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1 Introduction

Transparency International [1] defines corruption as "the abuse of entrusted
power for private gain”. It is a worldwide problem. Sadly, Russian Federa-
tion (as shown by Buckley [2]) is not an exception. Quite on the contrary, it is
among the "leaders" ranking 129 out of 180 countries in Corruption Percep-
tion Index of 2019 [3] (meaning "very corrupt"), which shows the relevance
of the problem.

Corruption occurs in relations between people and companies — agents
that should make strategic decisions in order to benefit from it. This quality
makes it possible to use game-theoretic apparatus to analyze it. There are
many scientific works on the topic yet they mostly address the corruption
in form of a game between two or three players. This research differs in its
approach: it analyzes corrupt officials acting as parts of a bigger hierarchical
structure rather than isolated agents in hope of obtaining insights that may
help combat corruption in organizations.

Research object is corruption (embezzlement and bribery) within a
hierarchy.

Aim of this study is to analyze corruption in hierarchical context and
find conditions under which it is minimal.

Objectives:
1. Study the relevant literature.

2. Create and study the hierarchical model of corruption (both non-cooperative

and cooperative cases).
3. Write a code simulation for the model.

4. Solve the particular case of the model.
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5. Analyze the solution.

6. Find the conditions for corruption minimization.



2 Main part

2.1 Literature review

Spengler [4] in great depth (analysis, two extensions, three player types, labo-
ratory experiments) studies the extensive-form game between Client, Official
and Inspector (Figure 2.1) and improves previous models by making prob-
abilities of actions endogenous, suggests mixed equilibrium as solution and
asymmetric penalties (with focus on officials) as anti-corruption measure.

The carcass of the game inspired the inspection stage of this research.

v=b—pr—py v=-58 =-b-pp - 0 0
b—qr—qu+r b+r b-—gg b 0 0
T+ Az T y + Ay Iy Z =4+ Az

Figure 2.1: Extensive-form game without reporting.

Attanasi et al. [5] focus on the psychological aspect of embezzlement
game with player triplet Donor-Intermediary-Recipient. They study what
moral presuppositions players have and experimentally derive what their ir-
rational guilt-averse moves are. Their results showcase that stealing inter-
mediary has guilt towards both the recipient, whose payoffs he affects, and
the donor, whose he does not. The study suggests that if the results are
true producing high public expectations of morality of intermediaries would

reduce embezzlement.



Shenje [6] studies Briber-Bribee (based on Zimbabwean public sector
corruption) and comes to the mixed Nash Equilibrium solution based on the
values of costs and incomes. The way to affect these values is again top-down
and varies from policy recommendations to educating the officials. Song et al.
[7] focuses on Committee-Department embezzlement game (based on Chinese
corruption) and comes to conclusions similar to Shenje.

Zyglidopoulos et al. [8] studies corruption in multinational companies

and outlines tetrad of conditions needed for its success:
1. Existence of opportunity for corrupt action.
2. Small risk of negative repercussions.
3. Willingness to engage in corrupt activity.
4. Capability to act in a corrupt way.

Kumacheva [9] presents a multi-stage hierarchical game, which stud-
ies corruption in forms of tax evasion and auditor bribing, which inspired
the model of this study. The work considers three-level structure: admin-
istration, inspector, taxpayers. Taxpayers declare their level of income and
choose the size of bribe, administration chooses probabilities of auditing and
reauditing, inspector chooses to accept or reject the suggested bribe. The
solution suggests that the administration should choose probabilities of au-
diting and reauditing that depend on the tax, penalty and fine rates and
taxpayers should declare their true level of income. The extension for in-
spection mistakes is also considered.

Gorbaneva et al. [10] analyze corruption via hierarchical control sys-
tems, namely investment-construction projects and electricity theft. Hierar-

chy is comprised of triplet "principal-supervisor-agent". In the first system



the supervised competition for resources is considered and allocations in sit-
uations of no bribes and Nash equilibrium in simultaneous bribing game of n
agents are suggested with comparison between corrupt and non-corrupt cases
considered for n = 2. The condition for bribing to be unprofitable for the
supervisor is provided. In the second system the electricity provider (prin-
cipal) sends the inspector (supervisor) to check whether the client company
(agent) declares their consumption truthfully (which is akin to tax evasion
problem). The condition for the agent to report the actual consumption and
the ways for the principal to ensure this condition are given.

Gorbaneva and Ougolnitsky [11] study concordance of public and pri-
vate interests models with different profit functions of the society and indi-
viduals. The main parameter of analysis is price of anarchy (ratio of values
of the game in the worst Nash equilibrium to the best situation) and social
price of anarchy (the same but the public benefit is used instead of values of
the game). The utility of using impulsion (economic) and compulsion (ad-
ministrative) methods to improve these parameters is examined. The ideas
of meta-game synthesis (including corrupt version) are suggested.

Vasin and Panova [12] discuss corruption (taxpayers’ evasion and brib-
ing the inspector) in transition economies taking Russia as example. Their
model depicts a hierarchical game: homogenous population of taxpayers with
income distributed according to some density function, each taxpayer declares
a level of income that maximizes their utility and the authority chooses the
audit probability that does the same for it. The non-corrupt models of pro-
gressive tax and linearly dependent on undeclared income fines are studied.
The corrupt model includes homogeneous taxpayers with two possible levels
of income (high and low), inspecting auditor which can be bribed and center

which tries to maximize its payoff — sum of all taxes and fines minus costs of
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inspection (auditor checks taxpayer) and reinspection (center checks auditor
on a declared low taxpayer). Mathematical solutions based on parameters
(size of tax, fine, bribe, costs of inspection and reinspection) are suggested.
Authors also describe possible applications of their results to the Russian
economy, they give the optimal audit probability for the rates of 1997, the
cut-off difference between a priori and declared profit, probabilistic cut-off
for enterprises to be audited selection, warning on the irrelevance of the as-
sumptions in case of organized corruption.

Savvateev [13] studies corruption and lobbying in transition economies.
The first model includes utility-maximizing manufacturers that compete for a
production resource. In the first case there is a possibility of lobbying (which
costs some amount of resource) to get subsidies which are collected as taxes
from manufacturers; in the second case there is no such possibility and there
is a free market of the resource; in the third case there is a mix. With the
fixed tax rate the second always Pareto dominates the first, nonetheless there
are situations in which the majority of agents will vote against the transition
to free market (for example, those who have the bigger amounts of resource
benefit from subsidies because they can allocate more amounts into lobbying
to get it), even though the total production of the latter is lower.
The second model studies "principal-agent" framework of the controlling su-
perior and the working subordinate (subordinates) in a Stackelberg com-
petition. FEach subordinate simultaneously chooses the level of corruption
knowing what investigation intensities (based on the levels of corruption)
the superior allocated. Cut-off strategies that constitute a strong Nash equi-
librium (coalitionally or anti-coalitionally stable) are suggested to be the
solution of the game. For the one-type subordinates (equal corruption op-

portunities) the superior can ensure less than absolute level of corruption (the
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value depends on size of fine and amount of available resources). In case of
two types of subordinates there is a "chain reaction effect": the less corrupt
agents choose not to be corrupt at all and the more corrupt agents choose to
be corrupt, yet get all the attention of the superior, who does not waste any
resources on checking the first type agents, then in second iteration agents
of second type reduce their level of corruption, i.e. the choice of less corrupt
affects the choice of more corrupt. In case of N types the conditions for
"chain reaction effect" to occur. The suggestion similar to "broken windows
theory" is given: in case of different capabilities of corruption, the authorities
should fight the low-level corruption because it will affect every other level

up to the top.



2.2 Model

2.2.1 Description

The corruption is modeled as a hierarchical game consisting of two stages:
embezzlement and inspection. The players are supposed to be risk-neutral
and utility-maximizing. Only monetary payoffs are considered (although, the

monetized value of anything can be used in the formulas).

Figure 2.2: Hierarchy of the officials.

Hierarchy is a directed graph with the following meaning of the links:
e XY — X is the superior of Y;
e Y X — X is the subordinate of Y;
e both XY and Y X — X and Y are colleagues (equals);

e neither XY nor YX — X and Y are unrelated (they are on different

levels with no superior-subordinate relationships).
(j, k) = boss(n) : (n,i) € subs(j, k) V(n,i) € Cy
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In the first stage the company allocates amount of money M, to solve a
problem. This money goes down the hierarchy of officials (Figure 2.2) with
each of them having a chance to embezzle some of it before passing it to
subordinates. The cut-off value M, is the minimal amount of money that
needs to leave level n in order to create at least semblance of work (before
bloating the budget). G, is the amount of money entering level n. The steal

G, — M,

St =
nyi Nn

is optimal. Any S, ; > S, ; is not optimal since it either breaks the cut-off
condition or causes stealing from a colleague on the same level (which creates

the possibility of being exposed). Any S, ; < S, is not optimal since it is

i
possible to get more. It is also important to note that S}, ; is optimal from

the risk-neutral and utility-maximizing perspective only in case it is possible
to bribe the inspector with the amount of money less than the stealing;

otherwise, it is better not to steal at all.

Figure 2.3: Graph of the inspection game.

I —inspector; Oy, — of ficial (z,y); Ez — end (outcome) Z
boss(1) = (j, k)
boss(j) = (I, p)
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In the second stage inspector checks some official O,,; for corruption.
The inspector has perfect technology, so, if there has been an embezzlement,
it will be revealed. The probability of inspection is proportional to the to-
tal amount of stealing up to this level (formula (2.2)). The inspector goes
through hierarchy from top to bottom, from left to right and inspects the
next level only if the previous one was not inspected (formula (2.3)). The
highest official — the state (the official in the root node of the hierarchy) does
not steal and thus is not inspected (formula (2.4)). From the inspector’s

point of view, all officials on one level are equivalent (formula (2.5)).

N,—1
i=0

> S
L= i T 2.2
Q M (2.2)
o =an [T (10— ) (2.3)
k=n+1
Sn=0 = o =a, =0 (2.4)
eff
Qg = ol = (2.5)

) Nn n, Nn

The inspected official has three possible actions (Figure 2.3):

1. B — attempt to bribe the inspector (size is a natural number chosen at

will);
2. NB — do not attempt to bribe the inspector;
3. E — expose the stealing of someone who stole more (boss).

In the first case depending on the size of the bribe inspector either

accepts or rejects it. If the bribe is accepted, official O,,; loses it but keeps
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full stealing. Let 0 < k,,; < 1 be the part of stealing that official managed
to hide (offshore company, friend or relative). Then in case of rejected bribe
the official keeps the amount &, ;S ;, loses the bribe and will have to pay
fines for steal F'(W,,;, Sy.i) and bribe Fb(B,,;). In the second case the official
pays full fine and keeps k,,;S, ;. In the third case the exposed official Oy ;
is making a decision. Let 0 < 6,; < 1 be the part of fine that official
will have to pay because of cooperation (he will be pardoned from paying
(1=6,,:) F(W,i, Sn.i)). If official O; j does not bribe the inspector or the bribe
is rejected, O, ; will have to pay 6, ;F(W,;, S,;). If the bribe is accepted
then stealing of both officials will be covered up and no fine will be imposed,
stealing will be kept in full.

The inspector decides to accept the bribe and cover the stealing up (for
the cost Cu(S,,;)) or to reject the bribe and investigate further (to get the
reward R(S,;)). They also bear the inspection cost C',, in both cases.

Payoffs in each end are as follows (in format Ex : U; ; Uy, ; Ur):
Ey: Wip+Sik; Wi+ S Wr
Ey: Wi+ Sik; Wi+ k1,51 — F(Whi,S1:) s Wr+ R(S1,) — Ciy
By Wi+ Sjr; Wi + k1381 — (F(Wi, S1i) + Bri + Fo(Buy)) 5 Wi+
R(S1,) — Ciy
Ey: Wip+ Sk Wi+ 51— B ;s Wi+ Bi; — Cip — Cu(S1,)

Es: Wir+KixSie—FWk, Sik) s Wii+ k151 — 01 F Wi, S1i) s Wr—
(Ciy + Cj) + R(S14) + R(Sjx)

Es: Wip+ kjpSjk — (F(Wjk, Sjx) + Bjx + Fb(Bjg)) ; Wi+ k1,51 —
01, F (Wi, S1) ;s Wr— (Ciy + Cij) + R(S1:) + R(S; 1)

E7: Wip+Sjx—Bjk; Wi,i+51: s Wi+ B, 1 —(Ci1+Ci;+Cu(S1 ;) +Cu(S; i)
All subsequent ends are similar to Es5, Eg, E7 with the difference in the set

of the exposed officials.
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Table 2.1: Ends’ descriptions.

End Description
No inspection.

Subordinate is inspected, no bribe.
Subordinate is inspected, bribe is rejected.
Subordinate is inspected, bribe is accepted.

Boss is exposed by the subordinate, no bribe.
Boss is exposed by the subordinate, bribe is rejected.
Boss is exposed by the subordinate, bribe is accepted.

N O Ul W N

The official’s total utility of is comprised of wage, stealing and expected

loss, which depends on his actions and actions of other players:
Un,i(Sn,ia Bn,i: An,z) - Wn,i + Sn,i - OK:;Z‘L(An,iv A—n,i)

A,ie{B,NB,E} n#m—-1m i=0...N,—1
Ap1; € {B,NBY i=0...Ny_j—1
Ano €0
Ar € {Ace, Rej}
A= (Akj, ..., Ar) V(k,j) # (n,9)

+

o, is the chance of inspection (both direct and via being exposed)

that is calculated as follows:

+ _ . eff +
Q=00 + E , Qs
(1.j)€SE(n,1)

where SE(n,i) = {(v,p)} : (v,p) € subs(n,?) & Ay, = F

The inspector’s utility is as follows:

Ur(Ar, Ani, T) = Wi + OK;LZ-K(AI, Ani, T),
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where

K<A17 An,i7 T) — <

(
K(A[, Aboss(n)> TuU {(n, Z)}) ZfAn,z = F
Bni = > jerlCulSy;) + Cul if Apy = B & Ap = Acc

L Z(Z,j)eT[R(SlJ) — CiylifA,; € {B,NB} & Ar = Rej

where W; — inspector’s wage, T = {(v,k)} — set of ids of inspected and

exposed officials.

The state’s utility is calculated as follows:

-1

Us(An,iaAfaT) - Mm - Sj - Z WX + Oéy—:iD(An,i)AI)T)v

where

D(An,’i7 AIJ T) — <

J=1 Xe{l}uH

(

F(Sni Wai) + 20 pyerl(1 = k) S5 — R(S1;)]+

+ 2 wper\ iy QopF Wop, Sop) if Any = NB
D(Apossiny, Ar, TU{(n,0)}) if Ani=FE

D(NB, Ay, T) + By + Fb(By;) if Aw: = B & A = Rej
\ Oif Ay =B & Ar = Acc

The level of corruption is

> S

LoC =
0 M

In this model, conditions from Zyglidopoulos et al. [8] can be seen

incorporated in the following way:

1. Opportunity exists because an official has access to the money flow.

2. Risk of negative repercussions is small since the probability of an official

being inspected is small, plus he can always try to bribe himself out.
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3. Willingness to engage in corruption is provided by monetary utility max-

imization of an agent.

4. Capability to act in a corrupt way is shown in abilities to embezzle and

bribe.

2.2.2 Example

G4=3000000
4,0

' ' M4=3000000

3
30 < >
G5=1000000 2 1 G4=1000000
My= 750000 M¢= 750000

Figure 2.4: The hierarchy of officials in example.

G3=3000000
M4=2000000

y

(4,0)if n=3
boss(n) = ¢ (3,0)if n =2
| 3 1) ifn=1

For the constructed scheme, a particular example with two levels and
six officials (Figure 2.4) is considered. The company (municipality) allocated
3 million to build a high-quality playground but only half of that sum was
given to the contractors, the medium-quality playground is built.

The values for characteristics of players are in Tables 2.2 and 2.3.

16



Table 2.2: Values of officials’ characteristics.

On,i Wn,i Sn,i Rn Hn,i Qn g Bn,i F(Sn,z) Fb(Bn,z)
3,t | 90,000 | 500,000 | 0.600 — 0.167 | 150,000 | 1,620,000 | 5,625,000
2,7 | 40,000 | 125,000 | 0.300 | 0.010 | 0.208 | 62,500 720,000 | 2,812,500
1,2 | 40,000 | 125,000 | 0.300 | 0.010 | 0.250 | 62,500 720,000 | 2,812,500
Table 2.3: Values of Inspector’s characteristics.
W] Ci{LQ} C’Lg R(S{LQ}J) R(S&Z) CU(S{LQ}J‘) CU(Sg,z)
70,000 | 10,000 | 25,000 40,000 75,000 5,000 12,500
2.2.3 Solution

The game cannot be solved via backward induction, since official does not

know characteristics and utilities of boss and inspector for sure. In order to

solve it, the simulation code in Python (the listing is in Appendix A) was

written and executed.

Table 2.4: Results of simulation for the initial settings.

OptOpt_EB | OptOpt_ BB | NoneOpt NBB | OptNone  BNB | NoneNone NBNB

(3,0) 523,136 564,934 565,055 90,000 90,000
(3,1) 535,972 565,004 564,835 90,000 90,000
(2,0) 165,000 156,277 40,000 162,407 40,000
(2,1) 165,000 156,294 40,000 162,405 40,000
(1,0) 165,000 158,935 40,000 160,187 40,000
(1,1) 165,000 158,975 40,000 160,240 40,000

I 156,602 131,233 105,137 81,219 70,000
State 1,090,000 1,090,000 1,590,000 2,090,000 2,590,000
LoC 0.500 0.500 0.333 0.167 0.000

The analysis of results yields the stable outcome via the following pro-

cesses (assumption is that all officials are self-interested, utility maximizing

and incapable of communicating with each other):

1. Find the action yielding maximal utility for bosses.

2. Find the best response of subordinates to the 1.
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3. Find the best response of bosses to the 2.
4. Repeat until there are no deviations.

OptOpt BB — OptOpt  EB — OptOpt _ E B in case of Table 2.4.
Or:

1. Find the action yielding maximal utility for subordinates.
2. Find the best response of bosses to the 1.
3. Find the best response of subordinates to the 2.

4. Repeat until there are no deviations.

OptOpt  EB — OptOpt _E B in case of Table 2.4.

The stable outcome is when all officials steal optimally, subordinates
expose, bosses bribe and inspector accepts the bribe.

Proposition. The obtained equilibrium cannot be called Nash since
due to the lack of information about inspector’s payofts official cannot choose

the optimal bribe. We suggest the notion of Nash-like equilibrium:

(S*. B A;‘”) = argmax{U, ;(Sni, Bni, Ani) | minBy,; = B;{Z}

n, N,

In that equilibrium officials maximize their utility within confines of not
knowing three important things: the utility functions of inspector, the action
and the bribe size of their boss, and the optimal bribe size. They have only
hypothesis By ; of the minimal sufficient bribe — they are not able to suggest

the lesser bribe (because they believe it will be rejected).

2.2.4 Corruption Minimization and Sensitivity Analysis

In order to minimize corruption the bribe must be rejected. That will cause

official to lose not hidden steal and pay fines, which are supposed discourage

18



them from stealing in the first place. The ultimate decision (to accept or
reject the bribe) is made by the inspector. Since they maximize their utility, it
depends on which action yields the most profit, i.e. the sign of the inequality
(2.6).

Ui(Ace) Z Ur(Rej) = Bni— Y Cu(Si;) 2 Z 1(S1;)  (2.6)

(L.7)eT L,j)eT

The corruption is minimized when

Z CU Slj < Z R[ Slj (27)

(lj)eT (1,j)eT
> " [R(S1;) + Cu(Sy;)] > B, (2.8)
(l,j)eT
At the same time the size of bribe is chosen by the official: in order to not
be corrupt they must get not more from stealing and bribing than from not

doing so:

Ui(S:

TL’L’ nz?

B) — U,;(0,0,NB) = Si, — o/ ,Bi, <0 (29)

nz nz

By connecting (2.8) and (2.9) we get the anti-corruption setting condition

*

3" [R(Siy) + CulSyy)] 2 §—+ VT, (2.10)

(1.j)eT ot

that must be satisfied in the best case for T'= {O,,,_1,}, in the worst case -

T = {On’i, Oj,k:;Ol,p; e } Oj,k; € SE(n,i); Ol7p € SE(], k‘)
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In order to be accepted, the bribe for inspected chain 1" must be:

Bopr > Y [R(S1j) + Cu(Sy,)] (2.11)
(l,j)eT

Bopr(¢) = Y [R(S1;) + Cu(Sij)] +¢ (2.12)
(1,j)eT

For the corruption minimization, it must hold that

S*
BoptT(C) Z :L_ (213)

Z

All conclusions valid for ( = x > 0 are valid for any ¢ > .
Let us provide the example. There are three possible types of chains

in the studied hierarchy:

Ty ={02:}:{01;} Th ={0s;} Ton ={02;,030}: {01,031} i=0,1

For simplicity, since levels 1 and 2 are alike (and officials within them

are identical), suppose
Sii - S;,i =5 Bii - B;,i = B;

Since it has already been established that it is optimal for the subordi-
nates to expose their bosses, fighting corruption in chains T} is senseless: no
matter how big the needed bribe is, they will not pay it. It is more useful to
fight corruption in chain T}, (make being exposed unprofitable for bosses),
then T, (make being directly inspected unprofitable for bosses) and then T}
under the circumstances of S5 = 0 while following the logic of bigger bribe
for bigger stealing. It is possible to formulate three settings, each stricter

than the previous.
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Chain

8,000,000
6,000,000 1
— def
W sl
A
& —_— 52
4,000,000 1 — 53
2,000,000 4 - —
0 r r T r
0 100,000 200,000 300,000 400,000 500,000

4
Figure 2.5: The graph of Boyr(¢) for boss and Ty,.
The height of the dash-dot line on Figure 2.5 is

S3i 500, 000 i 500, 000
ai;, % +minfag, +adaf,+af;]  0.36111111093055556

The height of the dash-dot line on Figure 2.6 is

S _ Sii_ [2 - 500, 000

= = 3,000,000
0.333 ] B

6]
azi G

The height of the dash-dot line on Figure 2.7 is

Sy | 125, 000
minfod ;o ;] 0.041666667

| = 3,000, 000

The minimum in the denominator is used to make sure stealing and
bribing is not profitable for all officials. The [z] is the integer part of .

As can be seen from the figures, all possible bribes are above the dash-
dot lines of a setting with the point with ¢ = 1 being the closest ones to

them.
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Boss

6,000,000 - — def

5,000,000 - — =53

4,000,000 -

Bribe

3,000,000 -

2,000,000 4

1,000,000 -

0 100,000 200,000 300,000 400,000 500,000
z

Figure 2.6: The graph of B,y (¢) for boss and 75,

Subordinate only

3.“00,00'] ————————————————————————————————————— —

2,500,000 4

2,000,000 4

Bribe

1,500,000 4

AR

1,000,000 +

0 20,000 40,000 60,000 80,000 100,000 120,000
4

Figure 2.7: The graph of B,y (¢) for subordinate and T5.

NB: officials with B, ; = Bour(1) are playing Nash equilibrium strate-
gies: optimal steals, minimal possible bribes. They are the hardest to dis-

courage from corruption so the corruption minimization should target them.
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All obtained settings are simulated 500,000 times with utilities being

averaged. The code execution results are presented in Table 2.6 and Figure

2.8 via charts of "corrupt utility" calculated as

CUx =Ux — Wx

(2.14)

Due to the assumptions of officials not being able to communicate and not

knowing the characteristics of each other and inspector, the averages from

the stable solutions are chosen to represent the settings.

Table 2.5: Corruption minimization settings.

Setting | R(Sq1,2y,i) | Cu(Sp1,23,:) R(S5,i) Cu(Ss,i) Bsufr—ch Bsufr—b Bsugr-s | T BoptT
Default | 40,000.0 5,000.0 75,000.0 11,250.0 | 131,251.0 | 86,251.0 45,0000 | - -
1 60,000.0 20,000.0 875,000.0 | 429,615.4 | 1,384,616.4 | 1,304,615.4 | 80,000.0 | ch | 1,384,615.4
2 60,000.0 20,000.0 | 2,000,000.0 | 1,000,000.0 | 3,080,000.0 | 3,000,000.0 | 80,000.0 | b | 3,000,000.0
3 2,000,000.0 | 1,000,000.0 | 3,250,000.0 | 2,500,000.0 | 8,750,000.0 | 5,750,000.0 | 3,000,000.0 | s | 3,000,000.0
Table 2.6: Change in corrupt utility after corruption minimization.
AVG def sl 52 s3 def — sl | def — s2 | def — s3
(3, 0) 143,336.69 0.00 0.00 0.00 -100.00 % | -100.00 % | -100.00 %
(3, 1) 147,691.36 0.00 0.00 0.00 -100.00 % | -100.00 % | -100.00 %
(2, 0) 109,345.65 | 80,560.62 | 80,554.08 | 0.00 -26.32 % | -26.33 % | -100.00 %
(2, 1) 109,236.93 | 80,548.62 | 80,554.81 | 0.00 -26.26 % | -26.26 % | -100.00 %
(1, 0) 96,252.46 | 78,231.37 | 78,253.14 | 0.00 -1872 % | -18.70 % | -100.00 %
(1, 1) 96,099.14 | 78,242.55 | 78,230.66 | 0.00 -18.58 % | -18.59 % | -100.00 %
Inspector | 36,663.69 | 11,026.42 | 11,018.90 | 0.00 -69.93 % | -69.95 % | -100.00 %

The settings changes reduce corruption and it is possible to eliminate

the corruption in the model, but the means are extreme.

23




Figure 2.8: Average "corrupt utility" of players after corruption minimization.
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2.2.5 Mild Corruption Minimization

52

The values of settings in Table 2.5 might be considered extreme or impossible

to implement in real life, so let us limit the optimal bribe size:

BoptT S S:L,z

With that limitation, we have four possible settings (including default), which

we will name "zettings’ to avoid confusion:

Table 2.7: Mild corruption minimization zettings.

Zetting | R(Sq1,21.4) | Cu(Sqi2y.) | R(S3.) | Cu(Ss,) | Bsuff—ch | Bsugf—b | Bsugr—s | T | Boptr
Default 40000 5000 75000 11250 131251 86251 45001 - -
1 70000 35000 270000 124999 500000 395000 105001 | ch | 500000
2 0 0 300000 199999 500000 500000 1 b | 500000
3 85000 39999 250000 125000 500000 375001 125000 s | 125000

The settings changes reduce corruption, decrease revenue for O, ; and

increase for I, which might also be beneficial since focusing the corrupt money

in one place simplifies control. Mild Corruption Minimization is less extreme,

effective, but less so than Corruption Minimization.
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Table 2.8: Change in utilities after mild corruption minimization.

AVG def z1 23 def — 21 | def — 23 | 21 — 23
(3, 0) 143,336.69 | 69,432.38 | 69,307.13 -51.56 % | -51.65 % | -0.18 %
(3, 1) 147,691.36 | 79,857.00 | 79,864.25 -45.93 % | -45.92 % | 0.01 %
(2, 0) 109,345.65 | 76,485.57 | 76,168.38 -30.05 % | -30.34 % | -0.41 %
(2, 1) 109,236.93 | 76,497.06 | 76,163.28 -29.97 % | -30.28 % | -0.44 %
(1, 0) 96,252.46 | 75,106.62 | 74,542.06 -21.97 % | -22.56 % | -0.75 %
(1, 1) 96,099.14 | 75,127.30 | 74,531.44 21.82 % | -22.44 % | -0.79 %
Inspector | 36,663.69 | 70,989.22 | 71,822.14 93.62% | 9589 % | 1.17%
200000
180000
160000
140000
120000
100000

B000O

60000

40000

20000

def 51 53

w3 w2 ElE
Figure 2.9: Average "corrupt utility" of players after mild corruption minimization.

2.3 Cooperative Extension of the Model

2.3.1 Description

Bosses need some way of protecting themselves from subordinate. One way is
to form a coalition of two or more officials in which: members cannot expose
each other; members’ steals are divided among them according to the stated
allocation rule; bribe (in the case when one of the members is inspected) is
compiled collectively.

Joining a coalition brings advantages and disadvantages. Advantages

are insurance against being exposed; better coordination in terms of stealing
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amounts (irrelevant in the model, but might be important in real life); more
certainty in terms of the sufficient bribe (grand coalition knows exactly how
the inspection happened); bigger bribe (thus less chance of being rejected)
with less problems conjuring up one for each of the members — at least,
potentially. Disadvantages are higher chances of being inspected; higher
fines for organized group felonies; allocation might not be favourable for
some members.

Not any group of officials can form a coalition. For example, take a pair
{(1,0),(2,0)}. They do not "know" each other — there are no ties connect-
ing them directly, so it must be hard for them to communicate, the former
cannot expose the latter because they are not in "superior-subordinate" re-
lationships, forming this coalition is senseless and should not be possible.

We suggest the rule "any official with direct or indirect connection
(path in the hierarchy graph) to another can be in the coalition with them".
In other words, no disconnected components are allowed in the coalition. For
example, coalition {(2,0),(3,0),(3,1)} is possible, but {(2,0),(3,0), (1,0)}
is not. It is possible to build twenty-four different coalitions according to this

rule. Coalitions are characterized by:

e set of coalition members, its subsets and their sizes:

C= JAmdy= G Ne=lcl,

(n,g)eC neC

C;= U (G0} Nej= > 1=|C <N,

(i)eC (4:4)eC

e partial utility of a member (the part official gets from stealing and po-
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tentially coalitionally bribing)

RUnC:Z = Un,i(sn,ia 07 BC) - Wn,ia

e coalitional actions: members of coalition never expose, always bribe
jointly and cannot refrain from stealing (if they do not want it is better

for them not to join coalition in the first place)

Sni>0& A,; = BC ¥(n,i)€C,

e coalitional stealing

SC: Z Sn,i7

(n,)eC

e coalitional bribe

Be;

e the chance of inspection

This chance can also be portrayed as the vector of probabilities ag = (en; ap; o)
since any official but the ultimate subordinate is unsure about the source of
inspection (and there is more than one official in the coalition). The same

applies to the coalitional bribe: Bo = (B.y,; By; Bs)!. From that we get:
acBe = aepBen + ap By + a5 Bs.

In the non-cooperative case for boss every term goes into .y, since they can-

not know the source of inspection. Every term goes into a, for subordinates
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since there is no other way for them to be inspected but the direct.
If inspector accepts the bribe, coalition loses only it, if he does not,
coalition loses the bribe and every coalition member suffers the fine for or-

ganized stealing:

0¢f Ar = Acc

US (A7) = RUS,; —
Fes(Se) + Feb(Be) if A = Rej

where Fe(S¢) and Fb(B¢) are fines for coalitional stealing and bribing.

2.3.2 Allocation Rules

Ultimate bosses get all

bl : B(n,i) € C: (j, k) € subs(n,i) V(j, k) € Cy
BGAU{; = = ——— V(n,i) € Cy,

BGAUHC:Z =0 V(n,z) §7_f Cbl-

Ultimate subordinates get all

SGAUS, =0 V(n,i) ¢ Cy.

Equaity
Sc—acB
EQUE, = 2¢ " 2CPC vy iy e C.

3 NC

Only equally shared bribe
C acBe :

ESBU,; ;= S5,;, — ——— V¥(n,i) € C.

) NC
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Only proportionally shared bribe

acBcey,

PSBUS, = S,; — V(n,i) € C
’ NC,n
Be =Y B
neC
BC’,n = fYnBC Tn € [07 1] nyn =1
neC

k>n: BC,kZBCmZO-

Equally shared bribe plus bonus to subordinate

—|C N subs(n,i)| - BSy,;if n=bl
T BShosstn) — |C N subs(n,i)| - BS,;if n # bl, sl
L BSboss(n) if n=sl

acBe

ESBBSU¢. = S, ,—
n,t ) NC

V(n,i) € C.
Proportionally shared bribe plus bonus to subordinate

)
—|C N subs(n,i)| - BSy;if n=bl

9 BShosstn) — |C N subs(n,i)| - BS,; if n # bl, sl

L BSboss(n) if n=sl

acBcy,
NC,n

PSBBSUS, = Syi—

V(n,i) € C
Be =Y B
neC

Beyw="vBe mel01] Y =1

neC

k>n: BckaBcanO.
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2.3.3 Stability

The payoft is called indwvidually stable if it is in the Imputation set

I(v) ={X € RN | X(C) =v(C), X,;>v({(n,9)})V(n,i) e C},

i.e. it is not worse for individual to join the coalition, than to be alone.
The payoft is called coalitionally stable if it is in the Core

Clv)={X € RN | X(C) =v(C), X(S)>wv(S)VScC},

i.e. no subgroup of players has an incentive to deviate.

Since officials on one level have the same characteristics, we can simplify
the analysis by categorizing the twenty-four derived coalitions into fourteen

coalition types:

Subordinate-subordinate left

SSL = {{(2,0), 2, )}
Subordinate-subordinate right
SSR={{(1,0),(1,1)}}.
Boss-boss BB = {{(3,0),(3,1)}}.
Boss-subordinate left

1B1SL = {{(3,0),(2,0)},{(3,0),(2,1)}}.

Boss-subordinate right

IBLSR = {{(1,0),(3,1)},{(1,1), (3, 1)} }.

Boss-boss-subordinate left

BBLSL = {{(2,0),(3,0),(3,1)},{(2,1),(3,0), (3, 1)} }

Boss-boss-subordinate right

BBLSR = {{(1,0),(3,1),(3,0)},{(1,1),(3,1),(3,0) }}.

Boss-2-subordinates left

1B2SL = {{(3,0), (2,0), (2, 1)}}.
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Boss-2-subordinates right
1B2SR = {{(3,1), (1,0), (1, 1)}}.
2-subordinates-boss-boss left
2SBBL = {{(2,0),(2,1), (3,0), (3,1)}}.
2-subordinates-boss-boss right
9SBBR = {{(1,0),(1,1),(3,1), (3,0)}}.
Subordinate-boss-boss-subordinate
ISBBLS = {{(2,0), (3,0), (3,1), (1,0)},{(2.0), (3,0, (3,1), (1, 1)},
{(2,1),(3,0),(3,1),(1,0)},{(2,1),(3,0),(3,1), (1, 1)} }.

2-subordinates-boss-boss-subordinate left

25BB1SL =
{{(2,0),(2,1),(3,0),(3,1), (1,0)},{(2,0),(2,1),(3,0), (3,1), (1, 1) } }.

2-subordinates-boss-boss-subordinate right

2SBB1SR =
{{(2,0),(3,0),(3,1),(1,0), (1, 1)}, {(2,1),(3,0), (3, 1), (1,0), (1, 1) } }.

Grand coalition

GO ={{(2,0),(2,1),(3,0),(3,1),(1,0),(1,1)}}.
2.3.4 Analysis of the Rules
Assumptions:
1. Default setting.
2.51,=55,=5s 55,=5

3. If official is indifferent between being in coalition and not being in one,

they choose not being.
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From Assumption 1 we get

S* .
> [R(S1y) + Cul(Sy))] < By, < =+ VT, (2.15)
(1.j)eT i
and that gives us
Spi>0 V(n,i)e H — S >0, (2.16)
aclf
Ss—oz:;iBszSS—%BS>0 n=121:=0,1 (2.17)

Sy — a3 By = Sy — (2 4+ aNBy >0 (j.k)=(1,1),(2,0) (2.18)

2
Bch > Bb > BS (219)

For Imputation the test is against (2.16) and (2.18), for Coalition —

against any other proper subcoalition.
¢ = 0,1 unless stated otherwise

Ultimate bosses get all

28, — /' B, eff 1if SSR
paayssesse 2000 B g oilp g, 3 Y
2 2 2if SSL
eff eff
as + « + a4 « e .
BGAUPE = §,— S Bo, Z S—(5+ai ) By (4.k) = (1,1).(2,0)
astos’ o oy gy
- 5 = _(7 + o)
vl L,
2 < 7k
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) NI
o el it B % > il
2 < 72
eff eff oy’ o afl!
_M > Ty <73
9 < 9

The inequalities are mutually exclusive: being in coalition is only
weakly profitable for both officials (they are breaking even) if inequalities
turn into equalities, but due to the Assumption 3 in such case they do not
participate, so BGAU with BB is neither I, nor C.

If we calculate the actual values deriving from (2.3) formulas

o’ = (1 - as)ay

ol = (1= as)(1 — ag)n

and values ay = 0,208, ay = 0, 250, we get
—0.395833333 < —0.208333333 —0.208333333 > —0.395833333
It means that being in coalition is profitable for Os;, but not profitable for

Os, thus it is indeed neither I, nor C.

1if 1B1SR

BGAUZWHIPISE — g < 50 =
2if 1B1SL

Not I and not C since there is a possible deviation for subordinate — leave
the coalition to earn more by exposing the boss. The same applies to other
coalition types.

Ultimate subordinates get all

Reasoning for SSR, SSL and BB is analogous to the respective one in BG A.

1if 1B1SR

SGAUBWSEIBISE _ o < g (224 08I\ By, =
2 2if 1B1SL
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Not I and not C since there is a possible deviation for boss — leave the coalition
to earn more by paying the bribe. The same applies to other coalition types.

Equaty
Reasoning for SSR, SSL and BB is analogous to the respective one in BGA.

(&% Oﬁff offff 3
1B1sL1B1sE _ Ob T 95 — ( 3+2j B, +-5-Bs) . 1if 1B1SR
EQU,; = 5 j =
2if 1B1SL
ae.ff eff a?ff
EQUfflsL’BBlsR _ 2S5, + Ss — [(ag + 32 3—|— 043_j)Bch + j2 Bs]
' lif BB1SR
] =
2if BB1SL
EQUIBQSL,lBZSR B Sp+ 285 — (5 By + Oéjfst) = 1:f 1B2SR
" 3 2if 1B2SL

o eff o eff

1if 2SBBR
2if 2SBBL

] =

ottt A
BEQUISBBIS _ 25y + 255 — [(a3 + =5+ =5~ ) Ben + (55~ + =57)) Byl
n,t 4

« +o¢eff. « offif.
2sBisr2sBisr 29 +38s =[5 Ba + § By + (ajff + —5%) B
EQUM = F
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1if 2SBB1SR
2if 2SBB1SL

] =

25) + 45, — |3 By + (a5 + /) By

EQUSY = -

The analysis of the remaining rules can be found in Appendix B.
Subordinate-stable
In order to make a coalition stable (since in the model there is no represen-
tation of punishment for exposing which might happen in the real life) bonus
and shared bribe part must be chosen to cover subordinate’s part of the bribe

(or proportion of shared bribe must be zero):

B B
S, — 2% 4 By gy > Sy — BSyjup > —oCd
Cj Ne
acBc
BS; jo2(&) = I L+ ¢
.

Following that, PSB, ESBBS, PSBBS effectively become

acBe+|C N U, subs(ni)|-€ .
. i)eCy if n=0bl

SSUS, = Sp; — N V(n,i) e C
—& otherwise

SSL, SSR, BB: there is only one level; reasoning is identical to the
respective BG A.

C = {1B1SL,1B1SR, BB1SL, BB1SR,1B2SL,1B2SR,2SBBL,
2SBBR,2SBBL,2SBBR,2SBB1SL,2SBB1SR, GC}
C’ . .
SSU; =5s+& j#3
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eff eff '
e 4 0 of 1if 1B2SR
SSU131SL,1BlSR =S — [3—chh+ J—Bs +f] J = !

3,j%2 .
g 2 2 2if 1B2SL
eff eff ad! .
BB1SL,BB1SR (as+ =~ +0a575)Ben + B +§ Lif BB1SR
SSUP! = S)— j=

’ 2 2if BB1SL

N ) [ 1ir1B2sR

SSUglfQSL,lBZSR — S, — [_33b 4+ ajffBS +26] j=
2 2if 1B2SL
eff eff eff, eff
(a3 + M)Bch+ QG T4 B¢
SSU&%BBlS _ Sb . 2 : 2
B+ 9B, + (05 + S5)B, + 3¢
SSU2SBBISL2SBBISR _ o 2 ch T 5 Db T (& 5 ) Ds
3.k =
’ 2
| 1if1B2SR
j =
2if 1B2SL
SSUSE = 5, - Bt (0 + o )by + 46

2

Since bosses maximize their profits, they minimize expenses by choos-
ing the minimal possible bonus. By the reasoning identical to the sensitivity
analysis of corruption minimization we take & = 1 (since it can be seen as
a bribe to the subordinate) and any conclusions made for it will be valid
for any & > 1, which it will certainly be in the real world according to the
ultimatum bargaining games studies [15, 16].

From the analysis we have:

1. SSL, SSR, BB coalition types cannot provide either individual or coali-
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tional stability under any rule.

2. Rules BGA, SGA, ESB cannot provide either individual or coalitional

stability in any coalition type.

3. PSB, ESBBS, PSBBS can provide stability only if they are trans-

formed into SS rule.

4. The only coalition-rule pairs that are not analytically proven to be un-

stable are in the Table 2.9.

Table 2.9: "Testable" coalition-rule pairs.

Rule EQ SS
Coalition I C I C
1BI1ISL | MB | MB | MB | MB
1B1ISR | MB | MB | MB | MB
BBI1SL | MB | MB | MB | MB
BB1SR | MB | MB | MB | MB
1B2SL. | MB | MB | MB | MB
1B2SR | MB | MB | MB | MB
2SBBL | MB | MB | MB | MB
2SBBR | MB | MB | MB | MB
1SBB1S | MB | MB | MB | MB
2SBB1SL | MB | MB | MB | MB
2SBB1SR | MB | MB | MB | MB
GC MB | MB | MB | MB

2.3.5 Simulation Results

The both models will be compared with the minimal necessary bribe given:
we will compare only the best possible cases because in the case of not suffi-
cient bribe the non-cooperative model officials have an advantage of default-
ing to the "not stealing and not bribing strategy (None NB)" while members
of coalition do not. It is also quite computation-heavy. The simulation was

run 500, 000 times for each coalition-rule pair for the default and all anti-
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corruption settings (normal and mild) with £ = 1. Its code can be found in

Appendix C.

=9
o
ey
w
ot

s2 s3

N
&

Setting
Coalition \ Rule
1(3.0).22.0)}
13.0).22.1)}
13.1.(1.0)}
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Figure 2.10: Simulation results analysis.

In the Figure 2.10 N means "not stable", C means "coalitionally stable

(inside Core)". Conclusions from the analysis:

1. 1B1SL, 1B1SR, BB1SL and BB1SR types of coalitions do not provide

stable divisions under any setting (yellow fill).

2. The 2SBBL, 2SBB1SL, 2SBB1SR and GC with SS rule coalition-rule

pairs are coalitionally stable in the default setting (green fill).

3. Under setting sl all pairs from point 2 plus 2SBB1SL and GC with EQ
rule are coalitionally stable (red fill). The coalitions are effective in that
case because they are less affected by the change in B.;, than individual

players.
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4. No rule provides a stable division under settings s2 and s3 (underlined
blue font) — the corruption minimization settings work even in case of
cooperation because they make direct inspections impossible to bribe

profitably so even the extra information does not help.

5. Stability results under similar zettings z1 and z2 are similar: only SS
provides stable outcomes in 1B2SL, 2SBBL, 2SBB1SL, 2SBB1SR and
GC (blue fill).

2.3.6 Myerson Value

Different approach to disconnected components is provided by the Myerson
value. It is an adaptation of Shapley value to restricted communication graph

stated in Caulier et al. [14] as

Cesl,

S|y denotes the set of connected coalitions of g, i.e., those sets C which are
mazximal subcoalitions of S such that all pairs of players in C are connected.
If S is connected, then its players can communicate and therefore they obtain
their initial payoff v(S). Otherwise, players in coalition S can only commu-
nicate among members of the same connected component. As there is no
possible communication between different components, players in S can only

get the sum of payoffs obtained by each component independently.

Mo,y = 3 BERZ L2 org iy — ()

n!
SCN\{i}

For this model the changed and simplified (since there is only one g studied)
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notation is

M) = > BB s u g h - o), 220
SCH\{n,i}
where H — hierarchy, set of all officials.
Two types are studied: the classical Myerson (formula (2.20)) and its
modified version Theirson (formula (2.21)). In the latter there is assumption
of "playing nice" is made: subordinates choose to bribe instead of exposing

turning v(C) into v*(C) .

[SINH|—-1—|S])! . )
L= 3 LS U i) —v(S). @2
SCH\{n,i} '
To calculate these values, we need to write values of all "whole" (fully

formable) coalitions:

R={(1,0)}:{(1,1)}
’U(R) — Ss

V'(R) = S, = (1= ag)(1 = ag) 5 B, = (2.22)

oszf

2

=5 — By

L= {(27 0)}7 {(2, 1)}

v(L) = S
v (L) =9 —(1— 043)%38 = (2.23)
a;ff
= Ss - TBS
v({(3,0}) = S — (5 +a5™) By
. (2.24)
v ({(3.0))) = 5~ 2B,
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({3, D)) = S = (5 +ai)B.,

({3 = 8~ 5 Bay

v(SSR) = 28, — a/
vV (SSR) =v(SSR)

v(SSL) = 28, — a5/
v*(SSL) = v(SSL)

v(BB) = 28, — [ag + o' + a1 By,

U*(BB) = 28{, — Oéng

eff eff
v(1B1SL) = Sy + S, — [(% + %)Bch + 0‘22 B.]
eff
v*(1B1SL) = S, + S, — [%Bb + 0‘27 J
eff eff
v(1B1SR) = Sy + S, — [(% + ole)Bch + hoBs]
eff
v (IBISR) = S+ S, — [5-By + “5=BJ
N N
v(BBLSL) =28, + S, — [(as + —5— + o' By, + 5B
Qcl!
v*(BB1SL) = 28y + Sy — [a3By, + 22 B,]
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ot ol
3 Bt
eff

v'(BB1SR) = 28y + Sy — [asBy + 0‘12 B,

v(BB1SR) = 28, + S, — [(a3 + o5/ +

By]
(2.32)

v(1B2SL) = Sy + 25, — [ By + &' B,]
2 (2.33)
v (1B2SL) = v(1B2SL)

v(1B2SR) = Sy + 28, — [ B, + a5/ B,
2 (2.34)
v (1B2SR) = v(1B2SR)

W(2SBBL) = 25, + 25, — (2 + a\Buy + 2B, + o4/ B,
2 2 (2.35)
v (25BBL) = 25y + 255 — a3 By, + OzgffBS]

v(2SBBR) = 28, + 25, — (22 + aS/\Byy + 2B, + ¢/ B,
2 2 (2.36)
v (2SBBR) = 25, + 2S5 — [a3 By, + o/ffst]

eff eff O[Sff iff
agff . oziff
2 2

v(1SBB1S) = 25, + 25, — [(a3 +

v*(1SBB1S) = 25, + 28, — [ By + ( )B,]

(2.37)
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eff eff

v(2SBB1SR) = 25, + 35, — [(% + O‘lT)Bch + %Bb + (o + 0‘17)35]
eff

v (2SBB1SR) = 25, + 35, — [asBy + (a5 + 0‘17)38]

(2.38)
0y ot o L

v(2SBB1SL) =25, + 35, — [( + 2T)Bch + 5By + (27 + a1 By

eff

v (2SBB1SL) = 25, + 35, — [az By + (O‘QT + o))

(2.39)

v(GC) =28, + 45, — [asBy + (03 + oY B,]; 210

v (GC) = v(GC)

The formulas for values of all 63 coalitions can be found in the Ap-

pendix D. The code for calculation can be found in the Appendix E.

Table 2.10: Myerson/Theirson analysis for the corruption minimization settings.

Setting def sl s2 s3
O My > BST | Th > BST | My > BST | Th > BST | My > BST | Th > BST | My > BST | Th > BST
(3, 0) FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
3, 1) FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
(2,0) FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
(2, 1) FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
(1, 0) FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
(1, 1) FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
Conv_ fail 274 1044 306 982 308 888 348 1028
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Table 2.11: Myerson/Theirson analysis for the mild corruption minimization settings.

Setting z1 z3
O My > BST | Th > BST | My > BST | Th > BST
(3,0) TRUE TRUE TRUE TRUE
(3, 1) FALSE TRUE FALSE TRUE
(2,0) TRUE FALSE TRUE FALSE
(2, 1) TRUE FALSE TRUE FALSE
(1, 0) TRUE FALSE TRUE FALSE
(1, 1) TRUE FALSE TRUE FALSE
Conv__ fail 344 856 290 910

The results of analysis for all the settings are presented in Tables 2.10
and 2.11. "BST" is the average utility of the strategies providing the biggest
utilities for respective settings. The column "My > Th" was deleted from the
results due to always being TRUE for bosses and FALSE for subordinates.

Conclusions from the analysis are as follows:

1. Neither Myerson nor Theirson game is convex: out of all possible
63 - 62 = 3906 coalition pairs S,T the number of pairs for which the
condition v(S) +v(T) < v(SUT)+ v(SNT) does not hold is in the

Conv_ fail row.

. Theirson always undervalues subordinates compared to Myerson, which
is to be expected since in the former they "give up" their ability to

expose.
Neither rule provides a stable allocation for the default setting.

Myerson rule provides a stable allocation in the settings s1, z1 and z3 (in
the last two the differences in the only "FALSE" are 0.69% and 0.55%

respectively).
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5. Theirson rule does not provide a stable allocation in any setting: it

satisfies either bosses only(sl, s2, z1, z3) or no one (def, s3).

2.4 Limitations and Further Work

In this work no analysis of the effect of parameters x and 6 was carried
out. Doing so or measuring them in an organization or a country might be
a prospect. Real-life experiments (post-hoc or real-time) also might also be
useful for tuning the model.

Fine functions’ effect analysis is another prospect. It was not done since
in the current model an official would rather their bribe were not rejected to
avoid losing a part of steal, so it might not have been very informative.

Studying a larger hierarchy might introduce new effects and open the
possibility of the coalitional wars: multiple corrupt coalitions exposing each
other (or bribing inspector to fix the evidence such that the other coalition
is fined). It was not done due to the limited computing resources.

Introducing the mechanism of repeated game into the model is another
interesting prospect. The one who does will have to solve the problem of
orphans in a hierarchy (if the uncovered corrupt official is fired, their sub-
ordinates become orphans) and players’ different values of the future. It
also creates opportunity for punishment strategies (bosses finding out who
exposed them and taking revenge in the next iteration), which will surely
change the equilibrium situation. It was not done due to the unwillingness
to add yet another layer of complexity to the model.

Studying the effect of imperfect technology of inspection might be an-
other interesting prospect, which was not yet done for the aforementioned
reason.

Change of inspection direction can be done quite easily in code sim-
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ulation but rather hard in the formulae. The current top-down approach
is based on the inspection works [9, 10, 11] and the idea of "following the
money": when the inspection is checking the organization that received the
money, it may try to recreate its path to find the exact stage where every-
thing went awry. On the other hand, bottom-up approach can be seen as a
"reaction to malfunction": something happened and the inspection is react-
ing to it. The inspector using the first (proactive) approach deals with the
corruption before something happened and thus is easier to bribe, while in
the second (reactive) case something has already happened and it is much

harder to cover up.

2.5 Approbation

The work was presented at Control Processes and Stability (CPS’20) [17],
MCTalA-2020 [18] and was published in their respective proceedings. The
study was also presented at the Fourteenth International Conference on Game
Theory and Management (GTM2020) and Control Processes and Stability
(CPS’21) and is being published at the moment.
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3 Conclusion

The study of the literature shows most researches do not take hierarchical
relations of players into account and analyze "simple" games between two-
three agents. The similar claim is made by Gorbaneva et al. [10].

The difference between the this study and hierarchical studies [9, 10, 11|
lies in the construction of hierarchy: in the works mentioned above hierar-
chies are of "administration-inspector-client" type with no differentiation in
the last class, while this work focuses on the "superior-subordinate" type
(which provides a feature of subordinate having the ability to expose the
bigger stealer, for example, their superior) with inspector being outside the
hierarchy. Another difference is the development of cooperative element. The
semblance can be found in absence of corruption on the highest level of the
hierarchy and the very use of hierarchy:.

The model of hierarchical corruption was built. It consists of two
stages: at the first stage each official in the hierarchy decides how much
money they embezzle, at the second stage inspector investigates the stealing
and the inspected official chooses the action (bribe, not bribe or expose) and
the size of bribe.

The notion of Nash-like equilibrium as the situation in which officials
optimize under uncertainty about inspector’s payoffs was proposed.

The particular case with two levels and six officials was built and solved
via computer simulation. The result is an equilibrium in which each inspected
subordinate (official from level 1 or 2) exposes their boss who then gives
the inspector sufficient bribe and each inspected official from level 3 gives
sufficient bribe. This equilibrium situation is pessimistic because corruption

is not punished, but causes even greater corruption.
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The inequalities connecting the decision-making of inspector and of-
ficial in general form were suggested and used to find the corruption mini-
mization settings in the example under consideration. Their simulations were
carried out: two settings decrease corruption and one eradicates it. Mild co-
operation minimization zettings with a sufficient bribe being capped by the
steal were also suggested and simulated.

The cooperative element was introduced; rules for forming coalition
and allocating the steal and bribe were suggested; criteria for stability were
described (being inside Imputation set for individual stability and inside the
Core for coalitional). Code simulation was run under all settings that had
not been analytically proven to be unstable under any circumstances, the
results were analyzed: big enough coalitions (from four to six officials) can
act corrupt effectively under the first corruption-diminishing setting yet fail
to do so under harsher ones.

The convexity of the cooperative extension was checked. The Myerson
and its suggested modified version (Theirson) values were calculated. My-
erson provides individually stable allocation only under the first corruption-

diminishing setting and Theirson never provides stable allocation.
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Appendices

Appendix A. Code listing for the non-cooperative simulation

import random as r

import

statistics as s

class Official:

def

def

def

__init

(self , hier id, wage, strategy , kappa, theta):

self . hier id = hier id

self .wage = wage

# Strategy

is a 3-tuple:

self .stealing strategy = strategy (0]

self.action = strategy [1]

self.bribe = strategy [2]

self .kappa = kappa

self.theta = theta

self.stealing = 0

self.acc_win = 0

# self.coal id

steal (self , opt stealing):

if self.stealing strategy = "None":
self.stealing = 0

elif self.stealing strategy = "Opt":
self.stealing = opt stealing

return self.stealing

pay bribe(self):

return self.bribe

class Hierarchy:

def

def get with id(self,

def

(stealing strategy , action if inspected,

(self , scheme, officials , cutoff values, inspector):

__init_
self.scheme = scheme
self.officials = officials

self.cutoff values =

cutoff values

self.inspector = inspector

hier id):

bribe coeff)

return next ((x for x in self.officials if x.hier id == hier id), None)

get _boss of id(self,

for boss

if hier id in

class Inspector:

def

__init

hier id):

in self.scheme:

self .scheme|boss]:

return self.get with id(boss)

(self , wage,

inspection cost_ func,

52
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48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

86
87

88
89
90
91
92
93
94
95

self .wage = wage

self .acc_win = 0
self .inspection cost func = inspection cost func
self.coverup cost func = coverup cost func

def true with prob(prob):

return r.random () < prob

# Criminal Code of Russia 160

def ru_ steal finel60(wage, stealing, is in_ coal=False):

if stealing =— O0:

return 0

if is_in_ coal or stealing >= 1000000:
return max(1000000, 3 * 12 * wage)
if stealing >= 250000:

return max(s.mean((1, 5)) * 100000, s.mean((1l, 3)) * 12 * wage)

if stealing >= 5000:
return max(300 * 1000, 2 * 12 * wage)
return max(120 * 1000, 1 * 12 * wage)

# Criminal Code of Russia 285.1

def ru_steal fine(wage, stealing, is_in_ coal=False):

if stealing =— O0:

return 0

if is_in_ coal or stealing >= 7500000:

return max(s.mean((2, 5)) * 100000, s.mean((1, 3)) * 12 * wage)

return max(s.mean((1, 3)) * 100000, s.mean((1

# Criminal Code of Russia 291

def ru_ bribe fine(wage, bribe, is in coal=False):

if bribe >= 1000000:

, 2)) * 12 * wage)

return max(s.mean((2, 4)) * 1000000, s.mean((2, 4)) * 12 * wage,

* bribe)
elif is_in_ coal or bribe >= 150000:

return max(s.mean((1, 3)) * 1000000, s.mean((1, 3)) * 12 * wage,

* bribe)
elif bribe >= 25000:

return max(l1 * 1000000, 2 * 12 * wage, s.mean((10, 40)) * bribe)

else:

return max(0.5 * 1000000, 1 * 12 * wage,

def threshold func(stealing , thresholds):

23

s.mean((5, 30)) * bribe)

s.mean ((70,

s.mean ((60,

90))

80))



96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

def

def

def

def

def

def

def

def

def

def

def

if stealing =— O0:

return 0

for th in thresholds:
if stealing >= th[0]:
return th[1]

reward func def(stealing):

return threshold func(stealing,

coverup cost func def(stealing):

return threshold func(stealing,

reward func sl(stealing):

return threshold func(stealing,

coverup cost func sl(stealing):

return threshold func(stealing,

reward func s2(stealing):

return threshold func(stealing,

coverup cost func s2(stealing):

return threshold func(stealing,

reward func_ s3(stealing):

return threshold func(stealing,

coverup cost func s3(stealing):

return threshold func(stealing,

reward func zl(stealing):

return threshold func(stealing,

coverup cost func_ zl(stealing):

return threshold func(stealing,

reward func z3(stealing):

return threshold func(stealing,

((400000, 75000), (100000, 40000)))

((400000, 11250), (100000, 5000)))

((400000, 875000), (100000, 60000)))

((400000, 429615.3846), (100000, 20000)))

((400000, 2000000), (100000, 60000)))

((400000, 1000000), (100000, 20000)))

((400000, 3250000), (100000, 2000000)))

((400000, 2500000), (100000, 999999.976)))

((400000, 270000), (100000, 70000)))

((400000, 124999), (100000, 35000)))

((400000, 250000), (100000, 85000)))
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146

147 def coverup cost func z3(stealing):

148 return threshold func(stealing, ((400000, 125000), (100000, 39999)))
149

150

151 def inspection_cost_func_example(off):

152 if off.hier id[0] >= 3:
153 return 22500

154 if off.hier id[0] >= 1:
155 return 10000

156

157

158 def simulate (N, hierarchy , steal fine_ func, bribe_ fine_ func, reward_func):

159 acc_state util = 0

160 for _ in range(N):

161 # Play the game N times.

162 stealing = {}

163 for off level in hierarchy.scheme.values():

164 stealing [off level] =0

165

166 sum _stealing = 0

167

168 inspected off = None

169 exposers = |[]

170 init _money = list (hierarchy.cutoff values.values())[0][O0]
171

172 def calc_coverup_ reward inspect(exposers_list):

173 coverup = 0

174 reward = 0

175 inspect = 0

176

177 for exposer in exposers list:

178 coverup += hierarchy.inspector.coverup cost func(exposer.stealing)
179 reward += reward func(exposer.stealing)

180 inspect += hierarchy.inspector.inspection cost func(exposer)
181

182 return coverup, reward, inspect

183

184 def end(x):

185 state_ut = init_money

186 # print (x)

187

188 if x = 1:

189 # No inspection

190 for off in hierarchy.officials:

191 u = off.wage + off.stealing

192 off .acc_win += u

193 state_ut -= u

194 # print ("{}\t{}".format (off.hier id, off.acc_win))
195
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196
197
198
199
200
201
202
203
204
205

206
207
208
209
210
211
212
213
214

215

216
217
218
219
220

221

222

223
224
225
226
227
228
229
230
231

232
233
234

235
236

hierarchy .inspector.acc_win += hierarchy.inspector.wage

state ut -= hierarchy.inspector.wage

return state_ut
else:

# print ("{}\t{}".format (inspected off.hier id, inspected off.acc_win))

if x =— 2:
# No bribe

u = inspected off.wage + inspected off.kappa *

inspected off.stealing
- steal fine func(inspected off.wage, inspected off.stealing)
inspected off.acc_win += u

state_ut -= u

for off in set(hierarchy.officials) - {inspected off}:
u = off.wage + off.stealing
off .acc_win += u

state_ut -= u

hierarchy.inspector.acc_win += hierarchy.inspector.wage - hierarchy.
inspector.inspection cost func(inspected off) + reward func(
inspected off.stealing)

state _ut -= (hierarchy.inspector.wage + reward func(inspected off.

stealing))

return state_ ut
elif x =— 3:
# Rejected bribe
u = inspected off.wage + inspected off.kappa * inspected off.stealing
- (
inspected off.pay bribe() + steal fine func(inspected off.
wage, inspected off.stealing) +
bribe fine func(inspected off.wage, inspected off.pay bribe()
))
inspected off.acc_win 4= u

state_ut -= u

for off in set(hierarchy.officials) - {inspected off}:
u = off.wage + off.stealing
off .acc_win += u

state _ut -= u
hierarchy .inspector.acc_win += hierarchy.inspector.wage - hierarchy.
inspector .inspection cost func(

inspected off) + reward func(inspected off.stealing)

state _ut -= (hierarchy.inspector.wage + reward func(inspected off.

stealing))

return state_ut
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237
238
239

240
241
242
243
244
245
246
247

248

249
250
251
252
253

254
255
256
257

258
259
260
261
262
263

264
265
266
267

268

269

270

271

272

273

274

275

elif x =— 4:
# Accepted bribe
inspected off.acc_win 4= inspected off.wage + inspected off.stealing
- inspected off.pay bribe()
state _ut -= (inspected off.wage + inspected off.stealing)

for off in set(hierarchy.officials) - {inspected off}:
u = off.wage + off.stealing
off .acc_win += u

state_ut -= u

hierarchy.inspector.acc_win += hierarchy.inspector.wage +
inspected off.pay bribe() - (
hierarchy.inspector.inspection cost func(inspected off) +
hierarchy .inspector.coverup cost func(inspected off.
stealing))

state _ut -= hierarchy.inspector.wage

return state_ ut

else:
sum_coverup, sum_reward, sum _inspect = calc_coverup reward inspect (
exposers )
if x = 5:

# Exposed, no bribe

u = inspected off.wage + inspected off.kappa *

inspected off.
stealing - steal fine func(
inspected off.wage, inspected off.stealing)

inspected off.acc_win +=u

state_ut -= u

for exposer in exposers:

u = exposer.wage + exposer.kappa *

exposer.stealing - exposer
.theta * steal fine func(exposer.wage, exposer.stealing)
exposer.acc_win 4= u

state_ut -= u

for off in set(hierarchy.officials) - {inspected off} - set(
eXposers ) :
u = off.wage + off.stealing
off .acc_win += u

state ut -= u

hierarchy.inspector.acc_win += hierarchy.inspector.wage +
reward func(inspected off.stealing) + sum_ reward - (
hierarchy.inspector.inspection cost func(inspected off) +
sum _inspect)
state _ut -= (hierarchy.inspector.wage + reward func(inspected off

.stealing) + sum_reward)
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276 return state_ ut

277 elif x = 6:

278 # Exposed, rejected bribe

279 u = inspected off.wage + inspected off.kappa * inspected off.

stealing - (steal fine func(

280 inspected off.wage, inspected off.stealing) + inspected off.
pay bribe() + bribe fine func(inspected off.wage,
inspected off.pay bribe()))

281 inspected off.acc_win +=u

282 state_ut -= u

283

284

285 for exposer in exposers:

286 u = exposer.wage + exposer.kappa * exposer.stealing - exposer
.theta * steal fine func(

287 exposer.wage, exposer.stealing)

288 exposer.acc_win += u

289 state_ut -= u

290

291 for off in set(hierarchy.officials) - {inspected off} - set(

eXposers ) :

292 u = off.wage + off.stealing

293 off .acc_win += u

294 state_ut -= u

295

296 hierarchy .inspector.acc_win += hierarchy.inspector.wage +

reward func(inspected off.stealing) + sum_ reward - (

297 hierarchy.inspector.inspection cost func(inspected off) +
sum__inspect)

298 state ut -= (hierarchy.inspector.wage + reward func(inspected off

.stealing) + sum_reward)

299

300 return state_ut

301 elif x = T:

302 # Exposed, accepted bribe

303 inspected off.acc_win 4= inspected off.wage + inspected off.

stealing - inspected off.pay bribe()

304 state _ut -= (inspected off.wage + inspected off.stealing)

305

306 for off in set(hierarchy.officials) - {inspected off}:

307 u = off.wage + off.stealing

308 off .acc_win +=u

309 state_ut -= u

310

311 hierarchy .inspector.acc_win += hierarchy.inspector.wage +

inspected off.pay bribe() - (hierarchy.inspector.
inspection cost_func(

312 inspected off) + hierarchy.inspector.coverup cost_ func(
inspected off.stealing) + sum_coverup + sum_inspect)

313 state ut -= hierarchy.inspector.wage
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314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

354

355
356

357
358
359

return state ut

# Stealing stage

for

off

level in hierarchy.scheme.values():

cutoff value = hierarchy.cutoff values|[off level]

optimal stealing = (cutoff value[0] - cutoff value[l]) / len(off level)

for

off in off level:

stealing [off level]| += hierarchy.get with id(off).steal(optimal stealing)

# Inspection stage: from top to bottom, from left to right

for

off level in stealing:

sum _stealing += stealing[off level]

if true with prob(l - sum_stealing / init money):
pass

else:

inspected off = hierarchy.get with id(r.choice(off level))
action = inspected off.action
if action = "NB":
acc_state util += end(2)
break
if action — "B":
acc_part util = inspected off.pay bribe() - hierarchy.inspector.
coverup cost func(inspected off.stealing)
rej part_ util = reward func(inspected off.stealing)
if acc_part_util <= rej_part_util:
acc_state util += end(3)
else:
acc state util 4= end(4)
break
if action =— "E":
while True:
exposers.append (inspected off)
inspected off = hierarchy.get boss of id(inspected off.hier id)
action = inspected off.action
if action = "NB":
acc_state util += end(5)
break
if action = "B":
exposers coverup , exposers reward, exposers_inspect =
calc _coverup reward inspect(exposers)
acc_part util = inspected off.pay bribe() - hierarchy.
inspector.coverup cost_ func(
inspected off.stealing) - exposers coverup
rej part_util = reward func(inspected off.stealing) +
exposers_reward
if acc_part_ util <= rej part_util:
acc_state util += end(6)

else:
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360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

acc_state util += end(7)

break
break

if inspected off is None:

acc_state util 4= end(1)
LoC = sum(stealing.values()) / init money
# End of N cycles, Results

for official in hierarchy.officials:

print ("{}".format (official .acc_win / N))

print ("{}\n{}\n{}".format (hierarchy.inspector.acc_win / N,

acc_state util / N, LoC))

def run 5 str(off scheme, in and out values, funcs, bl2s, b3s):

def level 12 official(hier id, strat):

return Official (hier id=hier id, wage=40000, strategy=strat , kappa=0.3, theta

=0.01)

def level 3 official (hier id, strat):

return Official (hier id=hier id, wage=90000, strategy=strat , kappa=0.6, theta=1)

def build hier(strl, str2):
offs = |

level _3_official ((3, 0

level 12 official ((2,

level 12 official ((1

str2)

, strl

)

J

return offs

for bl2 in bl2s:
for b3 in b3s:

print ("({}, {})".format(bl2, b3))

off hiers = [build hier (("Opt", "E", b12), ("Opt", "B",
build hier (("Opt", "B", bl2), ("Opt", "B",
build _hier (("None", "NB", b12), ("Opt", "B",
build hier (("Opt", "B", bl2),
build hier (("None", "NB", bl2),

]

for off hier in off hiers:

inspector = Inspector (70000, inspection cost func example,

hierarchy = Hierarchy (off scheme, off hier, in_and out_ values,

simulate (N=500000, hierarchy=hierarchy

bribe fine func=ru_ bribe fine, reward func=funcs[1])

def main():

strategies = (("None", "NB", 0), ("Opt", "E", 0),
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), , level 3 official ((3,
0), strl), level 12 official ((2,
0) ), level 12 official ((1,

1)7

b3))
b3)),

str2),
1), strl),
1), strl)

b3)) )
(ll None n s ||NB" R b3) ) ,
(H None ll, ||N’Bll, b3)) ,

funcs [0])

inspector)

, steal fine func=ru_ steal fine,

(ll Opt n ,

IIBH ,
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409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

443
444
445
446

if

off scheme = {
(4, 0): ((3, 0), (3, 1)),
(3, 0): ((2, 0), (2, 1)),
(3, 1): ((1, 0), (1, 1)),

}

in_and out values = {
((3, 0), (3, 1)): (3000000, 2000000),
((2, 0), (2, 1)): (2000000 / 2, 750000),
((1, 0), (1, 1)): (2000000 / 2, 750000)

}

B12 d = (22500.5, 45001, 67501.5)
B3 d = (43125.5, 86251, 108751, 131251, 196876.5)

B12 sl = (40000.5, 80001, 120001.5)
B3 sl = (652308.192307692, 1304616.38461538, 1344616.38461538, 1384616.38461538,

2076924.57692308)

B12 s2 = (40000.5, 80001, 120001.5)
B3 s2 = (1500000.5, 3000001, 3040001, 3080001, 4620001.5)

B12 s3 = (1500000.488, 3000000.976, 4500001.464)
B3 s3 = (2875000.5, 5750001, 7250000.988, 8750000.976, 13125001.464)

B12 zl = (78750.75, 105001)
B3 zl = (197500, 395000, 447500, 500000)

B12 z3 = (62500, 125000)
B3 z3 = (187500.5, 375001, 437500.5, 500000)

B12 ex = (62500,)
B3 _ex = (150000, )

run_5 str(off scheme=off scheme, in and out values=in and out_ values, funcs=(

coverup cost func def, reward func def), bl12s=B12 ex, b3s=B3 ex)

name == " main

main ()
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Appendix B. Rules analysis
Only equally shared bribe

o 1if SSR
ESBUSSESSE _ g T p <5 n= d
2 2if SSL

The further reasoning regards subordinate due to the easier proof and the

fact that coalition-rule pair is not stable if there is at least one member for

whom the conditions do not hold.

eff

eff :
(a3 + % + a§)) B + “4- B,

ESBUﬁBlSL,BBlSR _ S - 2 3?:3 ~ s
| 1if BB1SR
] _—
2if BB1SL
a3 eff .
| 3 2if 1B2SL

(% + a5/)Bay + % By + o' B,

ES BUJ%;S*BBL,QSBBR _ S - y . <5
_ 1if 2SBBR
] =
21f 25BBL
o eff o eff
ESBUJ;fBBlS _ 5. (5 + a575) Ben Z 5By + o' By <5
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as+asls If allt
FQRUSBBISL2SBBISE _ ¢ _ (== B+ §By + (af" + =) By]
Iy - 5

< S

1if 2SBB1SR
2if 2SBB1SL

j:

asB, + (a5 + o) B,
6

ESBUSC =S, — < S,
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Only proportionally shared bribe
SSL, SSR: the only way to share the bribe in this type of coalition is
Ben = Be

11 1if SSR
pSBUSSISST g _Silp g =) Y
2 2if SSL

BB: in the similar manner we get Bcs = B¢ the reasoning from there is

identical to the respective BGA.

eff eff
a3+ Qo
eff eff
a3+ a; Q;
PSBUBISEIPIS — 5, — [0 p, 4+ S B
, 1i¢f 1B1SR
] —_—
24f 1B1SL
eff eff
BBISL,BBISR __ a; eff Q;

ot et o g
V3l (s + 5 +O‘3—j) ch T =5 5]

2

BB1SL,BB1
PSBUPPISLBBISE _ g

1if BB1SR
2if BB1SL

j:

eff
a]

Vj[%Bb + TBS]

PS BUjliBQSL,lB2SR _ 5 - )

eff

o «
PSBUy g " = Sy = a5 By + —5— B
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1if 1B2SR

j =
241f 1B2SL
eff eff
a3+ Qi o . Qs
BC2SBBL2SBBR _ [ 5 3 JBch+ §Bb+ (OzjffJr 32])38]

Bcv2SBBL,QSBBR

PS BUJ%;SBBL,QSBBR — 9, — i

2
PSBU;?'BBL,QSBBR _ 5 ’ygBC’QSBQBLQSBBR
1:f 2SBBR
2if 2SBBL

ff rf
BCYSBBLS — (g 4 &Sff + Oéiff oy’ +af

)Bch + Bs

2 2
PSBULSBBIS — 9. — ’}/'BCLSBBlS
I I J
BClSBBlS
PSBUISPPIS = g, — Lo

eff eff
a3+ o’ Q ag”"s
BOPSPPISEASBOSR — — 2 B+ 2By + (of T+ =) B,

BC2SBBISL2SBBISR

2

BB1
PSBUgffiBlsLQS SR _ Ss . 73_jBC2SBBISL,2SBBlSR

2SBB1SL,2SBB1 Vs
PSBU;;PHISEASEEISE g

3 BO2SBBISL2SBBISR
2

25SBB1SL,25BB1
PSBUSPPISL2SBBISE g

1if 2SBB1SR
2if 2SBB1SL

j:

’yn[Oéng + (Q;ff + Oé(iff)Bs]
2

PSBUSC = S, — n=123
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Equally shared bribe plus bonus to subordinate

SSL, SSR: there is only one level, so

eff 1if SSR
ESBBSUSSHSSE — g 2 p < g n= d
2 2if SSL

BB: there is only one level; reasoning is identical to the respective BGA.

eff eff
BCBISL1BISR _ MBch . QLBS
2 2
ESBBSU'BISLIBISRE _ ¢ BC\BISL,1BISR e
” T 9 + BS532%;
ESBBSUlBISL’lBlsR _ g BclBISL,1B1SR o
»2 - 2 o 3,2%j
. 1:f 1B1SR
] —
24f 1B1SL
eff off
o of
BOPPISLEBIN = (a3 + == 4 0) B + == B,
ESBBSUBBISL:BBISE _ ¢ BCBISL1BISR s
. T 3 + B532%;
ESBBSUBBISLBBISE _ ¢ B(C'1B1SL1BISR e
2 S 3 o 3,2%

BCBISL1BISR

3

ESBB SU?ijillSL,BBISR _ S, —

1if BB1SR
2if BB1SL

] =

e}
BC\B2SL1B2SR _ ??)Bb + ozjffBS

BC1B2SL1B2SR

ESBBSU]_IZ_B2SL,1BQSR _ Ss o ;

+ BS&Q%]'
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BclBQSL,lBQSR

ESBBSU, 5 171 = 5, — g — 2BS3 99,
1if 1B2SR
2if 1B2SL
eff eff
BC2SBBL2SBBR _ o3 + a3 B., + %Bb + (a4 O‘3—j)BS

2 2 J 2

BOQSBBL,QSBBR

ESBBS UJ%;SBBLQSBBR =5~ A + BS32%;
9SBBL 2SBBR BC2SBBL2SBBR
ESBBSU; j """ = 55 = . + BSy;
2SBBL2SBBR B(C25BBL2SBBR
ESBBSU; 595 =%~ 4 — 2BS39%;
9SBBL2SBBR B(C?5BBL2SBBR
ESBBSU&J'% ’ =5y — 4 — BS54
. 1if 2SBBR

j =
2if 2SBBL

agff —|—oziff a;ff _|_O[§ff

BOSBB1S _ (s + : ) B, + 5 By
ESBBSUPPY = 5, — b 0123315 + BS399;
ESBBSU;55 7" = S, — w — BS50%;

j=1,2
B(?SBBISL2SBBISR _ %Bm 4 %Bb n (Oé;ff n %{J‘;)Bs
ESBB SUJngBwL,QSBBlSR — 5, - BC?5BBL25BBR + BS99,

5
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BC2SBBL2SBBR

ESBBSUgffZBISL,QSBBwR _ 5 : CBS,
ESBRBS[2SBBISL2SBBISE _ g BC2SBBL2SBBR -
3.2%; = Dp — = . ot

BCQSBBL,QSBBR

ESBBSUgjff’lBlSL,QSBBlsR _ 5 i s
. 1if 2SBB1SR
j —
2if 26BB1SL
eff eff ef f eff
ay " ta Q'+«
BOY = (a3 + =———)Ba + =———B,
BC’GC
ESBBSUE.C =S, — et BS399;
BC’GC
ESBBSUyfy.: = Sy — Y S
j=1,2
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Proportionally shared bribe plus bonus to subordinate

SSL, SSR: there is only one level, so

o 1if SSR
PSBBSUSSESSE — g Qg <5 p— d
2 2if SSL

BB: there is only one level; reasoning is identical to the respective BGA.

eff eff
MB]A_O{LB
C S
2

BC\BISLIBISR _
2

PSBBSUJ{Z-BISLJBlSR _ Ss . fijCIBlSL,lBlSR 4 38372%3'

PSBBSUlBlSL,lBlSR _ Sb . fygBClBlSL’lBlsR . 35372%].

3,2%;
, 1if 1B1SR
j =
2if 1B1SL
eff eff
o Q
BOPPISLBPISR — (g 4+ ~L— + af/)) By + —5-B,

PSBBSUJﬁBlSL,BBlSR _ Ss . /ijC«BBlSL,BBLS'R + BS?),Z%]'

~3 BC'BBISL.BBISR

PSBBSU, 7 PP = g, — 5

— BS399,;

,ychBBISL,BBlSR

PSBBSU?ileSL,BBlSR — 5, —

2
_ lif BB1SR
] —_=
21f BB1SL
eff
BC\B2SLAB2SR _ %Bb + 1B,
2 2
BC1B2SL,1B2SR
PSBBSU;’?QSLJB%R — g, — §s; 5 + BS99,

PSBBSU;?;O?LJBQSR _ Sb . f)/chlBQSL,lBQSR . 2BS3,2%j
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lif 1B2SR

j =
241f 1B2SL
eff eff
w3 + oy’ ol
BEWLSIIN = == B+ 5By + (o) + =) B,
BC2SBBL2SBBR
PSBBS UJ'QfBBL,QSBBR =5, — 2 9 + BS3.2%;
9SBBL2SBBR 5 BC?SBBL2SBBR
PSBBSU; oy, =5 — 2 — 2BS359;
9SBBL,2SBBR vy BC?SBBL.25BBR
PSBBSU"! _ 5, - :
. 1i1f 2SBBR
] =
2if 2SBBL

2 2

PSBBSU},‘?BBlS — Ss . ,YchlSBBlS + BS37Z' ] _ 1’ 9

BOWPE = (s + )Ben + B,

BCqSBBls
PSBBSU?}:?BBlS — S, — 73 : _ BS,,
eff off
a3 + Qg’ a il
BC2SBBISL2SBBISR _ TMBch N ?331) N (@jff ., %)BS
PSBBSUZSBBlsL,2SBBlsR _g fijOQSBBISLQSBBlsR e
Jyi =S, — 5 n -
PSBBSU2SBBlsL,QSBBlsR _g fijC’2SBBlSL,QSBB1SR o
o T 2 + 553,51
PSBBSU??gszflSLQSBBlSR — S, — . BCPSBBISLISBBISE _opg, .
PSBBSUQSBBISL,2SB315R _g 7330253315@2533153 o
Vo - 2 - 3,1
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1if 2SBB1SR
2if 2SBB1SL

] =

BCYC = a3By + (a5’ + /) B,

PSBBSUSC = 8, —

PSBBSUSC = 5, — 22—
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import
import
import
import

from it

Appendix C. Code listing for the cooperative simulation

random as r

statistics as s
matplotlib.pyplot as plt
numpy as np

ertools import chain

from matplotlib.ticker import FuncFormatter

class Official:

def

def

def

sure
sure

sure

H* FH Ik Ik

subs

__init  (self, hier id, wage, strategy , kappa, theta, is in coal):
self.hier id = hier_ id

self .wage = wage

# Strategy is a 3-tuple: (stealing strategy , action if inspected, bribes)
self.stealing strategy = strategy [0]

self.action = strategy [1]

self.bribe = strategy [2]

self .kappa = kappa

self .theta = theta

self.is _in coal = is_in_ coal

self.stealing = 0

self .acc_win = 0

steal (self , opt stealing):

if self.stealing strategy = "None":
self.stealing = 0

elif self.stealing strategy = "Opt":
self .stealing = opt stealing

return self.stealing

pay bribe(self , sure=False):

return self.bribe[sure]

= all(sub_id in coal offs for sub_id in off scheme[off id])
= False = 0 -> Bfch]
= True = 1 -> B[b]

don’t care

class Hierarchy:

def _ init  (self, scheme, officials , cutoff values, inspector):
self .scheme = scheme
self.officials = officials
self.cutoff values = cutoff values
self.inspector = inspector

def get with id(self, hier id):

return next ((x for x in self.officials if x.hier id == hier id), None)

def get boss of id(self, hier id):
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50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70
71
72
73

74
75
76
7
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

for boss in self.scheme:
if hier id in self.scheme[boss]:

return self.get with id(boss)

class Coalition:

def _ init  (self, scheme tuple, hierarchy , rule):
self .scheme_ name = scheme tuple[0]
self.off ids = scheme tuple[1]
self . hierarchy = hierarchy
self.rule = rule
self.bribe = 0
self.total stealing = 0 # Do I really need this?
self.utils = {}
def calc stealing(self):
if self.total stealing = O0:
for off id in self.off ids:
self .total stealing = self.total stealing 4 self.hierarchy.get with id(
off id).stealing
return self.total stealing
def pay bribe(self, inspected id):
self .bribe = self.hierarchy.get with id(inspected id).pay bribe(all(sub_id in
self.off ids for sub_id in self.hierarchy.scheme. get (inspected id, [])))
return self.bribe
def calc utils(self):
for off id in self.off ids:
self . utils [off id] = self.rule(off id, self.off ids, self.bribe, self.
total stealing, self.hierarchy)
return sum(self.utils.values()) = (self.total stealing - self.bribe)
def EQ rule(off id, coal off ids, bribe, coal stealing, hier scheme):
return (coal stealing - bribe) / len(coal off ids)

def SS_ with xi(xi):

def

SS rule(off id, coal off ids, bribe, coal stealing, hier):
U=0

bl = 3

subs = set ()

for off in hier.scheme.keys():

if off [0] = bl:
subs = subs.union(set (hier.scheme[off]))
N bl = len([1 for off in coal off ids if off[0] = bl])
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98
99

100
101
102
103
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

if off id[0] = bl:
U = hier.get with id(off id).stealing - (bribe 4+ xi * len(subs.intersection (
set (coal off ids)))) / N _bl

elif off id[0] in (1, 2):
U = hier.get_with_id(off id).stealing + xi

# Hard-coded and works only on the hierarchy suggested in the work: 3 levels with 2
officials on each.
return U

return SS_rule

class Inspector:

def _ init  (self, wage, inspection cost func, coverup cost func):
self .wage = wage
self.acc_win = 0
self.inspection cost func = inspection cost func
self.coverup_cost_func = coverup_cost_func

def true with prob(prob):

return r.random () < prob

# Criminal Code of Russia 160
def ru_steal finel60(wage, stealing, is in coal=False):
if stealing =— 0:

return 0

if is_in_ coal or stealing >= 1000000:
return max (1000000, 3 * 12 * wage)
if stealing >= 250000:
return max(s.mean((1, 5)) * 100000, s.mean((1, 3)) * 12 * wage)
if stealing >= 5000:
return max(300 * 1000, 2 * 12 * wage)
return max(120 * 1000, 1 * 12 * wage)

# Criminal Code of Russia 285.1
def ru_steal fine(wage, stealing, is_in coal=False):
if stealing =— 0:

return 0
if is_in_ coal or stealing >= 7500000:

return max(s.mean((2, 5)) * 100000, s.mean((1, 3)) * 12 * wage)
return max(s.mean((1, 3)) * 100000, s.mean((1, 2)) * 12 * wage)
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145
146
147
148

149
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

# Criminal Code of Russia 291

def

def

def

def

def

def

def

def

def

ru_bribe fine(wage, bribe, is_in coal=False):
if bribe >= 1000000:
return max(s.mean((2, 4)) * 1000000, s.mean((2, 4)) * 12 * wage,
* bribe)
elif is_in_ coal or bribe >= 150000:
return max(s.mean((1, 3)) * 1000000, s.mean((1, 3)) * 12 * wage,
* bribe)
elif bribe >= 25000:
return max(1l * 1000000, 2 * 12 * wage, s.mean((10, 40)) * bribe)
else:

return max (0.5 * 1000000, 1 * 12 * wage, s.mean((5, 30)) * bribe)

threshold func(stealing , thresholds):
if stealing =— 0:

return 0
for th in thresholds:

if stealing >= th[0]:
return th[1]

reward func def(stealing):

return threshold func(stealing , ((400000, 75000), (100000, 40000)))

coverup cost func def(stealing):

return threshold func(stealing, ((400000, 11250), (100000, 5000)))

reward func_ sl(stealing):

return threshold func(stealing, ((400000, 875000), (100000, 60000)))

coverup cost func sl(stealing):

s.mean ((70, 90))

s.mean ((60, 80))

return threshold func(stealing , ((400000, 429615.3846), (100000, 20000)))

reward func_ s2(stealing):

return threshold func(stealing, ((400000, 2000000), (100000, 60000)))

coverup cost func_ s2(stealing):

return threshold func(stealing , ((400000, 1000000), (100000, 20000)))

reward func s3(stealing):

return threshold func(stealing, ((400000, 3250000), (100000, 2000000)
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193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
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236
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238
239
240
241
242

def

def

def

def

def

def

def

coverup cost func s3(stealing):

return threshold func(stealing, ((400000, 2500000), (100000, 999999.976)))

reward func zl(stealing):

return threshold func(stealing, ((400000, 270000 ), (100000, 70000)))

coverup cost func zl(stealing):

return threshold func(stealing , ((400000, 124999 ), (100000, 35000)))

reward func_z3(stealing):

return threshold func(stealing, ((400000, 250000 ), (100000, 85000)))

coverup cost func_ z3(stealing):

return threshold func(stealing , ((400000, 125000 ), (100000, 39999)))

inspection cost func_ example(off):
if off.hier id[0] >= 3:

return 22500
if off.hier id[0] >= 1:

return 10000

simulate (N, hierarchy , steal fine func, bribe fine func, reward func,
acc_state util = 0
for _ in range(N):

# Play the game N times.

stealing = {}

for off level in hierarchy.scheme. values():

stealing [off level] =0
sum _stealing = 0
inspected off = None
exposers = |[]
init money = list (hierarchy.cutoff values.values())[0][O0]

# print (hierarchy.officials)
coal officials = []
for i in range(len(hierarchy.officials)):
for off id in coalition.off ids:
if hierarchy.officials[i]. hier id = off id:

coal officials.append(hierarchy.officials[i])

coal officials = set(coal officials)

non coal officials = set(hierarchy.officials) ~ coal officials
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243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

288
289
290
291

def calc coverup reward inspect(exposers list):

coverup = 0
reward = 0
inspect = 0
for

exposer in exposers list:

coverup += hierarchy.inspector.coverup cost func(exposer.stealing)

reward += reward func(exposer.stealing)

inspect += hierarchy.inspector.inspection cost func(exposer)

return coverup,

def end(

X):

utils correct =

# Returns False

reward, inspect

coalition.calc utils ()

in case of fine?

if not utils correct:

print ("ERROR in calculating coalitional utilities , review the rule!")

exit (-1)

state ut = init money

if x = 1:

# No inspection

for off in coal officials:

u = off.wage + coalition.utils[off.hier id]

off.acc__

win 4= u

state ut -= u

for off in non_ coal officials:

u = off.wage + off.stealing

off .acc__

win 4= u

state _ut -= u

hierarchy .inspector.acc_win 4= hierarchy.inspector.wage

state _ut -=

hierarchy .inspector.wage

return state_ ut

else:

if x — 2:

# No bribe

if inspected off.is in coal:

for

off in coal officials:

u = off.wage + coalition.utils[off.hier id] - steal fine func

(

off . wage,

coalition.total stealing, True)

off .acc_win +=u

state _ut -

u
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293

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

309
310

311
312
313
314
315
316
317
318

319

320
321
322
323
324

325

326

327
328
329
330
331
332
333

else:
u = inspected off.wage + inspected off.kappa * inspected off.
stealing - steal fine func(
inspected off.wage, inspected off.stealing, False)
inspected off.acc_win += u

state_ut -= u

for off in coal officials:
u = off.wage + coalition.utils[off.hier id]
off .acc_win += u

state_ut -= u

for off in non_ coal officials - {inspected off}:
u = off.wage + off.stealing
off .acc_win += u

state _ut -= u

hierarchy.inspector.acc_win += hierarchy.inspector.wage - hierarchy.
inspector .inspection cost func(
inspected off) + reward func(inspected off.stealing)
state _ut -= (hierarchy.inspector.wage + reward func(inspected off.

stealing))

return state_ut
elif x = 3:
# Rejected bribe
if inspected off.is_in_ coal:
for off in coal officials:
bribe = coalition.pay bribe(inspected off.hier id)
u = off.wage + coalition.utils[off.hier id] - (
steal fine func(
off .wage, coalition.total stealing , True) +
bribe fine func(off.wage, bribe, True))
off .acc_win +=u

state _ut -= u

else:

u = inspected off.wage + inspected off.kappa *

inspected off.
stealing - (
inspected off.pay bribe(False) + steal fine func(
inspected off.wage, inspected off.stealing, False) +
bribe fine func(inspected off.wage, inspected off.
pay bribe(False), False))
inspected off.acc_win += u

state_ut -= u

for off in coal officials:
u = off.wage + coalition.utils[off.hier id]
off .acc_win += u

state_ut -= u
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334
335
336
337
338
339
340

341
342
343

344
345
346
347
348
349

350

351
352
353

354
355

356
357

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

374

for off in non_ coal officials - {inspected off}:
u = off.wage + off.stealing
off .acc_win += u

state_ut -= u

hierarchy.inspector.acc_win += hierarchy.inspector.wage - hierarchy.
inspector.inspection cost func(

inspected off) + reward func(inspected off.stealing)

state _ut -= (hierarchy.inspector.wage + reward func(inspected off.

stealing))

return state ut
elif x = 4:
# Accepted bribe
if inspected off.is in coal:
hierarchy .inspector.acc_win += hierarchy.inspector.wage +
coalition .pay bribe(inspected off.hier id) - (
hierarchy .inspector.inspection cost_ func(inspected off) +
hierarchy.inspector.coverup cost func(inspected off.

stealing))

else:
inspected off.acc_win += inspected off.wage + inspected off.
stealing - inspected off.pay bribe(False)
state _ut -= (inspected off.wage + inspected off.stealing)
hierarchy .inspector.acc_win += hierarchy.inspector.wage +
inspected off.pay bribe() - (
hierarchy .inspector.inspection cost func(
inspected off) + hierarchy.inspector.

coverup cost func(inspected off.stealing))

for off in coal officials:
u = off.wage + coalition.utils[off.hier id]
off .acc_win += u

state_ut -= u

for off in non_ coal officials - {inspected off}:
u = off.wage + off.stealing
off .acc_win += u

state _ut -= u
state_ut -= hierarchy.inspector.wage
return state ut
else:

sum_coverup, sum_reward, sum _inspect = calc_coverup reward inspect(

exposers)
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375
376
377
378
379

380
381
382
383
384
385

386
387
388
389
390
391
392
393
394
395
396

397
398
399
400
401
402
403
404
405
406

407
408

409

410

411
412
413
414
415
416
417

if x = 5:
# Exposed, no bribe
if inspected off.is in_ coal:
for off in coal officials:
u = off.wage + coalition.utils|[off. hier id] -
steal fine func(
off .wage, coalition.total stealing, True)
off .acc_win += u

state _ut -= u

else:

u = inspected off.wage + inspected off.kappa *

inspected off.
stealing - steal fine func(
inspected off.wage, inspected off.stealing, False)
inspected off.acc_win 4= u

state _ut -= u

for off in coal officials:
u = off.wage + coalition.utils|[off. hier id]
off .acc_win += u

state _ut -= u

for exposer in exposers:

* exposer.stealing - exposer

u = exposer.wage + exposer.kappa
.theta * steal fine func(
exposer.wage, exposer.stealing, False)

exposer.acc_win += u

state ut -= u

for off in non coal officials - {inspected off} - set(exposers):
u = off.wage + off.stealing
off .acc_win += u

state_ut -= u

hierarchy .inspector.acc_win += hierarchy.inspector.wage +
reward func(
inspected off.stealing) + sum_ reward - (
hierarchy .inspector.
inspection cost func(
inspected off) +
sum_inspect)
state _ut -= (hierarchy.inspector.wage + reward func(inspected off

.stealing) + sum_reward)

return state_ut
elif x = 6:
# Exposed, rejected bribe
if inspected_ off.is_in_coal:
bribe = coalition.pay bribe(inspected off.hier id)

hierarchy .inspector.acc_win += hierarchy.inspector.wage +

80



418

419
420
421

422

423
424
425
426
427

428

429

430

431

432
433
434
435
436
437
438
439
440
441

442
443
444
445
446
447
448
449
450
451

452
453
454

reward func(
inspected off.stealing) + sum_ reward - (hierarchy.
inspector.inspection cost func(inspected off) +

sum _inspect)

for off in coal officials:
u = off.wage + coalition.utils[off. hier id] - (
steal fine func(
off .wage, coalition.total stealing, True) +
bribe fine func(off.wage, bribe, True))
off .acc_win += u

state_ut -= u

else:

hierarchy .inspector.acc_win += hierarchy.inspector.wage +
reward func(
inspected off.stealing) + sum_ reward - (hierarchy.
inspector .inspection cost func(inspected off) +
sum _inspect)

u = inspected off.wage + inspected off.kappa *

inspected off.
stealing - (steal fine func(
inspected off.wage, inspected off.stealing , False) +
inspected off.pay bribe() + bribe fine func(
inspected off.wage, inspected off.pay bribe(False), False
))
inspected off.acc_win 4= u

state_ut -= u

for off in coal officials:
u = off.wage + coalition.utils[off.hier id]
off .acc_win += u

state_ut -= u

for exposer in exposers:
u = exposer.wage + exposer.kappa * exposer.stealing - exposer
.theta * steal fine func(
exposer.wage, exposer.stealing , False)
exposer.acc_win += u
state_ut -= u
for off in non coal officials - {inspected off} - set(exposers):
u = off.wage + off.stealing
off .acc_win += u
state_ut -= u
state _ut -= (hierarchy.inspector.wage + reward func(inspected off

.stealing) + sum_reward)

return state_ut

elif x = T:
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455
456
457

458
459

460
461
462
463

464
465
466

467

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

# Exposed, accepted bribe
if inspected_ off.is_in_coal:
hierarchy .inspector.acc_win += hierarchy.inspector.wage +
coalition.pay bribe(inspected off.hier id) - (
hierarchy.inspector.inspection cost_ func(
inspected off) + hierarchy.inspector.
coverup cost_func(

inspected off.stealing) + sum_coverup + sum_inspect)

else:
inspected off.acc_win += inspected off.wage + inspected off.
stealing - inspected off.pay bribe(False)
state _ut -= (inspected off.wage + inspected off.stealing)

hierarchy.inspector.acc_win += hierarchy.inspector.wage +
inspected off.pay bribe(False) - (
hierarchy.inspector.inspection cost func(
inspected off) + hierarchy.inspector.
coverup cost func(

inspected off.stealing) + sum_coverup + sum_inspect)

for off in coal officials:
u = off.wage + coalition.utils[off.hier id]
off .acc_win += u

state_ut -= u
for off in non_ coal officials - {inspected off}:
u = off.wage + off.stealing
off .acc_win +=u
state_ut -= u

state _ut -= hierarchy.inspector.wage

return state ut

# Stealing stage

for

off level in hierarchy.scheme.values():

cutoff value = hierarchy.cutoff values|[off level]

optimal stealing = (cutoff value[0] - cutoff value[l]) / len(off level)
for off in off level:

stealing [off level] += hierarchy.get with id(off).steal(optimal stealing)

coalition.calc stealing()

# Inspection stage: from top to bottom, from left to right

for

off level in stealing:
sum_stealing += stealing[off_ level]
if true with prob(1 - sum stealing / init money):

pass
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499 else:

500 inspected off = hierarchy.get with id(r.choice (off level))

501 action = inspected off.action

502

503 if inspected off.is in_ coal:

504

505 Acc_part_util = coalition.pay_bribe(inspected off.hier_ id) -

hierarchy .inspector.coverup cost func(inspected off.stealing)

506 Rej part util = reward func(inspected off.stealing)
507

508 if Acc_part_util <= Rej_part_util:

509 acc_state util 4= end(3)

510 else:

511 acc_state util += end(4)

512 break

513 else:

514 if action =— "NB":

515 acc_state util 4= end(2)

516 break

517 if action =— "B":

518 Acc_part_util = inspected off.pay bribe() - hierarchy.inspector.

coverup cost func(inspected off.stealing)

519 Rej part util = reward func(inspected off.stealing)

520 if Acc_part_util <= Rej_part_util:

521 acc_state util += end(3)

522 else:

523 acc_state util += end(4)

524 break

525 if action = "E":

526 while True:

527 exposers.append (inspected off)

528 inspected off = hierarchy.get boss of id(inspected off.
hier id)

529 action = inspected_off.action

530

531 if inspected off.is in_ coal:

532 Acc_part_util = coalition.pay bribe(

533 inspected off.hier id) - hierarchy.inspector.

coverup _cost_ func(

534 inspected _off.stealing)

535 Rej part_util = reward func(inspected off.stealing)
536

537 if Acc_part util <= Rej part util:
538 acc_state util 4= end(6)

539 else:

540 acc_state_util 4= end(7)

541 break

542

543 else:

544 if action = "NB":
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545 acc_state util 4= end(5)

546 break
547 if action = "B":
548 exposers coverup, exposers reward, exposers inspect =

calc_coverup reward inspect(exposers)

549 Acc_part_util = inspected _off.pay_bribe(False) -
hierarchy.inspector.coverup cost func(
inspected off.stealing) - exposers coverup

550 Rej part util = reward func(inspected off.stealing) +

exposers_reward

551 if Acc_part_util <= Rej_part_util:

552 acc_state util += end(6)

553 else:

554 acc_state util 4= end(7)

555 break

556 break

557

558 if inspected off is None:

559 acc_state_util 4= end (1)

560

561 LoC = sum(stealing.values()) / init money

562 # End of N cycles, Results

563 for official in hierarchy.officials:

564 print ("{}".format (official .acc_win / N))

565 print ("{}\n{}\n{}".format (hierarchy.inspector.acc_win / N, acc_ state util / N, LoC))

566

567

568 def run_coals(off scheme, in_ and out values, funcs, wages, bribes, coal scheme tuples,

rules):
569 def level 12 official(hier id, strat, is in coal):
570 return Official (hier id=hier id, wage=wages|[0]|, strategy=strat , kappa=0.3, theta
=0.01, is_in_coal=is_in_coal)

571

572 def level 3 official (hier id, strat, is_in_coal):

573 return Official (hier id=hier id, wage=wages|[1l]|, strategy=strat, kappa=0.6, theta

=1, is_in _ coal=is_in_ coal)

574

575 def build hier(strl, str2, coal):

576 offs = |

577 level 3 official ((3, 0), str2, ((3, 0) in coal)), level 3 official ((3, 1),
str2, ((3, 1) in coal)),

578 level 12 official ((2, 0), strl, ((2, 0) in coal)), level 12 official ((2, 1),
strl, ((2, 1) in coal)),

579 level 12 official ((1, 0), strl, ((1, 0) in coal)), level 12 official((1, 1),
strl, ((1, 1) in coal))

580 ]

581 return offs

582

583 for rule in rules:

584 for sc_tuple in coal scheme tuples:
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585
586

587
588
589
590
591

592
593
594
595
596
597
598
599
600
601
602
603

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

def

def

print (sc_tuple[0])
off hier = build_hier (("Opt", "E", [bribes[2], bribes[2]]), ("Opt", "B", |
bribes [0], bribes|[1]]), sc_tuple[1l])

inspector = Inspector (70000, inspection cost func example, funcs|[0])
hierarchy = Hierarchy (off scheme, off hier, in_and out_ values, inspector)
coalition = Coalition (scheme tuple=sc tuple, hierarchy=hierarchy , rule=rule)

simulate (N=500000, hierarchy=hierarchy , steal fine func=ru_steal fine,
bribe fine func=ru_ bribe fine, reward func=funcs[1l], coalition=

coalition)

analyze sensitivity B(stealings, a p, reward and coverup funcs, title):
# X is zeta, Y is bribe.
max_st = max(stealings)
x = np.linspace (1, max_st, 10)
print (x)
ys = {}
for type funcs in reward and coverup funcs:

reward _and_coverup_costs = 0

for stealing in stealings:

reward and coverup costs += type funcs[1][0](stealing) + type funcs[1][1](
stealing)

ys|[type funcs|[0]|] = reward and coverup costs + x

for k in ys:
plt.plot(x, ys|[k], label=k)

plt.hlines(max st / a_p, 1, max st, linestyles="dashdot’)
print (max st / a_p)

plt.title (title)
plt.ylabel (’Bribe )
plt.xlabel (7O1")

plt.xlim (0, max st)
plt.ylim (0, max(list (chain.from iterable([1.tolist () for 1 in ys.values()])))+100000)

ax = plt.subplot ()
ax.get xaxis().set major formatter (FuncFormatter(lambda x, p: format(int(x), ’,’)))
)

ax.get yaxis().set major formatter (FuncFormatter(lambda y, p: format(int(y), 7,

plt.legend ()
plt .show ()

main () :

coal scheme tuples = |
(’1B1SLO’, [(
(’1B1SL1’, [(

’ 0)7 (27 0)17)7

3
3,00, (2, DIs),
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632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

("1BISRO’, [(3, 1), (1, 0)],),

("1BISR1’, [(3, 1), (1, 1)],),

("BBISLO’, [(3, 0), (2, 0), (3, 1)],),

("BBISL1’, [(3, 0), (2, 1), (3, 1)],),

("BBISRO’, [(3, 1), (1, 0), (3, 0)],),

(’BBISR1’, [(3, 1), (1, 1), (3, 0)],),

(’1B2SL’, [(3, 0), (2, 0), (2, 1)],),

("1B2SR’, [(3, 1), (1, 0), (1, 1)],),

(’2SBBL’, [(3, 0), (3, 1), (2, 0), (2, 1)],),
(’2SBBR’, [(3, 0), (3, 1), (1, 0), (1, 1)],),
("1SBB1S0’, [(2, 0), (3, 0), (3, 1), (1, 0)],),
(’1SBB1S1’, [(2, 0), (3, 0), (3, 1), (1, 1)],),
(’1SBB1S2’, [(2, 1), (3, 0), (3, 1), (1, 0)],),
("1SBBI1S3’, [(2, 1), (3, 0), (3, 1), (1, 1)],),
(’2SBBLO’, [(3, 0), (2, 0), (2, 1), (3, 1), (1, 0)],),
(’2SBBL1’, [(3, 0), (2, 0), (2, 1), (3, 1), (1, 1)],),
(’28SBBRO’, [(3, 1), (1, 0), (1, 1), (3, 0), (2, 0)],),
(’2SBBR1’, [(3, 1), (1, 0), (1, 1), (3, 0), (2, 1)],),
(Ge, [(2, 0), (2, 1), (3, 0), (3, 1), (1, 0), (1, H])]

# coal scheme tuples = [ (’1B1SRO’, [(3, 1), (1, 0)],),]

off scheme = {
(4, 0): ((3, 0), (3, 1)),
(3, 0): ((2, 0), (2, 1)),
(3, ): ((1, 0), (1, 1)),
}
in_and out_ values = {
((3, 0), (3, 1)): (3000000, 2000000),
((2, 0), (2, 1)): (2000000 / 2, 750000),
((1, 0), (1, 1)): (2000000 / 2, 750000)
}

W= [0, 90000, 40000
S = [0, 500000, 125000

d = [131251, 86251, 45001]

s1 = [1384616.385, 1304616.385, 80001]
s2 = [3080001, 3000001, 80001]

s3 = [8750000.976, 5750001, 3000000.976]

z1 = (500000, 395000, 105001)
z3 = (500000, 375001, 125000)

rules = (EQ_rule, SS_ with xi(1))
# rules = (SS_with xi(1),)
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682
683
684
685
686

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

703
704

705
706
707
708

# rules = (EQ_rule,)

no coal = [("None", [],)]

# run_coals (off scheme=off scheme, in_and out_ values=in and out values, funcs=(
coverup cost func def, reward func def),

# wages=[W[s], W[b]], bribes=B, coal scheme tuples=no coal, rules=rules)

a = [0, 0.5, 0.416666667, 0.333333333]

a_eff = [0, (1 - a[3]) * (1 - a[2]) * a[l], (1 - a[3]) * a[2], a[3]]
a 0 eff i = [0, 0.041666667, 0.076388889, 0]

print (a_eff)

types and funcs = [("def", [coverup cost func def, reward func def]),

("s1", [coverup cost func sl, reward func sl]),

("s2", [coverup cost func s2, reward func s2]),

("s3", [coverup cost func_ s3, reward func s3]) ,]
types _and funcs z = [("zl", [coverup cost func zl, reward func zl]),

("z3", [coverup_cost_func_z3, reward func_z3]) ,]
analyze sensitivity B ([S[b], S[s]], a_eff[3]/2 + min(a_eff[1], a_ eff[2]),
types and funcs, "Chain")

analyze sensitivity B ([S[b]], a_eff[3]/2, types and funcs, "Boss")
analyze sensitivity B ([S[s]], min(a_0_ eff i[1], a 0 eff i[2]), types and funcs, "

Subordinate only")
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Appendix D. Table of coalitional payoffs in the example graph

Table 3.1: Values of all coalitions for Myerson/Theirson.
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10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28

Appendix E. Code listing for the Myerson value caluclation

from math import factorial

coals = [0, frozenset ([(1, 1)]), frozemset ([(1, 0)]), frozemset ([(1, 0), (1, 1)]),
frozenset ([(2, 1)]),

frozenset ([(2, 1), (1, 1)]), frozemnset ([(2, 1), (1, 0)]), frozemnset ([(2, 1),
(1, 0), (1, D),

frozenset ([(2, 0)]), frozemset ([(2, 0), (1, 1)]), frozenset([(2, 0), (1, 0)
D

frozenset ([(2, 0), (1, 0), (1, 1)]), frozemset ([(2, 0), (2, 1)]), frozenset
([(2, 0), (2, 1), (1, 1]),

frozenset ([(2, 0), (2, 1), (1, 0)]), frozemset([(2, 0), (2, 1), (1, 0), (1,
1)]), frozemset ([(3, 1)]),

frozenset ([(3, 1), (1, 1)]), frozenset([(3, 1), (1, 0)]), frozenset ([(3, 1),
(1, 0), (1, D),

frozenset ([(3, 1), (2, 1)]), frozemset([(3, 1), (1, 1), (2, 1)]), frozenset
(13, 1), (1, 0), (2, ),

frozenset ([(3, 1), (1, 0), (1, 1), (2, 1)]), frozemnset ([(3, 1), (2, 0)]),

frozenset ([(3, 1), (1, 1), (2, 0)]),

frozenset ([(3, 1), (1, 0), (2, 0)]), frozenset ([(3, 1), (1, 0), (1, 1), (2,
01,

frozenset ([(3, 1), (2, 0), (2, 1)]), frozenset([(3, 1), (1, 1), (2, 0), (2,
ny .,

frozenset ([(3, 1), (1, 0), (2, 0), (2, 1)]), frozemset ([(3, 1), (1, 0), (1,
D, (2,0, (2, ),

frozenset ([(3, 0)]), frozenset ([(3, 0), (1, 1)]), frozenset ([(3, 0), (1, 0)
D

frozenset ([(3, 0), (1, 0), (1, 1)]), frozenset ([(3, 0), (2, 1)]), frozenset
(13, 0), (2, 1), (1, ),

frozenset ([(3, 0), (2, 1), (1, 0)]), frozemset ([(3, 0), (2, 1), (1, 0), (1,
Dl

frozenset ([(3, 0), (2, 0)]),

frozenset ([(3, 0), (2, 0), (1, 1)]), frozenset ([(3, 0), (2, 0), (1, 0)]),

frozenset ([(3, 0), (2, 0), (1, 0), (1, 1)]), frozemnset ([(3, 0), (2, 0), (2,
nl,

frozenset ([(3, 0), (2, 0), (2, 1), (1, 1)]), frozemset ([(3, 0), (2, 0), (2,
D, (1, 00,

frozenset ([(3, 0), (2, 0), (2, 1), (1, 0), (1, 1)]), frozemset ([(3, 0), (3,
nl,

frozenset ([(3, 0), (3, 1), (1, 1)]), frozemnset ([(3, 0), (3, 1), (1, 0)]),

frozenset ([(3, 0), (3, 1), (1, 0), (1, 1)]), frozemset ([(3, 0), (3, 1), (2,
DD

frozenset ([(3, 0), (3, 1), (2, 1), (1, 1)]), frozemset ([(3, 0), (3, 1), (2,
D, (1, 0)]),

frozenset ([(3, 0), (3, 1), (2, 1), (1, 0), (1, 1)]), frozemset ([(3, 0), (3,
1, (2, 0]),

frozenset ([(3, 0), (3, 1), (2, 0), (1, 1)]), frozemset ([(3, 0), (3, 1), (2,
0), (1, 0)1),

frozenset ([(3, 0), (3, 1), (2, 0), (1, 0), (1, 1)]), frozemnset ([(3, 0), (3,
D, (2,0, (2, D),
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29

30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

whole coals_ids =

frozenset ([(3,
(2? 0)7

1),

frozenset ([(3,

[]‘7

53, 54, 55, 56,

{3

coal vals =

for i

coal vals[coals[i]] =

coal vals|[coals[5]]
coal vals|[coals[6]]
coal vals|[coals [T7]]
coal vals|[coals[9]]
coal vals|[coals[10]]
coal vals|[coals[11]]
coal vals|[coals[13]]
coal vals|coals [14]]
coal vals|coals[15]]
coal vals|[coals[20]]
coal vals|[coals[21]]
coal vals|[coals[22]]
coal vals|[coals[23]]
coal vals|coals[24]]
coal vals|[coals[25]]
coal vals|coals[26]]
coal vals|[coals[27]]
coal vals|[coals[28]]
coal vals|[coals[29]]
coal vals|[coals[30]]
coal vals|coals [31]]
coal vals|coals [33]]
coal vals|[coals[34]]
coal vals|[coals[35]]
coal vals|[coals[37]]
coal vals|[coals[38]]
coal vals|[coals[39]]
coal vals|coals [41]]
coal vals|coals [42]]
coal vals|[coals[43]]
coal vals|[coals[45]]
coal vals|[coals[46]]

coal vals|[coals[47]]

2 )
57,
59,

def calc vals(whole val):

50,

0), (3, 1), (2, 0), (2, 1), (1, 1)]), frozenset ([(3,
(2, 1), (1, 0)]),
0), (3, 1), (2, 0), (2, 1), (1, 0), (1, 1)])]
3,4, 8, 12, 16, 17, 18, 19, 32, 36, 40, 44, 48, 49,
58,
60, 61, 62, 63]

in whole coals_ ids:

whole val[i]

coal vals|coals [4]]
coal vals|coals [4]]
coal vals|coals [4]]

coal vals|[coals[8]]

+ coal vals|[coals[1]]
+ coal vals[coals [2]]
+ coal vals[coals [3]]

+ coal vals[coals[1]]

coal vals|[coals[8]] + coal vals|[coals[2]]

coal vals|[coals[8]] + coal vals|[coals[3]]

coal vals|[coals[12]]
coal vals|coals [12]]
coal vals|coals[12]]
coal vals|[coals[16]]
coal vals|[coals[17]]
coal vals|[coals[18]]
coal vals|[coals[19]]

coal vals|[coals[16]]

= coal vals|[coals[17]]

coal vals|coals [18]]
coal vals|[coals[19]]
coal vals|[coals[16]]
coal vals|[coals[17]]
coal vals|[coals[18]]
coal vals|[coals[19]]
coal vals|coals [32]]
coal vals|[coals[32]]
coal vals|[coals[32]]
coal vals|[coals[36]]
coal vals|[coals[36]]

coal vals|[coals[36]]

= coal vals|[coals[40]]

coal vals|coals [40]]
coal vals|[coals[40]]
coal vals|[coals[44]]
coal vals|[coals[44]]

coal vals|[coals[44]]

# todo chains or whatnot

offs = [(3, 0), (3,

1),

(2, 0), (2, 1), (1,
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+
+
+
+
+
.
+
+
+
+
+
n
+
+
+
+
+
+
.
+
+
+
+
+
n
N
+

coal vals|[coals[1]]
coal vals|coals [2]]
coal vals|coals [3]]
coal vals|[coals[4]]
coal vals|[coals[4]]
coal vals|[coals[4]]
coal vals|[coals[4]]
coal vals|[coals[8]]
coal vals|[coals[8]]
coal vals|coals [8]]
coal vals|[coals[8]]
coal vals|[coals[12]]
coal vals|[coals[12]]
coal vals|[coals[12]]
coal vals|coals [12]]
coal vals|coals[1]]
coal vals|[coals[2]]
coal vals|[coals[3]]
coal vals|[coals[1]]
coal vals|[coals[2]]
coal vals|[coals[3]]
coal vals|coals [1]]
coal vals|coals [2]]
coal vals|[coals[3]]
coal vals|[coals[1]]
coal vals|[coals[2]]

coal vals|[coals[3]]

0)7

51,

(37

52,



"
78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

H = len(offs)

myerson_vec = {}
for off in offs:
myerson_vec|off] = 0

for coal in coal vals.keys():

if off not

in coal and off !=

coal:

S = len(coal)

myerson_vec|off]| += factorial(S) * factorial(H - 1 - S) / factorial (H) *

(

return myerson__vec

coal vals = {}

for i

coal vals[coals[i]] =

coal vals|[coals[5]]
coal vals|[coals [6]]
coal vals|[coals[7]]
coal vals|[coals[9]]
coal vals|[coals[10]]
coal vals|[coals[11]]
coal vals|[coals[13]]
coal vals|coals [14]]
coal vals|coals[15]]
coal vals|[coals[20]]
coal vals|[coals[21]]
coal vals|[coals[22]]
coal vals|[coals[23]]
coal vals|coals [24]]
coal vals|coals[25]]
coal vals|[coals[26]]
coal vals|[coals[27]]
coal vals|[coals[28]]
coal vals|[coals[29]]
coal vals|[coals[30]]
coal vals|coals [31]]
coal vals|coals [33]]
coal vals|[coals[34]]
coal vals|[coals[35]]
coal vals|[coals[37]]
coal vals|[coals[38]]
coal vals|[coals[39]]
coal vals|coals [41]]

coal vals|[coals[42]]

def check conv(whole val):

coal vals|[coal.union(frozenset ([off]))]

in whole coals ids:

whole val[i]

coal vals|coals [4]]
coal vals|coals [4]]
coal vals|[coals[4]]

coal vals|[coals[8]]

+ coal vals|[coals[1]]
+ coal vals[coals [2]]
+ coal vals[coals[3]]

+ coal vals[coals[1]]

coal vals[coals[8]] + coal vals|[coals[2]]

coal vals|[coals[8]] + coal vals|[coals[3]]

coal vals|coals [12]]

= coal vals|[coals[12]]

coal vals|coals [12]]
coal vals|[coals[16]]
coal vals|[coals[17]]
coal vals|[coals[18]]
coal vals|[coals[19]]
coal vals|[coals[16]]
coal vals|coals [17]]
coal vals|[coals[18]]
coal vals|[coals[19]]
coal vals|[coals[16]]
coal vals|[coals[17]]

coal vals|[coals[18]]

= coal vals|[coals[19]]

coal vals|coals [32]]
coal vals|[coals[32]]
coal vals|[coals[32]]
coal vals|[coals[36]]
coal vals|[coals[36]]
coal vals|[coals[36]]
coal vals|coals [40]]

coal vals|[coals[40]]
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+
+
+
+
n
+
+
+
+
+
+
.
+
+
+
+
+
n
N
+
+
+
+

coal wvals|coals [1]]
coal vals|coals [2]]
coal wvals|coals [3]]
coal vals|[coals[4]]
coal vals|[coals[4]]
coal vals|[coals[4]]
coal vals|[coals[4]]
coal vals|[coals[8]]
coal vals|coals [8]]
coal vals|[coals[8]]
coal vals|[coals[8]]
coal vals|[coals[12]]
coal vals|[coals[12]]
coal vals|[coals[12]]
coal vals|coals [12]]
coal wvals|coals [1]]
coal vals|[coals[2]]
coal vals|[coals[3]]
coal vals|[coals[1]]
coal vals|[coals[2]]
coal vals|[coals[3]]
coal vals|coals[1]]

coal vals|[coals[2]]

- coal vals[coal])



126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

def

coal vals|[coals[43]] = coal vals|[coals[40]] + coal vals|[coals[3]]

coal vals|[coals[45]] = coal vals|[coals[44]] + coal vals|[coals[1]]

coal vals|[coals[46]] = coal vals|[coals[44]] + coal vals|[coals[2]]
+

coal vals|coals [47]] coal vals|coals [44]] coal vals|coals [3]]
C = True

(y, m) = (0, 0)

for S in coal vals.keys():

for T in coal vals.keys():

if S.intersection(T) = frozenset ():
inter = 0
else:
inter = coal vals[S.intersection (T)]
test = (coal vals[S]| + coal vals[T| <= coal vals[S.union(T)| + inter)
if test:
y =y +1
else:
n=mn+1

C =C & test

# There are len(coal vals.keys()) tests for S=T that return True.

return C, y-len(coal vals.keys()), n

main () :

ch, b, s =0, 1, 2

W= [0, 90000, 40000]
S = [0, 500000, 125000]

d = [131251, 86251, 45001]

s1 = [1384616.385, 1304616.385, 80001]
s2 = [3080001, 3000001, 80001]

s3 = [8750000.976, 5750001, 3000000.976]

z1 = (500000, 395000, 105001)
z3 = (500000, 375001, 125000)

B = z3

a= [0, 0.5, 0.416666667, 0.333333333]
a_eff = [0, (1 - a[3]) * (1 - a[2]) * a[l], (1 - a[3]) * a[2], a[3]]

# [0, 0.19444444443055556, 0.2777777781388889, 0.333333333]

m_1BISR = S[b| + S[s] - ((a[3] / 2 + a_eff[1] / 2) * B[ch] 4+ a_eff[1]
m_1BISL = S[b] + S[s]| - ((a[3] / 2 + a_eff[2] / 2) * B[ch] + a_eff[2] / 2 * B[s])
m BBISR = 2 * S[b| + S[s] - ((a[3] + a_eff[2] + a_eff[1] / 2) * B[ch] + a_eff[1]
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/ 2 * B[s])

/ 2



* Bls])

176 m BBISL = 2 * S[b] + S[s] - ((a[3] + a_eff[2] / 2 + a_ eff[1]) * B[ch] + a_eff[2] / 2
* B[s])
177 m_1SBBIS = 2 * S[b] + 2 * S[s] - (
178 (a3] + a_eff[2] / 2 + a_eff[1] / 2) * B[ch] + (a_eff[2] / 2 + a_eff[1] /
2) * Bls])
179 m_2SBBISR = 2 * S[b] + 3 * S[s]| - (
180 (a[3] / 2 4+ a_eff[1] / 2) * Blch] + a[3] / 2 * B[b] + (a_eff[2] + a_eff[1] /
2) * Bls])
181 m_2SBBISL = 2 * S[b] + 3 * S[s]| - (
182 (al3] / 2 4+ a_eff[2] / 2) * Blch] + a[3] / 2 * B[b] + (a_eff[2] / 2 + a_eff
[1]) * B[s])
183
184 myerson_vals = {1: S[s],
185 2: S[s],
186 3: 2 * S[s] - a_eff[1] * B[s],
187 4: S[s],
188 8: S[s],
189 12: 2 * S[s| - a_eff[2] * B[s],
190 16: S[b] - (a[3] / 2 + a_eff[1]) * B[ch],
191 17: m_ 1BISR,
192 18: m_1BISR,
193 19: S[b] + 2 * S[s] - (a[3] / 2 * B[b] + a_eff[1] * B[s]),
194 32: S[b] - (a[3] / 2 + a_eff[2]) * B[ch],
195 36: m_1BISL,
196 40: m_1BISL,
197 44: S[b] + 2 * S[s] - (a[3] / 2 * B[b] + a_eff[2] * B[s]),
198 48: 2 * S[b] - (a[3] + a_eff[2] + a_eff[1]) * B[ch],
199 49: m_BBISR,
200 50: m_ BBISR,
201 51: 2 * S[b] + 2 * S[s] - ((a[3] / 2 + a_eff[2]) * B[ch] + a[3] / 2 *
B[b] + a_eff[1] * B[s]),
202 52: m_BBISL,
203 53: m_1SBBIS,
204 54: m_1SBBIS,
205 55: m_2SBBISL,
206 56: m_BBISL,
207 57: m_1SBBIS,
208 58: m_1SBBIS,
209 59: m_2SBBISL,
210 60: 2 * S[b] + 2 * S[s| - ((a[3] / 2 + a_eff[1]) * B[ch] + a[3] / 2 *
B[b| + a_eff[2] * B[s]),
211 61: m 2SBBISR,
212 62: m_2SBBISR,
213 63: 2 * S[b] + 4 * S[s] - (a[3] * B[b] + (a_eff[2] + a_eff[1]) * Bls
1)}
214
215 t R=S[s] - a_eff[1] / 2 * B[s]
216 t L =8[s] - a_eff[2] / 2 * B[s]
217 t_1B1SR = S|b] + S[s] - (a[3] / 2 * B[b] + a_eff[1] / 2 * B[s])
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218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

- (al3] / 2 * B[b] + a_eff[2]

t 1BISL = S[b] + S[s]
t BBISR = 2 * S[b] + S[s]| - (a[3]
t BBISL = 2 * S[b] + S[s] - (a[3]

t 1SBB1S = 2 * S[b] + 2 * S[s]

* B[b] + a_eff[1]
* B[b] + a_eff[2]

/2 * B[s])
/ 2 * B[s])
/2 * B[s])

- (a[3] * B[b] 4+ (a_eff[2] / 2 + a_eff[1] / 2) * B[s])
(a[3] * B[b] + (a_eff[1] / 2 + a_eff[2]) * B[s])
(a[3] * B[b] + (a_eff[1] + a_eff[2] / 2) * B[s])

t_2SBBISL = 2 * S[b| + 3 * S[s]
t_2SBBISR = 2 * S[b| + 3 * S[s]
theirson vals = {1: t R,

2: t_R,

3: myerson_vals[3],

4: t L,

8: t L,

def print it
offs = |

for off

12: myerson vals[12],

16: S[b]
17: t_1BISR,
18: t_1BISR,

- al3]

/2 * B[s],

19: myerson_vals[19],

32: S[b]
36: t_ 1BI1SL,
40: t_1BISL,

- al3]

/2 * B[s],

44: myerson vals[44],

48: 2 * S[b]
49: t_BBISR,
50: t BBISR,

51: 2 * S[b] + 2 * S[s]

52: t BBISL,

53: t 1SBBIS,
54: t 1SBBIS,
55: t 2SBBISL,
56: t BBISL,

57: t_1SBBIS,
58: t 1SBBIS,
59: t 2SBBISL,

60: 2 * S[b] + 2 * S[s]

61: t 2SBBISR,
62: t 2SBBISR,

- a[3]

* Blb],

63: myerson_ vals[63]}

(vec):
(3, 0),

in offs:

print ("{}\t{}".format (off , vec[off]))

my = calc_vals(myerson vals)

print it (my)

print (check

print ("\n")
th =
print it (th)

conv (myerson_vals))

calc _vals(theirson vals)

print (check conv(theirson vals))
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- (al3] * B[b] + a_eff[1] * B[s]),
- (a[3] * B[b] + a_eff[2] * B[s]),
(2, 1), (1, 0), (1, 1)]



268
269
270
271

if
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