нашей лаборатории исследования, посвящённого применению трифункциональных α -диазо- β -кето- γ -галоэфиров $\mathbf{6}$ в синтезе 6,7-дигидротриазолотиазинов $\mathbf{8}$ с помощью последовательности реакций нуклеофильного замещения и циклоконденсации Вольфа (схема 2) [11]. В этой работе мы решили расширить круг бинуклеофильных реагентов, подходящих для данной реакции, до аминоспиртов $\mathbf{9}$. Помимо этого, интересной является возможность получения 1,2,3-триазолов, аннелированных с циклом большего размера. Таким образом, данная работа посвящена исследованию возможности применения аминоспиртов в реакционной последовательности нуклеофильное замещение/циклоконденсация Вольфа с α -диазо- β -кето- γ -галоэфирами $\mathbf{6}$ и получению по разработанной методике новых производных триазолов $\mathbf{10}$, аннелированных с частично насыщенными кислородсодержащими гетероциклами.

1) Предшествующая работа:

$$CI \xrightarrow{R^1 \quad N_2} CO_2R^2 \xrightarrow{AcONa} MeOH, r. t. 16 h$$

$$R^1 \quad N_2 \qquad MeOH, r. t. 16 h$$

$$R^1 \quad N_2 \qquad MeOH, r. t. 16 h$$

$$R^1 \quad N_2 \qquad R^1 \quad CO_2R^2$$

2) Настоящая работа:

$$CI \xrightarrow{Q} CO_2R^2 \xrightarrow{HO} \overset{X}{\overset{N}} HO_2$$

$$R^1 \quad N_2$$

$$R^1 \quad N_2$$

$$R^1 \quad N_2$$

$$R^1 \quad CO_2R^2$$

$$R^2 \quad DO_2R^2$$

$$R^1 \quad CO_2R^2$$

$$R^1 \quad CO_2R^2$$

Схема 2. Предшествующая работа нашей группы (1) и настоящая работа (2).

1 Обзор литературы

Литературный обзор посвящён рассмотрению разработанных к настоящему времени методов синтеза 1,2,3-триазолов из диазосоединений с указанием достоинств и недостатков описываемых методологий. В отдельных случаях будет упомянуто о приложении данных методов к разработке биологически активных веществ.

1.1 Синтез 1,2,3-триазолов путём циклизации α-иминодиазосоединений

Циклоконденсация Вольфа – это реакция диазокарбонильных соединений с амином, дающая 1,2,3-триазолы [12]. Механизм этой реакции изображён на схеме 3. Конденсация амина 12 с карбонильной группой диазосоединения 11, обычно происходящая в условиях кислотного катализа, даёт диазоимин 13, который находится в равновесии с 1,2,3-триазолом 14. Когда заместитель R³ не является электроноакцепторным, это равновесие полностью смещено в сторону триазола. Недостатками данного метода в сравнении с CuAAC являются его сомнительная биоортогональность и зачастую жесткие условия реакции.

$$R^{1}$$
 R^{2} + R^{3} -NH₂ R^{2} - H₂O R^{3} R^{3} R^{2} R^{3} R^{2} R^{3} $R^{$

Схема 3. Механизм циклоконденсации Вольфа.

В исследовании, посвящённом синтезу потенциальных противотуберкулёзных агентов, Costa с соавторами использовал реакцию диазомалонового альдегида 15 с гидрохлоридами анилинов 16, проводимую в воде при комнатной температуре. Данный подход позволил получить 1,4-дизамещённые 1,2,3-триазолы 17 с хорошими выходами (схема 4) [13]. Следует отметить, что в данном случае гидрохлориды анилинов сами по себе обеспечивают кислотную среду, что облегчает образование диазоиминового интермедиата. Полученные 1-арил-1,2,3-триазол-4-карбальдегиды 17 могут быть в дальнейшем превращены в дифторметил-замещённые триазолы 18 при обработке трифторидом диэтиламиносеры (DAST).

Схема 4. Синтез триазолов из диазомаолнового альдегида и гидрохлоридов анилинов.

В отличие от диазоальдегидов для реакции диазокетонов с аминами обычно требуется повышенная температура и использование кислоты Льюиса в стехиометрическом количестве [14]. α-Диазо-β-оксосульфоны **19** также вступают в эту реакцию, что было продемонстрировано в работе группы Красавина (схема 5) [15]. Наилучшими условиями в данном случае оказалось нагревание в хлорбензоле при 80 °C с 1.5 эквивалентами хлорида титана(IV).

Схема 5. Циклоконденсация Вольфа α-диазо-β-оксосульфонов с анилинами.

Wang с соавторами в 2012 году описали интересный эффект активации карбонильной группы в α -диазо- β -оксоамидах 22 за счет образования внутримолекулярной водородной связи (схема 6) [16]. Благодаря этому эффекту, в данном случае достаточным оказалось использование каталитического количества мягкой кислоты Льюиса (20 мол. %). Метод применим к алифатическим, ароматическим аминам, диаминам, замещённым гидразинам, гидроксиламину и даже к ацетату аммония, давая разнообразно замещённые триазолы 24, 26, 27 с хорошими выходами. Данная методология также была использована для получения триазол-содержащих полимеров [17].

Схема 6. FeCl₂-катализирируемая конденсация Вольфа α -диазо- β -оксоамидов с аминами.

Даже слабонуклеофильные амины, такие как аминофуроксаны **28**, могут быть вовлечены в эту реакцию, что было показано в работе группы Маховой (схема 7) [18]. Оптимальными условиями оказалось использование 20 мол. % эфирата трифторида бора в качестве катализатора при комнатной температуре. Целевые триазолы **30** были получены с выходами от низких до умеренных. Стоит также упомянуть, что в данном случае α-диазокетоны давали лучшие результаты по сравнению с α-диазо-β-кетоэфирами.

$$R^1$$
 — MeCN, r. t. R^2 — R^3 — R^3 — R^3 — R^3 — R^3 — R^2 — R^3 — R^2 — R^3 — R^2 — R^3 — R^3 — R^2 — R^3 — R^2 — R^3 — R^2 — R^3 — R^2 — R^3 — R^3 — R^2 — R^3 —

10

Схема 7. Синтез (1,2,3-триазол-1-ил)фуроксанов из аминофуроксанов и диазодикарбонильных соединений.

Реакция диазокетона **31** с замещёнными гидразинами **32** обычно происходит в мягких условиях, в качестве катализатора обычно достаточно использования уксусной кислоты [19]. Jordão с соавторами использовали этот подход в работе по синтезу *N*-амино-1,2,3-триазол-4-карбоксилатов **33** и их гидразидов **34** и изучению активности данных соединений в отношении вируса Кантагало (схема 8) [20]. Лучший выход был получен с незамещённым фенилгидразином, а при введении в бензольное кольцо электроноакцепторных заместителей выходы реакции понижались. Данные триазолы в дальнейшем были применены для получения потенциальных агентов против вируса герпеса HSV-1 [21] и против возбудителей кандидоза [22].

Схема 8. Синтез N-(ариламино)триазолов из диазокетонов и арилгидразинов.

Порядок шагов «диазо»-подхода к 1,2,3-триазолам может быть обращён таким образом, что сперва получают имин, а уже затем проводят диазо-перенос. Так, в 2016 году группа Emmanuvel разработала однореакторную процедуру для синтеза N-аминотриазолов **36** конденсацией β -кетокарбонильных соединений **35**

и *трет*-бутилкарбазата с последующим диазопереносом с помощью имидазолилсульфонилазида (схема 9) [23]. В реакцию также хорошо вступал 2,4-динитрофенилгидразин 37, однако, попытка вовлечь в реакцию незамещённый фенилгидразин привела лишь к образованию пиразолона 39. В другой работе этой группы, авторы смогли выделить диазогидразоновый интермедиат, используя другие условия диазо-переноса [24]. К настоящему времени был также разработан метод синтеза 1,5-дизамещённых триазолов посредством диазо-переноса с деацилированием на енаминоны [25].

Схема 9. Синтез *N*-аминотриазолов посредством образования имина с последующим диазо-переносом.

5-Аминотриазолы **41** могут быть получены путём диазо-переноса на гидрохлориды амидинов **40**, как было показано в работе Данковой и соавторов [26]. Реакция протекала региоселективно с ассиметричными амидинами, за исключением **40b**, в случае которого была выделена смесь изомерных триазолов **41b** и **41b**' в соотношении 3:1 (схема 10).

Схема 10. Синтез 5-аминотриазолов путём диазо-переноса на α -ацилацетамидины.

Известно, что α-диазоацетамиды подвергаются внутримолекулярной циклизации в основных условиях, давая соли 5-гидрокси-1,2,3-триазолов [27]. В 1984 году, Миггеу-Rust с соавторами разработали простой метод синтеза аммониевых солей 5-гидрокситриазолов 44 путём обработки диметилдиазомалоната 42 избытком аминов 43 (схема 11) [28]. В данной реакции амин играет двойную роль — нуклеофила для образования диазоамида и основания для последующей циклизации. Ароматические амины не вступают в реакцию, что является следствием пониженной нуклеофильности (и основности) аминогруппы в таких аминах. Данная методология была использована для получения производных 5-гидрокситриазолов, являющихся потенциальными биоизостерами карбоновых кислот [29-30]. Соли гидрокситриазолов могут быть подкислены, что даёт свободные 5-гидрокситриазолы 45, однако, эти соединения зачастую нестабильны и подвергаются раскрытию цикла с образованием исходных диазоамидов [31]. Некоторые механистические исследования этого равновесного процесса были опубликованы другими авторами [32-33].

Схема 11. Синтез 5-гидрокситриазолов из диметилдиазомалоната и аминов.

Работы по синтезу *N*-гидрокситриазолов из диазосоединений редко встречаются в литературе. В работе, опубликованной группой Ramage, посвящённой получению *N*-гидрокситриазолов и исследованию возможности их использования в качестве реагентов для пептидного синтеза, 1-гидрокси-5-метилтриазол-4-карбоксилат **46** был получен путём конденсации этил-α-диазо-β-кетобутаноата **31** с гидроксиламином (схема 12) [34]. Однако, данную процедуру не удалось использовать для синтеза 5-незамещённого 1-гидрокситриазола **51**, в связи с чем был разработан другой подход. Этилдиазоацетат **47** был подвергнут сочетанию с реагентом Вильсмейера **48**, после чего полученный продукт **49** был обработан гидроксиламином.

Схема 12. Синтез *N*-гидрокситриазолов.

Циклизация диазооксима **50**, полученного таким образом, проводилась либо при кипячении в бензоле, либо при выдерживании в хлороформе с каталитическом количеством уксусной кислоты при комнатной температуре.

К настоящему времени разработано несколько подходов к синтезу диазоиминового интермедиата, отличающихся от простой конденсации аминов с диазокарбонильными соединениями. Такие подходы будут рассмотрены ниже.

Regitz и Schoder сообщают о синтезе триазолов **54** путём иминометилирования терминальных диазосоединений **52** формамидином **53** при кипячении в ацетонитриле (схема 13) [35].

Схема 13. Синтез триазолов иминометилированием терминальных диазосоединений.

5-Галоген-замещённые триазолы **56** могут быть получены из α -диазо- β -кетонитрилов **55** при обработке последних галогеноводородами, что было показано в работе группы Мокрушина [36]. Авторы утверждают, что реакция происходит через образование диазоимидоилхлорида **14A**. Наличие ацильной группы в α -положении к диазонитрилу оказалось необходимым для протекания данной реакции (схема 14). Было также показано, что α -фосфонил- α -диазоацетонитрилы способны вступать в эту реакцию.

O Hal O Hal NH
$$10^{\circ}$$
 CN 10° CHCl₃ 10° C, 10 h 10° C, 10 h 10° C 10°

R = Me, CF₃, (Het)Ar, OEt, NH₂, NHAlk, NHAr; Hal = Cl, Br, I

Схема 14. Синтез 5-галоген-1,2,3-триазолов из α -ацил- α -диазоацетонитрилов.

1.2 Синтез 1,2,3-триазолов путём формального циклоприсоединения к кратным CN-связям

В данном разделе будут описаны методологии, не основанные на образовании диазоиминовых интермедиатов. В 2010 году Chen с соавторами сообщил о методе получения полностью замещённых триазолов **59** с помощью DBU-промотируемой реакции диазосоединений **57** с ароматическими *N-(п-метоксифенил)*альдиминами **58** (схема 15) [37]. Лучшие выходы были получены при использовании иминов с электроноакцепторными заместителями. При наличии галогеновых или донорных заместителей выходы снижались.

Схема 15. DBU-промотируемая реакция диазосоединений с арилиминами в синтезе полностью замещённых триазолов.

Данная реакция может быть проведена в трёхкомпонентном варианте при использовании альдегида 60, амина 61 и реагента Охиры-Бестманна (62) в качестве диазокомпоненты, что было продемонстрировано в работе группы Mohanan [38]. В зависимости от природы заместителей амина и альдегида, метод позволяет осуществлять как диастереоселективный синтез триазолинов 63, так и синтез триазолов 64. Предположительно, механизм следующий: реагент Охиры-Бестманна 62 при деацилировании реагирует с имином 16В, давая интермедиат 16С. Последующая 5-endo-dig-циклизация и перенос протона приводят к образованию триазолина 63. Когда и амин, и альдегид несут ароматические заместители, триазолин 63 подвергается спонтанному окислению кислородом воздуха, давая триазол 64 (схема 16). Интересно отметить, что в отличие от предыдущего примера, альдегиды, имеющие электроноакцепторные заместители

в арильном кольце, оказались нереакционноспособными. Аналогичная методология для синтеза триазол-4-сульфонов также была описана данной группой [39].

Схема 16. Трёхкомпонентный синтез триазол-4-фосфонатов.

Ли с соавторами использовали бромид меди(II) для окисления вторичных аминов, а именно производных *N*-арилглицина **65**, для получения иминов *in situ* [40]. Их последующая реакция с диазосоединениями **66** позволила получить тризамещённые триазолы **67** с выходами от умеренных до хороших. Что касается механизма, то реакция происходит через образование иминиевой соли **17A**, которая после циклоприсоединения с диазосоединением **66** образует интермедиат **17B**. Последующее окисление, предположительно ионами меди, даёт целевой триазол **67** (схема 17).

$$R^{1}$$
 R^{2} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} $R^{$

Схема 17. Синтез триазолов из производных *N*-арилглицина и диазокарбонильных соединений, промотируемый бромидом меди(II).

Ванг с соавторами сообщают о катализируемом серебром [3+2]циклоприсоединении диазосоединений 68 к изоцианидам 69 [41]. Реакция протекает в мягких условиях и даёт 1,4-дизамещённые триазолы 70 с абсолютной региоселективностью (схема 18). Данная процедура подходит арилизоцианидов, содержащих как электроноакцепторные, так и донорные заместители. Однако, при использовании алифатических изоцианидов выходы целевых продуктов уменьшались. Что касается диазосоединений, в реакцию ΜΟΓΥΤ быть успешно введены трифтордиазоэтан, диазоэфиры триметилсилилдиазометан, хотя последний даёт триазолы лишь с умеренными выходами.

Схема 18. Катализируемое серебром [3+2]-циклоприсоединение диазосоединений к изоцианидам с образованием 1,4-дизамещённых триазолов.

1.3 Синтез конденсированных 1,2,3-триазолов путём внутримолекулярной циклоконденсации Вольфа

В данном разделе будут рассмотрены подходы к синтезу конденсированных триазолов из диазосоединений, уже содержащих в своём составе аминогруппу, что позволяет осуществлять конденсацию Вольфа во внутримолекулярном варианте. На данный момент удалось найти лишь две работы, в которых используется описанный подход.

В отличие от межмолекулярного варианта данной реакции, внутримолекулярный обычно удаётся провести при более мягких условиях, часто даже не требуется использование кислоты Льюиса. В 2019 году Santiago и Вurtoloso сообщили о синтезе конденсированных бициклических 1,2,3-триазолов 75 из γ-N-защищённых аминодиазокетонов 74 [42]. Исходные диазосоединения были получены в четыре стадии из γ-нитроэфиров 71.

Схема 19. Внутримолекулярная циклоконденсация Вольфа *γ-N-*защищённых аминодиазокетонов.

Стадия циклизации проводилась при неинтенсивном кипячении диазокетонов **74** в водно-метанольном растворе карбоната калия. Целевые триазолы были получены с выходами от хороших до отличных. Единственным исключением оказался α-метил-α-диазокетон **74a**, при использовании которого выход продукта **75a** составил 63% (схема 19).

Комбинация активного галогена, кетонной и диазо функциональных групп в α -диазо- β -кето- γ -галоэфирах **6** делает их подходящими субстратами для синтеза конденсированных триазолов, что было показано в недавней работе Дарьина и соавторов. Данные диазосоединения 6 были введены реакцию аминомеркаптанами 7 (схема 20) [11]. Первоначально, галоген замещается более нуклеофильной меркапто-группой. Таким образом, последующее образование имина становится внутримолекулярной реакцией и поэтому протекает в очень мягких условиях. Как алифатические, так и ароматические аминомеркаптаны оказались подходящими для данной реакции, давая 6,7-дигидротриазолотиазины 8 с выходами от хороших до отличных.

Схема 20. Синтез конденсированных триазолов из α -диазо- β -кето- γ -галоэфиров и аминомеркаптанов.

Попытки провести реакцию с тиосемикарбазидами **76** привели к получению продуктов нуклеофильного замещения, которые, тем не менее, претерпевали быструю циклизацию в триазолы **77** в чистой уксусной кислоте.

Как видно из литературного обзора, к настоящему времени было разработано множество методов для синтеза как 1,4-дизамещённых, так и полностью замещённых 1,2,3-триазолов из диазосоединений. Некоторые методы нашли применение и в медицинской химии. Отличительной особенностью этих методологий является абсолютная региоселективность. Помимо триазолов с углеродными заместителями, «диазо»-подход также позволяет получать аминотриазолы и гидрокситриазолы (в том числе с гетероатомным заместителем в первом положении). Однако, внутримолекулярный вариант циклоконденсации Вольфа является малоизученным — на текущий момент опубликовано лишь две работы, посвящённые данному подходу.

Данная работа является продолжением исследования, представленного на схеме 20, и посвящена расширению круга субстратов данной реакции с целью получить оксо-аналоги описанных выше триазолотиазинов, вводя α -диазо- β -кетоу-галоэфиры в реакцию с аминоспиртами. Помимо этого, интересной является возможность использования бинуклеофилов, разделённых более чем двумя атомами углерода, что открывает доступ к аннелированным циклам большего размера. Таким образом, цель данной работы – исследовать применимость внутримолекулярной конденсации Вольфа 6,7-дигидро-4*H*-К синтезу [1,2,3]триазоло[5,1-c][1,4]оксазинов, также исследовать возможность a применения данной методологии к синтезу триазолов, аннелированных с насыщенными кислородсодержащими циклами большего размера. В задачи исследования входили:

- 1. Синтез исходных соединений.
- 2. Определение круга подходящих для реакции субстратов, содержащих амино- и гидрокси-группы.
- 3. Подбор и оптимизация условий реакции.

4. Исследование возможности получения 1,2,3-триазолов, аннелированных с гетероциклами большего, чем шесть атомов, размера.

2 Экспериментальная часть

Все коммерчески доступные реагенты и растворители были использованы без дополнительной очистки, если не указано обратное. ЯМР-спектры были записаны на приборе Bruker Avance 400 (400.13 М Γ ц для 1 Н и 100.61 для 13 С) в $CDCl_3$ и в ДМСО- d_6 . Химические сдвиги были отнесены по остаточным сигналам протонов растворителей ($\delta H = 7.26$ и 2.50 м.д., соответственно) и углеродов растворителей ($\delta C = 77.0$ и 39.5 м.д., соответственно). Все химические сдвиги указаны в частях на миллион (ppm). Обозначения, использующиеся при описании мультиплетности сигналов следующие: с (синглет), д (дублет), т (триплет), к (квартет), п (пентет), шир. (широкий), м (мультиплет). Константы спин-спинового взаимодействия (J) указаны с точностью до 0.1 Гц. Масс-спектры высокого разрешения были записаны на приборе Bruker Maxis HRMS-ESI-qTOF (метод ионизации – электроспрей). Температуры плавления были измерены на приборе Stuart SMP 50 в открытых капиллярах. Контроль за ходом реакции осуществлялся методом TCX на пластинах Alugram Sil G/UV 254. Флэш-хроматография осуществлялась с использованием прибора Biotage Isolera Prime на силикагеле Merck 60 (0.040–0.063 мм, 230-400 меш).

2.1 Синтез исходных соединений

трет-Бутилкарбамат [43] и 2-(2-нитровинил)фенол [44] были получены в соответствии с литературными методиками. Спектральные данные полученных соединений соответствовали литературным данным.

2.1.1 Синтез α-диазо-β-кето-γ-галоэфиров 6а-b [11]

CI
$$CO_2R^2$$
 CO_2R^2 C

Схема 21. Получение α -диазо- β -кето- γ -галоэфиров.

К перемешивающемуся раствору азида натрия (572 мг, 8.8 ммоль) и поташа (2.21 г, 16.0 ммоль) в воде (18 мл) была добавлена 3-(хлорсульфонил)бензойная кислота (2.0 г, 9.0 ммоль). Перемешивание продолжалось при комнатной температуре до полного растворения веществ (20 минут). К полученному раствору был добавлен β -кето- γ -галоэфир (6.0 ммоль). Перемешивание продолжалось в течение 2 часов, после чего была произведена экстракция дихлорметаном (3×10 мл). Объединённые органические слои были осушены над хлоридом кальция, растворитель был отогнан в вакууме. Полученные α -диазо- β кето-у-галоэфиры были далее использованы без дополнительной очистки (схема 21). Спектральные данные этил-4-хлор-2-диазо-3-оксобутаноата ба и метил-4хлор-2-диазо-3-оксопентаноата **6b**, полученных данной ПО процедуре, соответствовали литературным данным.

2.1.2 Синтез *N*-Вос-аминофенолов 78a-f [45]

Схема 22. Получение *N*-Вос-аминофенолов.

К перемешивающейся при комнатной температуре смеси Amberlyst-15 (10% масс.) и ди-*трет*-бутилдикарбоната (1.45 г, 6.7 ммоль) в этаноле (6 мл) был добавлен соответствующий аминофенол (6.1 ммоль). Перемешивание продолжалось в течение ночи. После завершения реакции, катализатор был отфильтрован, растворитель был отогнан в вакууме. Остаток был растворён в хлороформе (30 мл), раствор был промыт водой (3×30 мл). Органический слой был осушен над сульфатом натрия, профильтрован, растворитель был отогнан в вакууме досуха. Полученные соединения были далее использованы без дополнительной очистки (схема 22).

Спектральные данные *трет*-бутил(2-гидроксифенил)карбамата **78a** [46] (1.91 г, колич.), *трет*-бутил(2-гидрокси-5-метилфенил)карбамата **78b** [47] (1.71 г, 65%) и *трет*-бутил(2-гидрокси-5-хлорфенил)карбамата **78d** [46] (1.77 г, 72%), полученных по данной процедуре, соответствовали литературным данным.

трет-Бутил(5-(*трет*-бутил)-2-гидроксифенил)карбамат 78с

твы кышеописанной процедуре, 2-амино-4-(*трем*-он бутил)фенол (1 г, 6.1 ммоль), Вос₂О (1.45 г, 6.7 ммоль) и Атмонить на вышеописанной процедуре, 6.7 ммоль) и Атмонить на выдет обутил (5-(*трем*-бутил)-2-гидроксифенил)карбамат в виде светло-коричневого порошка (1.51 г, 94%); Т_{пл} 102.5−103.6 °C. ¹H ЯМР (400 МГц, СDСl₃) δ 8.14 (шир. с, 1H, NH), 7.13 − 7.01 (м, 2H), 6.93 (д, *J* = 8.5 Гц, 1H, 3-Ar), 6.68 (шир. с, 1H, OH), 1.55 (с, 9H, C(CH₃)₃ (Boc)), 1.30 (с, 9H, C(CH₃)₃ (*t*Bu-Ph)). ¹³C ЯМР (101 МГц, CDCl₃) δ 155.22, 145.39, 143.79, 124.66, 122.85, 118.77, 118.66, 82.03, 34.07, 31.46 (3C, C(<u>C</u>H₃)₃), 28.28 (3C, C(<u>C</u>H₃)₃). HRMS (ESI+ve) Точная масса, рассчитанная для С₁₅H₂₃NO₃ [M+Na]⁺: 288.1570, измеренная: 288.1571.

Ди-трет-бутил(4-гидрокси-1,3-фенилен)дикарбамат 78е

BocHN_ NHBос К перемешивающемуся раствору дигидрохлорида 2,4диаминофенола (1.00 г, 5.1 ммоль) в ТГФ (25 мл) был добавлен раствор NaHCO₃ (2.17 г, 25.9 ммоль) в воде (25 мл). Перемешивание продолжалось в течение 48 часов при комнатной температуре. ТГФ был отогнан в вакууме, из водного слоя была произведена экстракция дихлорметаном (3×30) мл). Органический слой был осушен над сульфатом натрия, профильтрован, растворитель был отогнан в вакууме. Остаток был подвергнут очистке флэшхроматографией, что позволило получить ди-трет-бутил(4-гидрокси-1,3фенилен) дикарбамат в виде светло-сиреневого порошка (1.11 г, 68%); Т_{пл} 81.4-82.5 °С. ¹Н ЯМР (400 МГц, CDCl₃) δ 7.88 (шир. с, 1H), 7.41 (шир. с, 1H), 6.89 (д, J $= 8.5 \Gamma$ ц, 1H, 5-Ar), 6.83 (дд, $J = 8.7, 2.5 \Gamma$ ц, 1H, 6-Ar), 6.65 (шир. c, 1H), 6.34 (шир. c, 1H), 1.54 (c, 9H, C(CH₃)₃), 1.52 (c, 9H, C(CH₃)₃). ¹³C ЯМР (101 МГц, CDCl₃) δ 154.71, 153.39, 143.17, 131.17, 126.05, 118.57, 116.34, 112.52, 81.85, 80.50, 28.35 (3C, C(CH₃)₃), 28.25 (3C, C(CH₃)₃). HRMS (ESI+ve) Точная масса, рассчитанная для $C_{16}H_{24}N_2O_5$ [M+Na]⁺: 347.1577, измеренная: 347.1579.

3-((трет-Бутоксикарбонил)амино)-4-гидроксибензойная кислота 78f

 O_2 С NHBoc Следуя вышеописанной процедуре, 3-амино-4-ОН гидроксибензойная кислота (1.0 г, 6.3 ммоль), O_2 О (1.57 г, 7 ммоль) и Amberlyst-15 (100 мг) были введены в реакцию в этаноле (6.5 мл). В данном случае продукт был дополнительно очищен флэш-хроматографией (элюент – ацетон), что позволило получить 3-((*mpem*-бутоксикарбонил)амино)-4-гидроксибензойную кислоту в виде бесцветного порошка (1.27 г, 79%); T_{III} 168.7–169.7 °C. ¹H ЯМР (400 МГц, ДМСО- d_6) δ 12.45 (шир. c, 1H, COOH), 10.62 (шир. c, 1H, OH), 8.28 (д, J = 2.0 Гц, 1H, 2-Ar), 7.87 (c, 1H, NH), 7.52 (дд, J = 8.4, 2.2 Гц, 1H, 6-Ar), 6.89 (д, J = 8.4 Гц, 1H, 5-Ar), 1.47 (c, 9H, C(CH₃)₃). ¹³C ЯМР (101 МГц, ДМСО- d_6) δ 167.66, 153.21, 151.92, 126.62, 126.03, 122.56, 121.90, 114.96, 79.89, 28.49 (3C, C(\underline{C} H₃)₃). HRMS (ESI+ve) Точная масса, рассчитанная для C_{12} H₁₅NO₅ [M+Na]⁺: 276.0842, измеренная: 276.0847.

трет-Бутил(2-гидрокси-5-(пирролидин-1-карбонил)фенил)карбамат 78g

К перемешивающемуся 3-((*mpem*раствору NHBoc Бутоксикарбонил)амино)-4-гидроксибензойной кислоты ЮH **78f** (445 мг, 1.75 ммоль) в дихлорметане (10 мл) был добавлен EDC·HCl (360 мг, 1.78 ммоль), HOBt (301 мг, 1.78 ммоль). Перемешивание продолжалось в течение ночи при комнатной температуре, после чего реакционная масса была разбавлена дихлорметаном (20 мл). Раствор был промыт водой (2×15 мл) и рассолом (15 мл). Органической слой был осушен над сульфатом натрия, профильтрован, растворитель был отогнан в вакууме. Остаток был подвергнут очистке колоночной хроматографией, что позволило получить трет-бутил(2-гидрокси-5-(пирролидин-1-карбонил)фенил)карбамат бесцветного порошка (242 мг, 45%); Т_{пл} 196.9–197.8 °C. ¹Н ЯМР (400 МГц, ДМСО- d_6) δ 10.20 (c, 1H, OH), 7.85 (м, 2H, 6-Ar и NH накладываются), 7.09 (дд, J $= 8.3, 2.1 \Gamma$ ц, 1H, 4-Ar), 6.84 (д, $J = 8.2 \Gamma$ ц, 1H, 3-Ar), 3.49 - 3.39 (д, $J = 6.4 \Gamma$ ц 4H, (CH₂)₂, пирролидин), 1.83 (шир. с, 4H, (CH₂)₂, пирролидин), 1.47 (с, 9H, C(CH₃)₃). ¹³C ЯМР (101 МГц, ДМСО-*d6*) δ 168.60, 153.28, 149.02, 128.24, 126.26, 123.46, 120.63, 114.71, 79.86, 49.66, 46.48, 28.50 (3C, C(CH₃)₃), 26.53, 24.37. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{16}H_{22}N_2O_4$ [M+Na]⁺: 329.1472, измеренная: 329.1472.

2.1.3 Синтез *N*-Вос-салициламинов 79а-е [49]

Схема 23. Получение *N*-Вос-салициламинов.

К раствору *трет*-бутилкарбамата (852 мг, 7.27 ммоль) в ацетонитриле (11 мл) были добавлены соответствующий салициловый альдегид (2.5 ммоль), триэтилсилан (1.198 мл, 7.34 ммоль) и трифторуксусная кислота (0.371 мл, 4.85 ммоль). Реакционная смесь перемешивалась при комнатной температуре в течение указанного времени. Растворитель был отогнан в вакууме, остаток был растворён в дихлорметане (15 мл) и промыт насыщенным раствором NaHCO₃ (2×20 мл) и рассолом (20 мл). Органический слой был осушен над сульфатом натрия, профильтрован, растворитель был отогнан в вакууме. Остаток был подвергнут очистке флэш-хроматографией, что позволило получить соответствующий *N*-Вос-салициламин (схема 23).

Спектральные данные *трет*-бутил(2-гидроксибензил)карбамата **79а** соответствовали литературным данным [50].

трет-Бутил(2-гидрокси-3-метоксибензил)карбамат 79b

NHBoc Следуя вышеописанной процедуре, 2-гидрокси-3-он метоксибензальдегид (380 мг, 2.5 ммоль) и другие реагенты в указанных количествах были введены в реакцию. Время реакции – 20 часов. Выход 532 мг (84%). Бесцветный порошок; $T_{\Pi \Pi}$ 136.3–136.9 °C. ¹H ЯМР (400 МГц, CDCl₃) δ 6.88 – 6.77 (м, 4H, Ar и OH накладываются), 5.16 (шир. с, 1H, NH), 4.33 (д, J = 6.3 Гц, 2H, ArCH₂), 3.90 (с, 3H, OCH₃), 1.46 (с, 9H, C(CH₃)₃). ¹³C ЯМР (101 МГц, CDCl₃) δ 156.68, 147.21, 144.19, 124.93, 121.84, 119.57, 110.47, 79.84, 56.05, 40.33 (ArCH₂), 28.41 (3C, C(CH₃)₃). HRMS (ESI+ve) Точная масса, рассчитанная для $C_{13}H_{19}NO_4$ [M+Na]+: 276.1206, измеренная: 276.1208.

трет-Бутил((2-гидроксинафталин-1-ил)метил)карбамат 79с

NHBoc Следуя вышеописанной процедуре, 2-гидрокси-1-нафтальдегид (430 мг, 2.5 ммоль) и другие реагенты в указанных количествах были введены в реакцию. Время реакции — 72 часа. Выход 578 мг (85%). Бежевый порошок; $T_{пл}$ 140.2—140.9 °C. ¹H ЯМР (400 МГц, CDCl₃) δ 9.57 (с, 1H, OH), 7.82 (д, J = 8.3 Гц, 1H, Ar), 7.79 (д, J = 8.4 Гц, 1H, Ar), 7.76 (д, J = 8.9 Гц, 1H, Ar), 7.52 (ддд, J = 8.3, 6.8, 1.4 Гц, 1H, Ar), 7.36 (ддд, J = 8.0, 6.8, 1.1 Гц, 1H, Ar), 7.26 (д, J = 8.9 Гц, 1H, Ar), 5.47 (т, J = 6.8 Гц, 1H, NH), 4.69 (д, J = 6.7 Гц, 2H, ArCH₂), 1.45 (с, 9H, C(CH₃)₃). 13 C ЯМР (101 МГц, CDCl₃) δ 158.79, 154.11, 133.00, 129.97, 129.08, 128.92, 126.80, 123.00, 121.22, 120.46, 116.67, 81.30, 35.54 (ArCH₂), 28.31 (3C, C(CH₃)₃). Точная масса, рассчитанная для $C_{16}H_{19}NO_3$ [M+Na]+: 296.1257, измеренная: 296.1254.

трет-Бутил(2-гидрокси-5-хлорбензил)карбамат 79d

Следуя вышеописанной процедуре, 2-гидрокси-5-хлорбензальдегид (390 мг, 2.5 ммоль) и другие реагенты в указанных количествах были введены в реакцию. Время реакции – 16 часов. Выход реакции 524 мг (82%). Бесцветный порошок; $T_{пл}$ 133.3–134.0 °C. ¹H ЯМР (400 МГц, CDCl₃) δ 9.06 (шир. c, 1H, OH), 7.17 (дд, J = 8.6, 2.6 Гц, 1H, 4-Ar), 7.05 (д, J = 2.6 Гц, 1H, 6-Ar), 6.89 (д, J = 8.6 Гц, 1H, 3-Ar), 5.28 (шир. c, 1H, NH), 4.20 (д, J = 6.7 Гц, 2H, ArC $\underline{\text{H}}_2$), 1.47 (c, 9H, C(CH₃)₃). ¹³C ЯМР (101 МГц, CDCl₃) δ 158.49, 154.48, 130.10, 129.52, 126.44, 124.22, 119.19, 81.60, 40.93 (Ar $\underline{\text{CH}}_2$), 28.28 (3C, C($\underline{\text{CH}}_3$)₃). Точная масса, рассчитанная для C_{12} H₁₆CINO₃ [M+Na]⁺: 280.0711, измеренная: 280.0708.

трет-Бутил(2-гидрокси-5-нитробензил)карбамат 79е

О₂N Следуя вышеописанной процедуре, 2-гидрокси-5он нитробензальдегид (420 мг, 2.5 ммоль) и другие реагенты в указанных количествах были введены в реакцию. Время реакции — 26 часов. После завершения реакции реакционная смесь была помещена в морозильную камеру (-18 °C) на ночь. Выпавший осадок был отфильтрован на фильтре Шотта и аккуратно промыт дихлорметаном (2×5 мл) и ацетонитрилом (4 мл). Выход 516 мг (77%). Бесцветный порошок; Т_{пл} 181.0–181.6 °C. ¹Н ЯМР (400 МГц, ДМСО-*d*₆) δ 11.21 (шир. c, 1H, OH), 8.04 (дд, J = 8.8, 2.9 Γ ц, 1H, 4-Ar), 8.00 (д, J = 2.9 Γ ц, 1H, 6-Ar), 7.42 (т, J = 6.2 Γ ц, 1H, NH), 6.97 (д, J = 8.9 Γ ц, 1H, 3-Ar), 4.12 (д, J = 6.2 Γ ц, 2H, ArC $\underline{\text{H}}_2$), 1.42 (c, 9H, C(CH₃)₃). ¹³C ЯМР (101 М Γ ц, ДМСО-d₆) δ 161.55, 156.42, 140.00, 127.91, 124.70, 123.55, 115.43, 78.61, 38.56 (Ar $\underline{\text{C}}$ H₂), 28.67 (3C, C($\underline{\text{C}}$ H₃)₃). Точная масса, рассчитанная для C_{12} H₁₆N₂O₅ [M+Na]⁺: 291.0951, измеренная: 291.0949.

2.1.4 Синтез трет-бутил(2-гидроксифенетил)карбамата 80 [51], [52]

Схема 24. Получение трет-бутил(2-гидроксифенетил) карбамата.

25-миллилитровой круглодонной колбе, снабжённой воронкой с противодавлением, холодильником и хлоркальциевой трубкой, в сухом ТГФ (3.5 мл) был суспендирован литийалюмогидрид (366 мг, 9.65 ммоль). Раствор 2-(2-нитровинил)фенола (486 мг, 2.92 ммоль) в сухом ТГФ (7 мл) был 1.5 прикапан течение часов К перемешивающейся суспензии литийалюмогидрида при 0 °C (следует избегать закипания растворителя). После завершения прикапывания, реакционная смесь перемешивалась ещё 10 минут при 0 °C, а затем ещё 2 часа при комнатной температуре. Реакционная смесь была охлаждена до 0 °C и аккуратно разбавлена водой (10 мл). К этой смеси был добавлен 10% раствор соляной кислоты (20 мл), после чего была произведена промывка этилацетатом (2×10 мл). Органические фазы были объединены, из них была произведена экстракция 10% раствором соляной кислоты (3×10 мл). Объединённые водные фазы были обработаны винной кислотой (4 экв., 1770 мг), затем рН экстракта был доведён до 10 концентрированным водным раствором аммиака. Из полученного раствора была произведена экстракция хлороформом (6×10 мл). Органический слой был осушен над сульфатом натрия. Растворитель был отогнан в вакууме, что позволило получить 2-гидроксифенетиламин, который был использован на следующей стадии без дополнительной очистки. Раствор полученного соединения (257 мг), ди-трет-бутилдикарбоната (422 мг, 1.87 ммоль) и триэтиламина (0.261 мл, 1.87 ммоль) в смеси воды (1.9 мл) и ТГФ

(4.5 мл) перемешивался в течение ночи при комнатной температуре. ТГФ был отогнан в вакууме, из водного слоя была произведена экстракция этилацетатом (3×8 мл). Органический слой был осушен над сульфатом натрия. Растворитель был отогнан в вакууме. Остаток был подвергнут очистке флэш-хроматографией, что позволило получить *терет*-бутил(2-гидроксифенетил)карбамат **80** в виде желтоватых кристаллов (схема 24) Выход 366 мг, 52%; T_{nn} 78.5–79.7 °C. ¹H ЯМР (400 МГц, CDCl₃) δ 7.46 (шир. с, 1H, OH), 7.14 (ддд, J = 7.66, 7.60, 1.51 Гц, 1H, 4-Ar), 7.08 (дд, J = 7.5, 1.7 Гц, 1H, 6-Ar), 6.89 (дд, J = 7.95, 1.10 Гц, 1H, 3-Ar), 6.84 (ддд, J = 7.43, 7.39, 1.08 Гц, 1H, 5-Ar), 4.98 (шир. с, 1H, NH), 3.35 (к, J = 6.7 Гц, 2H, ArCH₂CH₂), 2.86 (т, J = 7.1 Гц, 2H, ArCH₂CH₂), 1.48 (с, 9H, C(CH₃)₃). ¹³C ЯМР (101 МГц, CDCl₃) δ 157.07, 155.00, 130.54, 127.97, 124.83, 120.07, 115.97, 80.08 (С(CH₃)₃), 40.96 (ArCH₂CH₂), 31.32 (ArCH₂CH₂), 28.41 (3C, C(CH₃)₃). HRMS (ESI+ve) Точная масса, рассчитанная для C_{13} H₁₉NO₃ [M+Na]⁺: 260.1257, измеренная: 260.1259.

2.2 Синтез продуктов O-алкилирования аминоспиртов α -диазо- β -кето- γ -галоэфирами

2.2.1 O-алкилирование N-Вос-аминофенолов α -диазо- β -кето- γ -галоэфирами

$$CO_2R^2$$
 + R^3 NHBoc K_2CO_3 , KI, 18-краун-6 OH R^1 NP NHBoc O R^1 NHBoc O R^2 NHBoc O R^2 NHBoc O R^2 NHBoc O R^2 NHBoc O R^3 NHBoc NH

Схема 25. O-алкилирование N-Вос-аминофенолов α -диазо- β -кето- γ -галоэфирами.

Соответствующий *N*-Вос-аминофенол **78** (1.50 ммоль), поташ (311 мг, 2.25 ммоль) и 18-краун-6 (40 мг, 0.15 ммоль) были растворены в ацетонитриле (ОСЧ, сорт 0, 6 мл). Полученный раствор перемешивался при комнатной температуре 15 минут. Иодид калия (25 мг, 0.15 ммоль) и диазоэфир **6** (в виде раствора в 1 мл ацетонитрила, 1.50 ммоль) были добавлены к реакционной смеси. Перемешивание продолжалось в течение 6 часов при комнатной температуре (контроль по ТСХ). Растворитель был отогнан в вакууме. Остаток был растворён

в дихлорметане (10 мл), раствор был промыт водой (2×15 мл) и рассолом (15 мл). Органический слой был осушен над сульфатом натрия, профильтрован, растворитель был отогнан в вакууме. Полученный остаток был подвергнут очистке флэш-хроматографией, что позволило получить соответствующий продукт алкилирования 81 (схема 25).

Этил-4-(2-((трет-бутоксикарбонил)амино)фенокси)-2-диазо-3-оксобутаноат 81а

NHBoc Следуя вышеописанной процедуре, трет-бутил(2-.CO₂Et гидроксифенил) карбамат 78а (320 мг, 1.53 ммоль), этил-2диазо-3-оксо-4-хлорбутаноат **6a** (286 мг, 1.53 ммоль) и другие реагенты в указанных количествах были введены в реакцию, что позволило получить соединение 81а в виде желтоватого порошка (417 мг, 75%); $T_{\text{пл}}$ 124.2–125.6 °C (разлагается). ¹Н ЯМР (400 МГц, CDCl₃) δ 8.11 (д, J = 8.1 Гц, 1H, 3-Ar), 7.61 (шир. c, 1H, NH), 7.00 (ддд, $J = 7.9, 7.7, 1.5 \Gamma$ ц, 1H, 5-Ar), 6.93 (ддд, $J = 7.8, 7.6, 1.7 \Gamma$ ц, 1H, 4-Ar), 6.82 (дд, $J = 8.0, 1.5 \Gamma$ ц, 1H, 6-Ar), 5.21 (с, 2H, OCH₂C(O)), 4.36 (κ , $J = 7.1 \Gamma \mu$, 2H, OCH₂CH₃), 1.55 (c, 9H, C(CH₃)₃), 1.38 (τ , $J = 7.1 \Gamma \mu$ Γι, 3H, OCH₂CH₃). ¹³C ЯМР (101 МГι, CDCl3) δ 187.31, 161.08, 152.92, 146.64, 129.46, 122.62, 122.24, 118.98, 113.23, 80.19, 75.24 (C=N₂), 72.84, 61.98, 28.39 (3C, С(СН₃)₃), 14.32. Спектры приведены в приложении А. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{17}H_{21}N_3O_6$ [M+Na]⁺: 386.1323, измеренная: 386.1312.

Этил-4-(2-((трет-бутоксикарбонил)амино)-4-метилфенокси)-2-диазо-3-оксобутаноат 81b

NHBoc О Следуя вышеописанной процедуре, *трет*-бутил(2-гидрокси-5-метилфенил)карбамат **78b** (335 мг, 1.50 ммоль), этил-2-диазо-3-оксо-4-хлорбутаноат **6a** (286 мг, 1.50 ммоль) и другие реагенты в указанных количествах были введены в реакцию, что позволило получить соединение **81b** в виде бежевого порошка (449 мг, 79%); Т_{пл} 98.3−98.6 °C (разлагается). ¹Н ЯМР (400 МГц, CDCl₃) δ 7.95 (шир. с, 1H), 7.62 (шир. с, 1H), 6.75 − 6.70 (м, 2H, 5-Ar и 6-Ar накладываются), 5.18 (с, 2H, OCH₂C(O)), 4.35 (к, *J* = 7.1 Гц, 2H, OCH₂CH₃), 2.30 (с, 3H, ArCH₃), 1.55 (с, 9H, C(CH₃)₃), 1.37 (т, *J* = 7.2 Гц, 3H, OCH₂CH₃). ¹³C ЯМР (101 МГц, CDCl₃) δ 187.59,

161.08, 152.98, 144.68, 132.33, 129.18, 122.58, 119.54, 113.35, 80.12, 75.20 (C=N₂), 73.21, 61.95, 28.39 (3C, C(<u>C</u>H₃)₃), 21.07 (Ar<u>C</u>H₃), 14.32. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{18}H_{23}N_3O_6$ [M+Na]⁺: 400.1479, измеренная: 400.1474.

Этил-4-(2-((*трет*-бутоксикарбонил)амино)-4-(*трет*-бутил)фенокси)-2-диазо-3-оксобутаноат 81с

Следуя вышеописанной процедуре, *трет*-бутил(5-со₂Et (*трет*-бутил)-2-гидроксифенил)карбамат **78c** (400 мг, 1.50 ммоль), этил-2-диазо-3-оксо-4-хлорбутаноат **6a** (286 мг, 1.50 ммоль) и другие реагенты в указанных количествах были введены в реакцию, что позволило получить соединение **81c** в виде бежевого порошка (472 мг, 75%);
$$T_{пл}$$
 107.1–108.3 °C (разлагается). ¹H ЯМР (400 МГц, CDCl₃) δ 8.17 (шир. с, 1H), 7.59 (шир. с, 1H), 6.94 (дд, J = 8.5, 2.4 Гц, 1H, 5-Ar), 6.74 (д, J = 8.5 Гц, 1H, 6-Ar), 5.19 (с, 2H, OCH₂C(O)), 4.35 (к, J = 7.1 Гц, 2H, OCH₂CH₃), 1.56 (с, 9H, C(CH₃)₃ (Boc)), 1.37 (т, J = 7.1 Гц, 3H, OCH₂CH₃), 1.33 (с, 9H, C(CH₃)₃ (I Bu-Ph)). ¹³C ЯМР (101 МГц, CDCl₃) δ 187.61, 161.08, 152.93, 145.62, 144.55, 128.90, 118.87, 116.54, 112.82, 79.99, 75.21 (C=N₂), 73.09, 61.95, 34.51, 31.50 (3C, C(CH₃)₃), 28.45 (3C, C(CH₃)₃), 14.33. HRMS (ESI+ve) Точная масса, рассчитанная для C_{21} H₂₉N₃O₆ [M+Na]⁺: 442.1949, измеренная: 442.1947.

Этил-4-(2-((*трет*-бутоксикарбонил)амино)-4-хлорфенокси)-2-диазо-3оксобутаноат 81d

Следуя вышеописанной процедуре, *трет*-бутил(2-гидрокси-5-хлорфенил)карбамат **78d** (370 мг, 1.50 ммоль), этил-2-диазо-3-оксо-4-хлорбутаноат **6a** (286 мг, 1.50 ммоль) и другие реагенты в указанных количествах были введены в реакцию, что позволило получить соединение **81d** в виде бежевого порошка (502 мг, 83%); $T_{пл}$ 87.4–88.1 °C (разлагается). ¹H ЯМР (400 МГц, CDCl₃) δ 8.20 (шир. с, 1H), 7.61 (шир. с, 1H), 6.89 (дд, J = 8.6, 2.5 Гц, 1H, 5-Ar), 6.73 (д, J = 8.7 Гц, 1H, 6-Ar), 5.20 (с, 2H, OCH₂C(O)), 4.36 (к, J = 7.1 Гц, 2H, OCH₂CH₃), 1.56 (с, 9H, C(CH₃)₃), 1.38 (т, J = 7.1 Гц, 3H, OCH₂CH₃). ¹³C ЯМР (101 МГц, CDCl₃) δ 187.00, 161.02, 152.56, 145.12, 130.52, 127.88, 121.71, 118.81, 114.09, 80.71, 75.27 (C=N₂), 72.99,

62.05, 28.33 (3C, C(\underline{C} H₃)₃), 14.33. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{17}H_{20}ClN_3O_6$ [M+Na]⁺: 420.0933, измеренная: 420.0929.

Этил-4-(2,4-бис((*трет*-бутоксикарбонил)амино)фенокси)-2-диазо-3-оксобутаноат 81е

Следуя вышеописанной процедуре, ди-трем-бутил(4-гидрокси-1,3-фенилен)дикарбамат **78e** (490 мг, 1.50 ммоль), этил-2-диазо-3-оксо-4-хлорбутаноат **6a** (286 мг, 1.50 ммоль) и другие реагенты в указанных количествах были введены в реакцию, что позволило получить соединение **81e** в виде бесцветного порошка (526 мг, 73%);
$$T_{\text{пл}}$$
 157.9–158.4 °C (разлагается). ¹H ЯМР (400 МГц, CDCl₃) δ 7.88 (д, J = 2.6 Гц, 1H, 3-Ar), 7.69 (шир. c, 1H), 7.24 (шир. c, 1H), 6.78 (д, J = 8.8 Гц, 1H, 6-Ar), 6.40 (шир. c, 1H), 5.17 (c, 2H, OC $\underline{\text{H}}_2$ C(O)), 4.35 (к, J = 7.2 Гц, 2H, OC $\underline{\text{H}}_2$ CH₃), 1.54 (c, 9H, C(CH₃)₃), 1.51 (c, 9H, C(CH₃)₃), 1.37 (т, J = 7.1 Гц, 3H, OCH $_2$ CH₃). ¹³C ЯМР (101 МГц, CDCl₃) δ 187.62, 161.05, 152.96, 152.82, 142.73, 133.35, 129.95, 114.36, 112.69, 109.93, 80.36, 80.20, 75.24 (C=N₂), 73.60, 61.98, 28.36 (3C, C($\underline{\text{CH}}_3$)₃), 28.34 (3C, C($\underline{\text{CH}}_3$)₃), 14.32. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{22}H_{30}N_4O_8$ [M+Na]+: 501.1956, измеренная: 501.1968.

Этил-4-(2-((*трет*-бутоксикарбонил)амино)-4-(пирролидин-1-карбонил)фенокси)-2-диазо-3-оксобутаноат 81f

мг, 0.05 ммоль), КІ (8 мг, 0.05 ммоль) и этил-4-хлор-2-диазо-3-оксобутаноат **6a** (140 мг, 0.73 ммоль) были введены в реакцию в 5 мл МеСN. Время реакции – 31 час. Светло-коричневое аморфное вещество (94 мг, 42%); $T_{\text{пл}}$ 106.8–107.6 °C (разлагается). ¹Н ЯМР (400 МГц, CDCl₃) δ 8.33 (шир. c, 1H), 7.55 (шир. c, 1H), 7.19 (дд, J = 8.4, 2.1 Гц, 1H, 5-Ar), 6.81 (д, J = 8.4 Гц, 1H, 6-Ar), 5.24 (c, 2H, OCH₂C(O)), 4.37 (к, J = 7.1 Гц, 2H, OCH₂CH₃), 3.57 (дт, J = 42.0, 6.6 Гц, 4H, пирролидин), 2.00 – 1.84 (м, 4H, пирролидин), 1.55 (с, 9H, C(CH₃)₃), 1.39 (т, J = 7.1 Гц, 3H, OCH₂CH₃). ¹³С ЯМР (101 МГц, CDCl₃) δ 186.79, 169.26, 161.04, 152.70, 147.38, 131.31, 128.70,

121.93, 117.75, 112.59, 80.45, 75.32 (C=N₂), 72.44, 62.06, 28.37 (3C, C($\underline{\text{C}}\text{H}_3$)₃), 14.33. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{22}H_{28}N_4O_7$ [M+Na]⁺: 483.1850, измеренная: 483.1862.

Метил-4-(2-((*трет*-бутоксикарбонил)амино)-4-хлорфенокси)-2-диазо-3оксопентаноат 81g

2.2.2 *О*-Алкилирование *N*-Вос-салициламинов этил-2-диазо-3-оксо-4-хлорбутаноатом

$$CI$$
 CO_2Et CO_2Et

Схема 26. *О*-Алкилирование *N*-Вос-салициламинов диазоэфиром **6a**.

Соответствующий *N*-Вос-салициламин **79** (0.63 ммоль), поташ (131 мг, 0.95 ммоль) и 18-краун-6 (17 мг, 0.064 ммоль) были растворены в ацетонитриле (ОСЧ, сорт 0, 2 мл). Полученный раствор перемешивался при комнатной температуре 15 минут. Иодид калия (11 мг, 0.066 ммоль) и этил-2-диазо-3-оксо-4-хлорбутаноат **6а** (в виде раствора в 1 мл ацетонитрила, 145 мг, 0.76 ммоль) были добавлены к реакционной смеси. Перемешивание продолжалось в течение указанного времени

при комнатной температуре (контроль по TCX). Растворитель был отогнан в вакууме. Остаток был растворён в дихлорметане (15 мл), раствор был промыт водой (2×10 мл) и рассолом (10 мл). Органический слой был осушен над сульфатом натрия, профильтрован, растворитель был отогнан в вакууме. Полученный остаток был подвергнут очистке флэш-хроматографией, что позволило получить соответствующий продукт алкилирования 82 (схема 26).

Этил-4-(2-(((*трет*-бутоксикарбонил)амино)метил)фенокси)-2-диазо-3-оксобутаноат 82а

 $\begin{array}{c} \text{NHBoc} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{CO}_2 \text{Et} \\ \text{S} \end{array}$

Следуя вышеописанной процедуре, *трет*-бутил(2ссо₂Et гидроксибензил)карбамат **79a** (140 мг, 0.63 ммоль) и другие реагенты в указанных количествах были введены в реакцию. Время реакции – 24 часа. Бесцветный порошок

(138 мг, 58%); $T_{пл}$ 60.4–61.6 °C. ¹H ЯМР (400 МГц, CDCl₃) δ 7.33 (д, J = 7.5 Гц, 1H, 3-Ar), 7.22 (ддд, J = 7.86, 7.80, 1.74 Гц, 1H, 5-Ar), 6.96 (ддд, J = 7.46, 7.44, 1.07 Гц, 1H, 4-Ar), 6.79 (дд, J = 8.2, 0.9 Гц, 1H, 6-Ar), 5.67 (шир. c, 1H, NH), 5.22 (c, 2H, OCH₂C(O)), 4.45 – 4.30 (м, 4H, ArCH₂ и OCH₂CH₃ накладываются), 1.46 (c, 9H, C(CH₃)₃), 1.39 (т, J = 7.1 Гц, 3H, OCH₂CH₃). ¹³C ЯМР (101 МГц, CDCl₃) δ 187.13, 161.13, 156.17, 156.09, 130.06, 128.54, 128.02, 121.67, 111.57, 78.94, 75.31 (C=N₂), 71.02, 61.95, 40.72 (ArCH₂), 28.47 (3C, C(CH₃)₃), 14.33. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{18}H_{23}N_3O_6$ [M+H]⁺: 378.1660, измеренная: 378.1660.

Этил-4-(2-(((*трет*-бутоксикарбонил)амино)метил)-6-метоксифенокси)-2-диазо-3-оксобутаноат 82b

NHBoc O CO₂Et

Следуя вышеописанной процедуре, *трет*-бутил(2-гидрокси-3-метоксибензил)карбамат **79b** (160 мг, 0.63 ммоль) и другие реагенты в указанных количествах были введены в реакцию. Время реакции – 24 часа. Бледно-

зелёное масло (131 мг, 51%); ¹Н ЯМР (400 МГц, CDCl₃) δ 7.02 (дд, J = 7.91, 7.82 Гц, 1H, 4-Ar), 6.96 (д, J = 7.5 Гц, 1H, Ar), 6.85 (дд, J = 8.1, 1.7 Гц, 1H, Ar), 5.65 (шир. c, 1H, NH), 5.25 (c, 2H, OCH₂C(O)), 4.41 (д, J = 6.2 Гц, 2H, ArCH₂), 4.32 (к, J = 7.2 Гц, 2H, OCH₂CH₃), 3.86 (c, 3H, OCH₃), 1.45 (c, 9H, C(CH₃)₃), 1.36 (т, J = 7.1 Гц, 3H, OCH₂CH₃). ¹³C ЯМР (101 МГц, CDCl₃) δ 188.46, 161.10, 156.10, 151.64,

145.76, 132.83, 124.07, 121.77, 111.93, 78.99, 75.25, 75.07 (C=N₂), 61.75, 55.90, 40.57 (ArCH₂), 28.44 (3C, C(CH₃)₃), 14.31. HRMS (ESI+ve) Точная масса, рассчитанная для C₁₉H₂₅N₃O₇ [M+H]⁺: 408.1765, измеренная: 408.1765.

Этил-4-((1-(((*трет*-бутоксикарбонил)амино)метил)нафталин-2-ил)окси)-2-диазо-3-оксабутаноат 82с

В данном случае потребовалось использовать 1.5 экв. NHBoc СО2Е диазоэфира и 2 экв. поташа. Следуя вышеописанной трет-бутил((2-гидроксинафталин-1ил)метил)карбамат **79c** (173 мг, 0.63 ммоль), K₂CO₃ (175 мг, 1.27 ммоль), 18краун-6 (17 мг, 0.064 ммоль), КІ (11 мг, 0.066 ммоль) и этил-2-диазо-3-оксо-4хлорбутаноат ба (181 мг, 0.95 ммоль) были введены в реакцию в MeCN (3 мл). Время реакции – 24 часа. Бесцветный порошок (196 мг, 72%); T_{пл} 122.2–123.1 °C (разлагается). ¹H ЯМР (400 МГц, CDCl₃) δ 8.27 (д, J = 8.6 Гц, 1H, Ar), 7.80 – 7.77 (м, 2H, Ar), 7.56 (дд, J = 7.56, 7.42 Гц, 1H, Ar), 7.39 (ддд, J = 8.0, 6.8, 1.1 Гц, 1H, Ar), 7.16 (μ , J = 9.1 Γ , IH, Ar), 5.56 (IH, IH, 4.92 (д, J = 5.6 Гц, 2H, ArCH₂), 4.38 (к, J = 7.1 Гц, 2H, OCH₂CH₃), 1.46 (с, 9H, $C(CH_3)_3$), 1.39 (т, J = 7.1 Гц, 3H, OCH_2CH_3). ¹³C ЯМР (101 МГц, $CDCl_3$) δ 187.67, 161.13, 156.00, 153.98, 132.84, 129.68, 129.59, 128.28, 127.14, 124.08, 123.89, 121.27, 113.73, 78.90, 75.30 (C=N₂), 72.01, 61.97, 34.92 (ArCH₂), 28.48 (3C, C(CH₃)₃), 14.34. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{22}H_{25}N_3O_6$ [M+Na]⁺: 450.1636, измеренная: 450.1647.

Этил-4-(2-(((*трет*-бутоксикарбонил)амино)метил)-4-хлорфенокси)-2-диазо-3-оксобутаноат 82d

Следуя вышеописанной процедуре, *трет*-бутил(2-СО₂Еt гидрокси-5-хлорбензил)карбамат **79d** (163 мг, 0.63 ммоль) и другие реагенты в указанных количествах были введены в реакцию. Время реакции — 15 часов. Бесцветный порошок (169 мг, 65%); $T_{пл}$ 79.8–81.1 °C (разлагается). ¹H ЯМР (400 МГц, CDCl₃) δ 7.30 (шир. с, 1H, 3-Ar, накладывается на CDCl₃), 7.17 (дд, J = 8.7, 2.7 Гц, 1H, 5-Ar), 6.71 (д, J = 8.8 Гц, 1H, 6-Ar), 5.56 (шир. с, 1H, NH), 5.19 (с, 2H, OC \underline{H}_2 C(O)), 4.40 – 4.34 (м, 4H, OC \underline{H}_2 CH₃ и ArCH₂ накладываются), 1.47 (с, 9H, C(CH₃)₃), 1.39 (т, J = 7.1 Гц, 3H, ОСН₂С<u>Н</u>₃). ¹³С ЯМР (101 МГц, CDCl₃) δ 186.80, 161.08, 156.07, 154.67, 129.85, 129.60, 128.06, 126.45, 112.85, 79.43, 75.36 (C=N₂), 71.26, 62.02, 40.43 (Ar<u>C</u>H₂), 28.42 (3C, C(<u>C</u>H₃)₃), 14.33. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{18}H_{22}ClN_3O_6$ [M+Na]⁺: 434.1089, измеренная: 434.1098.

Этил-4-(2-(((*трет*-бутоксикарбонил)амино)метил)-4-нитрофенокси)-2-диазо-3-оксобутаноат 82е

$$\begin{array}{c|c} & \text{NHBoc} & \text{O} \\ & \text{O} & \text{CO}_2\text{Et} \\ \\ \text{O}_2\text{N} & \text{N}_2 & \text{O} \end{array}$$

Следуя вышеописанной процедуре, *трет*-бутил(2ссо₂Et гидрокси-5-нитробензил)карбамат **79e** (170 мг, 0.63 ммоль) и другие реагенты в указанных количествах были введены в реакцию. В данном случае из-за

плохой растворимости **79е** в MeCN, реакция проводилась в смеси MeCN (1.5 мл) и сухого ДМФА (1.5 мл). Время реакции – 15 часов. Светло-коричневый порошок (110 мг, 41%); $T_{пл}$ 97.7–98.4 °C (разлагается). ¹H ЯМР (400 МГц, CDCl₃) δ 8.23 (д, J = 2.8 Гц, 1H, 3-Ar), 8.15 (дд, J = 9.0, 2.8 Гц, 1H, 5-Ar), 6.81 (д, J = 9.1 Гц, 1H, 6-Ar), 5.42 (шир. с, 1H, NH), 5.32 (с, 2H, OCH₂C(O)), 4.46 (д, J = 6.2 Гц, 2H, ArCH₂), 4.39 (к, J = 7.1 Гц, 2H, OCH₂CH₃), 1.48 (с, 9H, C(CH₃)₃), 1.40 (т, J = 7.1 Гц, 3H, OCH₂CH₃). ¹³C ЯМР (101 МГц, CDCl₃) δ 185.64, 161.03, 160.70, 155.93, 141.92, 129.30, 124.69 (2C), 111.12, 79.70, 75.49 (C=N₂), 71.16, 62.18, 40.01 (ArCH₂), 28.39 (3C, C(CH₃)₃), 14.34. Спектры приведены в приложении Б. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{18}H_{22}N_4O_8$ [M+Na]⁺: 445.1330, измеренная: 445.1333.

2.2.3 Синтез этил-4-(2-(2-((*трет*-бутоксикарбонил)амино)этил)фенокси)-2-диазо-3-оксобутаноата 83

CI CO₂Et
$$K_2$$
CO₃, KI, 18-краун-6 $NHBoc$ CO_2 Et N_2 $MeCN, r. t., 15.5 h$ N_2 N_2 N_2 N_3 N_4 N_2 N_4 N_5 N_5 N_6 N_8 N_8

Схема 27. О-Алкилирование N-Вос-2-(2-аминоэтил)фенола диазоэфиром **6a**.

Следуя вышеописанной процедуре, *трет*-бутил(2-гидроксифенетил)карбамат **80** (150 мг, 0.63 ммоль) и другие реагенты в указанных количествах были введены в реакцию (схема 27). Время реакции – 15.5 часов.

Бледно-зелёное масло (130 мг, 53%) ¹Н ЯМР (400 МГц, CDCl₃) δ 7.17 (м, 2H, Ar), 6.94 (ддд, J = 7.47, 7.45 1.06 Гц, 1H, Ar), 6.74 (д, J = 8.44 Гц, 1H, Ar), 5.20 (с, 2H, OCH₂C(O)), 4.99 (шир. с, 1H, NH), 4.37 (к, J = 7.1 Гц, 2H, OCH₂CH₃), 3.44 (тд, J = 6.05, 5.89 Гц, 2H, ArCH₂CH₂), 2.92 (т, J = 6.6 Гц, 2H, ArCH₂CH₂), 1.43 (с, 9H, C(CH₃)₃), 1.39 (т, J = 7.1 Гц, 3H, OCH₂CH₃). ¹³C ЯМР (101 МГц, CDCl₃) δ 187.04, 161.17, 156.16, 156.01, 131.09, 128.26, 127.57, 121.53, 111.30, 78.77, 75.25 (C=N₂), 70.80, 61.92, 30.79 (ArCH₂CH₂), 28.41 (3C, C(CH₃)₃), 28.38 (ArCH₂CH₂), 14.34. HRMS (ESI+ve) Точная масса, рассчитанная для C₁₉H₂₅N₃O₆ [M+Na]⁺: 414.1636, измеренная: 414.1638.

2.3 Синтез конечных соединений

2.3.1 Синтез 4*H*-бензо[*b*][1,2,3]триазоло[1,5-*d*][1,4]оксазин-3-карбоксилатов 84а-g

NHBoc O
$$CO_2R^2$$
 TFA (10 9KB.) N^2 DCM, r. t. R^3 R^3

Схема 28. Получение 4H-бензо[b][1,2,3]триазоло[1,5-d][1,4]оксазин-3-карбоксилатов.

К раствору соответствующего продукта алкилирования **81** (0.5 ммоль) в дихлорметане (4 мл) была добавлена трифторуксусная кислота (0.386 мл, 5 ммоль). Реакционная смесь перемешивалась при комнатной температуре в течение 18 часов. Реакционная масса была промыта насыщенным раствором $NaHCO_3$ (2х4 мл) и водой (4 мл). Органический слой был осущен над сульфатом натрия, профильтрован, растворитель был отогнан в вакууме, что позволило получить соответствующий 4H-бензо[b][1,2,3]триазоло[1,5-d][1,4]оксазин-3-карбоксилат **84** (схема 28).

Этил-4H-бензо[b][1,2,3]триазоло[1,5-d][1,4]оксазин-3-карбоксилат 84a

Следуя вышеописанной процедуре, продукт алкилирования **81a** (182 мг, 0.5 ммоль) и указанное количество TFA были введены в реакцию. Коричневый порошок (102 мг, 83%); $T_{пл}$ 130.5–131.8 °C. ¹H ЯМР (400 МГц, CDCl₃) δ 8.11 (дд, J = 8.0, 1.6 Гц, 1H, 9-

Аг), 7.35 (ддд, J = 8.0, 7.9, 1.6 Гц, 1H, 7-Ar), 7.23 – 7.12 (м, 2H, 8-Ar и 6-Ar накладываются), 5.66 (с, 2H, ArOC $\underline{\text{H}}_2$), 4.49 (к, J = 7.1 Гц, 2H, OC $\underline{\text{H}}_2$ CH $_3$), 1.47 (т, J = 7.2 Гц, 3H, OCH $_2$ C $\underline{\text{H}}_3$). 13 C ЯМР (101 МГц, CDCl $_3$) δ 160.63, 145.22, 134.86, 131.49, 129.76, 123.17, 123.16, 117.89, 116.95, 62.22, 61.61, 14.32. Спектры приведены в приложении В. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{12}H_{11}N_3O_3$ [M+Na] $^+$: 268.0693, измеренная: 268.0681.

Этил-8-метил-4H-бензо[b][1,2,3]триазоло[1,5-d][1,4]оксазин-3-карбоксилат 84b

Me N-N N CO₂Et Следуя вышеописанной процедуре, продукт алкилирования **81b** (190 мг, 0.5 ммоль) и указанное количество ТFA были введены в реакцию. Светло-коричневый порошок (119 мг, 91%); $T_{\text{пл}}$ 110.9–111.7 °C. ¹H ЯМР (400 МГц, CDCl₃) δ 7.92 (д, J = 2.1 Гц, 1H, 9-Ar), 7.13 (дд, J = 8.5, 2.1 Гц, 1H, 7-Ar), 7.04 (д, J = 8.4 Гц, 1H, 6-

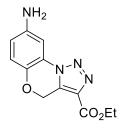
Ar), 5.61 (c, 2H, ArOC $\underline{\text{H}}_2$), 4.48 (к, $J=7.1~\Gamma\text{ц}$, 2H, OC $\underline{\text{H}}_2$ CH₃), 2.41 (c, 3H, ArC $\underline{\text{H}}_3$), 1.47 (т, $J=7.1~\Gamma\text{ц}$, 3H, OCH₂C $\underline{\text{H}}_3$). ¹³C ЯМР (101 М $\Gamma\text{ц}$, CDCl₃) δ 160.67, 143.01, 134.81, 133.20, 131.60, 130.29, 122.86, 117.56, 117.15, 62.14, 61.57, 20.77, 14.32. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{13}H_{13}N_3O_3~[M+Na]^+$: 282.0849, измеренная: 282.0846.

Этил-8-(*тем*-бутил)-4*H*-бензо[*b*][1,2,3]триазоло[1,5-*d*][1,4]оксазин-3-карбоксилат 84с

Следуя вышеописанной процедуре, продукт алкилирования **81c** (210 мг, 0.5 ммоль) и указанное количество TFA были введены в реакцию. Коричневый порошок (132 мг, 87%); $T_{пл}$ 97.6–99.1 °C. ¹H ЯМР (400 МГц, CDCl₃) δ 8.12 (д, J = 2.4 Гц, 1H, 9-Ar), 7.36 (дд, J = 8.7, 2.4 Гц, 1H, 7-Ar), 7.08 (д, J = 8.6 Гц, 1H, 6-Ar), 5.61 (с, 2H,

ArOC<u>H</u>₂), 4.49 (κ, J = 7.1 Γι, 2H, OC<u>H</u>₂CH₃), 1.47 (τ, J = 7.1 Γι, 3H, OCH₂C<u>H</u>₃), 1.39 (c, 9H, C(CH₃)₃). ¹³C ЯМР (101 МГц, CDCl₃) δ 160.71, 146.87, 142.90, 134.82, 131.65,

126.74, 122.75, 117.34, 113.90, 62.14, 61.58, 34.73, 31.32 (3C, $C(\underline{C}H_3)_3$), 14.33. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{16}H_{19}N_3O_3$ [M+Na]⁺: 324.1319, измеренная: 324.1315.


Этил-8-хлор-4H-бензо[b][1,2,3]триазоло[1,5-d][1,4]оксазин-3-карбоксилат 84d

$$CI$$
 N^{-N}
 CO_2Et

Следуя вышеописанной процедуре, продукт алкилирования **81d** (200 мг, 0.5 ммоль) и указанное количество TFA были введены в реакцию. Бежевый порошок (118 мг, 84%); $T_{\text{пл}}$ 139.6–140.8 °C. 1 H ЯМР (400 МГц, CDCl₃) δ 8.10 (д, J = 2.4 Гц, 1H, 9-Ar), 7.30 (дд, J = 8.8, 2.5 Гц, 1H, 7-Ar, накладывается на CDCl₃), 7.10 (д, J = 8.8

 Γ ц, 1H, 6-Ar), 5.65 (c, 2H, ArOC $\underline{\text{H}}_2$), 4.48 (к, J = 7.1 Γ ц, 2H, OC $\underline{\text{H}}_2$ CH₃), 1.46 (т, J = 7.2 Γ ц, 3H, OCH₂C $\underline{\text{H}}_3$). ¹³C ЯМР (101 М Γ ц, CDCl₃) δ 160.44, 143.68, 135.11, 131.37, 129.65, 128.31, 123.55, 119.13, 117.10, 62.41, 61.74, 14.31. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{16}H_{19}N_3O_3$ [M+Na]⁺: 302.0303, измеренная: 302.0301.

Этил-8-амино-4*H*-бензо[*b*][1,2,3]триазоло[1,5-*d*][1,4]оксазин-3-карбоксилат 84e

К раствору продукта алкилирования **81e** (240 мг, 0.5 ммоль) в DCM (4 мл) была добавлена TFA (0.576 мл, 7.5 ммоль). Реакционная смесь перемешивалась при комнатной температуре в течение 18 часов. Растворитель был отогнан в вакууме. Остаток был растворён в этилацетате (10 мл), полученный раствор был

промыт насыщенным раствором NaHCO₃ (2x10 мл) и водой (10 мл). Органический слой был осушен над сульфатом натрия, профильтрован, растворитель был отогнан в вакууме, что позволило получить соединение **84e** в виде бежевого порошка (62 мг, 47%). Данное вещество хранилось в морозильной камере (-18 °C). $T_{\Pi \Pi}$ 207.8–208.7 °C. ¹H ЯМР (400 МГц, CDCl₃) δ 7.43 (д, J = 2.7 Гц, 1H, 9-Ar), 6.97 (д, J = 8.7 Гц, 1H, 6-Ar), 6.65 (дд, J = 8.8, 2.7 Гц, 1H, 7-Ar), 5.54 (с, 2H, ArOCH₂), 4.48 (к, J = 7.1 Гц, 2H, OCH₂CH₃), 3.76 (шир. c, 2H, NH₂), 1.46 (т, J = 7.1 Гц, 3H, OCH₂CH₃). ¹³C ЯМР (101 МГц, CDCl₃) δ 160.71, 142.41, 137.55, 134.75, 132.04, 123.69, 118.60, 116.12, 103.02, 62.04, 61.54, 14.32. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{12}H_{12}N_4O_3$ [M+Na]⁺: 283.0802, измеренная: 283.0807.

Этил-8-(пирролидин-1-карбонил)-4H-бензо[b][1,2,3]триазоло[1,5-d][1,4]оксазин-3-карбоксилат 84f

81f (63 мг, 0.137 введены в реакции состави СО2Et Тпл 167.4–168.3

Следуя вышеописанной процедуре, продукт алкилирования **81f** (63 мг, 0.137 ммоль) и TFA (0.105 мл, 1.37 ммоль) были введены в реакцию в DCM (1.1 мл). В данном случае время реакции составило 23 часа. Бежевый порошок (28 мг, 60%); $T_{\rm пл}$ 167.4–168.3 °C. ¹H ЯМР (400 МГц, ДМСО- d_6) δ 8.13 (д, J

= 2.0 Гц, 1H, 9-Ar), 7.59 (дд, J = 8.5, 2.0 Гц, 1H, 7-Ar), 7.27 (д, J = 8.4 Гц, 1H, 6-Ar), 5.78 (с, 2H, ArOC $\underline{\text{H}}_2$), 4.36 (к, J = 7.0 Гц, 2H, OC $\underline{\text{H}}_2$ CH₃), 3.49 (т, J = 6.5 Гц, 4H, пирролидин), 1.88 (п, J = 6.3, 5.9 Гц, 4H, пирролидин), 1.35 (т, J = 7.1 Гц, 3H, OCH₂C $\underline{\text{H}}_3$). ¹³C ЯМР (101 МГц, ДМСО-d6) δ 166.78, 160.26, 146.38, 134.77, 132.62, 132.13, 129.31, 122.53, 117.94, 115.88, 62.99, 61.56, 49.48, 46.66, 26.51, 24.35, 14.54. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{12}H_{12}N_4O_3$ [M+Na]+: 365.1220, измеренная: 365.1229.

Метил-8-хлор-4-метил-4H-бензо[b][1,2,3]триазоло[1,5-d][1,4]оксазин-3-карбоксилат 84g

CI N-N, N CO₂Me Следуя вышеописанной процедуре, продукт алкилирования **81g** (125 мг, 0.314 ммоль) и TFA (0.241 мл, 3.14 ммоль) были введены в реакцию в DCM (2 мл), что позволило получить соединение **84g** в виде бежевого порошка (78 мг, 89%); $T_{пл}$ 151.2–152.3 °C. ¹H ЯМР (400 МГц, CDCl₃) δ 8.11 (д, J = 2.5 Гц,

1H, 9-Ar), 7.31 (дд, J = 8.8, 2.5 Гц, 1H, 7-Ar, накладывается на CDCl₃), 7.10 (д, J = 8.7 Гц, 1H, 6-Ar), 6.13 (к, J = 6.8 Гц, 1H, CHCH₃), 4.02 (с, 3H, OCH₃), 1.62 (д, J = 6.8 Гц, 3H, CHCH₃). ¹³C ЯМР (101 МГц, CDCl₃) δ 160.91, 142.01, 135.25, 134.22, 129.80, 127.98, 122.93, 119.84, 116.96, 69.93, 52.46, 19.72. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{12}H_{10}ClN_3O_3$ [M+Na]⁺: 302.0303, измеренная: 302.0310.

2.3.2 Синтез 4H,10H-бензо[f][1,2,3]триазоло[5,1-c][1,4]оксазепин-3-карбоксилатов 85а-е

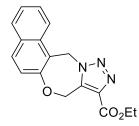
Схема 29. Получение 4H,10H-бензо[f][1,2,3]триазоло[5,1-c][1,4]оксазепин-3-карбоксилатов.

К раствору соответствующего продукта алкилирования **82** (0.18 ммоль) в дихлорметане (1.2 мл) была добавлена трифторуксусная кислота (0.141 мл, 1.84 ммоль). Реакционная смесь перемешивалась при комнатной температуре в течение 18 часов. Растворитель был отогнан в вакууме. Остаток был растворён в метаноле (2 мл), к полученному раствору был добавлен ацетат натрия (121 мг, 1.47 ммоль). Реакционная смесь перемешивалась при температуре 45 °C в течение 22.5 часов (контроль по TCX). Растворитель был отогнан в вакууме. Остаток был растворён в дихлорметане (5 мл), полученный раствор был промыт насыщенным раствором NaHCO₃ (2x5 мл) и водой (5 мл). Органический слой был осушен над сульфатом натрия, профильтрован, растворитель был отогнан в вакууме, что позволило получить соответствующий этил-4*H*,10*H*-бензо[*f*][1,2,3]триазоло[5,1-*c*][1,4]оксазепин-3-карбоксилат **85** (схема 29).

Этил-4H,10H-бензо[f][1,2,3]триазоло[5,1-c][1,4]оксазепин-3-карбоксилат 85а

Следуя вышеописанной процедуре, продукт алкилирования **82a** (70 мг, 0.18 ммоль) и другие реагенты в указанных количествах были введены в реакцию. В данном случае дополнительно потребовалась очистка продукта флэш-

хроматографией. Светло-коричневый порошок (33 мг, 69%); $T_{пл}$ 102.1–103.3 °C. 1 H ЯМР (400 МГц, CDCl₃) δ 7.44 (ддд, J = 7.76, 7.75, 1.68 Гц, 1H, 7-Ar), 7.40 (дд, J = 7.5, 1.6 Гц, 1H, 9-Ar), 7.29 - 7.26 (м, 1H, 6-Ar, накладывается на CDCl₃), 7.22 (ддд, J = 7.6, 7.5, 1.2 Гц, 1H, 8-Ar), 5.72 (с, 2H), 5.53 (с, 2H), 4.41 (к, J = 7.1 Гц, 2H, OCH₂CH₃), 1.42 (т, J = 7.1 Гц, 3H, OCH₂CH₃). 13 C ЯМР (101 МГц, CDCl₃) δ 161.10, 157.97, 138.84, 135.96, 131.32, 129.12, 128.34, 125.65, 121.85, 68.07, 61.28, 51.25,


14.33. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{13}H_{13}N_3O_3$ [M+Na]⁺: 282.0849, измеренная: 282.0849.

Этил-6-метокси-4H,10H-бензо[f][1,2,3]триазоло[5,1-c][1,4]оксазепин-3-карбоксилат 85b

Следуя вышеописанной процедуре, продукт алкилирования **82b** (75 мг, 0.18 ммоль) и другие реагенты в указанных количествах были введены в реакцию. Бесцветный порошок (39 мг, 73%); Т_{пл} 121.1–122.3 °C

(разлагается). 1 Н ЯМР (400 МГц, CDCl₃) δ 7.16 (дд, J = 8.4, 7.6 Гц, 1H, Ar), 7.03 (дд, J = 8.5, 1.5 Гц, 1H, Ar), 6.97 (дд, J = 7.6, 1.4 Гц, 1H, Ar), 5.71 (с, 2H), 5.53 (с, 2H), 4.41 (к, J = 7.1 Гц, 2H, OCH₂CH₃), 3.94 (с, 3H, OCH₃), 1.41 (т, J = 7.2 Гц, 3H, OCH₂CH₃). 13 C ЯМР (101 МГц, CDCl₃) δ 161.05, 152.24, 146.10, 139.04, 136.00, 130.26, 126.07, 120.34, 113.69, 67.58, 61.24, 56.05, 51.13, 14.34. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{14}H_{15}N_3O_4$ [M+Na]+: 312.0955, измеренная: 312.0960.

Этил-8*H*,13*H*-нафто[1,2-*f*][1,2,3]триазоло[5,1-*c*][1,4]оксазепин-9-карбоксилат 85c

Следуя вышеописанной процедуре, продукт алкилирования **82c** (79 мг, 0.18 ммоль) и другие реагенты в указанных количествах были введены в реакцию. Бежевый порошок (45 мг, 79%); $T_{\text{пл}}$ 146.7–147.5 °C. ¹H ЯМР (400 МГц, CDCl₃) δ 8.17 (д, J = 8.5 Гц, 1H, Ar), 7.94 (д, J = 8.7 Гц, 1H, Ar), 7.90 (д, J =

8.2 Гц, 1H, Ar), 7.64 (ддд, J = 8.4, 6.9, 1.4 Гц, 1H, Ar), 7.52 (ддд, J = 8.1, 6.9, 1.1 Гц, 1H, Ar), 7.42 (д, J = 8.8 Гц, 1H, Ar), 6.19 (с, 2H), 5.60 (с, 2H), 4.41 (к, J = 7.1 Гц, 2H, OCH₂CH₃), 1.41 (т, J = 7.1 Гц, 3H, OCH₂CH₃). ¹³C ЯМР (101 МГц, CDCl₃) δ 161.09, 156.16, 138.91, 136.00, 131.75, 131.44, 130.72, 128.93, 127.75, 125.72, 123.12, 122.38, 120.77, 67.92, 61.28, 45.56, 14.33. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{17}H_{15}N_3O_3$ [M+Na]⁺: 332.1006, измеренная: 332.1008.

Этил-8-хлор-4H,10H-бензо[f][1,2,3]триазоло[5,1-c][1,4]оксазепин-3-карбоксилат 85d

Следуя вышеописанной процедуре, продукт алкилирования **82d** (76 мг, 0.18 ммоль) и другие реагенты в указанных количествах были введены в реакцию. Бежевый порошок (41 со₂Et мг, 76%); Т_{пл} 154.4–155.5 °C. ¹Н ЯМР (400 МГц, CDCl₃) δ 7.39 (м, 2H, Ar), 7.21 (д, J = 9.2 Гц, 1H, Ar), 5.67 (с, 2H), 5.52 (с, 2H), 4.41 (к, J = 7.1 Гц, 2H, OCH₂CH₃), 1.41 (т, J = 7.1 Гц, 3H, OCH₂CH₃). ¹³С ЯМР (101 МГц, CDCl₃) δ 161.01, 156.43, 138.50, 136.08, 131.17, 130.76, 129.75, 129.13, 123.30, 68.09, 61.38, 50.73, 14.31. HRMS (ESI+ve) Точная масса, рассчитанная для C₁₃H₁₂ClN₃O₃ [M+Na]⁺: 316.0459, измеренная: 316.0461.

Этил-8-нитро-4H,10H-бензо[f][1,2,3]триазоло[5,1-c][1,4]оксазепин-3-карбоксилат 85e

Следуя вышеописанной процедуре, продукт алкилирования **82e** (78 мг, 0.18 ммоль) и другие реагенты в указанных количествах были введены в реакцию. Бежевый порошок CO_2Et (39 мг, 69%); T_{III} 163.9–164.9 °C (разлагается). ¹Н ЯМР (400 МГц, CDCl₃) δ 8.35 – 8.30 (м, 2H, 7-Ar и 9-Ar накладываются), 7.43 – 7.37 (м, 1H, 6-Ar), 5.83 (с, 2H), 5.66 (с, 2H), 4.44 (к, J = 7.1 Гц, 2H, OC \underline{H}_2 CH₃), 1.44 (т, J = 7.1 Гц, 3H, OCH $_2$ C \underline{H}_3). ¹³С ЯМР (101 МГц, CDCl $_3$) δ 162.49, 160.87, 144.45, 137.52, 136.47, 127.82, 126.77, 125.11, 123.11, 66.81, 61.57, 50.63, 14.29. Спектры приведены в приложении Г. HRMS (ESI+ve) Точная масса, рассчитанная для $C_{13}H_{12}N_4O_5$ [M+Na]+: 327.0700, измеренная: 327.0700.

3 Обсуждение результатов

В данной работе была исследована возможность использования внутримолекулярной конденсации Вольфа для синтеза 1,2,3-триазолов, аннелированных с шестичленным кислородсодержащим гетероциклом, а также с гетероциклами большего, чем шесть атомов, размера. В качестве исходных субстратов были выбраны аминофенолы и α -диазо- β -кето- γ -галоэфиры δ (схема 30).

$$CI$$
 — CO_2R^2 — O — O

Схема 30. Внутримолекулярная конденсация Вольфа, исследуемая в данной работе.

3.1 Синтез исходных α-диазо-β-кето-γ-галоэфиров

 α -Диазо- β -кето- γ -галоэфиры **6** были получены по ранее разработанной в нашей лаборатории процедуре SAFE-диазопереноса (sulfonyl-azide-free) в её модифицированном варианте (схема 31) [11]. Данная процедура отличается от обычного диазопереноса тем, что небезопасный сульфонилазид генерируется *in situ*. Помимо этого, не требуется хроматографической очистки полученных диазосоединений, так как все побочные продукты реакции являются водорастворимыми.

$$CI \longrightarrow CO_{2}R^{2} \longrightarrow CO_{2}R^{2} \longrightarrow CI \longrightarrow CO_{2}R^{2}$$

Схема 31. Синтез α -диазо- β -кето- γ -галоэфиров.

3.2 Определение круга подходящих для реакции субстратов, содержащих амино- и гидрокси-группы, подбор и оптимизация условий реакции

Ha первом этапе исследования была осуществлена попытка одновременного проведения реакции алкилирования и циклоконденсации Вольфа использованием незащищённого аминофенола. В качестве основания использовался поташ, для нуклеофильного катализа реакции алкилирования использовалась добавка 0.1 экв. иодида калия. Эта попытка, однако, не увенчалась успехом (схема 32, 1). В данных условиях наблюдалось лишь разложение исходного соединения ба без образования желаемого продукта. Это разложение может быть вызвано реакцией аминогруппы аминофенола по карбонильной группе диазосоединения ба с последующей фрагментацией последнего. Такой процесс описан в работе Costin с соавторами [53]. Так, реакция первичных аминов с соединением ба приводит к фрагментации данного диазосоединения с образованием этилдиазоацетата **47** и α -хлорамидов (схема 32, 2).

1) Неудачная попытка введения в реакцию незащищённого аминофенола:

2) Описанная в литературе фрагментация диазокетогалоэфиров под действием аминов:

$$CI \longrightarrow CO_2Et \xrightarrow{RNH_2, TsN_3} CI \longrightarrow CO_2Et \xrightarrow{O} CO_2Et \xrightarrow{O} NHR$$

$$6a \qquad 47$$

3) Неудачная попытка введения в реакцию 2-амино-3-гидроксипиридина:

Схема 32. Неудачные попытки проведения реакции с незащищёнными аминофенолом (1) и 2-амино-3-гидроксипиридином (3), и описанная фрагментация диазосоединения (2).

Мы предположили, что понижение нуклеофильности аминогруппы может исключить возможность разложения диазосоединения, однако, попытка ввести в реакцию аналог аминофенола, содержащий менее нуклеофильную аминогруппу, а именно 2-амино-3-гидроксипиридин, также не привела к образованию целевого продукта (схема 32, 3).

В связи с этим, было решено проводить синтез в две стадии: сначала осуществить реакцию нуклеофильного замещения галогена, а затем циклизацию с образованием триазола. Для этого было необходимо защитить аминогруппу. В качестве удобной защитной группы была использована третбутоксикарбамоильная (Вос) группа, так как кислотные условия снятия этой группы обеспечили бы одновременное промотирование циклоконденсации Вольфа. Было также решено осуществить попытку введения в данную реакцию защищённых алифатических аминоспиртов.

Реакция диазоэфира **6a** с *трет*-бутил(2-гидроксиэтил)карбаматом **86** проводилась в сухом ДМФА с гидридом натрия в качестве основания для полного депротонирования гидроксигруппы. Однако, в этом случае наблюдалось образование сложной смеси неидентифицируемых продуктов разложения диазосоединения. По-видимому, данное диазосоединение неустойчиво в сильно основной среде. В случае с *N*-Вос-аминофенолом **78a**, достаточным оказалось использование поташа, и продукт алкилирования **81a** был получен с выходом 16% (схема **33**). Дальнейшее исследование было решено проводить с защищёнными аминофенолами.

Схема 33. Попытки алкилирования *N*-защищённых аминоспиртов.

Далее была проведена краткая оптимизация условий реакции нуклеофильного замещения галогена (табл. 1). Использование более сильного основания (*t*BuOK), как и в случае с защищённым аминоэтанолом, не привело к желаемому результату. Смена растворителя с ДМФА на ацетонитрил позволила повысить выход реакции до 55%. Добавка 18-краун-6 привела к сокращению времени реакции и повышению выхода до 75%. В итоге, были найдены следующие оптимальные условия реакции алкилирования: проведение реакции в ацетонитриле с использованием поташа в качестве основания и каталитическими добавками иодида калия и 18-краун-6.

Таблица 1. Оптимизация условий реакции алкилирования.

No	Основание	Добавка	Р-ритель	T, °C	Время, h	Выход, %
1	K ₂ CO ₃ (1.5 eq.)	_	DMF	r. t.	1.5	16
2	<i>t</i> BuOK (1.1 eq.)	_	THF	r. t.–45	30	0
3	K ₂ CO ₃ (1.5 eq.)	-	MeCN	r. t.	12	55
4	K ₂ CO ₃ (1.5 eq.)	18-краун-6 (0.1 eq.)	MeCN	r. t.	6	75

Найдя оптимальные условия, мы решили получить ряд продуктов алкилирования **81** с различными заместителями в аминофеноле и диазоэфире. Синтез *N*-Вос-аминофенолов проводили в этаноле с использованием ди-*трет*-бутилдикарбоната и Amberlyst-15 в качестве катализатора (схема 34) [45]. Для двойной защиты диаминофенола были использованы несколько другие условия

(соединение **78e**). Защищённый аминофенол с карбоксамидной функцией **78g** был получен из соответствующей кислоты **78f** [48].

Схема 34. Синтез *N*-Вос-защищённых аминофенолов.

Алкилирование полученных *N*-Вос-аминофенолов было осуществлено в ранее подобранных условиях (схема 35). Реакция с диазосоединением **6a**, содержащим фрагмент первичного галогенида, в целом, протекала с хорошими выходами вне зависимости от природы заместителя в бензольном кольце аминофенола. Единственным исключением стал аминофенол, содержащий карбоксамидную функцию (продукт **81f**). Однако, низкий выход и замедление реакции в этом случае скорее связаны с плохой растворимостью аминофенола **78g** в ацетонитриле, чем с акцепторным характером заместителя. Как и ожидалось, реакция с диазосоединением **6b**, содержащим вторичный галогенид, протекала труднее. Выход в данном случае составил лишь 40% (продукт **81g**), потребовалось использование повышенной температуры (30 °C), а время реакции составило 51 час.

Схема 35. Алкилирование защищённых аминофенолов α -диазо- β -кето- γ -галоэфирами.

Следующим шагом стал подбор условий снятия защиты с одновременной циклоконденсацией Вольфа. Были опробованы как кислоты Льюиса (SnCl4, BF3·OEt2), так и кислоты Брёнстеда (TFA, AcOH). Во всех случаях, кроме уксусной кислоты, желаемый продукт получался с хорошим выходом. Для дальнейших экспериментов была выбрана трифторуксусная кислота, так как при её использовании не требовалась хроматографическая очистка продукта. Оптимальными условиями реакции оказалось выдерживание соединений 81 в дихлорметане с 10 эквивалентами трифторуксусной кислоты при комнатной температуре в течение 18 часов (схема 36). Была также осуществлена попытка проведения последовательности двух реакций в однореакторном режиме, однако, в данном случае выход оказался ниже, чем суммарный выход по двум стадиям (48% против 62%). Целевые 4*H*-бензо[*b*][1,2,3]триазоло[1,5-*d*][1,4]оксазины 84 были получены с выходами от хороших до отличных. Исключением стал лишь аминозамещённый продукт 84e, выход которого составил 47%.

Схема 36. Снятие Вос-защиты с одновременной циклоконденсацией Вольфа для синтеза 4H-бензо[b][1,2,3]триазоло[1,5-d][1,4]оксазинов.

Помимо вышеописанного подхода к данным триазолооксазинам нами также была кратко исследована возможность осуществления альтернативной стратегии, состоящей в первоначальном алкилировании нитрофенолов с последующим селективным восстановлением нитрогруппы и циклизацией (схема 37). Продукт алкилирования 87 был получен с выходом 66%, однако, селективно восстановить нитрогруппу, не затрагивая диазогруппу, нам не удалось: попытки восстановления привели лишь к образованию сложной смеси продуктов.

Схема 37. Попытка осуществления альтернативного подхода к синтезу триазолооксазинов с использованием *о*-нитрофенола.

3.3 Синтез 1,2,3-триазолов, аннелированных с кислородсодержащими гетероциклами большего размера

Следующим этапом данной работы стало исследование возможности синтеза триазолов, аннелированных с кислородсодержащими гетероциклами большего размера. Поскольку ранее успешное алкилирование удалось осуществить только в случае фенолов, в качестве бинуклеофилов было решено использовать гомологи аминофенолов — салициламины. Для синтеза *N*-Воссалициламинов **79** была использована удобная методика восстановительного аминирования салициловых альдегидов с использованием *трет*-бутилкарбамата, триэтилсилана и трифторуксусной кислоты (схема 38) [49].

Схема 38. Синтез *N*-Вос-защищённых салициламинов.

Полученные соединения **79** были введены в реакцию алкилирования с диазоэфиром **6a** в аналогичных описанным ранее условиям. В данном случае для полной конверсии салициламинов потребовалось более продолжительное время реакции и использование избытка диазоэфира (1.2 эквивалента). Продукты алкилирования **82** были получены с меньшими выходами, чем в случае с аминофенолами (схема **39**). Пониженный выход в случае нитрозамещённого салициламина (**82e**) связан с плохой растворимостью данного субстрата в ацетонитриле.

Схема 39. Алкилирование *N*-Вос-защищённых салициламинов этил-4-хлор-2-диазо-3-оксобутаноатом.

Полученные соединения были введены в реакцию циклоконденсации в ранее подобранных условиях. Однако, выдерживание в дихлорметане с ТFA не привело к образованию продуктов циклизации. По-видимому, это связано с повышенной основностью свободной бензильной аминогруппы по сравнению с анилиновой аминогруппой, из-за чего под действием ТFA образуется стабильная соль по бензильной аминогруппе соединения 82, которая не вступает в дальнейшую внутримолекулярную конденсацию с карбонильной группой. Тем не менее, упаривание растворителя и избытка TFA из реакционной массы с последующим растворением остатка в метаноле и выдерживанием с ацетатом натрия при 45 °C позволило получить 4H,10H-бензо[f][1,2,3]триазоло[5,1-c][1,4]оксазепины 85 с хорошими выходами (схема 40). В данном случае также не наблюдалось существенной зависимости выхода реакции от природы заместителя в бензольном кольце салициламина.

Схема 40. Снятие Вос-защиты с одновременной циклоконденсацией Вольфа для синтеза 4H,10H-бензо[f][1,2,3]триазоло[5,1-c][1,4]оксазепинов.

Вдохновившись данным результатом, мы решили осуществить попытку синтеза 8-членного аналога полученных ранее конденсированных триазолов 84 и 85 (схема 41). Синтез исходного *трет*-бутил(2-гидроксифенетил)карбамата 80 был осуществлён в три стадии. Салициловый альдегид был введён в реакцию Генри с нитрометаном [44], полученный нитроалкен был восстановлен под действием литийалюмогидрида [51]. После водной обработки реакционной массы полученный амин без выделения был защищён *трет*-бутоксикарбонильной группой [52]. Соединение 80 было введено в реакцию алкилирования с диазоэфиром 6а в тех же условиях, что и в случае с *N*-Вос-салициламинами, что позволило получить продукт замещения атома хлора 83 с выходом 53%. К сожалению, циклизация соединения 83 в стандартных условиях (ТFA в DCM, затем AcONa, MeOH, 45 °C) не привела к образованию желаемого продукта. Использование более сильного основания (NaHCO₃), повышенной температуры (AcONa, MeOH, 80 °C) или кислотных условий (AcOH, 120 °C) на стадии циклоконденсации привело лишь к разложению исходного соединения 83.

Возможно, такой результат связан с неблагоприятным энтропийным эффектом образования восьмичленного цикла [54].

Схема 41. Попытка синтеза 1,2,3-триазола, конденсированного с бензоксазоцином.

Выводы

- 1. Показана применимость последовательности реакций нуклеофильное замещение/внутримолекулярная циклоконденсация Вольфа к синтезу 1,2,3-триазолов, аннелированных с частично насыщенными кислородсодержащими гетероциклами, из α-диазо-β-кето-γ-галоэфиров и аминофенолов/салициламинов.
- 2. В отличие от ранее разработанного подхода с участием аминомеркаптанов в данном случае не удалось провести обе стадии одновременно. В связи с этим эффективным оказалось использование в синтезе *N*-Вос-защищённых аминофенолов и салициламинов.
- 3. Стадию нуклеофильного замещения удалось успешно провести только в случае фенолов, но не для аминоэтанола. Стадия удаления защитной группы с одновременной циклизацией протекала без затруднений и позволила получить целевые продукты с хорошими выходами. Характер заместителей в бензольном кольце аминофенолов и салициламинов не оказывает существенного влияния на выход продукта на данной стадии.
- 4. Разработанная методология оказалась применимой к синтезу не только 4H-бензо[b][1,2,3]триазоло[1,5-d][1,4]оксазинов, но также и к синтезу 4H,10H-бензо[f][1,2,3]триазоло[5,1-c][1,4]оксазепинов. К сожалению, метод не подходит для получения 1,2,3-триазолов, аннелированных с кислородсодержащим гетероциклом большего размера попытки получить 10,11-дигидро-4H-бензо[g][1,2,3]триазоло[5,1-c][1,4]оксазоцин в различных условиях не увенчались успехом.

Результаты данной работы были опубликованы в журнале Synthesis, а также представлены на международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2020» в виде постерного доклада.

Работа при поддержке гранта РΗФ 20-13-00024 выполнена оборудования центров СПбГУ «Магнитноиспользованием ресурсных резонансные методы исследования» и «Методы анализа состава вещества». Автор выражает благодарность сотрудникам РЦ за помощь при выполнении работы.

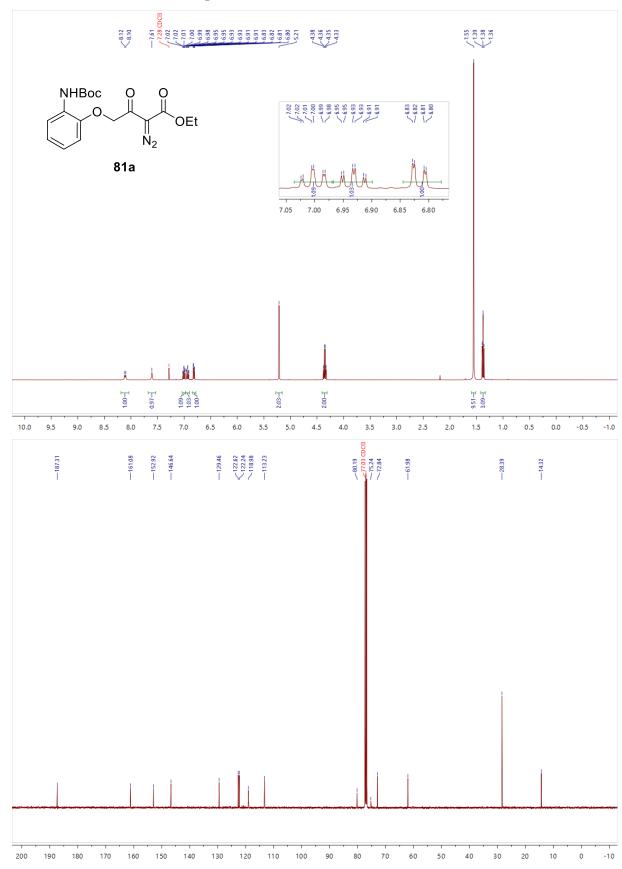
Список литературы

- 1. Kantheti, S.; Narayan, R.; Raju, K. V. S. N. The impact of 1,2,3-triazoles in the design of functional coatings. *RSC Adv.* **2015**, *5* (5), 3687-3708.
- 2. Brunel, D.; Dumur, F. Recent advances in organic dyes and fluorophores comprising a 1,2,3-triazole moiety. *New J. Chem.* **2020**, *44* (9), 3546-3561.
- 3. Bozorov, K.; Zhao, J.; Aisa, H. A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. *Bioorg. Med. Chem.* **2019,** 27 (16), 3511-3531.
- 4. Shafie, A.; Mohammadi-Khanaposhtani, M.; Asadi, M.; Rahimi, N.; Ranjbar, P. R.; Ghasemi, J. B.; Larijani, B.; Mahdavi, M.; Shafaroodi, H.; Dehpour, A. R. Novel fused 1,2,3-triazolo-benzodiazepine derivatives as potent anticonvulsant agents: design, synthesis, in vivo, and in silico evaluations. *Mol. Divers.* **2020**, 24 (1), 179-189.
- Chandrasekhar, S.; Seenaiah, M.; Kumar, A.; Reddy, C. R.; Mamidyala, S. K.; Kumar, C. G.; Balasubramanian, S. Intramolecular copper(I)-catalyzed 1,3dipolar cycloaddition of azido-alkynes: synthesis of triazolo-benzoxazepine derivatives and their biological evaluation. *Tetrahedron Lett.* 2011, 52 (7), 806-808.
- 6. Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. *J. Org. Chem.* **2002**, *67* (9), 3057-3064.
- Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes. *Angew. Chem. Int. Ed.* 2002, 41 (14), 2596-2599.
- 8. Johansson, J. R.; Beke-Somfai, T.; Said Stålsmeden, A.; Kann, N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. *Chem. Rev.* **2016**, *116* (23), 14726-14768.
- 9. Ahmed, M.; Razaq, H.; Faisal, M.; Siyal, A. N.; Haider, A. Metal-free and azide-free synthesis of 1,2,3-triazoles derivatives. *Synth. Commun.* **2017**, *47* (13), 1193-1200.

- 10. Chen, Z.; Cao, G.; Song, J.; Ren, H. Recent Developments in Azide-Free Synthesis of 1,2,3-Triazoles. *Chin. J. Chem*. **2017**, *35* (12), 1797-1807.
- 11. Dar'in, D.; Khoroshilova, O.; Kantin, G.; Krasavin, M. Realizing the Trifunctional Potential of Alkyl 4-Chloro-2-diazo-3-oxobutanoates: Convenient Assembly of 6,7-Dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]thiazine Core. *Synthesis* **2020**, *52* (08), 1266-1272.
- 12. Wolff, L. Ueber Diazoanhydride. *Justus Liebigs Ann. Chem.* **1902**, *325* (2), 129-195.
- Costa, M. S.; Boechat, N.; Rangel, É. A.; da Silva, F. d. C.; de Souza, A. M. T.; Rodrigues, C. R.; Castro, H. C.; Junior, I. N.; Lourenço, M. C. S.; Wardell, S. M. S. V.; Ferreira, V. F. Synthesis, tuberculosis inhibitory activity, and SAR study of N-substituted-phenyl-1,2,3-triazole derivatives. *Bioorg. Med. Chem.* 2006, 14 (24), 8644-8653.
- 14. Zhang, H.; Ryono, D. E.; Devasthale, P.; Wang, W.; O'Malley, K.; Farrelly, D.; Gu, L.; Harrity, T.; Cap, M.; Chu, C.; Locke, K.; Zhang, L.; Lippy, J.; Kunselman, L.; Morgan, N.; Flynn, N.; Moore, L.; Hosagrahara, V.; Zhang, L.; Kadiyala, P.; Xu, C.; Doweyko, A. M.; Bell, A.; Chang, C.; Muckelbauer, J.; Zahler, R.; Hariharan, N.; Cheng, P. T. W. Design, synthesis and structure–activity relationships of azole acids as novel, potent dual PPAR α/γ agonists. *Bioorg. Med. Chem. Lett.* 2009, 19 (5), 1451-1456.
- 15. Safrygin, A.; Dar'in, D.; Kantin, G.; Krasavin, M. α-Diazo-β-oxosulfones as Partners in the Wolff 1,2,3-Triazole Synthesis and the Wolff Rearrangement in the Presence of Aromatic Amines. *Eur. J. Org. Chem.* **2019**, 2019 (29), 4721-4724.
- 16. Wang, Z.; Bi, X.; Liao, P.; Zhang, R.; Liang, Y.; Dong, D. Intramolecular hydrogen bonding-assisted cyclocondensation of α-diazoketones with various amines: a strategy for highly efficient Wolff 1,2,3-triazole synthesis. *Chem. Commun.* **2012**, *48* (56), 7076-7078.
- 17. Wang, Z.; Tao, Y.; Wang, Z.; Yan, J. Synthesis and characterization of poly(N-vinyl-1,2,3-triazole)s derived from monomers obtained by highly efficient Wolff's cyclocondensation. *Polym. Chem.* **2016**, *7* (18), 3172-3178.

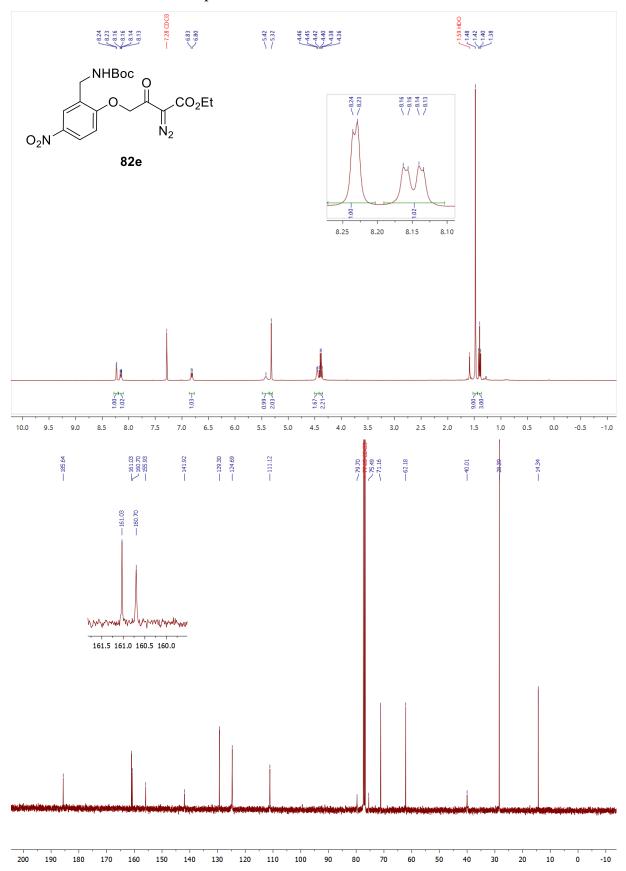
- 18. Fershtat, L.; Radzhabov, M.; Romanova, A.; Ananyev, I.; Makhova, N. Lewis acid-catalyzed Wolff cyclocondensation in the synthesis of (1H-1,2,3-triazolyl)furoxans. *ARKIVOC* **2017**, 2017, 140-150.
- 19. Wolff, L.; Krüche, R. Über Diazoanhydride (1,2,3-Oxydiazole oder Diazoxyde) und Diazoketone. *Justus Liebigs Ann. Chem.* **1912**, *394* (1), 23-59.
- Jordão, A. K.; Afonso, P. P.; Ferreira, V. F.; de Souza, M. C. B. V.; Almeida, M. C. B.; Beltrame, C. O.; Paiva, D. P.; Wardell, S. M. S. V.; Wardell, J. L.; Tiekink, E. R. T.; Damaso, C. R.; Cunha, A. C. Antiviral evaluation of N-amino-1,2,3-triazoles against Cantagalo virus replication in cell culture. *Eur. J. Med. Chem.* 2009, 44 (9), 3777-3783.
- 21. Jordão, A. K.; Ferreira, V. F.; Souza, T. M. L.; de Souza Faria, G. G.; Machado, V.; Abrantes, J. L.; de Souza, M. C. B. V.; Cunha, A. C. Synthesis and anti-HSV-1 activity of new 1,2,3-triazole derivatives. *Bioorg. Med. Chem.* 2011, 19 (6), 1860-1865.
- Santos, T. F.; de Jesus, J. B.; Neufeld, P. M.; Jordão, A. K.; Campos, V. R.; Cunha, A. C.; Castro, H. C.; de Souza, M. C. B. V.; Ferreira, V. F.; Rodrigues, C. R.; Abreu, P. A. Exploring 1,2,3-triazole derivatives by using in vitro and in silico assays to target new antifungal agents and treat Candidiasis. *Med. Chem. Res.* 2017, 26 (3), 680-689.
- 23. Nagarajan, R.; Jayashankaran, J.; Emmanuvel, L. Transition metal-free steric controlled one-pot synthesis of highly substituted N-amino 1,2,3-triazole derivatives via diazo transfer reaction from β-keto esters. *Tetrahedron Lett.* **2016**, 57 (24), 2612-2615.
- 24. Kuruba, B. K.; Emmanuvel, L.; Sridhar, B.; Vasanthkumar, S. Unprecedented cyclization of α-diazo hydrazones upon N-H functionalization: A Et3N base promoted one-step synthetic approach for the synthesis of N-amino-1,2,3-triazole derivatives from α-diazo hydrazone. *Tetrahedron* **2017**, *73* (18), 2674-2681.
- 25. Cheng, G.; Zeng, X.; Shen, J.; Wang, X.; Cui, X. A Metal-Free Multicomponent Cascade Reaction for the Regiospecific Synthesis of 1,5-Disubstituted 1,2,3-Triazoles. *Angew. Chem. Int. Ed.* **2013**, *52* (50), 13265-13268.
- 26. Dankova, E. F.; Bakulev, V. A.; Krut'ko, D. P. New method for studying the reactivities of α-diazo imines. Investigation of the cyclization of N-substituted 2-

- diazoacetamidines to 1,2,3-triazoles. *Chem. Heterocycl. Compd.* **1991,** 27 (6), 607-613.
- 27. Dimorth, O. Über intramolekulare Umlagerungen. Fünfte Abhandlung. Der Einfluß des Lösungsmittels auf Reaktionsgeschwindigkeit und Gleichgewicht. Der Einfluß des Lösungsmittels auf Reaktionsgeschwindigkeit und Gleichgewicht. *Justus Liebigs Ann. Chem.* 1910, 377 (2), 127-163.
- 28. Murray-Rust, P.; McManus, J.; Lennon, S. P.; Porter, A. E. A.; Rechka, J. A. An expeditious synthesis of 4-alkoxycarbonyl-5-hydroxy-1,2,3-triazoles: the crystal and molecular structure of the 2-thienylammonium salt of 5-hydroxy-4-methoxycarbonyl-1-(2-thienyl)-1,2,3-triazole. *J. Chem. Soc., Perkin Trans. 1* **1984,** (0), 713-716.
- 29. Pippione, A. C.; Dosio, F.; Ducime, A.; Federico, A.; Martina, K.; Sainas, S.; Frølund, B.; Gooyit, M.; Janda, K. D.; Boschi, D.; Lolli, M. L. Substituted 4-hydroxy-1,2,3-triazoles: synthesis, characterization and first drug design applications through bioisosteric modulation and scaffold hopping approaches. *MedChemComm* 2015, 6 (7), 1285-1292.
- 30. Sainas, S.; Pippione, A. C.; Giraudo, A.; Martina, K.; Bosca, F.; Rolando, B.; Barge, A.; Ducime, A.; Federico, A.; Grossert, S. J.; White, R. L.; Boschi, D.; Lolli, M. L. Regioselective N-Alkylation of Ethyl 4-Benzyloxy-1,2,3-triazolecarboxylate: A Useful Tool for the Synthesis of Carboxylic Acid Bioisosteres. *J. Heterocycl. Chem.* 2019, 56 (2), 501-519.
- 31. Morzherin, Y. Y.; Rozin, Y. A.; Vorob'eva, E. A.; Bakulev, V. A. Synthesis and Properties of 1-Arylsulfonyl-1,2,3-triazol-5-olates. *Chem. Heterocycl. Compd.* **2001**, *37* (5), 560-566.
- 32. Brown, B. R.; Hammick, D. L. 257. The mechanism of the tautomeric change of 5-hydroxy-1: 2: 3-triazole-4-carboxylic esters into aliphatic diazo-compounds. *J. Chem. Soc.* **1947**, (0), 1384-1386.
- 33. Morzherin, Y. Y.; Kolobov, M. Y.; Mokrushin, V. S.; Brauer, M.; Anders, E.; Bakulev, V. A. Heterocyclization of compounds containing diazo and cyano groups. 6. Theoretical and experimental investigations of cyclization of 2-cyano-2-diazoacetamides to 5-hydroxy-1,2,3-triazole-4-carbonitriles. *Chem. Heterocycl. Compd.* **2000**, *36* (1), 22-36.

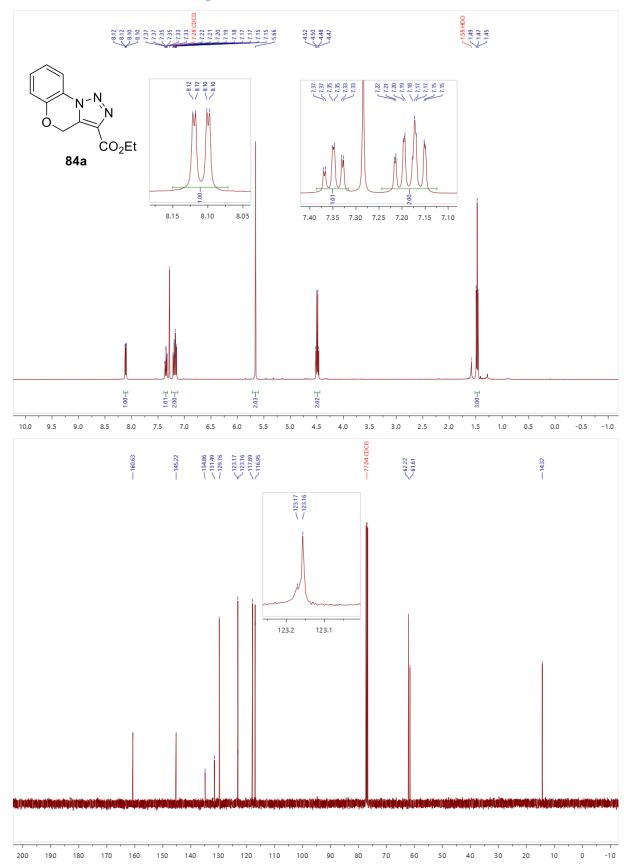

- 34. Jiang, L.; Davison, A.; Tennant, G.; Ramage, R. Synthesis and application of a novel coupling reagent, ethyl 1-hydroxy-1H -1,2,3-triazole-4-carboxylate. *Tetrahedron* **1998**, *54* (47), 14233-14254.
- 35. Regitz, M.; Schoder, W. Untersuchungen an Diazo-Verbindungen und Aziden; LVII. Amino- und Iminomethylierung von Diazomethyl-Verbindungen. *Synthesis* **1985**, *1985* (02), 178-180.
- 36. Bakulev, V.; Morzerin, Y.; Shafran, Y.; Mokrushin, V. Tandem pseudopericyclic processes in the cyclization ofα-diazonitriles to 5-halo-1,2,3-triazoles. Scope and limitations. *ARKIVOC* **2002**, *2002*, 166-179.
- 37. Chen, J.-H.; Liu, S.-R.; Chen, K. An Efficient and Convenient Synthesis of Ethyl 1-(4-Methoxyphenyl)-5-phenyl-1H-1,2,3-triazole-4-carboxylate. *Chem.: Asian J.* **2010,** *5* (2), 328-333.
- 38. Ahamad, S.; Kant, R.; Mohanan, K. Metal-Free Three-Component Domino Approach to Phosphonylated Triazolines and Triazoles. *Org. Lett.* **2016**, *18* (2), 280-283.
- 39. Ahamad, S.; Kumar, A.; Kant, R.; Mohanan, K. Metal-Free Three-Component Assembly of Fully Substituted 1,2,3-Triazoles. *Asian J. Org. Chem.* **2018,** 7 (8), 1698-1703.
- 40. Li, Y.-J.; Li, X.; Zhang, S.-X.; Zhao, Y.-L.; Liu, Q. Copper(ii)-catalyzed oxidative [3+2] cycloaddition reactions of secondary amines with α-diazo compounds: a facile and efficient synthesis of 1,2,3-triazoles. *Chem. Commun.* **2015**, *51* (58), 11564-11567.
- 41. Wang, S.; Yang, L.-J.; Zeng, J.-L.; Zheng, Y.; Ma, J.-A. Silver-catalyzed [3 + 2] cycloaddition of isocyanides with diazo compounds: new regioselective access to 1,4-disubstituted-1,2,3-triazoles. *Org. Chem. Front.* **2015**, *2* (11), 1468-1474.
- 42. Santiago, J. V.; Burtoloso, A. C. B. Synthesis of Fused Bicyclic [1,2,3]-Triazoles from γ-Amino Diazoketones. *ACS Omega* **2019**, *4* (1), 159-168.
- 43. Best, D.; Kujawa, S.; Lam, H. W. Diastereo- and Enantioselective Pd(II)-Catalyzed Additions of 2-Alkylazaarenes to N-Boc Imines and Nitroalkenes. *J. Am. Chem. Soc.* **2012**, *134* (44), 18193-18196.
- Tena Pérez, V.; Fuentes de Arriba, Á. L.; Monleón, L. M.; Simón, L.; Rubio, O.
 H.; Sanz, F.; Morán, J. R. A High Yield Procedure for the Preparation of 2-

- Hydroxynitrostyrenes: Synthesis of Imines and Tetracyclic 1,3-Benzoxazines. *Eur. J. Org. Chem.* **2014**, 2014 (15), 3242-3248.
- 45. Jahani, F.; Tajbakhsh, M.; Khaksar, S.; Azizi, M. An efficient and highly chemoselective N-Boc protection of amines, amino acids, and peptides under heterogeneous conditions. *Monatsh. Chem.* **2011**, *142* (10), 1035-1043.
- 46. Bodero, O.; Spivey, A. C. An Expedient Synthesis of 2-Aryl-1,4-benzoxazin-3-ones via Tandem Anionic Cyclisation/Alkylation Reactions of N-Boc-O-benzyl-2-aminophenols. *Synlett* **2017**, *13* (04), 471-474.
- 47. Sarkar, A.; Roy, S. R.; Parikh, N.; Chakraborti, A. K. Nonsolvent Application of Ionic Liquids: Organo-Catalysis by 1-Alkyl-3-methylimidazolium Cation Based Room-Temperature Ionic Liquids for Chemoselective N-tert-Butyloxycarbonylation of Amines and the Influence of the C-2 Hydrogen on Catalytic Efficiency. *J. Org. Chem.* **2011**, *76* (17), 7132-7140.
- 48. Naro, Y.; Thomas, M.; Stephens, M. D.; Connelly, C. M.; Deiters, A. Aryl amide small-molecule inhibitors of microRNA miR-21 function. *Bioorg. Med. Chem. Lett.* **2015**, *25* (21), 4793-4796.
- 49. Dubé, D.; Scholte, A. A. Reductive N-alkylation of amides, carbamates and ureas. *Tetrahedron Lett.* **1999**, *40* (12), 2295-2298.
- 50. Woods, M.; Sherry, A. D. Synthesis and Luminescence Studies of Aryl Substituted Tetraamide Complexes of Europium(III): A New Approach to pH Responsive Luminescent Europium Probes. *Inorg. Chem.* **2003**, *42* (14), 4401-4408.
- 51. Hellal, M.; Singh, S.; Cuny, G. D. Monoligated Pd(0)-catalyzed intramolecular ortho- and para-arylation of phenols for the synthesis of aporphine alkaloids. Synthesis of (–)-lirinine. *Tetrahedron* **2012**, *68* (6), 1674-1681.
- 52. Hu, Y.; Ma, X.; Zhang, Y.; Che, Y.; Zhao, J. Detection of Amines with Fluorescent Nanotubes: Applications in the Assessment of Meat Spoilage. *ACS Sens.* **2016**, *1* (1), 22-25.
- 53. Costin, T. A.; Dutra, L. G.; Bortoluzzi, A. J.; Sá, M. M. Amine-mediated synthesis of amides from 1,3-dicarbonyl compounds through a domino diazo transfer/aminolysis process. *Tetrahedron* **2017**, *73* (31), 4549-4559.

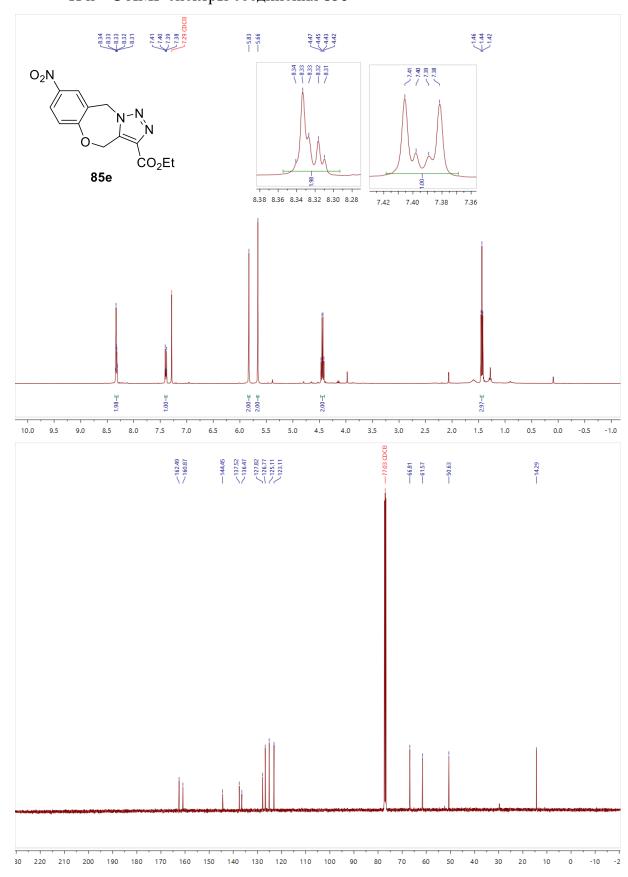
54. Illuminati, G.; Mandolini, L.; Masci, B. Ring-closure reactions. V. Kinetics of five- to ten-membered ring formation from o-.omega.-bromoalkylphenoxides. Influence of the O-heteroatom. *J. Am. Chem. Soc.* **1975,** 97 (17), 4960-4966.


Приложение А

 1 Н и 13 С ЯМР спектры соединения **81a**


Приложение Б

 1 Н и 13 С ЯМР спектры соединения **82e**



Приложение В

 1 Н и 13 С ЯМР спектры соединения **84а**

Приложение Γ 1 Н и 13 С ЯМР спектры соединения **85e**

