федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет»

На правах рукописи

this

Емельянова Ксения Александровна

СТАННАТ БАРИЯ И АНТИМОНАТЫ СВИНЦА В ГАЗОВОЙ ФАЗЕ: СТРУКТУРЫ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА

02.00.01 - Неорганическая химия

Диссертация на соискание ученой степени кандидата химических наук

Научный руководитель доктор химических наук, профессор Лопатин Сергей Игоревич

Санкт-Петербург – 2020

оглавление

ВВЕДЕНИЕ	6
Актуальность темы исследования и степень ее разработанности	6
Цель и задачи работы	9
Научная новизна работы и её теоретическая и практическая значимость	10
Методология и методы исследования	11
Положения, выносимые на защиту	11
Степень достоверности и апробация результатов	12
ГЛАВА 1	
Обзор литературы	13
1.1 Газообразные соли кислородсодержащих кислот	13
1.1.1 Критерий термической устойчивости газообразных солей кислородсодержкислот	ащих 13
1.1.2 Метод оценки стандартных энтальпий образования газообразных с Изокатионные и изоанионные ряды	олей. 16
1.2 Газообразные соли кислородсодержащих кислот, образованные окси элементов 14 группы ПС	дами 18
1.3 Оксиды углерода	18
1.3.1 Газообразные соли, образованные оксидами углерода	19
1.3.1.1 Карбонаты щелочных металлов	19
1.4 Оксиды кремния	19
1.4.1 Газообразные соли, образованные оксидами кремния	20
1.4.1.1 Силикат лития	20
1.4.1.2 Силикаты щелочноземельных металлов	20
1.5 Оксиды германия	22
1.5.1 Газообразные соли, образованные оксидом германия	22
1.5.1.1 Германат бария	22
1.5.1.2 Молибдаты германия	23
1.5.1.3 Вольфраматы германия	23
1.5.1.4 Фосфат германия	24
1.5.1.5 Борат германия	25
1.5.1.6 Ванадат германия	25

1.5.1.7 Ниобат германия	
1.5.1.8 Танталат германия	
1.6 Оксиды олова	
1.6.1 Газообразные соли, образованные оксидом олова	
1.6.1.1 Молибдаты олова	
1.6.1.2 Вольфраматы олова	
1.6.1.3 Фосфаты олова	29
1.6.1.4 Бораты олова	30
1.6.1.5 Ванадаты олова	30
1.7 Оксиды свинца	
1.7.1 Газообразные соли, образованные оксидом свинца	
1.7.1.1 Молибдаты свинца	
1.7.1.2 Вольфраматы свинца	
1.7.1.3 Ванадаты свинца	
1.7.1.4 Бораты свинца	
1.7.1.5 Перренат свинца	
1.7.1.6 Фосфаты свинца	
1.7.1.7 Арсенаты и антимонат свинца	
1.7.1.8 Теллураты свинца	
1.8 Квантово-химические расчеты равновесных структур и энтальпий синтеза газообразных солей, образованных оксидами элементов 14 группы	реакций ПС 38
1.8.1 Карбонаты щелочных металлов	44
1.8.2 Силикаты щелочноземельных металлов	45
1.8.3 Соли германия	46
1.8.4 Соли олова	47
1.8.5 Соли свинца	47
ГЛАВА 2	
Экспериментальная часть	50
2.1 Использованное оборудование	50
2.2 Методика эксперимента	55
2.2.1 Получение и обработка экспериментальных данных	55
2.2.1.1 Расшифровка масс-спектра	55

2.2.1.2 Расчет констант исследуемых реакций, энтальпий реакций и энтальпий образования газообразных солей
2.2.2 Квантово-химические расчеты
2.3 Экспериментальные результаты
2.3.1 Станнат бария и диоксид дибария 60
2.3.2 Антимонаты свинца
ГЛАВА 3
Обсуждение экспериментальных результатов
3.1 Определение парциальных давлений участников газофазных реакций и вычисление констант равновесия
3.2 Выбор различных квантово-химических методов расчета наборов молекулярных параметров и частот нормальных колебаний, необходимых для получения термодинамических функций
3.3 Проверка достоверности получаемых данных с позиций концепции термической устойчивости газообразных солей кислородсодержащих кислот и соответствия закономерности изменения энтальпии атомизации
3.4 Величины энтальпии реакций, полученные различными квантово-химическими методами
3.5 Оценка величин энтальпий атомизации и образования газообразных солей, не изученных к настоящему времени
3.6 Сравнение полученных нами результатов по определению величин энтальпий образования газообразных Ba ₂ O ₂ и PbSb ₂ O ₄ с имеющимися литературными данными98
3.7 Анализ литературных данных по определению энтальпий образования газообразных солей, образованных оксидами бария и свинца, которые, по нашему мнению, являются некорректными
3.8 Закономерность изменения энтальпий образования в изоанионных рядах солей, где катион-образующий оксид представляет собой MO, M = Ge, Sn, Pb 101
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ 106
ПРИЛОЖЕНИЕ А Значения термодинамических функций, полученные с помощью различных методов квантовой химии для Ba ₂ O ₂ , BaSnO ₂ и Sn ₂ O ₂ 124
ПРИЛОЖЕНИЕ Б Значения термодинамических функций, полученные с помощью различных методов квантовой химии для PbSbO ₂ , PbSb ₂ O ₄ и Sb ₄ O ₆
ПРИЛОЖЕНИЕ В Аппроксимация справочных данных [28] по $\Phi_{T}^{'}$ для Sb ₄ O ₆ 141

ПРИЛОЖЕНИЕ Г Аппроксимация справочных данных [28] по $H_T^{\circ} - H_{298}^{\circ}$ для Sb ₄ O ₆
ПРИЛОЖЕНИЕ Д Аппроксимация справочных данных [28] по $H_T^{\circ} - H_{298}^{\circ}$ для SbO
ПРИЛОЖЕНИЕ Е Данные для построения изокатионного ряда бария 144
ПРИЛОЖЕНИЕ Ж Данные для построения изокатионного ряда олова 146
ПРИЛОЖЕНИЕ И Данные для построения изокатионного ряда свинца 147

введение

Актуальность темы исследования и степень ее разработанности

Синтез и исследование неорганических веществ часто требуется проводить при высоких температурах. При этом, как правило, протекают процессы термической диссоциации. Долгое время считалось, что состав паровой фазы тем проще, чем выше температура, так как с ростом температуры происходит диссоциация более сложных веществ на более простые. Бурное развитие авиационной, ракетостроительной и космической промышленности, начавшееся в 50-х годах прошлого столетия, вызвало необходимость более тщательного изучения химических процессов, протекающих при температурах, превышающих 1000 – 1500 °C. Именно в это время зарождается высокотемпературная химия как отдельная область знаний.

Специфика высокотемпературной химии неорганических соединений обусловлена, в первую очередь, непредсказуемостью их поведения при переходе в газовую фазу. В качестве иллюстративного примера можно рассмотреть устойчивость высших оксидов элементов 14 группы периодической системы (ПС). Для этих элементов характерны устойчивые степени окисления +II и +IV и в конденсированной фазе они образуют оксиды состава ЭО и ЭО₂. Известно, что при продвижении сверху вниз по группе ПС устойчивость высших степеней окисления элементов уменьшается. Так, оксиды углерода CO и CO₂ термически устойчивы в широком интервале температур [1]. Для конденсированного состояния более устойчивой формой оксида кремния является SiO₂, а в паровой фазе хоть и существует SiO₂, более устойчивой формой является SiO. GeO₂ в конденсированной фазе устойчив до достаточно высоких температур, а в паровой фазе такая молекула отсутствует. SnO₂ и PbO₂, отщепляя кислород, меняют свою степень окисления при нагревании еще в конденсированной фазе [1 - 7]. Кроме того, монооксиды кремния, германия, олова и свинца в газовой фазе образуют олигомеры состава M_nO_n, где в случае кремния и германия n = 2, а в случае олова и свинца $n = 2 \div 6$. Очень сложно объяснить наличие олигомерных форм оксидов в паре и связать его с положением элемента в ПС. Еще более запутанная картина наблюдается для оксидов 2 группы ПС. В паре над BeO при температурах порядка 2000 °C присутствуют молекулы Be_nO_n (n = 1÷4); парообразование MgO, CaO и SrO протекает при температурах порядка 1600 – 1700 °C с

образованием атомарных металла и кислорода (относительное содержание газообразных оксидов не превышает 1 – 2%, олигомеры не обнаружены); ВаО переходит в пар при температурах порядка 1400 – 1500 °С практически без диссоциации.

Одним из основных экспериментальных методов высокотемпературной химии стал высокотемпературной (или Кнудсеновской эффузионной) метод массспектрометрии (BTMC, KEMS) [8], который представляет собой сочетание классического метода Кнудсена с масс-спектрометрическим анализом паровой фазы. ВТМС является методом прямого определения качественного и количественного состава пара и, помимо состава пара, позволяет определять парциальные давления молекулярных форм пара и энтальпии гомогенных и гетерогенных процессов, протекающих с участием паровой фазы при температуре опыта. Пересчет энтальпии изучаемых реакций с участием сложных ассоциатов на температуры 0 или 298.15 К возможен благодаря современному развитию квантово-химических методов, которые позволяют определять структуры ассоциатов, получать значения молекулярных параметров и частот нормальных колебаний.

Первые же результаты исследования высокотемпературных процессов, проведенные методом ВТМС, показали, что состав пара значительно сложнее, чем предполагалось ранее. Было установлено, что при высоких температурах в паре существуют достаточно сложные термически устойчивые неорганические соединения, причем в ряде случаев они являются преобладающей формой пара.

Особый интерес вызывает проблема существования в паровой фазе сложных неорганических ассоциатов, таких как комплексные галогениды или соли кислородсодержащих кислот. Изучение термодинамических свойств и строения этих соединений, начавшееся в 60-х годах прошлого века, привело к публикации ряда обзоров [9–11] и выявлению критериев вероятности существования и термической устойчивости сложных ассоциатов [12–14], позволяющих целенаправленно синтезировать ассоциаты в паровой фазе.

Одними из первых исследованных солей кислородсодержащих кислот стали $BaTaO_2$, $BaTaO_3$, Ba_2TaO_4 , $BaMoO_4$, $BaMoO_3$, $BaMoO_2$, $BaWO_4$, $BaWO_2$ [15, 16], MXO_3 и MXO_4 (X = Mo, W; M = Mg, Ca, Sr, Sn) [17, 18], полученные при испарении оксидов

элементов 2 группы ПС или олова из эффузионных камер, изготовленных из тантала, молибдена или вольфрама.

Следует отметить, что для сложных неорганических ассоциатов в газовой фазе на текущий момент по существу отсутствует номенклатура. Как правило, название соединения не позволяет сделать однозначный вывод о его структуре. Например, в случае газообразных солей BaMoO₄, BaMoO₃ и BaMoO₂, исходя из правила, применимого для химии конденсированного состояния (согласно которому суффикс в названии катиона отвечает степени окисления центрального атома), первые два соединения следовало бы называть «молибдат» и «молибдит», но для BaMoO₂ подобрать название сложнее. Принято писать «молибдат» и далее указывать формулу.

Кроме того, для высокотемпературного пара характерно наличие соединений в «нетрадиционных» степенях окисления (например, MO, где M – щелочной металл, BO, BO₂, AlO, AlO₂, NO₃, PO₃, etc). Поэтому при рассмотрении неорганических соединений в газовой фазе зачастую не принято оперировать понятием «степень окисления», необходимо рассматривать структуру. В качестве примера можно привести пары KBO₂ и BaBO₂ (линейная структура, атом металла монодентантно связан с атомом кислорода), или KPO₃ и SnPO₃ (бидентантая связь металл – кислород), где атомы бора или фосфора с формальной точки зрения должны были бы обладать разными степенями окисления.

К настоящему времени получены и термодинамически описаны газообразные соли кислородсодержащих кислот, образованные оксидами щелочных и щелочноземельных металлов, элементов 13 группы ПС, первой декады *d*-элементов, европия. Согласно критерию термической устойчивости сложных газообразных ассоциатов, соли, образованные оксидами элементов 14 группы ПС, должны быть термически устойчивыми. Эта гипотеза нашла свое подтверждение в публикациях [4 – 7, 19 – 23], где установлено существование и проведено термодинамическое описание целого ряда газообразных солей, образованных оксидами элементов 14 группы ПС.

Тем не менее, анализ имеющихся данных позволяет утверждать, что список далеко не полон. Возможно подобрать условия, необходимые для синтеза еще нескольких новых газообразных солей, образованных оксидами элементов 14 группы ПС, которые позволят пополнить имеющиеся базы термодинамических данных [24 – 28], подтвердить или

поставить под сомнение имеющиеся к настоящему времени критерии термической устойчивости сложных газообразных ассоциатов [12 – 14]. Данная работа является продолжением систематического исследования синтеза газообразных солей кислородсодержащих кислот, образованных оксидами элементов 14 группы ПС, а также обобщает и анализирует уже накопленный к настоящему времени экспериментальный материал.

Для синтеза новых солей в газовой фазе необходимо подобрать пары оксидов, которые бы отличались по своим кислотно-основным свойствам, и создать условия их сосуществования в паре [12 – 14]. В отношении кислотно-основных свойств оксидов элементов 14 группы ПС можно отметить следующее. Согласно Периодическому закону, при продвижении вниз по группе ПС осно́вные свойства оксидов усиливаются. Так, при синтезе газообразных солей оксиды CO_2 (СО является несолеобразующим оксидом) [29 – 31], SiO и SiO₂ [2, 3, 32 – 36] могут играть роль только анион-образующих оксидов. GeO при синтезе газообразных солей обладает амфотерными свойствами [20, 37]. SnO к моменту выполнения этой работы был известен только в качестве катион-образующего оксида [4 – 7, 38 – 40]. PbO – классический катион-образующий оксид [21].

Одним из наиболее ярких результатов настоящей работы является то, что нам удалось подобрать оксид, в реакции с которым SnO впервые проявил кислотные свойства, – BaO. Создание условий сосуществования SnO и BaO в паре привело к образованию газообразного станната бария, BaSnO₂. Синтез газообразного BaSnO₃ невозможен по причине отсутствия SnO₂ в паре, такой синтез может быть осуществлен только в конденсированной фазе. Определив порядки связей Ba – O и Sn – O методами квантовой химии, мы доказали, что, во-первых, BaSnO₂ относится к классу кислородсодержащих солей, а не бинарных оксидов, и, во-вторых, что SnO в этой соли служит в качестве анионобразующего оксида. Таким образом, мы впервые установили амфотерность SnO (газ).

Цель и задачи работы

Целью данной работы является синтез и термодинамическое описание газообразных солей кислородсодержащих кислот, которые могут образовываться при высокотемпературном взаимодействии оксидов в системах SnO – BaO и PbO – Sb_mO_n.

В рамках поставленной цели решались следующие задачи:

- Создание необходимых условий сосуществования в паре оксидов SnO BaO и PbO – Sb_mO_n;
- 2) Изучение состава пара над системами SnO BaO и PbO Sb_mO_n;
- 3) В случае установления присутствия продуктов взаимодействия оксидов в газовой фазе, измерение парциальных давлений молекулярных форм пара и получение констант равновесия и энтальпий газофазных реакций с участием взаимодействующих оксидов и образующихся при этом ассоциатов;
- Проведение квантово-химических исследований структур и получение молекулярных параметров впервые обнаруженных газообразных ассоциатов, необходимых для пересчета энтальпий изученных реакций к температурам 0 К или 298 К;
- Экспериментальное и квантово-химическое определение величин стандартных энтальпий образования и атомизации впервые полученных газообразных ассоциатов;
- Проведение проверки достоверности определенных в процессе работы термодинамических величин, и, в случае получения положительного результата, дополнение известных изокатионных рядов бария и свинца новыми данными;
- Корректировка имеющихся в литературе термохимических величин, которые по тем или иным причинам являются недостоверными.

Научная новизна работы и её теоретическая и практическая значимость

Впервые синтезирована газообразная соль, в которой SnO является анионобразующим оксидом – станнат бария, BaSnO₂. Природа соли подтверждена квантовохимическими методами: величина порядка связи Sn – О значительно больше, чем Ba – О.

В системе PbO – SbO впервые синтезирована газообразная соль PbSbO₂.

Для вновь полученных газообразных солей квантово-химическими методами рассчитаны их молекулярные параметры и частоты нормальных колебаний и определены

их термодинамические свойства (стандартные энтальпии образования и атомизации, разницы теплосодержаний, приведенные энергии Гиббса, теплоемкости).

С практической точки зрения, полученные результаты позволяют дополнить или уточнить имеющиеся справочные данные. Помимо газообразных $BaSnO_2$ и $PbSbO_2$, термодинамические данные для которых получены впервые, проверена надежность доступных справочных величин по энтальпиям образования газообразных Ba_2O_2 и $PbSb_2O_4$. На основании закономерностей изменения стандартных энтальпий атомизации в изокатионном ряду газообразных солей свинца оценены стандартные энтальпии образования и атомизации еще не изученных газообразных ассоциатов $PbAsO_2$ и Sb_2O_3 . Высказано предположение о существовании газообразных солей $CaSnO_2$, $SrSnO_2$ и $BaSbO_2$ и оценены их стандартные энтальпии образования и атомизации.

Одним из важнейших теоретических результатов проделанной работы является установление амфотерной природы газообразного SnO, доказанной впервые. Кроме того, проверена работоспособность предложенного критерия термической устойчивости газообразных солей кислородсодержащих кислот и уточнены коэффициенты уравнений линейных зависимостей энтальпий атомизации солей от энтальпий атомизации анионобразующих оксидов, полученных для изокатионных рядов бария и свинца.

Методология и методы исследования

Экспериментальная часть работы выполнена методом BTMC на масс-спектрометре MC-1301. Квантово-химические расчеты проводились двумя параллельными методами: DFT (функционалы M06, PBE0, TPSSh; базисы x2c-TZVPall или def2-QZVPPD) в программном пакете GAMESS-US и MP2 или его модификации MP2-SCS в программном пакете ORCA.

Положения, выносимые на защиту

На защиту выносятся:

1) Результаты экспериментального исследования процессов парообразования систем SnO – BaO и PbO – Sb_mO_n, полученные методом высокотемпературной массспектрометрии; 2) Определенные термодинамические свойства полученных газообразных ассоциатов;

3) Результаты квантово-химических расчетов методами DFT и MP2 молекулярных параметров, частот нормальных колебаний и полных энергий впервые полученных газообразных ассоциатов с целью установления наиболее термодинамически устойчивых структур и вычисления термодинамических функций этих ассоциатов.

Степень достоверности и апробация результатов

Достоверность и обоснованность представленных в диссертации результатов определяется использованием разнообразных и взаимодополняющих методик исследования и комплексным анализом полученных результатов. Так, энтальпии изученных реакций, полученные экспериментально, сопоставлены с соответствующими величинами, полученными квантово-химически. В свою очередь, квантово-химические расчеты проводились параллельно двумя различными методами.

Непосредственно по теме диссертации опубликовано 2 статьи в международных научных журналах уровня Q2 и Q3 (по данным Scimago Journal & Country Rank, https://www.scimagojr.com/). Основные результаты исследований были представлены автором лично на следующих конференциях: XVII Всероссийская молодежная научная конференция с элементами научной школы – «Функциональные материалы: синтез, свойства, применение» (ISC Young – 2018), XVII Молодежная конференция ИХС РАН (2019), Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2020».

Кроме того, диссертант является соавтором 12 статей в международных научных журналах, из которых 4 представляют собой журналы уровня Q1, и 1 главы в монографии, выполненных с его участием за время работы в лаборатории высокотемпературной массспектрометрии СПбГУ.

ГЛАВА 1

Обзор литературы

1.1 Газообразные соли кислородсодержащих кислот 1.1.1 Критерий термической устойчивости газообразных солей

кислородсодержащих кислот

К началу 2000-х годов благодаря анализу большого количества накопленных экспериментальных данных было сформулировано определение нового класса неорганических соединений – газообразных солей кислородсодержащих кислот, предложен количественный критерий их термической устойчивости и разработан метод, позволяющий с достаточно высокой степенью достоверности оценивать величину стандартной энтальпии образования еще не изученной соли [12, 13].

Соль кислородсодержащей кислоты можно представить как продукт взаимодействия двух оксидов, отличающихся своими кислотно-основными свойствами. В качестве количественного критерия кислотности или основности оксида предложено использовать величину отношения средних орбитальных электроотрицательностей оксидов, образующих соль. Согласно Витингу [41], среднюю орбитальную электроотрицательность оксида можно вычислить по правилу аддитивности [42] по уравнению (1).

$$\overline{\chi} = \sum_{i} n_i \chi_i / \sum_{i} n_i \tag{1}$$

где χ – средняя орбитальная электроотрицательность молекулы, χ_i – орбитальная электроотрицательность атома *i*, n_i – число атомов данного сорта в формульной единице молекулы.

Величину χ_i удобнее всего вычислять согласно Малликену по уравнению (2) [43].

$$\chi_i = (I_i + F_i)/2$$
 (2),

где электроотрицательность атома χ_i – полусумма первой энергии ионизации нейтрального атома $i(I_i)$ и его сродства к электрону (F_i).

Поскольку к настоящему времени и энергия ионизации, и сродство к электрону практически всех элементов периодической системы – доступные справочные величины [44], то становится возможным построить шкалу «абсолютных» электроотрицательностей оксидов. Соответствующие значения для оксидов в порядке возрастания представлены в Таблице 1.

Оксид	$\stackrel{-}{\chi}$	Оксид	$\stackrel{-}{\chi}$	Оксид	$\stackrel{-}{\varkappa}$	Оксид	$\stackrel{-}{\chi}$
Cs ₂ O	3.89	In ₂ O ₃	5.72	B_2O_3	6.18	MoO ₃	6.70
Rb ₂ O	3.99	La_2O_3	5.75	<u>GeO</u>	<u>6.18</u>	WO ₃	6.72
K ₂ O	4.06	NbO	5.77	TiO ₂	6.23	Re_2O_7	6.75
Na ₂ O	4.34	TaO	5.78	ZrO_2	6.24	RuO ₃	6.76
In ₂ O	4.51	Ga ₂ O ₃	5.80	VO_2	6.26	P_4O_6	6.82
Li ₂ O	4.51	Al ₂ O ₃	5.82	CrO_2	6.32	TeO ₂	6.85
Ga ₂ O	4.65	BiO	5.83	HgO	6.33	SO	6.88
Al ₂ O	4.67	Tl_2O_3	5.84	NbO ₂	6.36	<u>CO</u>	<u>6.90</u>
Tl ₂ O	4.71	MoO	5.85	ReO ₂	6.36	PO_2	6.91
CaO	4.81	<u>SnO</u>	<u>5.86</u>	TaO_2	6.37	As_4O_{10}	6.94
SrO	4.82	<u>PbO</u>	<u>5.88</u>	MoO ₂	6.41	SeO ₂	6.99
BaO	4.80	WO	5.89	<u>SnO₂</u>	<u>6.42</u>	P_4O_{10}	7.00
ScO	5.22	FeO	5.89	PbO ₂	<u>6.43</u>	TeO ₃	7.02
LaO	5.30	Hg ₂ O	5.93	Sb_4O_6	6.44	SO_2	7.10
AlO	5.39	CdO	5.95	V_4O_{10}	6.44	<u>CO2</u>	<u>7.12</u>
MnO	5.44	CoO	5.97	WO_2	6.44	SeO ₃	7.12
Ag ₂ O	5.47	NiO	6.00	AsO	6.49	SO_3	7.21
HfO	5.49	CuO	6.01	Nb ₂ O ₅	6.53	I_2O_5	7.32
Cu ₂ O	5.50	BeO	6.05	Ta ₂ O ₅	6.53	NO	7.35
TiO	5.58	Cr ₂ O ₃	6.07	РО	6.59	N_2O_3	7.39
ZrO	5.59	ZnO	6.14	<u>SiO2</u>	<u>6.61</u>	NO_2	7.41
VO	5.62	<u>SiO</u>	<u>6.15</u>	CrO ₃	6.62	N_2O_5	7.43

Таблица 1 – Средние орбитальные электроотрицательности (χ) оксидов

MgO	5.68	SbO	6.16	<u>GeO2</u>	<u>6.63</u>	Br_2O_5	7.56
Y_2O_3	5.69	Bi ₂ O ₃	6.17	ReO ₃	6.66	Cl_2O_7	7.71
CrO	5.70	HfO ₂	6.17	As ₄ O ₆	6.70	Cl ₂ O ₅	7.76

В Таблицы начале 1 находятся оксиды, отличающиеся низкой электроотрицательностью. В реакциях синтеза газообразных солей кислородсодержащих кислот такие оксиды выполняют функции катион-образующих. В конце Таблицы 1 расположены наиболее электроотрицательные оксиды, играющие роль анионобразующих. Оксиды, представленные в середине Таблицы 1, могут обладать амфотерными свойствами и участвовать в реакциях синтеза газообразных солей как в качестве катион-, так и в качестве анион-образующих. Данные, приведенные в Таблице 1, газообразных позволяют прогнозировать вероятность существования солей кислородсодержащих кислот в паре, и, в первом приближении, оценивать относительное содержание этой соли в паре над сложными оксидными системами.

Количественным критерием вероятности существования газообразной соли кислородсодержащей кислоты может служить отношение средних орбитальных электроотрицательностей катион- и анион-образующего оксидов, $\frac{1}{\chi}$ (кат.)/ $\frac{1}{\chi}$ (ан.). Чем меньше эта величина, тем больше вероятность существования соли в паре.

Работоспособность этого критерия подтверждена многочисленными примерами. Тем не менее, возможны и исключения. Известно, что основные свойства оксидов нарастают по мере продвижения вниз по группе ПС. В отношении оксидов элементов 1 группы ПС это полностью подтверждается данными Таблицы 1. Отклонения от вышеупомянутой тенденции наблюдаются для оксидов элементов 2, 13 и 14 групп ПС. Электроотрицательность SrO выше, чем у CaO, и электроотрицательность Tl₂O выше, чем у Al₂O или Ga₂O. Такая же ситуация характерна и для пары SnO и PbO. По нашему мнению, такого рода несоответствия связаны с трудностями при экспериментальном измерении величин, входящих в уравнение (2). Энергия ионизации элементов определяется с достаточно высокой точностью в диапазоне от 0.02 до 0.3 эВ в зависимости от метода измерений. К сожалению, того же нельзя сказать о величинах сродства к электрону, особенно когда речь идет о наименее электроотрицательных элементах.

Тем не менее, использование данных, представленных в Таблице 1, помогло, в частности, объяснить причину отсутствия в высокотемпературном паре молекул GePO₂ [45] и предсказать, а позднее и экспериментально подтвердить, существование газообразных SnPO₂ и PbPO₂ [23, 46].

1.1.2 Метод оценки стандартных энтальпий образования газообразных солей. Изокатионные и изоанионные ряды

Согласно полученным к настоящему времени экспериментальным данным, обобщенным в работах [12, 13], почти все газообразные соли кислородсодержащих кислот имеют циклическую структуру. Наиболее вероятной позицией, в которой находится катион – на перпендикуляре к стороне треугольника или ребру тетраэдра с бидентатной связью катион – анион. Структуры аниона в изоанионных рядах не меняются, а также сохраняется характер связи катион – кислород в изокатионных рядах. При выполняются правила, ЭТОМ следующие которые помогли установить закономерности изменения величин энтальпий атомизации в изокатионных и изоанионных рядах:

- энтальпия атомизации анионной группы не зависит от природы катиона;
- энергия разрыва связи катион кислород не зависит от природы аниона.

В работах [12, 13] предложен общий вид зависимости, которому подчиняются все известные на сегодняшний день газообразные соли кислородсодержащих кислот: для солей, образованных одним и тем же катион-образующим оксидом, величина стандартной энтальпии атомизации соли линейно зависит от величины энтальпии атомизации ее анион-образующего оксида. Количественно эта зависимость описывается уравнением (3).

$$\Delta_{at} H^{\circ}(M_{m} XO_{n}, ra3, 298.15 \text{ K}) = k \Delta_{at} H^{\circ}(XO_{n-1}, ra3, 298.15 \text{ K}) + b$$
(3)

Корректность определения энтальпий атомизации и образования не изученных до сих пор газообразных солей зависит от достоверности величин k и b в уравнении (3).

Величины энтальпий образования и атомизации газообразных анион-образующих оксидов, как правило, известны и включены в фундаментальные справочники термодинамических величин [24 – 28]. Для того чтобы получить уравнение (3) для изокатионного ряда, необходимо определенного экспериментально определить достаточное количество величин энтальпий атомизации газообразных солей в соответствующем изокатионном ряду. При этом желательно экспериментально определить энтальпии образования и атомизации газообразных солей, образованных анион-образующими оксидами со значительно отличающимися величинами энтальпий атомизации. Полученные на сегодняшний день уравнения (3) для изокатионных рядов германия, олова и свинца (где в качестве катион-образующих оксидов выступают GeO, SnO и PbO), содержат 10, 8 и 11 точек, соответственно. Для изокатионных рядов щелочных и щелочноземельных элементов изучено значительно большее количество газообразных солей, например, изокатионный ряд бария содержит 28 точек. Коэффициенты k и b для изокатионных рядов газообразных солей германия, олова и свинца при m = 1 представлены в Таблице 2 [47].

Следует отметить, что при определении коэффициентов k и b для изокатионного ряда германия не были использованы результаты работы по определению стандартной энтальпии образования газообразного GeV₂O₆ [5]. Это связано с отсутствием справочных данных о величинах энтальпий образования и атомизации соответствующего анионобразующего оксида, V₂O₅. Кроме того, при построении изокатионного ряда свинца не были использованы данные работ по определению энтальпий образования PbAs₂O₄ и Pb₃As₂O₆ [48], PbSb₂O₄ [48], PbTeO₃, PbTe₂O₅, Pb₂TeO₄, Pb₂Te₂O₆ [49], PbMoO₄, PbMo₂O₇ и PbMo₃O₁₀ [50], полученных Кункель и соавторами. Это обусловлено тем, что, по нашему мнению, эксперимент был проведен некорректно и полученные данные являются недостоверными. Анализ ошибок, допущенных в вышеперечисленных работах, проведен в работе [21], и включен в раздел «*Обсуждение экспериментальных результатов*» настоящей работы.

Оксид	Количество изученных солей в изокатионном ряду	k	b	Литература
GeO	10	0.959 ± 0.014	1105.1 ± 38.3	[20, 47]
SnO	8	1.005 ± 0.024	896.4 ± 67.3	[7, 47]
PbO	11	1.014 ± 0.015	756.6 ± 38.4	[21, 47]

Таблица 2 – Значения коэффициентов *k* и *b* в уравнении (3) для изокатионных рядов германия, олова и свинца

1.2 Газообразные соли кислородсодержащих кислот, образованные оксидами элементов 14 группы ПС

На основании положений, изложенных в разделе 1.1.1 настоящей работы, для того чтобы осуществить синтез газообразных солей, образованных оксидами элементов 14 группы ПС, необходимо создать условия сосуществования этих оксидов с типичными катион- или анион-образующими оксидами. Для этого необходимо в широком температурном интервале рассмотреть характер парообразования и формы оксидов углерода, кремния, германия, олова и свинца, существующие в паре. Приведенный ниже материал посвящен описанию характера парообразования оксидов углерода, кремния, германия, олова и свинца, термодинамическим свойствам этих оксидов, а также известным к настоящему времени газообразным кислородсодержащим солям, образованным оксидами этих элементов.

1.3 Оксиды углерода

Наиболее распространёнными оксидами углерода в газовой фазе являются СО и CO₂. СО – несолеобразующий оксид, а CO₂, в силу своих достаточно выраженных кислотных свойств, является типичным анион-образующим оксидом, который термически устойчив в широком интервале температур.

1.3.1 Газообразные соли, образованные оксидами углерода

1.3.1.1 Карбонаты щелочных металлов

Как правило, карбонаты при нагревании подвергаются термической диссоциации с переходом в пар CO₂ и оксида металла. Тем не менее, в подтверждение гипотез, изложенных в разделе 1.1.1, к настоящему времени известно о существовании газообразных карбонатов натрия, калия и цезия. В работе [29] величина стандартной энтальпии образования газообразного Na₂CO₃ была определена по III закону по двум реакциям, (4) и (5). Полученные величины при температуре 298.15 К составили -728 \pm 13 и -724 \pm 17 кДж/моль соответственно.

$$Na_2CO_3 (TB) = Na_2CO_3 (ra3)$$
(4)

$$Na_2O + CO_2 = Na_2CO_3 \tag{5}$$

Газообразный карбонат калия был получен и термодинамически охарактеризован в работе [30]. Авторы измерили энтальпию сублимации K₂CO₃ в температурном интервале 1037 – 1184 К и определили стандартную энтальпию образования газообразного K₂CO₃, равную -979 кДж/моль при температуре 1100 К.

В работе [31] авторы получили значение стандартной энтальпии сублимации Cs_2CO_3 при средней температуре измерений, равной 1000 К, что позволило оценить стандартную энтальпию образования $\Delta_f H^{\circ}(Cs_2CO_3, ra3, 298.15 \text{ K}) = -790.8 \pm 16.7$ кДж/моль.

Следует отметить, что крайне высокая летучесть CO₂ препятствует синтезу газообразных карбонатов вследствие трудностей, связанных с решением проблемы сосуществования CO₂ и катион-образующего оксида.

1.4 Оксиды кремния

В конденсированной фазе термодинамически устойчивым оксидом кремния является SiO₂. Согласно данным работ [43, 44], в температурном интервале 1800 – 1990 К диоксид кремния испаряется практически конгруэнтно с переходом в пар SiO и кислорода. Содержание SiO₂ в паре не превышает 1 %. В реакциях синтеза газообразных солей оксиды SiO и SiO₂ проявляют кислотные свойства и играют роль анион-

образующих оксидов. Реакции синтеза газообразных солей, в которых оксиды кремния играют роль катион-образующих оксидов, неизвестны.

1.4.1 Газообразные соли, образованные оксидами кремния

1.4.1.1 Силикат лития

В работах [2, 3] при изучении процессов парообразования силиката лития методом ВТМС установлено, что, наряду с продуктами термической диссоциации силиката, в паре присутствует и Li₂SiO₃. Авторы получили значение энтальпии реакции (6) по III закону и энтальпию образования газообразного Li₂SiO₃ при температуре опыта. На основании этих данных авторы работ [12, 32] приводят величину стандартной энтальпии образования Li₂SiO₃ при температуре 298.15 K, которая равняется -1176.6 ± 8.0 кДж/моль.

$$Li_2SiO_3(\mathbf{x}) = Li_2SiO_3(ra3) \tag{6}$$

1.4.1.2 Силикаты щелочноземельных металлов

В работе [33] для определения стандартных энтальпий образования газообразных силикатов кальция были измерены константы равновесия газофазных реакций (7), (8).

$$CaO + SiO = CaSiO_2 \tag{7}$$

$$CaO + SiO_2 = CaSiO_3 \tag{8}$$

Пересчитанные к температуре 298.15 К величины энтальпий этих реакций позволили вычислить стандартные энтальпии образования и атомизации газообразных силикатов кальция, равные соответственно (кДж/моль) -474 ± 18 и 1583 ± 20 для CaSiO₂; -841 ± 20 и 2199 ± 22 для CaSiO₃.

В работе [34] при испарении борсиликатного стекла состава SrO – B_2O_3 – SiO₂ из платиновой камеры в температурном интервале 1337 – 1602 К в паре, кроме SrBO₂, была обнаружена молекула SrSiO. Авторы определили стандартную энтальпию образования SrSiO, измерив константы равновесия газофазной реакции (9).

$$SrSiO = Sr + SiO \tag{9}$$

Следует отметить, что SrSiO не является солью кислородсодержащей кислоты, поскольку указанная соль не является продуктом взаимодействия двух оксидов.

В работе [35] были получены значения энтальпий образования газообразных SrSiO₂ и SrSiO₃ при температуре 298.15 К. Для этого авторы проводили испарение образцов системы SrO – SiO₂ в температурном интервале 2180 – 2340 К из вольфрамовой камеры. Присутствие в паре оксидов стронция и кремния наряду с двумя силикатами стронция позволило измерить константы равновесия газофазных реакций (10), (11) и получить величины энтальпий этих реакций.

 $SrO + SiO = SrSiO_2$ (10)

$$SrO + SiO_2 = SrSiO_3 \tag{11}$$

Значения энтальпий образования $SrSiO_2$ (газ) и $SrSiO_3$ (газ) при температуре 298.15 К равны -474 ± 18 и -841 ± 20 кДж/моль соответственно.

Кордфунке и соавторы [36] в температурном интервале 1783 – 2143 К обнаружили в паре над силикатом бария молекулу BaSiO₃ и вычислили энтальпию образования этой соли при температуре 298.15 К, равную -1045.8 ± 21.5 кДж/моль.

В работах [52, 53] при изучении парообразования системы BaO – SiO₂ из молибденовой эффузионной камеры при температуре порядка 2200 К в паре были обнаружены молекулы BaO, SiO, SiO₂, BaSiO₂, BaSiO₃, атомарный барий и кислород, а также продукты взаимодействия образцов с материалом камеры: MoO₂, MoO₃, BaMoO₄ и BaMoO₃. Измерение констант равновесия газофазных реакций (12) и (13), а также определение энтальпий этих реакций позволило получить величины стандартных энтальпий образования газообразных силикатов бария BaSiO₂ и BaSiO₃, равные -510 ± 15 и -884 ± 18 кДж/моль соответственно.

$$BaO + SiO_2 = BaSiO_3$$
(12)

 $BaO + SiO = BaSiO_2$ (13)

1.5 Оксиды германия

В конденсированной фазе существуют два оксида германия, GeO₂ и GeO [54]. GeO обладает амофтерными свойствами [20, 37] с преобладанием кислотных [55]. Согласно данным работ [56 – 58], в температурном интервале 1300 – 1500 К диоксид германия переходит в пар согласно реакции (14). Диоксид германия, GeO₂, в паре обнаружен не был.

$$GeO_2 = GeO + 0.5 O_2 \tag{14}$$

Согласно данным работы [59], при испарении смеси GeO₂ – Ge при более низких температурах (870 – 960 K) в паре, кроме GeO, присутствовали молекулы Ge₂O₂ и Ge₃O₃.

Благодаря своему положению в Таблице 1 в реакциях синтеза газообразных кислородсодержащих солей GeO может служить как катион-, так и анион-образующим оксидом. В качестве примера соли, где GeO является анион-образующим оксидом, можно привести BaGeO₂ [37]. Солей, в процессе синтеза которых GeO проявляет основные свойства, гораздо больше и они подробно рассмотрены ниже.

1.5.1 Газообразные соли, образованные оксидом германия

1.5.1.1 Германат бария

Индивидуальные оксиды бария и германия переходят в пар в виде BaO и GeO [1].

В работе Семенова [37] в паре над системой BaO – GeO₂ обнаружена газообразная молекула BaGeO₂. Это пока единственная работа, демонстрирующая возможность получения газообразной кислородсодержащей соли, в которой GeO выполняет роль анион-образующего оксида. Определены константы равновесия реакции (15) и вычислены стандартные энтальпии образования и атомизации газообразного германата бария при температуре 0 К, которые составили -414.7 \pm 13.0 и 1457 \pm 15 кДж/моль соответственно.

$$BaGeO_2 = BaO + GeO \tag{15}$$

Определение энтальпии реакции (15) выполнялось только по III закону из-за температурных ограничений существования BaGeO₂ в паре.

Было высказано предположение об устойчивости в паре газообразных германатов кальция и стронция, однако синтез таких солей невозможен из-за относительно низкого содержания в паре CaO и SrO.

1.5.1.2 Молибдаты германия

При испарении системы GeO₂ – Nb₂O₅ из молибденовой камеры Кнудсена авторами работы [60] в паре, кроме ниобата германия, был обнаружен молибдат германия GeMoO₃. Авторы приводят величину стандартной энтальпии образования этой соли, равную -665 ± 4 кДж/моль.

В работе [55] в паре над смесью GeO₂ и MoO₃ был обнаружен молибдат германия, GeMoO₄. Авторы экспериментально определили константы газофазных реакций (16), (17) и получили величину стандартной энтальпии образования GeMoO₄ (газ), равную -765 ± 4 кДж/моль.

$$GeMoO_4 = GeO + \frac{1}{2} Mo_2O_6$$
(16)

$$GeMoO_4 = GeO + \frac{1}{3} Mo_3O_9$$
(17)

В работе [19] авторам удалось наряду с молекулой GeMoO₄ синтезировать и газообразный молибдат германия GeMo₂O₇. Для этого смесь GeO₂ – MoO₃ испаряли из молибденовой камеры в температурном интервале 1400 – 1500 К. Определение констант равновесия и энтальпий газофазных реакций (18) и (19) позволило получить величину стандартной энтальпии образования GeMo₂O₇ (газ), которая при температуре 298.15 К составила -1449 \pm 41 кДж/моль.

$$GeO + Mo_2O_6 = GeMo_2O_7 \tag{18}$$

$$GeO + 2 MoO_3 = GeMo_2O_7 \tag{19}$$

1.5.1.3 Вольфраматы германия

При испарении системы GeO₂ – Nb₂O₅ из вольфрамовой камеры Кнудсена авторами работы [60] в результате взаимодействия диоксида германия с материалом камеры был получен вольфрамат германия GeWO₃, стандартная энтальпия образования которого составила -484 ± 3 кДж/моль.

Плис [61] методом ВТМС изучил процессы испарения в системе $GeO_2 - WO_2$ в температурном интервале 1258 – 1383 К. Пар над системой состоял из (GeO)_n, (WO₂)_n (n в обоих случаях от 1 до 3), GeWO₄ и GeW₂O₇. Автор изучил температурную зависимость констант равновесия газофазных реакций (20) и (21), что позволило ему вычислить значения энтальпии этих реакций при средней температуре опыта, равной 1330 К.

$$2 \operatorname{GeO} + W_2 O_6 = 2 \operatorname{GeWO_4}$$

$$GeO + W_2O_6 = GeW_2O_7 \tag{21}$$

Полученные значения стандартных энтальпий образования газообразных GeWO₄ и GeW₂O₇ составили -760.3 и -1531.5 кДж/моль соответственно.

1.5.1.4 Фосфат германия

Работа [62] посвящена исследованию процессов испарения в системе GeO₂ – P₂O₅. Испарение проводилось из платиновых камер Кнудсена, паровая фаза над системой состояла из молекул GeO, PO₂, P₄O₁₀ и GePO₃.

Согласно данным работ [45, 46], пирофосфат германия, GeP₂O₇, в температурном интервале 1260 – 1387 К испаряется практически конгруэнтно с частичной диссоциацией. При испарении в нейтральных условиях (из платиновой камеры) в паре присутствуют молекулы P₄O₁₀, PO₂, GeO, GePO₃ и O₂.

Для определения стандартных теплот образования газообразных фосфатов германия авторы изучили реакцию термической диссоциации дифосфата германия (22) и газофазную реакцию (23).

$$GeP_2O_7 (\kappa p.) = \frac{1}{2} P_4O_{10} (ra3) + GeO (ra3) + \frac{1}{2} O_2 (ra3)$$
(22)

$$GeO + PO_2 = GePO_3$$
(23)

В температурном интервале 1420 – 1490 К при испарении GeP₂O₇ наблюдалось отклонение от конгруэнтности с преимущественным переходом в пар P₄O₁₀. В паре появлялись молекулы PO₂. Измерение констант равновесия реакции (23) позволило определить величину стандартной энтальпии образования GePO₃ (газ), равную -668.4 \pm 5.7 кДж/моль при температуре 0 К. При испарении пирофосфата германия из молибденовой камеры (восстановительные условия) наблюдали совместное существование PO и GeO в паре. Тем не менее, обнаружить в паре молекулы GePO₂, являющиеся продуктом взаимодействия GeO и PO, не удалось.

1.5.1.5 Борат германия

Качественный и количественный анализ состава пара над системой GeO₂ – B₂O₃ при температурах 1393 и 1483 К был проведен в работе [56] методом BTMC. Однако, авторам не удалось обнаружить в паре молекулы газообразных боратов германия.

В работе [19] с целью газофазного синтеза боратов германия смесь $GeO_2 - B_2O_3$ испаряли из молибденовой камеры в температурном интервале 1400 – 1500 К. В газовой фазе над изучаемой смесью были обнаружены молекулы GeO, B_2O_3 и GeB₂O₄, что дало возможность измерить константу равновесия газофазной реакции (24) и определить величины энтальпии этой реакции и стандартной энтальпии образования GeB₂O₄ (газ), равной -1101 ± 18 кДж/моль.

$$GeO + B_2O_3 = GeB_2O_4 \tag{24}$$

1.5.1.6 Ванадат германия

Работа [5] посвящена получению и термодинамическому описанию газообразных ванадатов олова и германия общей структуры MV_2O_6 (M = Ge, Sn). Испарение проводилось из эффузионных камер, изготовленных из ZrO_2 . Установлено, что в температурном интервале 1500 – 1800 К пар над системой $GeO_2 - V_2O_5$ состоит из молекул GeO, V_4O_{10} и GeV₂O₆. Величина стандартной энтальпии образования GeV₂O₆, равная -1520 ± 42 кДж/моль, была определена по данным измерения констант равновесия и энтальпии газофазной реакции (25).

$$GeO + \frac{1}{2} V_4 O_{10} = GeV_2 O_6$$
(25)

1.5.1.7 Ниобат германия

Поскольку летучести оксидов германия и ниобия значительно различаются, в работе [60] была предпринята попытка доказать возможность существования в паре ниобата германия при испарении GeO₂ и Nb₂O₅ из двухтемпературной эффузионной камеры. В результате, удалось измерить константы равновесия газофазной реакции (26) и определить величину стандартной энтальпии образования GeNbO₃ (газ), равную -411 \pm 3 кДж/моль.

1.5.1.8 Танталат германия

По аналогии с ниобатом германия был синтезирован и газообразный танталат [60]. Полученное значение стандартной энтальпии образования газообразного GeTaO₃ равно -592 ± 45 кДж/моль.

1.6 Оксиды олова

Согласно справочным данным [54], наиболее стабильным оксидом олова в конденсированной фазе является SnO_2 . При температуре 1250 - 1540 К большая часть SnO_2 переходит в пар согласно уравнению (27), в меньшей степени протекают процессы согласно уравнениям (28) и (29). Содержание Sn_2O_2 в паре оценивается в пределах 3%.

$SnO_2(TB) = SnO(\Gamma a_3) + \frac{1}{2}O_2(\Gamma a_3)$	(27)
$SnO_2(TB) = Sn_2O_2(ra_3) + \frac{1}{2}O_2(ra_3)$	(28)
$SnO_2(TB) = SnO_2(Ta3)$	(29)

При понижении температуры до 1050 - 1200 К в паре над смесью SnO₂ с металлическим оловом были обнаружены также полимерные оксиды олова Sn_nO_n, где n = $1\div 6$ (30).

 $Sn(\mathbf{x}) + SnO_2(TB) = Sn_nO_n(\Gamma a_3)$ (30)

1.6.1 Газообразные соли, образованные оксидом олова

Поскольку при нагревании SnO₂ преобладающим продуктом в паре является SnO, то синтез всех газообразных солей, образованных оксидами олова, происходил с участием именно SnO. В силу своих кислотно-основных свойств, монооксид олова участвовал в реакциях газофазного синтеза солей только в роли катион-образующего оксида. До проведения настоящей работы анион-образующие свойства SnO обнаружены не были.

1.6.1.1 Молибдаты олова

При испарении смеси Sn – SnO из молибденовой камеры при температуре 1200 К в паре было установлено существование газообразных молекул SnMoO₄ и Sn₂MoO₅ [63]. Изучение термодинамики реакций с участием молибдатов олова авторами данной работы не проводилось.

В работе [6] было установлено существование газообразных молибдатов олова SnMoO₄, Sn₂MoO₅ и SnMo₂O₇ и получены стандартные энтальпии образования этих соединений. При нагревании смеси SnO₂ – MoO₃ в молибденовой эффузионной камере Кнудсена в температурном интервале 1200 – 1400 К было установлено, что пар состоит из молекул SnO, Sn₂O₂, SnMoO₄, MoO₃, Mo₂O₆, Mo₃O₉, Sn₂MoO₅ и SnMo₂O₇.

В процессе выполнения работы были измерены константы равновесия и определены энтальпии газофазных реакций (31) – (51).

$SnO + MoO_3 = SnMoO_4$	(31)
$\frac{1}{2}$ Sn ₂ O ₂ + MoO ₃ = SnMoO ₄	(32)
$SnO + \frac{1}{2} Mo_2O_6 = SnMoO_4$	(33)
$\frac{1}{2}$ Sn ₂ O ₂ + $\frac{1}{2}$ Mo ₂ O ₆ = SnMoO ₄	(34)
$\text{SnO} + \frac{1}{3} \text{Mo}_3\text{O}_9 = \text{SnMoO}_4$	(35)
$\frac{1}{2}$ Sn ₂ O ₂ + $\frac{1}{3}$ Mo ₃ O ₉ = SnMoO ₄	(36)
2SnO + MoO ₃ = Sn ₂ MoO ₅	(37)
$Sn_2O_2 + MoO_3 = Sn_2MoO_5$	(38)
$SnMoO_4 + SnO = Sn_2MoO_5$	(39)
$SnMoO_4 + \frac{1}{2} Sn_2O_2 = Sn_2MoO_5$	(40)
$2 \operatorname{SnO} + \frac{1}{2} \operatorname{Mo_2O_6} = \operatorname{Sn_2MoO_5}$	(41)
$Sn_2O_2 + \frac{1}{2}Mo_2O_6 = Sn_2MoO_5$	(42)
$2 \operatorname{SnO} + \frac{1}{3} \operatorname{Mo_3O_9} = \operatorname{Sn_2MoO_5}$	(43)
$Sn_2O_2 + \frac{1}{3}MO_3O_9 = Sn_2MOO_5$	(44)
$SnO + 2 MoO_3 = SnMo_2O_7$	(45)
$\frac{1}{2}$ Sn ₂ O ₂ + 2 MoO ₃ = SnMo ₂ O ₇	(46)
$\text{SnO} + \text{Mo}_2\text{O}_6 = \text{SnMo}_2\text{O}_7$	(47)

$$\frac{1}{2} \operatorname{Sn}_2 O_2 + \operatorname{Mo}_2 O_6 = \operatorname{Sn} \operatorname{Mo}_2 O_7 \tag{48}
\operatorname{SnO} + \frac{2}{3} \operatorname{Mo}_3 O_9 = \operatorname{Sn} \operatorname{Mo}_2 O_7 \tag{49}
\frac{1}{2} \operatorname{Sn}_2 O_2 + \frac{2}{3} \operatorname{Mo}_3 O_9 = \operatorname{Sn} \operatorname{Mo}_2 O_7 \tag{50}
\operatorname{Sn} \operatorname{MoO}_4 + \operatorname{MoO}_3 = \operatorname{Sn} \operatorname{Mo}_2 O_7 \tag{51}$$

Средневзвешенные значения энтальпий образования газообразных молибдатов олова, рассчитанные по реакциям (31) – (51), приведены в Таблице 3.

В работе [38] при изучении испарения смеси SnO₂ и MoO₃ в паре не была найдена молекула SnMo₂O₇. Это связано с разницей в летучести MoO₃ и SnO₂. Для того чтобы создать условия сосуществования оксидов молибдена и олова в паре (повысить парциальное давление SnO), авторы добавляли к смеси оксидов металлическое олово. Испарение проводилось при более низких температурах, чем в работе [6] (900 – 1075 K). Авторам удалось обнаружить в паре Mo₄O₁₂, чья концентрация уменьшалась при увеличении температуры до 1175 К. Авторы работы [38] дополнительно рассматривали реакции образования газообразных молибдатов олова SnMoO₄ и Sn₂MoO₅ с участием Mo₄O₁₂, газофазные реакции (52) и (53).

$$SnO + \frac{1}{4}Mo_4O_{12} = SnMoO_4$$
 (52)

$$2 \text{ SnO} + \frac{1}{4} \text{ Mo}_4 \text{O}_{12} = \text{Sn}_2 \text{MoO}_5$$
(53)

1.6.1.2 Вольфраматы олова

В работе [63] при испарении смеси Sn – SnO из вольфрамовой камеры при температуре 1200 К обнаружили газообразные молекулы SnWO₄ и Sn₂WO₅. Авторы получили значения энтальпий газофазных реакций (54) и (55) при температуре 0 К по III закону.

$$SnWO_4 + 3 Sn = 2 Sn_2O_2 + W$$
 (54)

$$Sn_2WO_5 = SnWO_4 + SnO \tag{55}$$

В работе [38] были определены величины стандартных энтальпий образования газообразных вольфраматов олова SnWO₄, Sn₂WO₅ и SnW₂O₇, исходя из экспериментальных данных по измерению парциальных давлений молекулярных форм пара над диоксидом олова при испарении его из вольфрамовой камеры. Были изучены газофазные реакции (56) – (61), получены константы равновесия и энтальпии этих

реакций. Величины стандартных энтальпий образования газообразных вольфраматов олова представлены в Таблице 3.

$$SnO + \frac{1}{3} W_3O_9 = SnWO_4$$
 (56)

$$\text{SnO} + \frac{2}{3} \text{ W}_3 \text{O}_9 = \text{SnW}_2 \text{O}_7$$
 (57)

$$2 \text{ SnO} + \frac{1}{3} \text{ W}_3 \text{O}_9 = \text{Sn}_2 \text{WO}_5 \tag{58}$$

$$SnO + \frac{1}{4} W_4O_{12} = SnWO_4$$
 (59)

$$SnO + \frac{1}{4} W_4O_{12} = SnW_2O_7$$
(60)

$$2 \operatorname{SnO} + \frac{1}{4} \operatorname{W}_4 \operatorname{O}_{12} = \operatorname{Sn}_2 \operatorname{WO}_5 \tag{61}$$

В работе [40] исследовались процессы испарения наноразмерной системы $SnO_2 - WO_3$, взятой в мольном соотношении 1:1. Пар над исследуемой системой в температурном интервале 1250 - 1400 К состоял из молекул SnO, W_3O_9 , SnWO₄, SnW₂O₇, Sn₂WO₅ и O₂. Авторы приводят величины энтальпий газофазных реакций (62) – (64), полученные по II и III законам, но не высказывают соображений о структуре вольфраматов олова и не вычисляют значения стандартных энтальпий образования вольфраматов олова.

$$SnWO_4 + \frac{1}{3} W_3O_9 = SnW_2O_7$$
(62)

$$SnO + SnW_2O_7 = 2 SnWO_4 \tag{63}$$

$$\operatorname{Sn_2WO_5} + \operatorname{SnW_2O_7} = 3 \operatorname{SnWO_4}$$
(64)

Кроме того, следует отметить, что авторами работы [40] была установлена закономерность парообразования наноразмерных систем, согласно которой равновесие конденсированная фаза – пар в случае наноразмерной системы устанавливается гораздо медленнее, чем для ненаноразмерных систем.

1.6.1.3 Фосфаты олова

Согласно данным работы [64], фосфаты олова (IV) при температуре порядка 600 °С переходят в фосфаты олова (II), отщепляя кислород. В работе [65] получена величина стандартной энтальпии атомизации SnPO₂ при температуре 0 K, равная 1450 кДж/моль. В работах [39, 46] изучались процессы парообразования Sn₂P₂O₇. Установлено, что в температурном интервале 1350 – 1470 K пар состоял из молекул PO₂, SnO и SnPO₃. При испарении Sn₂P₂O₇ в восстановительных условиях (из молибденовой камеры) при температуре около 1300 K в паре присутствовали молекулы PO, PO₂, SnO, SnPO₂ и SnPO₃.

Авторы работ [39, 46] изучили температурную зависимость констант газофазных реакций (65) и (66), определили значения энтальпий этих реакций по II и III законам и вычислили величины стандартных энтальпий образования газообразных фосфатов олова.

$$SnPO_3 = SnO + PO_2 \tag{65}$$

$$SnPO_2 = SnO + PO \tag{66}$$

Полученные величины стандартной энтальпии образования газообразных фосфатов олова SnPO₂ и SnPO₃ приведены в Таблице 3.

1.6.1.4 Бораты олова

В работе [4] были получены и термодинамически описаны газообразные бораты олова SnB_2O_4 и $Sn_2B_2O_5$. Для этого авторы изучали парообразование смеси $SnO_2 - B_2O_3$ в температурном интервале 1320 – 1500 К. В паре над изучаемой системой присутствовали молекулы SnO, Sn_2O_2 , B_2O_3 , SnB_2O_4 и $Sn_2B_2O_5$. Авторы получили величины энтальпий реакций (67) – (70) по III закону.

$$SnO + B_2O_3 = SnB_2O_4 \tag{67}$$

$$2 \operatorname{SnO} + \operatorname{B}_2 \operatorname{O}_3 = \operatorname{Sn}_2 \operatorname{B}_2 \operatorname{O}_5 \tag{68}$$

$$\frac{1}{2} \operatorname{Sn}_2 O_2 + B_2 O_3 = \operatorname{Sn}_2 O_4$$
 (69)

$$Sn_2O_2 + B_2O_3 = Sn_2B_2O_5$$
(70)

Полученные средневзвешенные значения величин стандартной энтальпии образования газообразных SnB₂O₄ и Sn₂B₂O₅ при температуре 0 К приведены в Таблице 3.

1.6.1.5 Ванадаты олова

Работа [5] посвящена синтезу и термодинамическому описанию газообразных ванадатов олова и германия общей структуры MV_2O_6 (M = Ge, Sn). Испарение систем MO – V_2O_5 проводилось из эффузионных камер, изготовленных из ZrO₂. Авторы отмечают, что использование молибденовых или вольфрамовых камер невозможно, так как материал камеры восстанавливал бы V_2O_5 до VO_2 и V_2O_3 . При испарении из платиновой камеры V_2O_5 термически разлагается на O_2 и твердый VO_2 . Проанализировав масс-спектры пара над системой $SnO_2 - V_2O_5$ в температурном интервале 1500 – 1800 К и измерив энергии появления ионов масс-спектра, авторы пришли к выводу, что пар над

изученной системой состоит из молекул SnO, Sn₂O₂, V₄O₁₀ и SnV₂O₆. Авторам удалось получить значения энтальпий газофазных реакций (71) и (72) по II и III законам.

$$SnO + \frac{1}{2} V_4 O_{10} = SnV_2 O_6 \tag{71}$$

$$Sn_2O_2 + V_4O_{10} = 2 SnV_2O_6 \tag{72}$$

Полученная величина стандартной энтальпии образования газообразного SnV₂O₆ при температуре 298.15 К приведена в Таблице 3.

Таблица 3 – Значения стандартных энтальпий образования и атомизации газообразных солей олова

Газообразная соль	$-\Delta_{f}H_{298.15}^{\circ}(2a3),$	$\Delta_{at} H_{298.15}^{\circ}(газ),$ кЛж/моць	Литература
SnMoO4	699 ± 29	2655 ± 29	[6]
Sillvi004	$670 \pm 40^*$	$2614 \pm 40^{*}$	[38]
SnaMoOs	1001 ± 38	3508 ± 38	[6]
5112141005	929 ± 42	3436 ± 42	[38]
SnMo ₂ O ₇	1456 ± 60	4819 ± 60	[6]
SnWO ₄	777.9 ± 71.1	2905	
Sn ₂ WO ₅	1083.9 ± 125.5	4208	[6, 40]
SnW ₂ O ₇	1570.7 ± 104.6	4778	
SnPO ₂	$312.0 \pm 1.5^*$	$1429.3 \pm 1.5^*$	[30]
SnPO ₃	$601 \pm 3^{*}$	$1958 \pm 3^{*}$	
SnB ₂ O ₄	$1166 \pm 22^*$	$3574 \pm 22^{*}$	[4]
Sn ₂ B ₂ O ₅	$1476 \pm 28^{*}$	$4432\pm28^*$	
SnV ₂ O ₆	1520 ± 43	4347 ± 43	[5]

* при температуре 0 К

1.7 Оксиды свинца

В конденсированной фазе существуют PbO, PbO₂, Pb₂O₃ и Pb₃O₄. Оксиды свинца PbO₂, Pb₂O₃ и Pb₃O₄ термически нестабильны и при нагревании теряют кислород с образованием PbO [1].

Впервые масс-спектрометрический анализ газовой фазы над PbO был проведен Дровартом в работе [66]. Испарение β -модификации монооксида свинца PbO и смеси Pb (ж, тв) – PbO (β) проводилось в температурном интервале 1000 – 1150 K из платиновых камер, а также камер, изготовленных из ZrO₂. В масс-спектре пара были найдены ионы Pb⁺, PbO⁺, Pb₂O⁺, Pb₃O₂⁺, Pb₂O₂⁺, Pb₃O₃⁺, Pb₄O₄⁺, Pb₅O₅⁺ и Pb₆O₆⁺.

На основании величин энергий появления ионов, обнаруженных в масс-спектре пара, авторы пришли к выводу, что пар над оксидом свинца состоит из смеси Pb, Pb_nO_n (n = 1÷6) и O_2 .

В работе [67] исследование парообразования PbO проведено в температурном диапазоне 800 – 1020 К. Образцы испаряли из алундовых и платиновых эффузионных камер. Установлено, что преобладающим компонентом пара является тетрамер Pb₄O₄.

В работах [68 – 70] процессы испарения PbO изучались методом BTMC. В массспектрах пара над PbO были зафиксированы те же ионы, что и в работе [66]. Установлено, что в паре в температурном интервале 900 – 1150 К, наряду с PbO и продуктами диссоциации, присутствуют молекулы Pb_nO_n (n = 2÷6).

В работе [70] были рассчитаны термодинамические функции для газообразных Pb_nO_n (n = 2÷6) в приближении "жесткий ротатор – гармонический осциллятор". Частоты нормальных колебаний были вычислены на основании оцененных силовых постоянных перечисленных выше молекул. Предложенная геометрия молекул подтверждается в работе [68], в которой проводились квантово-химические расчеты для Pb_nO_n (n = 1÷4).

Таким образом, согласно накопленным экспериментальным данным, установлено, что парообразование PbO описывается реакциями (73), (74)

$$n PbO = Pb_nO_n (n = 1 \div 6)$$
(73)

$$PbO = Pb + \frac{1}{2}O_2$$
 (74)

В температурном интервале 800 - 1150 К PbO конгруэнтно переходит в пар в виде (PbO)_n, где n = 1÷6, атомарного свинца и кислорода. Наиболее термически устойчивым в паре является Pb₄O₄.

РbO – типичный катион-образующий оксид, стабильный в широком температурном интервале. В реакциях газофазного синтеза газообразных солей кислородсодержащих кислот этот оксид выполняет функции только катион-образующего оксида. Газообразные плюмбаты к настоящему времени неизвестны.

1.7.1 Газообразные соли, образованные оксидом свинца

1.7.1.1 Молибдаты свинца

В работе [71] парообразование системы PbO – MoO₃ изучали в нейтральных условиях при испарении из платиновой камеры при температуре 1253 К. Авторы пришли к выводу, что в паре присутствует единственный молибдат свинца, PbMoO₄.

Работа [72] была направлена исключительно на изучение состава газовой фазы над системой PbO – MoO₃ для проверки результатов, полученных в работе [71]. Помимо PbMoO₄ в паре были обнаружены молекулы PbMo₂O₇ и Pb₂MoO₅.

В работе [50] при испарении PbMoO₄ при 1173 К в потоке MoO₃, нагретом до температуры 873 К, помимо PbMoO₄, PbMo₂O₇ и Pb₂MoO₅ удалось обнаружить также PbMo₃O₁₀. Величины стандартных энтальпий образования молибдатов свинца представлены в Таблице 4.

1.7.1.2 Вольфраматы свинца

В работе [71] испарение системы PbO – WO₃ проводили из платиновой камеры при температуре 1328 К. Авторы пришли к выводу, что пар состоит в основном из молекул PbWO₄. Проверка данных этой работы, предпринятая в работе [72], показала, что в паре, наряду с PbMO₄, присутствуют молекулы PbW₂O₇ и Pb₂WO₅. Величины стандартных энтальпий образования вольфраматов свинца представлены в Таблице 4.

1.7.1.3 Ванадаты свинца

Газообразная молекула PbV₂O₆ была впервые обнаружена в паре над системой PbO – V₂O₅ в работе [73] в температурном интервале 1200 – 1500 К. В результате исследования температурной зависимости газофазной реакции (75) авторы получили энтальпию образования газообразного ванадата свинца, представленную в Таблице 4.

$$PbV_2O_6 = PbO + \frac{1}{2}V_4O_{10}$$
(75)

В работе [69] при изучении парообразования системы PbO – V_2O_5 из платиновой камеры в температурном интервале 1350 – 1450 К в паре также были обнаружены молекулы PbV₂O₆. Авторы работы [69] измерили константы равновесия реакции (75), определили величины энтальпии этой реакции и стандартной энтальпии образования газообразного ванадата свинца. Разница в определенных величинах энтальпии реакции

(75), определенной в работах [69, 73], была связанна с различной интерпретацией молекулярных параметров газообразного ванадата свинца.

1.7.1.4 Бораты свинца

Семенихин и др. [74] изучали процессы испарения в системе PbO – B₂O₃. В результате были определены значения энтальпии газофазных реакций (76) – (86) и энтальпии образования газообразных боратов свинца при температуре 0 К (Таблица 4).

$PbO + B_2O_3 = PbBO_2 + BO_2$	(76)
$2 PbO + B_2O_3 = 2 PbBO_2 + \frac{1}{2} O_2$	(77)
$PbB_2O_4 = PbO + B_2O_3$	(78)
$Pb_2BO_3 = PbO + PbBO_2$	(79)
$Pb_3BO_4 = PbO + Pb_2BO_3$	(80)
$Pb_4BO_5 = PbO + Pb_3BO_4$	(81)
$Pb_5BO_6 = PbO + Pb_4BO_5$	(82)
$Pb_2B_2O_5 = PbO + PbB_2O_4$	(83)
$Pb_3B_2O_6 = PbO + Pb_2B_2O_5$	(84)
$Pb_4B_2O_7 = PbO + Pb_3B_2O_6$	(85)
$Pb_5B_2O_8 = PbO + Pb_4B_2O_7$	(86)

1.7.1.5 Перренат свинца

В работе [75] исследовали состав пара над системой PbO – Re₂O₇. Испарение проводилось из платиновой камеры. Авторы выдвинули предположение, что в паре над изученной системой присутствуют Pb(ReO₄)₂ и Pb₂Re₂O₉.

1.7.1.6 Фосфаты свинца

В работах [46, 76] было установлено, что в паре над метафосфатом свинца $Pb(PO_3)_2$ наряду с молекулами PO_2 , P_4O_{10} и PbO присутствуют газообразные фосфаты свинца $PbPO_3$ и PbP_2O_6 . На основании измеренных величин энергий появления ионов в массспектре пара был сделан вывод, что пар над метафосфатом свинца $Pb(PO_3)_2$ состоит из молекул PO_2 , P_4O_{10} , Pb, PbO, PbPO₃ и PbP₂O₆. Пар над пирофосфатом свинца Pb₂P₂O₇ состоит из PO₂, Pb, PbO и PbPO₃. При определении констант равновесия газофазной реакции (87) была получена величина энтальпии образования PbPO₃, которая составила -606 кДж/моль при температуре 0 К.

$$PbO + PO_2 = PbPO_3 \tag{87}$$

Согласно данным работ [21, 23], в паре над Pb(PO₃)₂ в нейтральных условиях испарения (платиновая камера) при температуре 1000 – 1300 К присутствовали молекулы P4O₁₀, PO₂, Pb, PbO, PbPO₃ и PbP₂O₆. Помимо реакции (87), авторы работы [23] также исследовали газофазные реакции (88) – (90) и определили энтальпии этих реакций.

$$PbO + \frac{1}{2} P_4O_{10} = PbP_2O_6$$
(88)

$$PbPO_3 + PO_2 + PbO = PbP_2O_6 + Pb$$
(89)

$$2 \operatorname{PbO} + 2 \operatorname{PO}_2 = \operatorname{PbP}_2 \operatorname{O}_6 + \operatorname{Pb}$$

$$\tag{90}$$

При испарении дифосфата свинца в восстановительных условиях (из молибденовой камеры) в температурном интервале 1398 – 1460 К в паре дополнительно появлялись молекулы РО и PbPO₂, что позволило определить энтальпии реакций (91) – (93).

$$PbO + PO = PbPO_2 \tag{91}$$

$$PbPO_3 + PO = PbPO_2 + PO_2$$
(92)

$$Pb + PO_2 = PbPO_2 \tag{93}$$

Полученные величины стандартных энтальпий образования газообразных фосфатов свинца помещены в Таблице 4.

1.7.1.7 Арсенаты и антимонат свинца

В работе [48] с использованием двойной двухтемпературной эффузионной камеры были получены и термодинамически охарактеризованы газообразные арсенаты и антимонат свинца, Pb₃As₂O₆, PbAs₂O₄ и PbSb₂O₄. Авторы определили значения энтальпий газофазных реакций (94) – (96) по III закону.

$$PbO + \frac{1}{2} As_4O_6 = PbAs_2O_4$$
(94)

$$3 \text{ PbO} + \frac{1}{2} \text{ As}_4 \text{O}_6 = \text{Pb}_3 \text{As}_2 \text{O}_6 \tag{95}$$

$$PbO + \frac{1}{2}Sb_4O_6 = PbSb_2O_4 \tag{96}$$

Полученные величины стандартных энтальпий образования газообразных молекул PbAs₂O₄, Pb₃As₂O₆ и PbSb₂O₄ приведены в Таблице 4.

1.7.1.8 Теллураты свинца

Работа [49] посвящена газофазному синтезу теллуратов свинца PbTeO₃, PbTe₂O₅, Pb₂TeO₄ и Pb₂Te₂O₆. Отмечено, что газообразные селенаты и сульфаты не обнаружены, также авторы не установили существование газообразных селенатов и теллуратов германия и олова.

В работе [37] было изучено испарение эквимолярной смеси PbO – TeO₂ при температуре 1063 К. Авторы исследовали газофазные реакции (97) – (100) и определили энтальпии этих реакций.

$PbO + TeO_2 = PbTeO_3$	(97)
$PbO + 2 TeO_2 = PbTe_2O_5$	(98)
$2 PbO + TeO_2 = Pb_2TeO_4$	(99)
$2 \operatorname{PbO} + 2 \operatorname{TeO}_2 = \operatorname{Pb}_2 \operatorname{Te}_2 \operatorname{O}_6$	(100)

В работах [21, 22] проводили исследование процесса парообразования системы $PbO - TeO_2$ в температурном интервале 1050 - 1170 К из платиновой камеры. Было установлено, что пар над системой $PbO - TeO_2$ состоит из Pb, PbO, Pb₂O₂, TeO₂, PbTeO₃ и Pb₂TeO₄. Молекулу Pb₂Te₂O₆ обнаружить не удалось. Помимо газофазных реакций образования PbTeO₃ (97) и Pb₂TeO₄ (99), авторы определили энтальпии газофазных реакций (101) и (102).

$$\frac{1}{2} Pb_2O_2 + TeO_2 = PbTeO_3$$
 (101)

$$Pb_2O_2 + TeO_2 = Pb_2TeO_4$$
(102)

Авторам удалось измерить температурные зависимости констант равновесия реакций (97) и (101) и вычислить величины энтальпий реакций образования газообразного PbTeO₃, которые при пересчете на 298.15 К составили -241 ± 13 и -167 ± 14 кДж/моль соответственно. Величины стандартных энтальпий образования и атомизации теллуратов свинца представлены в Таблице 4.
Газообразная соль	<i>− Δ_f H[°]_{298.15}(газ)</i> , кДж/моль	∆ _{at} H° _{298.15} (газ), кДж/моль	Литература
PhMoO	701.3	2552.2	[77, 78]
1010004	676.3 ± 7.5	2527.2 ± 7.5	
PbMo ₃ O ₁₀	2076.3 ± 3.7	6740.2 ± 3.7	[50]
Pb ₂ MoO ₅	888.0 ± 18.3	3183.2 ± 18.3	[30]
DhMo.O-	1397.2 ± 12.7	4654.6 ± 12.7	
P DIVIO2O7	1473	4730	
PbW ₂ O ₇	1596	5237	[71]
PbWO ₄	735.6	2778.5	
	$1477 \pm 45 (C_{2v})$	4202 ± 45	[69]
PDV_2O_6	$1443 \pm 33 (D_{2h})$	4164 ± 33	[73]
PbBO ₂	$372 \pm 15^{*}$	$1621 \pm 15^*$	
PbB ₂ O ₄	$1067 \pm 17^{*}$	$3370 \pm 17^{*}$	
Pb ₂ BO ₃	$636 \pm 21^{*}$	$2328 \pm 21^{*}$	
Pb ₃ BO ₄	$878 \pm 26^{*}$	$3012 \pm 26^{*}$	
Pb ₄ BO ₅	$1063 \pm 39^{*}$	$3640 \pm 39^{*}$	[74]
Pb ₅ BO ₆	$1285 \pm 34^{*}$	$4305 \pm 34^{*}$	[/4]
Pb ₂ B ₂ O ₅	$1321 \pm 24^{*}$	$4066 \pm 24^{*}$	
Pb ₃ B ₂ O ₆	$1582 \pm 28^{*}$	$4770 \pm 28^{*}$	
Pb ₄ B ₂ O ₇	$1775 \pm 31^{*}$	$5406 \pm 31^{*}$	
Pb ₅ B ₂ O ₈	$1995 \pm 34^{*}$	$6068 \pm 34^{*}$	
	346 ± 43	1356 ± 43	[21]
PbPO ₂	346 ± 46	1356 ± 46	[23]
	606*	1857*	[76]
PbPO ₃	623 ± 45	1883 ± 45	[21]
	625 ± 56	1885 ± 56	[23]
PbP ₂ O ₆	1557 ± 61	3880 ± 61	[21]

Таблица 4 – Значения стандартной свободной энтальпии образования и атомизации газообразных солей, содержащих PbO или Pb₂O₂ в качестве катион-образующего оксида

	1553 ± 63	3876 ± 63	[23]
PbAs ₂ O ₄	659.5 ± 19.5	2491.6 ± 19.5	
Pb ₃ As ₂ O ₆	1090.3 ± 18.0	3776.5 ± 18.0	[48]
PbSb ₂ O ₄	669.9 ± 18.5	2391.6 ± 18.5	
PhTeO ₂	294 ± 17	1446 ± 20	[21]
101003	269.9 ± 18.5	1425.0 ± 18.5	
PbTe ₂ O ₅	567.1 ± 34.3	2432.3 ± 34.3	[49]
PhoTeO4	456.3 ± 34.2	2056.5 ± 34.2	
1021004	499 ± 12	2096 ± 17	[21]
Pb ₂ Te ₂ O ₆	762.1 ± 50.6	3036.4 ± 50.6	[49]

* при температуре 0 К

1.8 Квантово-химические расчеты равновесных структур и энтальпий реакций синтеза газообразных солей, образованных оксидами элементов 14 группы ПС

На основании экспериментальных данных, полученных методом ВТМС, как будет далее подробно описано в разделе «*Методика эксперимента*», можно определить константу равновесия и вычислить энтальпию исследуемой газофазной реакции. Расчеты проводят по II или III законам. В результате расчета по II закону получают величину энтальпии реакции при средней температуре опыта. Для пересчета полученной величины на температуры 298.15 или 0 К, а также для выполнения расчетов по III закону, для всех участников исследуемой газофазной реакции необходимо иметь их термодинамические функции, такие как разницу теплосодержаний, H(T) - H(0), и приведенную энергию Гиббса, $\Phi(T)$. Для большинства оксидов эти функции в зависимости от температуры представлены в справочниках [24 – 28] или оригинальных работах. Для вновь полученных газообразных солей справочные данные, естественно, отсутствуют.

Необходимые термодинамические функции ранее не изученных молекул к настоящему времени получают методами статистической термодинамики в приближении «жесткий ротатор – гармонический осциллятор». Для этого необходима информация об их строении, а именно, межъядерных расстояниях и углах, а также о частотах нормальных колебаний.

Обычные методы определения структур газообразных молекул, такие как газовая электронография и ИК или КР спектроскопия молекул, изолированных в инертных матрицах, зачастую оказываются непригодны при изучении строения газообразных солей кислородсодержащих кислот. Это связано с невозможностью обеспечить достаточную концентрацию исследуемых частиц, так как эти соли существуют только при очень высоких температурах (порядка 2000 К). В случае солей, образованных оксидами элементов 14 группы ПС, исключением являются карбонаты щелочных металлов, которые переходят в пар без разложения при температурах порядка 1100 – 1200 К [79].

В связи с этим, для определения структур и частот нормальных колебаний газообразных солей кислородсодержащих кислот, в том числе, солей, образованных оксидами элементов 14 группы ПС, в настоящий момент используют методы квантовой химии.

В ряде работ по синтезу газообразных солей, которые относятся к концу 1970-х – началу 2000-х годов, то есть, периоду, когда расчетные методы в химии только зарождались и их возможности были существенно ограничены, молекулярные параметры и частоты нормальных колебаний газообразных солей часто оценивали на основании доступных экспериментальных или расчетных данных более простых молекул, имеющих аналогичные по строению структурные фрагменты. Так, например, для солей германия, в частности, BaGeO₂ [37], GeMoO₄ [55], GePO₃ [45] и GeXO₃, где X = Nb, Мо или W [60], оценку молекулярных параметров и частот нормальных колебаний проводили в предположении, что структуры солей имеют симметрию C_{2v} . При оценке использовали данные по ИК спектроскопии матрично-изолированных молекул Ge₂O₂ [80], что обусловлено тем, что в Ge₂O₂ также наблюдается бидентантный характер связи Ge – O. Межатомное расстояние Ge – O оценивали как сумму эффективных ионных радиусов Ge²⁺ и O²⁻. Аналогичные оценки проводились и для солей олова, в частности, SnPO₂ и SnPO₃ [39], на основании данных по ИК спектроскопии матрично-изолированных молекул Sn₂O₂ [81].

Современные методы квантовой химии позволяют с высокой степенью достоверности определять структуры газообразных соединений, обладающие минимумом на поверхности потенциальной энергии (ППЭ), и частоты нормальных

39

колебаний. Величины энтальпий газофазных реакций также можно рассчитать квантовохимически и затем сопоставить с экспериментально полученной величиной.

Все квантово-химические методы, обсуждаемые в рамках данной работы, можно разделить на две группы: *ab initio* (неэмпирические) и DFT-методы (полуэмпирические).

ab Метолы initio базируются на использовании волновых функций многоэлектронных систем. К таким методам относятся различные модификации метода молекулярных орбиталей МО ЛКАО (молекулярная орбиталь – линейная комбинация атомных орбиталей), например, методы Хартри-Фока (HF), вариационная теория возмущений Меллера-Плессета (MPn, где n – порядок теории), метод сопряженных кластеров (CCSD) и методы конфигурационного взаимодействия. В случае методов MP2 и CCSD для учета эффектов электронной корреляции (корреляции в движении электронов при их сближении) возможно использовать волновые функции, явно зависящие от расстояния между электронами. Такой класс методов назван «explicitly correlated» или F12-методами.

Способ расчета методом DFT использует редуцированную электронную матрицу (функцию) плотности первого порядка и базируется на методе функционала плотности. Метод предполагает использование различных типов функционалов. Наиболее часто используемыми функционалами являются M06 [82], PBE0 [83] и TPSSh [84, 85]. Например, гибридный функционал M06 специально разработан для расчета энтальпий атомизации и энтальпий реакций молекул, включающих переходные элементы [82].

Для поиска минимальной по энергии конфигурации структуры изучают поверхность потенциальной энергии (ППЭ) молекулы. Оптимальной по энергии структуре отвечает глобальный минимум на кривой ППЭ. На кривой ППЭ также могут наблюдаться локальные минимумы, в таком случае анализируют разницу энергий между глобальным и локальным минимумами и оценивают вероятность структурной перестройки. Следует понимать, что в высокотемпературном паре одновременно, с разной степенью вероятности, могут находиться структуры с разным строением, потому что зачастую энергетические барьеры при переходе из одного состояния в другое невелики. Методы квантовой химии позволяют оценить, молекулы с каким строением преобладают в паре. Что касается расчетов энтальпий реакций, следует отметить, что зачастую их удается проводить, рассматривая только основные (синглетные) состояния участников реакции. Тем не менее, для оценки необходимости проведения расчетов с учетом возбужденных состояний частиц, проверяют разницу в энергиях между их основным состоянием и первым возбужденным, например, с использованием метода TDDFT [86, 87].

При проведении квантово-химических расчетов важно соблюдать разумный баланс между точностью и количеством машинного времени. Поэтому сначала проводят серию предварительных расчетов с использованием базисов, близких к минимальным, а затем постепенно уточняют базис путем введения новых функций, таким образом, выясняя, какие из уточнений являются значимыми. На сегодняшний день для каждого атома есть перечень рекомендуемых базисов. Полный список используемых базисов с указанием ссылок на первоисточники приведен, например, на сайте разработчиков программы GAUSSIAN [88].

В настоящий момент для повышения надежности получаемых результатов проводят серию параллельных расчетов методами DFT и *ab initio*. Визуализацию геометрий и нормальных колебаний осуществляют с помощью графических программ Chemcraft [89] и Avogadro [90].

Для удобства дальнейшего рассмотрения работ, посвященных результатам квантово-химических расчетов для газообразных солей кислородсодержащих кислот, образованных оксидами элементов 14 группы ПС, ниже приведена систематизация [14, 47] их минимальных по энергии структур:

1) A_2BO_3 , C_{2v} , «бис-бидентантная» структура. Координационное число (КЧ) = 3; структура содержит атом В в плоско-треугольном окружении атомами

кислорода; атом А находится на продолжении высоты треугольника. Структура характерна для карбонатов щелочных металлов;

2)

 $ABO_3, C_{2v}, «монодентантно-бидентантная» структура; КЧ =$

3; аналогична предыдущей структуре, но содержит только один плоский треугольник О-В-О. Характерна для силикатов щелочноземельных металлов, молекул MPO₃ (M = Ge, Sn, Pb), GeNbO₃;

3) ABO₂, C_{2v} ; структура, аналогичная п. 2, но с KЧ = 2. Характерна для молекул BaGeO₂, MSiO₂ (M = Ba, Sr), MPO₂ (M = Sn, Pb);

4) $\ensuremath{\Theta}$ AB₂O₄, C_s, KЧ = 3, уголковая структура, содержащая цикл A-O-B-O. Характерна для молекул MB₂O₄ (M= Ge, Sn);

5) ABO₄, C_{2v} , $K\Psi = 4$; структура содержит атом В в тетраэдрическом окружении атомами кислорода; атом А расположен на перпендикуляре к ребру тетраэдра, проходящем церез атом В. Таким образом, атом А бидентатно срязан

к ребру тетраэдра, проходящем через атом В. Таким образом, атом А бидентатно связан с атомами О, образуя плоский цикл О-А-О-В. Структура характерна для молекул МХО₄ (M = Ge, Sn, Pb и X = Mo, W);

 AB_2O_7 , C_{2v} , KY = 4; структура содержит два соединенных 6) по одному атому кислорода тетраэдра, в центре которых находится атом В, а в вершинах - атомы кислорода. Атом металла А бидентантно связан с двумя атомами кислорода; структура характерна для молекул MX_2O_7 (M = Ge, Sn, Pb и X = Mo, W);

 AB_2O_6 , C_{2v} , KY = 4; структура содержит два соединенных по 7) ребру тетраэдра, в центре которых находится по одному атому В, а в вершинах – атомы кислорода. Атом металла А бидентантно связан с двумя атомами кислорода; структура характерна для молекул MV_2O_6 (M = Ge, Sn, Pb);

8)

 A_2BO_5 , C_s , KY = 4; структура характерна для молекул M_2MoO_5 (M = Sn, Pb).

Из представленных рисунков видно, что структуры большей части газообразных солей кислородсодержащих кислот характеризуются наличием циклов с бидентатным связыванием катион-образующего атома с двумя атомами кислорода. Для теоретического описания таких соединений применяют модель ионной пары, согласно которой вокруг относительно жесткой структуры аниона может свободно перемещаться атом катиона.

Далее приведен обзор работ, на основании которых была проведена изложенная систематизация. Ссылки формата «(1) – (8)» относятся к структурам, перечисленным выше.

1.8.1 Карбонаты щелочных металлов

Представления о структурах газообразных карбонатов щелочных металлов базируются на работах [79, 91 – 93].

Работа [79] посвящена ИК спектроскопии матрично-изолированных молекул K_2CO_3 . Сопоставив экспериментально полученные спектры ИК с теоретическим, а также проведя анализ ИК спектров 6 изотопомеров K_2CO_3 , полученных за счет частичного изотопного замещения ¹⁶О на ¹⁸О, авторы пришли к выводу, что структура газообразного K_2CO_3 отвечает бис-бидентантной структуре симметрии C_{2v} (1). Однако, авторы отмечают, что монодентантно-бидентантная структура (2) также не противоречит экспериментально полученному ИК спектру.

В работе [91] Коновалов и Соломоник методом МО ЛКАО ССП исследовали различные конфигурации газообразного Li₂CO₃. Расчет проводили в программе MOLECULE. Для атомов С и О использовали двухэкспонентный базис Хузинаги-Даннинга (DZ) (9s5p/4s2p), для Li – (9s4p/4s2p). Авторы обнаружили, что минимальной по энергии является монодентантно-бидентантная структура симметрии C_{2v} (2). Структура (1) соответствовала локальному минимуму на кривой ППЭ и оказалась выше по энергии примерно на 40 кДж.

Тем же коллективом авторов проведено *ab initio* исследование ППЭ и колебательного спектра Li₂CO₃ методом Хартри-Фока-Рутаана [92]. По сравнению с предыдущим расчетом [91], базис для С и О был дополнен поляризационными *d*-функциями. Вычислены термодинамические функции газообразного Li₂CO₃ в приближении «жесткий ротатор – гармонический осциллятор».

В результате уточнения базиса при помощи поляризационных функций оказалось, что структура (1) отвечает седловой точке на кривой ППЭ, описывающей перегруппировку атома кислорода из нижнего угла в вершину для структуры (2). Таким образом, авторы пришли к выводу, что форма потенциала, определяющего движение атомов лития вокруг кислотного остатка, существенно зависит от базиса. Поэтому для определения частот, отвечающих движению атома Li вокруг группы CO₃, нужны более строгие теоретические приближения, учитывающие корреляцию электронов.

Наиболее точные расчеты для Li₂CO₃ и Li₂SiO₃ проводились в работе [93], посвященной *ab initio* расчетам в рамках теории Меллера-Плессета для молекул L₂AO₃, в частности, Li₂CO₃, Na₂CO₃ и Li₂SiO₃, с 24 валентными электронами. Геометрические параметры и колебательные частоты рассчитывали параллельно в хартри-фоковском (HF) и коррелированном MP2 приближениях с использованием базиса 6-31G*. Полные энергии молекул уточняли в рамках теории возмущений Меллера-Плессета 4-го порядка с учетом одно-, двух-, трех- и четырехкратно возбужденных конфигураций (приближение MP4-SDTQ/6-31G*//MP2/6-31G* + ZPE(MP2/6-31G*). Расчеты выполняли с помощью программ GAUSSIAN-92 и -94. Эффективные заряды атомов и заселенности перекрывания по Малликену рассчитывали в приближении HF/6-31G*. Отмечено, что для литиевых солей частоты, рассчитанные методами HF и MP2, близки между собой. Определены равновесные геометрические параметры и относительные энергии изомеров, энергии их распада, ИК-частоты и интенсивности нормальных колебаний. Авторы пришли к выводу, что оптимальной геометрией для карбонатов щелочных металлов и силиката лития является структура C_{2v} (2).

1.8.2 Силикаты щелочноземельных металлов

Как было сказано выше, в результате подробного *ab initio* расчета, авторами работы [93] было установлено, что оптимальной по энергии структурой молекулы Li₂SiO₃ является структура симметрии C_{2v} (2).

Для BaSiO₃ квантово-химическое исследование методом DFT в программном пакете GAUSSIAN-98 выполнено в работе [36]. При проведении расчетов использовался уровень теории Becke3-Lee-Yang-Parr. Для атомов Si и O был выбран базис 6-31G(d,p), для атома Ba использовали базис (6s6p5d1f)/[3s3p2d1f] с эффективным потенциалом остова. Авторы рассмотрели три структуры: с одним, двумя и тремя мостиковыми атомами кислорода между Ba и Si. Минимуму на кривой ППЭ отвечала структура

симметрии C_{2v} с двумя мостиковыми атомами кислорода (2). Кроме того, авторы проверили, что смещение атома Ва из плоскости, которое понижает симметрию структуры до C_s, приводит к увеличению энергии.

К такому же выводу пришли авторы работы [52] в результате проведения расчетов методом DFT B3LYP в программе GAMESS с использованием базиса 6-31G* с поляризационными функциями.

В работе [35] приведены молекулярные параметры и частоты нормальных колебаний SrSiO₂ и SrSiO₃ на основании оценки данных по силикатам бария [36].

1.8.3 Соли германия

В работе [61] было высказано предположение, что W₂O₆, GeWO₄ и GeW₂O₇ в качестве общих структурных фрагментов содержат тетраэдр, в центре которого находится атом W, а в вершинах – атомы O.

Квантово-химические расчеты энергий структур, частот нормальных колебаний и энтальпий реакций образования газообразных солей германия GeB₂O₄, GeMo₂O₇ [19, 20], GeMoO₄ [20] и GeV₂O₆ [5, 20] были проведены методами MP2-F12 или CCSD(T)-F12 в программе MOLPRO и методом DFT M06 в программном пакете GAUSSIAN-09. Для атомов Ge, O, B и V был выбран полноэлектронный базис aug-cc-pvTZ, для Mo – базис def2-TZVP с эффективным потенциалом остова.

Для GeB₂O₄ на кривой ППЭ обнаружили два минимума; оптимальной по энергии оказалась структура симметрии C_s (4). Для GeMo₂O₇ были найдены две равновесные геометрии, оптимальной оказалась структура C_{2v} (6). Кривая ППЭ GeMoO₄ имела три минимума, глобальный минимум соответствовал структуре C_{2v} (5). В случае GeV₂O₆ также наблюдалось три минимума на кривой ППЭ, глобальный минимум соотвествовал структуре C_{2v} (7).

1.8.4 Соли олова

Для газообразных солей олова SnB_2O_4 , $Sn_2B_2O_5$ [4], $SnMoO_4$, $SnMo_2O_7$, Sn_2MoO_5 [6] и SnV_2O_6 [5] энергии структур, частоты нормальных колебаний и энтальпии реакций образования солей вычислены теми же методами, что и для солей германия в работах [19, 20], а именно, MP2-F12 или CCSD(T)-F12 и DFT M06 с использованием базиса def2-TZVP. Полученные результаты систематизированы в статье [7].

Согласно полученным в работах [4 - 6] результатам, строение молекул SnB₂O₄, SnMoO₄, SnMo₂O₇ и SnV₂O₆ аналогично строению соответствующих солей германия. Для молекулы Sn₂B₂O₅ рассматривали три возможные структуры, минимальной по энергии оказалась структура симметрии C_{2v}, аналогичная структуре (6), но содержащая цикл –B-O-B-O-. Согласно работе [38], структура молекулы Sn₂MoO₅ отвечает симметрии C_s (8). Однако в более поздней работе [6] авторы пришли к выводу, что для Sn₂MoO₅ оптимальной является структура симметрии C_s, в которой шестичленный цикл дополнительно содержит мостиковую связь Sn-O-Mo и к атому молибдена присоединен только один атом кислорода.

1.8.5 Соли свинца

В работе [69] в результате расчетов методом DFT B3LYP авторы пришли к выводу, что структуре газообразного PbV₂O₆ отвечает структура симметрии C_{2v} (7). Этот вывод соответствует более поздним результатам, полученным для ванадатов германия и олова [5]. Для атомов O и V использовали базис 6-31G* с поляризующими функциями, для Pb – эффективный потенциал остова Бэша-Стивенса-Крауса.

Для газообразных солей свинца PbPO₂, PbPO₃, PbP₂O₆ [21, 23], PbTeO₃, Pb₂TeO₄ [21, 22] были проведены квантово-химические расчеты методами MP2-F12 или CCSD(T)-F12 и DFT M06 с использованием базиса def2-TZVP. Для молекулы PbPO₂ на кривой ППЭ был обнаружен единственный минимум, соответствующий структуре C_{2v} (3). Для PbPO₃ были найдены две равновесные геометрии, оптимальной оказалась C_{2v} (2). Таким образом, можно сделать вывод, что строение фосфатов свинца PbPO₂ и PbPO₃ аналогично строению соответствующих фосфатов олова и GePO₃. В случае PbP₂O₆ на кривой ППЭ было обнаружено шесть минимумов, из которых реальным структурам отвечали только

три. Структуры C_{2v} (7) и C_s почти не различались по энергии (разница составила около 2 кДж), что согласуется с предположением, что атом свинца свободно перемещается в плоскости симметрии, проходящей через атом свинца и атомы кислорода в плоскости цикла –O-P-O-P–. Для PbTeO₃ рассматривали два изомера, минимальным по энергии оказалась структура C_{3v} . В случае Pb₂TeO₄ на кривой ППЭ наблюдали три близких по энергии минимума, они соответствовали трем различным структурам симметрии C_s , поэтому был сделан вывод о том, что атомы свинца свободно перемещаются в плоскости, проходящей через рассматриваемый атом свинца и два кислорода, принадлежащих соответствующему циклу –Pb-O-Te-O–.

Газообразные соли свинца PbTeO₃, PbTe₂O₅, Pb₂TeO₄, Pb₂Te₂O₆ [49], PbMoO₄, PbMo₂O₇, Pb₂MoO₅, PbMo₃O₁₀ [50], PbAsO₂, PbX₂O₄ (X = Sb, As) и Pb₃As₂O₆ [48] активно изучались Кункель и соавторами методом DFT с использованием базиса RI-BP86/def2-TZVP. Помимо энергий структур и энтальпий реакций образования газообразных солей, авторы также приводят результаты расчетов атомных зарядов и дипольных моментов молекул.

В случае PbTeO₃ и Pb₂TeO₄ выводы, полученные в работах [22, 49], в целом согласуются. Структуры молекул PbTe₂O₅ и Pb₂Te₂O₆, по мнению авторов [49], соответствуют геометрии C₁ и C_i соответственно.

В отношении молибдатов, авторы работы [50] пришли к выводу, что структуры PbMoO₄ и PbMo₂O₇, по аналогии с соответствующими солями германия и олова, имеют симметрию C_{2v} (структуры типа (5) и (6), соответственно). Pb₂MoO₅ имеет структуру C_s по аналогии с соответствующим молибдатом олова [38]. Единственная в своем роде газообразная молекула PbMo₃O₁₀ имеет геометрию C_{2v} и представляет собой восьмичленный цикл, где к каждому атому молибдена присоединено по два атома кислорода. Структура в целом аналогична структуре C_{2v} (6), характерной для молибдатов и вольфраматов Ge, Sn и Pb.

Согласно данным, полученным в работе [48], PbAsO₂ имеет структуру C_{2v} (3). Оптимальной структурой молекул PbX₂O₄ (X = As, Sb) является структура симметрии C_s, в которой искривленный шестичленный цикл содержит мостиковую связь X-O-X. Для единственной в своем роде молекулы Pb₃As₂O₆ минимальной по энергии является структура симметрии D_{3h}.

ГЛАВА 2

Экспериментальная часть

2.1 Использованное оборудование

Работа выполнена методом высокотемпературной масс-спектрометрии (ВТМС), сочетающим в себе эффузионный метод Кнудсена с масс-спектрометрическим анализом паровой фазы. Необходимые измерения проводились с помощью масс-спектрометра МС-1301, который был разработан и сконструирован в 1970 г Ленинградским отделением Специального конструкторского бюро аналитического приборостроения АН СССР (СКБ АП АН СССР) для исследования процессов испарения труднолетучих веществ [94]. Общая схема прибора МС-1301 представлена, например, в работе [12].

Масс-спектрометрический метод основан на разделении ионов, отличающихся соотношением массы к заряду (*m/z*). Технически любой масс-спектрометр содержит следующие основные части: систему ввода пробы, область ионизации, масс-анализатор, детектор ионов и систему регистрации [95].

Масс-спектрометр MC-1301 оснащен двумя типами испарителей, предназначенных для введения пробы в ионный источник. Низкотемпературный испаритель позволяет нагревать эффузионную камеру с образцом до температур порядка 1400 – 1550 К. Нагрев камеры осуществляется печью сопротивления, температуру при этом измеряют и контролируют платина-платинородиевой термопарой с точностью ± 1 К. В данной работе был использован высокотемпературный испаритель.

Блок камер высокотемпературного испарителя изображен на Рисунке 1.

Рисунок 1 – Блок камер высокотемпературного испарителя: *1* – камеры; 2 – молибденовый блок; *3* – катоды; *4* – держатели; *5* – пирометрический канал; *6* – подпятник

Нагрев камеры с образцом осуществляется электронной бомбардировкой (electron bombardment). На эффузионную камеру подается высокий положительный потенциал 250 – 2000 В. Одновременно подается питание на два кольцевых катода. За счет разницы напряжений между катодом и анодом возникает поток электронов, который тормозится о тело камеры, сообщая ей энергию. Стойка питания испарителя стабилизирует мощность тока бомбардирующих электронов и анодное напряжение, что позволяет поддерживать температуру, например, 2000 К с точностью ± 10 К. Температуру измеряют с помощью оптического пирометра ЭОП-66 через стеклянное окно вакуумной системы массспектрометра. При измерении температуры регистрируют падение напряжения на образцовом сопротивлении Р-321 (1 Ом) цифровым вольтметром Щ-1516 с точностью $\pm 1 \times 10^{-4}$ В. Поскольку в ходе экспериментов стеклянное окно, через которое осуществляют пирометрирование, постепенно запыляется изнутри испаряющимися веществами, то перед каждой серией опытов определяют поправку на поглощение стекла с помощью лампы СИ-10/300, которую в дальнейшем учитывают при проведении соответствующих расчетов.

В зависимости от температурного режима эксперимента и от специфики изучаемых веществ (в рамках исследования газофазных реакций синтеза солей кислородсодержащих кислот важны разница в летучести оксидов и их реакционная способность), используются одиночные, двойные двухтемпературные или сдвоенные однотемпературные эфузионные камеры. В настоящей работе использовалась сдвоенная однотемпературная камера, один отсек которой выполнен из платины, а второй – из молибдена. Устройство сдвоенной камеры подробно описано в работах [12, 14, 95].

При определенном сочетании площади эффузионного отверстия и площади испарения внутри эффузионной камеры реализуется динамическое равновесие конденсированная фаза – пар. Процесс испарения вещества из эффузионной камеры Кнудсена считается равновесным, так как при отношении площади испарения к площади эффузии (площадь дна камеры Кнудсена к площади ее эффузионного отверстия) 100:1

скорость эффузии меньше скорости насыщения пара. В процессе работы использовали эффузионные камеры с соотношением площади эффузионного отверстия к площади испарения порядка 1:150.

В процессе нагрева эффузионной камеры с образцом изучаемое вещество переходило в пар и в виде молекулярного пучка попадало в ионный источник массспектрометра.

Ионизация в приборе MC-1301 производится медленными электронами с энергией от 5 до 100 эВ. В качестве источника электронов используется катод, изготовленный из вольфрама или рения. Катод нагревается до температуры порядка 2500 К. Между катодом и коробочкой ионизатора, в которой находятся частицы исследуемого вещества, прикладывается разность потенциалов – ионизирующее напряжение. Возникающий в результате этого ток эмиссии электронов (около 0.5 – 1.5 мА) частично проходит насквозь через коробочку ионизатора, ионизируя при этом находящиеся в ней частицы, и улавливается коллектором электронов. В ходе нашей работы ионизирующее напряжение составляло 25 В, т.е. электронов. В ходе нашей работы ионизирующее напряжение ионизирующего напряжения, с одной стороны, позволял практически полностью подавить процессы диссоциативной ионизации, что облегчало расшифровку массспектра пара. С другой стороны, снижение ионизирующего напряжения с традиционного, равного 70 В, до 25 В не приводило к значительному снижению величины ионного тока.

Невысокое ионизирующее напряжение, конструкция ионного источника и массанализатора приводят к тому, что прибор MC-1301 позволяет измерять интенсивность ионного тока только положительных однозарядных ионов.

Согласно уравнению (103), величина ионного тока (I_i) прямо пропорциональна концентрации частиц в области ионизации (n_i^0), электронному току (I_e), длине пути электронов (l) и эффективному сечению ионизации (σ_i):

$$I_i = k n_i^0 \sigma_i I_e l \tag{103}$$

С целью повысить чувствительность ионного источника (порогом чувствительности прибора называют минимальное количество компонентов в

исследуемом веществе, которое может быть определено при заданном отношении сигнал – шум), область ионизации l размещают между полюсами постоянного магнита, в результате чего электроны движутся по спирали, и величина I_i существенно возрастает. Следует отметить, что величины I_e и l являются постоянными характеристиками конкретного прибора, т.е., зная величину ионного тока, из уравнения (103) можно найти концентрацию частиц, и, следовательно, парциальное давление газообразных частиц в паре.

При ионизации молекул медленными электронами могут протекать процессы прямой и диссоциативной ионизации. Ионы, чьи элементный состав и масса равны элементному составу и массе соответствующей молекулы, называются молекулярными. Однако, энергия ионизирующих электронов достаточна не только для ионизации, но и для осуществления разрыва связей в молекуле. Процесс ионизации, в ходе которого происходит разрыв связей в молекуле, называют диссоциативной ионизацией, а полученные в результате такого процесса ионы – осколочными.

Образовавшиеся положительные ионы вытягиваются из области ионизации, ускоряются до энергии 3 или 1.5 кэВ и попадают в масс-анализатор.

Прибор МС-1301 оснащен однородным секторным статическим массанализатором. Радиус центральной траектории прибора МС-1301, ρ_0 , составляет 300 мм, угол отклонения ионов – 90°.

Внутри масс-анализатора на заряженные частицы действуют взаимоуравновешенные сила Лоренца и центробежная сила, за счет этого частицы двигаются по круговой траектории. Радиус траектории частицы (ρ) связан с величинами ускоряющей разницы потенциалов (U), величиной m/z и напряженностью магнитного поля H уравнением (104):

$$\rho = \frac{1}{H} \sqrt{\frac{2mU}{z}} \tag{104}$$

Изменяя величину напряженности магнитного поля при постоянной величине радиуса центральной траектории, можно добиться того, что ионы, различающиеся по

53

величине *m/z*, будут разделены за счет того, что будут двигаться по различным траекториям.

Используемый в приборе MC-1301 масс-анализатор представляет собой электромагнит с подсоединенным к нему датчиком Холла для регистрации величины напряженности магнитного поля. Разрешающая способность (характеристика способности прибора раздельно регистрировать ионы близкие по величине *m/z*) масс-анализатора составляет не менее 500 на уровне 10% высоты пиков. Диапазон массовых чисел находится в пределах от 7 до 500 при ионизирующем напряжении 3 кВ и от 10 до 1000 при 1.5 кВ. Показания датчика Холла откалиброваны в единицах массовых чисел. Переход между ионами с различными величинами *m/z* осуществляется вручную за счет регулирования величины тока электромагнита.

Для усиления и регистрации ионных токов в приборе MC-1301 применяют метод вторичной электронной эмиссии с использованием вторично-электронного умножителя ВЭУ-2 с коэффициентом умножения 10^6 . Метод работает следующим образом. Ион попадает на первый динод ВЭУ, выбивая с его поверхности два и более электрона, вызывая лавинообразный процесс на следующих динодах. Количественной характеристикой этого процесса служит γ – коэффициент конверсии (число электронов, выбитых одним ионом на первом диноде). Силу ионного тока косвенно измеряют вольтметром, пропуская ток через сопротивление номиналом 10^{12} Ом.

Помимо описания основных узлов прибора, следует отметить, что массспектрометр – высоковакуумный прибор (давление не выше 10⁻⁴ Па). Это необходимо для того, чтобы избежать столкновения между ионами и молекулами остаточных газов при их движении от источника до приемника. Вакуумная система масс-спектрометра МС-1301 включает в себя три высоковакуумных агрегата, снабженных ртутными диффузионными насосами H-50P с жалюзными ловушками, охлаждаемыми жидким азотом.

2.2 Методика эксперимента

2.2.1 Получение и обработка экспериментальных данных

2.2.1.1 Расшифровка масс-спектра

В ходе экспериментов по изучению газофазных реакций синтеза солей кислородсодержащих кислот проводили испарение образцов из камеры Кнудсена. Молекулярный пучок, эффундирующий из эффузионного отверстия, ионизировался и разделялся по отношению массы к заряду (*m*/*z*) в масс-анализаторе. Интенсивность ионного тока регистрировалась вольтметром. В итоге мы получали набор ионов соответствующей интенсивности. Идентификация ионов масс-спектра осуществлялась по отношению *m*/*z* и изотопному распределению.

Расшифровка масс-спектра пара сводилась поиску молекулярных К предшественников всех ИОНОВ масс-спектра. Для определения молекулярных предшественников наблюдаемых в масс-спектре ионов применяли несколько методик. В частности, снижали ионизирующее напряжение до величин, превышающих энергию ионизации на 3 эВ, чтобы полностью подавить процессы диссоциативной ионизации, измеряли энергии появления (ЭП, appearance energies, AE) всех ионов. Энергия появления молекулярного иона в пределах погрешности измерений больше или равна энергии ионизации (ЭИ) соответствующей молекулы: ЭП(АВ⁺) ≥ ЭИ(АВ). Величины ЭП ионов измеряли методом исчезающего ионного тока. Метод основан на определении зависимости интенсивности ионного тока от ионизирующего напряжения. В результате измерений получали так называемые кривые эффективности ионизации (КЭИ). Перед каждой серией измерения энергий появления ионов в масс-спектре пара записывали КЭИ для стандарта с известной величиной энергии ионизации. В качестве стандарта использовали золото или серебро с энергиями ионизации 9.2 и 7.5 эВ соответственно [44]. Полученную при измерениях поправку учитывали при измерении ЭП ионов массспектра.

2.2.1.2 Расчет констант исследуемых реакций, энтальпий реакций и энтальпий образования газообразных солей

Одной из основных экспериментальных задач при синтезе новых газообразных ассоциатов является получение их термодинамических характеристик. После успешной расшифровки масс-спектра и установления природы всех зафиксированных в массспектре ионов составляют уравнения всех возможных с точки зрения стехиометрии реакций с участием веществ, для которых в масс-спектре пара были обнаружены соответствующие молекулярные ионы. Для определения термодинамических свойств интересующих нас газообразных ассоциатов последовательно выполняли следующие действия.

а) Осуществляли переход от величин ионных токов к парциальным давлениям молекулярных форм пара. Величины парциальных давлений молекулярных форм пара, как правило, находят двумя методами: методом полного изотермического испарения и методом сравнения ионных токов. В своей работе мы не использовали метод полного изотермического испарения в связи с трудностями определения массы вещества, испарившегося в той или иной форме. Удобнее было использовать метод сравнения ионных токов, позволяющий не определять массу образца, загружаемого в эффузионную камеру, и не контролировать точное соотношение оксидов при приготовлении образцов.

В методе сравнения ионных токов переход от величин ионных токов к парциальным давлениям производится по уравнению (105). Метод основан на постоянстве геометрических факторов и других физических характеристик прибора в рамках одного опыта при последовательном измерении двух интенсивностей ионных токов, соответствующих стандарту с известным давлением пара (2) и исследуемому веществу (1).

$$p_1 = \frac{p_2 I_1 T_1 \sigma_2 \gamma_2}{I_2 T_2 \sigma_1 \gamma_1}$$
(105),

где p – парциальное давление, Па; I - интенсивность ионного тока, отн. ед.; T – температура, К; σ – сечение ионизации; γ – коэффициент конверсии вторично-

электронного умножителя. Индексы 1 и 2 относятся к молекулярной форме пара и стандарту давления соответственно.

В качестве стандартов давления, как правило, используют золото, серебро или кадмий [96, 97], рекомендованные ИЮПАК. Выбор стандарта обусловлен температурным интервалом измерений. В процессе работы в качестве стандартов давления мы использовали серебро и золото. Температурные зависимости парциальных давлений золота и серебра, которые использовались в настоящей работе, представлены уравнениям (106) – (108):

$$lg p(Ag, \Pi a) = -\frac{14568}{T} + 11.37, T = 800 - 1235 K$$
(106)

$$lg \, p(Ag, \Pi a) = -\frac{13780}{T} + 10.74, \, \mathrm{T} = 1235 - 1600 \, \mathrm{K}$$
(107)

$$lg \, p(Au, \Pi a) = -\frac{18013}{T} + 10.8772 \tag{108}$$

В том случае, когда в процессе ионизации из одного и того же молекулярного предшественника (*j*) образуются несколько ионов (*i*), парциальное давление газообразной молекулы (*j*) рассчитывают согласно уравнению (109):

$$p_j = \frac{kT}{\sigma_j} \sum_i \frac{I_{ij}}{a_i \gamma_i}$$
(109),

где индекс *ij* обозначает, что из молекулы *j* образовались ионы *i*, a_i – природная распространенность изотопа, входящего в состав иона *i* [98], γ_i – коэффициент конверсии вторично-электронного умножителя прибора, равный корню из обратной молярной массы иона *i*, $\gamma_i = \sqrt{1/M_i}$ [99, 100].

б) Вычисляли величины констант равновесия изучаемых реакций (K_p). Величины констант равновесия газофазных реакций получали по общеизвестному правилу, согласно которому константа равновесия реакции равна отношению произведения равновесных парциальных давлений продуктов реакции к произведению равновесных

парциальных давлений реагентов, где величины парциальных давлений участников реакции возведены в степени, соответствующие их стехиометрическим коэффициентам.

в) Определяли значения энтальпий изучаемых реакций. В высокотемпературной масс-спектрометрии величины энтальпий реакций с участием газовой фазы определяют по уравнениям (110) и (111). Традиционно расчеты по уравнению (110) называют расчетами по II закону, а расчеты по уравнению (111) – расчетами по III закону.

$$\frac{d\ln K_p}{dT} = \frac{\Delta_r H_T^\circ}{RT^2} \tag{110}$$

$$-RT\ln K_{p}(T) = \Delta_{r}H_{T}^{\circ} - T\Delta_{r}S_{T}^{\circ}$$
(111)

Температура в уравнении (110) представляет собой среднюю температуру опыта. Расчет по II закону проводят, когда зависимость $K_p(T)$ изучена в широком интервале температур (не меньше 100 – 150 К).

С учетом приближения, согласно которому в узком интервале температур $\Delta_r H^{\circ}$ не зависит от температуры, интегрирование уравнения (110) приводит к выражению (112)

$$lnK_{p} = -\frac{\Delta_{r}H_{T}^{\circ}}{RT} + const$$
(112),

которое представляет собой уравнение прямой вида $ln K_p = -\frac{A}{T} + B$.

Таким образом, для расчета энтальпии реакции при температуре опыта по II закону необходимо построить график линейной зависимости lnK_p от 1/T, полученных в результате эксперимента, и провести аппроксимацию методом наименьших квадратов (МНК). Тангенс угла наклона (коэффициент *A*), умноженный на величину универсальной газовой постоянной *R*, даст величину энтальпии реакции (в Дж) при средней температуре опыта T_{cp} . Для пересчета полученных таким образом величин $\Delta_r H_T^{\circ}$ к температурам 0 или 298.15 К, необходимы справочные данные [24 – 28] по величинам $H_T^{\circ} - H_0^{\circ}$ для

каждого из участников реакций. Например, пересчет к температуре 0 К выполняют следующим образом: $\Delta_r H_0^\circ = \Delta_r H_T^\circ - \Delta(H_T^\circ - H_0^\circ)$.

Расчет по III закону согласно уравнению (111) требует знания изменения энтропии реакции при температуре опыта $\Delta_r S^{\circ}(T)$, для чего необходимо найти значения энтропий $S^{\circ}(T)$ для каждого из участников реакции. В основе расчета абсолютных энтропий лежит постулат Планка о равенстве нулю энтропии идеального кристалла при 0 К, поэтому данный метод расчета и называется расчетом по III закону. Для вычисления энтальпий реакции при температурах 0 или 298.15 К вводят величину приведенной энергии Гиббса Φ_T° , которая определяется согласно уравнению (113).

$$\Phi_T^{\circ} = -\frac{(G_T^{\circ} - H_0^{\circ})}{T} = -\frac{(H_T^{\circ} - TS_T^{\circ} - H_0^{\circ})}{T}$$
(113)

Если из уравнения (113) выразить разность $TS_T^{\circ} - H_T^{\circ}$ и подставить в уравнение (111) для каждого из участников исследуемой реакции, можно получить выражение для расчета энтальпии реакции при температуре 0 К (114).

$$\Delta_r H_0^\circ = -RT \ln K_p(T) + T \Delta \Phi_T^\circ$$
(114)

д) Рассчитывали энтальпии атомизации и образования солей. Комбинация измеренных нами энтальпий изучаемых реакций в совокупности с величинами энтальпий образования атомов и молекул, взятых из справочных изданий [24 – 28] или оригинальной литературы, позволяла получить искомые значения стандартных энтальпий образования и атомизации газообразной соли.

Величины приведенных энергий Гиббса Φ_T° и разниц теплосодержаний $H_T^{\circ} - H_0^{\circ}$ для синтезируемых солей, а также некоторых ранее не изученных оксидов, необходимые для расчета энтальпий образования солей и приведению энтальпий реакций к температурам 0 или 298.15 К, отсутствуют в указанных справочниках. Для нахождения этих параметров проводили квантово-химическое исследование структур и колебательных спектров молекул. На основании полученных данных по координатам атомов и частотам нормальных колебаний для структуры, обладающей наименьшей свободной энергией, методом статистической термодинамики в приближении «жесткий ротатор – гармонический осциллятор» находили Φ_T° и $H_T^{\circ} - H_0^{\circ}$.

2.2.2 Квантово-химические расчеты

Исследование проводили в программном пакете GAMESS-US [101, 102] с использованием метода функционала плотности DFT с гибридными функционалами M06 [82], PBE0 [83], TPSSh [84, 85] и в программном пакете ORCA [103] *ab initio* методом теории возмущений Меллера-Плессета 2-го порядка MP2 [104] или его модификации MP2-SCS [105]. В случае расчетов для Ba₂O₂ и BaSnO₂ для всех атомов использовался полноэлектронный базисный набор x2c-TZVPall [106]. В случае антимонатов свинца выбирали базисы семейства def2-QZVPPD [107], включающие эффективные потенциалы остова для тяжелых атомов Pb и Sb. Геометрии молекул оптимизировались всеми вышеуказанными способами. Для равновесных геометрий рассчитывались частоты колебаний. Скалярный релятивистский эффект учитывался по схеме Дугласа-Кролла-Гесса (DKH2) [108 – 110].

2.3 Экспериментальные результаты

2.3.1 Станнат бария и диоксид дибария

Для синтеза газообразного станната бария, BaSnO₂, использовали сдвоенную однотемпературную камеру Кнудсена. Один из отсеков камеры был изготовлен из платины, второй – из молибдена. Применение такой конструкции камеры Кнудсена обусловлено следующими соображениями. Оксиды олова и свинца желательно испарять в нейтральных условиях из платиновой камеры. При испарении в восстановительных условиях (молибденовая ИЛИ вольфрамовая камеры) оксиды бария И олова взаимодействуют с материалом камеры с образованием термически прочных молибдатов или вольфраматов олова [6, 38, 40, 63, 73]. Золото, использованное нами в качестве стандарта давления [96], в свою очередь, взаимодействует с платиной с образованием твердых растворов или сплавов. При этом активность золота, и, следовательно, парциальное давление, снижаются. В связи с вышеизложенным, в отсек, изготовленный

из платины, помещали систему BaO – SnO₂, а золото загружали в отсек из молибдена. Предварительно из обоих отсеков камеры испаряли CaF₂ для определения разницы в интенсивностях ионных токов CaF⁺, связанной с различием диаметров эффузионных отверстий и наличием градиента температур между отсеками.

В ходе эксперимента было установлено, что наиболее удачным соотношением содержания оксидов в смеси, приводящим к максимальному относительному содержанию соли в паре, является 75 мол.% BaO – 25 мол.% SnO₂. Выбор такого состава связан с различиями в летучести оксидов олова и бария.

Начиная с температуры порядка 1750 К в масс-спектре пара над изучаемой смесью фиксировались пики ионов Ba^+ , BaO^+ , $Ba_2O_2^+$, SnO^+ и $BaSnO_2^+$. При изотермической выдержке интенсивность SnO^+ постепенно уменьшалась, а интенсивности Ba^+ , BaO^+ и $Ba_2O_2^+$ увеличивались. Такое поведение ионных токов можно объяснить тем, что вследствие большей летучести SnO по сравнению с BaO мольная доля оксида олова в конденсированной фазе постоянно уменьшалась, а мольная доля оксида бария увеличивалась.

Значения энергий появления ионов масс-спектра, измеренные методом исчезающего ионного тока, для Ba⁺, BaO⁺ и SnO⁺ в пределах погрешности (± 0.3 эВ) составили 5.3, 7.0 и 9.7 эВ соответственно. Полученные величины ЭП в пределах погрешности совпадают с энергиями ионизации соответствующих частиц: 5.212 эВ для Ba, 6.91 ± 0.06 эВ для BaO [111] и 10.5 ± 0.5 эВ для SnO [44]. Это говорит о молекулярной природе Ba⁺, BaO⁺ и SnO⁺ в масс-спектре. Измерить ЭП для Ba₂O₂⁺ и BaSnO₂⁺ не удалось вследствие низких интенсивностей ионных токов. Однако, литературные данные позволяют сделать надежный вывод, что указанные ионы также имели молекулярное происхождение. Так, состав пара над BaO согласно работе [21] состоит из BaO, Ba₂O₂ и Ba. Из данных работ [112 - 118] известно, что ионы общего вида BaXO₂ (X = Si, Co, Fe, P, Ge, V, Nb, Ta, Mo, Cr) являются результатом прямой ионизации соответствующих молекул. Таким образом, на основании измеренных величин ЭП ионов, зависимостей интенсивностей ионных токов от температуры и времени испарения, а также анализа литературы, был сделан вывод о том, что пар над изученной системой состоит из Ba, BaO, SnO, Ba₂O₂ и BaSnO₂.

Парциальные давления молекулярных форм пара над изученной системой определяли методом сравнения ионных токов (105) с использованием золота в качестве стандарта давления [96]. Необходимые для расчета по уравнению (105) величины сечений ионизации молекул рассчитывали согласно рекомендациям работ [119, 120].

Определение парциальных давлений молекулярных форм пара над системой BaO – SnO₂ позволило вычислить константы равновесия и определить энтальпии газофазных реакций (115) – (117).

$$BaO + SnO = BaSnO_2$$
(115)

$$2 \operatorname{BaO} = \operatorname{Ba_2O_2} \tag{116}$$

$$\frac{1}{2}Ba_2O_2 + SnO = BaSnO_2 \tag{117}$$

Величины парциальных давлений BaO, Ba₂O₂, SnO и BaSnO₂ и энтальпий изученных газофазных реакций, полученных по III закону (111), приведены в Таблице 5. Наш интерес к изучению реакции (116) обусловлен большим различием в литературных данных, полученных в работах [16, 122] и [121].

Таблица 5 – Парциальные давления компонентов пара над системой BaO – SnO₂ и энтальпии газофазных реакций (115) – (117) при 0 К, рассчитанные по III закону

T, K		$p_{ m i},$	Па	$-\Delta_{r}H_{0}^{\circ}$, кДж			
	BaO	$Ba_2O_2 \times 10^{-2}$	SnO	$BaSnO_2 \times 10^{-2}$	(115)	(116)	(117)
1683	0.26	-	0.60	0.60	341.0	-	-
1713	0.32	-	0.63	1.23	353.1	-	-
1718	0.37	-	0.78	1.85	355.0	-	-
1713	0.38	-	0.82	1.84	352.7	-	-
1717	0.38	-	0.78	1.85	354.2	-	-
1720	0.46	-	0.82	1.85	351.4	-	-
1746	0.75	-	1.78	3.13	345.9	-	-
1753	0.99	-	1.86	4.40	347.6	-	-
		1		1		1	1

1753	1.04	-	1.57	5.02	351.3	-	-
1757	1.13	-	1.65	5.04	350.1	-	-
1759	1.23	1.74	1.36	3.78	347.9	333.3	181.2
1764	1.28	2.74	1.30	3.16	346.4	339.7	176.5
1764	1.18	2.74	0.79	2.53	351.5	342.0	180.5
1842	3.40	7.03	0.27	0.66	346.4	338.8	176.9
1895	6.64	9.64	0.28	0.68	345.5	332.1	179.4
1751	0.54	0.50	0.54	1.11	354.0	337.6	185.1
1755	0.58	0.69	0.50	0.69	347.7	340.9	177.2
1760	0.63	0.75	0.22	0.53	355.9	340.6	185.6
1765	1.23	0.88	0.18	0.32	342.3	324.3	180.2
1772	0.88	1.07	0.19	0.32	348.2	338.5	178.9
1768	0.76	0.94	0.17	0.27	348.4	340.2	178.3
1796	1.13	1.28	0.20	0.43	352.3	337.9	183.3
1803	1.14	1.03	0.19	0.33	350.7	335.8	182.8
1801	1.05	1.09	0.17	0.27	350.3	338.6	181.0
1800	1.05	1.09	0.16	0.27	350.7	338.4	181.5
1820	1.52	1.36	0.24	0.44	349.9	334.4	182.7
1820	1.48	1.29	0.22	0.33	347.2	334.5	180.0
1821	1.35	1.23	0.17	0.27	349.8	336.6	181.5
1820	1.31	1.10	0.17	0.16	342.9	335.6	175.0
1886	2.90	3.13	0.35	0.40	345.0	339.0	175.5
1883	2.99	2.45	0.33	0.34	342.4	333.7	175.6
1745	0.29	-	11.03	4.11	336.9	-	-
1751	0.66	0.46	3.58	3.24	339.1	330.6	173.8
1740	0.80	0.69	0.27	2.05	365.1	328.8	200.7
	I	l	1	l	l	l	

0.24 0.28 0.86 0.86	0.33 0.33 1.04	0.17 0.17	0.38 0.38	352.9	342.3	181.7
0.28 0.86 0.86	0.33 1.04	0.17	0.38	350.3	227.2	
0.86 0.86	1.04			550.5	337.2	181.7
0.86		0.60	1.17	345.2	333.6	178.4
	1.04	0.57	0.98	343.7	334.0	176.7
0.86	0.93	0.43	0.98	347.2	331.9	181.3
0.88	1.04	0.47	0.78	343.1	333.3	176.4
0.93	1.16	0.39	0.79	345.7	334.0	178.7
1.17	1.65	0.54	0.89	343.5	336.4	175.3
1.34	1.65	0.37	1.00	349.3	333.0	182.7
1.34	1.41	0.41	0.80	344.9	330.9	179.4
1.34	1.41	0.36	0.70	344.3	330.6	179.0
1.27	1.18	0.36	0.50	340.7	330.1	175.6
1.82	1.92	0.53	0.91	343.7	331.4	178.0
1.82	1.55	0.48	0.81	342.4	327.5	178.7
1.60	1.44	0.43	0.81	347.5	331.5	181.8
1.67	1.20	0.43	0.61	342.7	327.5	179.0
2.24	2.07	0.56	1.03	347.6	332.2	181.5
2.00	1.70	0.56	0.82	345.2	331.9	179.2
1.85	1.34	0.53	0.62	343.0	330.6	177.6
1.77	1.22	0.49	0.51	341.5	330.2	176.5
	4.22	0 77	1.02	252.2	220.9	107.2
5.34	4.32	0.77	1.83	332.2	329.8	187.3
	1.34 1.34 1.27 1.82 1.82 1.60 1.67 2.24 2.00 1.85 1.77	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.34 1.41 0.41 1.34 1.41 0.36 1.27 1.18 0.36 1.82 1.92 0.53 1.82 1.55 0.48 1.60 1.44 0.43 1.67 1.20 0.43 2.24 2.07 0.56 2.00 1.70 0.56 1.85 1.34 0.53 1.77 1.22 0.49	1.34 1.41 0.41 0.80 1.34 1.41 0.36 0.70 1.27 1.18 0.36 0.50 1.82 1.92 0.53 0.91 1.82 1.55 0.48 0.81 1.60 1.44 0.43 0.81 1.67 1.20 0.43 0.61 2.24 2.07 0.56 1.03 2.00 1.70 0.56 0.82 1.85 1.34 0.53 0.62 1.77 1.22 0.49 0.51	1.34 1.41 0.41 0.80 344.9 1.34 1.41 0.36 0.70 344.3 1.27 1.18 0.36 0.50 340.7 1.82 1.92 0.53 0.91 343.7 1.82 1.55 0.48 0.81 342.4 1.60 1.44 0.43 0.81 342.7 1.67 1.20 0.43 0.61 342.7 2.24 2.07 0.56 1.03 347.6 2.00 1.70 0.56 0.82 345.2 1.85 1.34 0.53 0.62 343.0 1.77 1.22 0.49 0.51 341.5	1.341.410.410.80344.9330.91.341.410.360.70344.3330.61.271.180.360.50340.7330.11.821.920.530.91343.7331.41.821.550.480.81342.4327.51.601.440.430.81342.7331.51.671.200.430.61342.7327.52.242.070.561.03347.6332.22.001.700.560.82345.2331.91.851.340.530.62343.0330.61.771.220.490.51341.5330.2

Необходимые для вычислений по III закону термодинамические функции (Φ_T° и $H_T^{\circ} - H_0^{\circ}$) для BaO и SnO были взяты из справочника [24], а для Ba₂O₂ и BaSnO₂

64

рассчитаны на основании квантово-химических данных в приближении «жесткий ротатор – гармонический осциллятор». Молекулярные параметры и частоты нормальных колебаний, необходимые для получения значений приведенной энергии Гиббса и разницы теплосодержаний для Ba₂O₂ и BaSnO₂, рассчитаны методом MP2. В разделе «*Обсуждение экспериментальных результатов*» приведены результаты, полученные при выборе различных наборов квантово-химических данных.

Равновесные геометрии молекул Ba_2O_2 , Sn_2O_2 и $BaSnO_2$, полученные методом MP2, представлены на Рисунке 2. Минимальными по энергии оказались циклические структуры симметрии D_{2h} для Ba_2O_2 , Sn_2O_2 и C_{2v} для $BaSnO_2$. В случае $BaSnO_2$ на кривой ППЭ также была обнаружена нециклическая структура симметрии C_s (Рисунок 3), но ее свободная энергия оказалась примерно на 200 кДж выше.

Рисунок 2 – Оптимальные по энергии равновесные структуры Ba_2O_2 (D_{2h}), Sn_2O_2 (D_{2h}) и $BaSnO_2$ (C_{2v}), полученные методом MP2

Рисунок 3 – Неоптимальная по энергии равновесная структура BaSnO₂ (C_s), полученная методом MP2

В Таблицах 6 – 8 приведены молекулярные параметры, частоты нормальных колебаний и значения свободной энергии равновесных геометрий молекул Ba₂O₂, Sn₂O₂ и BaSnO₂. Данные, полученные методами DFT и *ab initio*, близки между собой. Таблицы, содержащие значения приведенных энергий Гиббса, разницы теплосодержаний и

теплоемкостей для Ba₂O₂, Sn₂O₂ и BaSnO₂, полученные различными методами квантовой химии, приведены в Приложении А.

Таблица 6 – Молекулярные параметры, частоты нормальных колебаний и значения свободной энергии Ba₂O₂(г) (D_{2h},¹A_g) в основном состоянии, рассчитанные методом DFT (функционалы M06, TPSSh, PBE0) в базисном наборе x2c-TZVPall с поправкой на скалярный релятивистский эффект по схеме DKH2 и *ab initio* методами MP2 и SCS-MP2

Молекулярные		Метод расчета							
параметры	параметры M06 TPSSh PBE0		MP2 (Full)	SCS-MP2					
R _{Ba-O} , Å	2.249	2.249	2.238	2.234	2.234				
<o-ba-o, td="" °<=""><td>79</td><td>79</td><td>79</td><td>79</td><td>79</td></o-ba-o,>	79	79	79	79	79				
	Часто	оты нормальни	ых колебаний,	CM ⁻¹					
B _{3u}	178	164	179	175	-				
$A_{ m g}$	185	182	188	189	-				
\mathbf{B}_{3g}	259	289	281	277	-				
$\mathbf{B}_{2\mathbf{u}}$	400	402	411	415	-				
A_{g}	466	467	476	471	-				
B_{1u}	553	553	562	529	-				
		Свободные э	нергии, а.е.						
-(E+ZPE)	16414.909	16414.034	16413.817	16409.065	16408.951				

Таблица 7 – Молекулярные параметры, частоты нормальных колебаний и значения свободной энергии $Sn_2O_2(\Gamma)$ (D_{2h} , 1A_g) в основном состоянии, рассчитанные методом DFT (функционалы M06, TPSSh, PBE0) в базисном наборе x2c-TZVPall с поправкой на скалярный релятивистский эффект по схеме DKH2 и *ab initio* методами MP2 и SCS-MP2

Молекулярные		Метод расчета						
параметры	M06	TPSSh	PBE0	MP2(Full)	SCS-MP2 (Full)			
R _{Sn-O} , Å	2.014	2.016	2.003	2.006	2.004			

<o-sn-o, th="" °<=""><th>83</th><th>83</th><th colspan="2">83 84</th><th>83</th></o-sn-o,>	83	83	83 84		83					
Частоты нормальных колебаний, см-1										
B _{3u}	133	127	139	130	155					
$A_{ m g}$	230	227	234	233	232					
\mathbf{B}_{3g}	440	447	459	457	462					
$\mathbf{B}_{2\mathbf{u}}$	535	529	542	539	526					
Ag	609	599	618	599	602					
$\mathbf{B}_{1\mathbf{u}}$	623	620	635	631	637					
Свободные энергии, а.е.										
-(E+ZPE)	579.308	579.061	579.063		577.839					

Таблица 8 – Молекулярные параметры, частоты нормальных колебаний и значения свободной энергии $BaSnO_2(\Gamma)$ (C_{2v} , 1A_1) в основном состоянии, рассчитанные методом DFT (функционалы M06, TPSSh, PBE0) в базисном наборе x2c-TZVPall с поправкой на скалярный релятивистский эффект по схеме DKH2 и *ab initio* методами MP2 и SCS-MP2

Молекулярные	Метод расчета							
параметры	араметры M06 TPSSh PBE0		MP2 (Full)	SCS-MP2				
R _{Ba-O} , Å	2.287	2.292	2.278	2.272	2.272			
R _{Sn-O} , Å	1.997	2.003	1.991	1.994	1.994			
<o-ba−o, td="" °<=""><td>76</td><td>76</td><td>76</td><td>77</td><td>77</td></o-ba−o,>	76	76	76	77	77			
<o-sn-o, td="" °<=""><td>89</td><td>89</td><td>89</td><td>90</td><td>90</td></o-sn-o,>	89	89	89	90	90			
Частот	гы нормальных	к колебаний, с	M ⁻¹					
B ₁	173	158	166	171	-			
A_1	183	178	186	194	-			
B_2	280	297	300	313	-			
A_1	485	490	500	493	-			
B_2	531	523	537	536	-			
A_1	611	603	620	615	-			
	Свободные эн	ергии, а.е.						
-(E+ZPE)	14457.776	14457.008	14456.726	14452.357	14452.248			

Благодаря тому, что в ходе эксперимента удалось создать условия сосуществования участников реакций (115) – (117) в паре в достаточно большом температурном интервале, стало возможным определить энтальпии этих реакций по II закону (уравнение (110). На Рисунке 4 приведены графики зависимости $\ln K_p vs$ (1/*T*) для изученных реакций (115) – (117) и таблицы с коэффициентами уравнения прямой, аппроксимирующей экспериментальные точки по МНК.

Рисунок 4 – Зависимость констант равновесия газофазных реакций (115) – (117) от обратной температуры. А) – (115); В) – (116); С) – (117)

Полученные значения энтальпий реакций для середины температурного интервала (T = 1777 K) были пересчитаны на температуры 0 и 298.15 К. Результаты приведены в Таблице 9. Энтальпии реакций, полученные по II и III законам, хорошо согласуются между собой, что дало возможность получить средневзвешенную величину.

Таблица 9 – Величины энтальпий реакций (115) – (117), полученные по II и III законам при 0 и 298.15 К и средневзвешенные значения при температуре 0 К

ВК	$-arDelta_r H_T^\circ$, кДж									
акц	II закон			III 3	акон	Средневзвешенная				
Pe	1777 K	0 K	298.15 K	0 K	298.15 K	величина, 0 К				
(115)	375.0 ± 22.6	353.3 ± 22.6	356.5 ± 22.6	347.5 ± 3.8	349.9 ± 3.9	350 ± 23				
(116)	364.8 ± 22.7	313.2 ± 22.7	317.0 ± 22.7	334.5 ± 3.6	$336.4\pm~3.6$	324 ± 23				
(117)	166.2 ± 16.2	170.3 ± 16.2	171.7 ± 16.2	179.9 ± 3.6	181.2± 3.0	175 ± 17				

Значения разницы теплосодержаний $H_T^{\circ} - H_0^{\circ}$, необходимые для пересчета энтальпий реакций с температуры 1777 К на температуры 0 и 298.15 К, приведены в Таблице 10. Для BaO и SnO использовались справочные данные [24], для Ba₂O₂ и BaSnO₂ – данные, рассчитанные методом MP2 в настоящей работе (см. Приложение A).

Таблица 10 – Величины $H_T^{\circ} - H_0^{\circ}$ участников реакций (115) – (117)

$H_T^{\circ} - H_0^{\circ}$, кДж	BaO	SnO	Ba ₂ O ₂	BaSnO ₂
T = 1777 K	93.844	62.549	136.099	134.715
T = 298.15 K	9.960	8.866	16.149	15.593

Величины энтальпий реакций (115) – (117) были также рассчитаны различными методами квантовой химии. Полученные данные представлены в Таблице 11.

	_	$-\Delta_r H_0^\circ, \kappa$	$-\Delta_{r}H_{0}^{\circ}$, кДж, Средневзвешенная			
Реакция	M06	TPSSh	PBE0	MP2	SCS- MP2	величина по II и III законам (эксперимент)
$BaO(^{1}\Sigma^{+}) + BaO(^{1}\Sigma^{+})$ $= Ba_{2}O_{2}(D_{2h}, {}^{1}A_{g})$	319	326	326	349	342	324 ± 23
$BaO(^{1}\Sigma^{+}) + SnO(^{1}\Sigma^{+})$ $= BaSnO_{2}(C_{2v}, ^{1}A_{1})$	340	342	349	341	340	350 ± 23
$0.5 \text{ Ba}_{2}\text{O}_{2}(\text{D}_{2h}, {}^{1}\text{A}_{g}) +$ $\text{SnO}({}^{1}\Sigma^{+}) =$ $\text{BaSnO}_{2}(\text{C}_{2v}, {}^{1}\text{A}_{1})$	180	180	186	167	169	175 ± 17

Таблица 11 – Энтальпии реакций (115) – (117) при температуре 0 К, рассчитанные различными методами квантовой химии в сравнении с экспериментальными данными

Полученные значения энтальпий газофазных реакций (115) – (117) в совокупности с величинами энтальпий образования газообразных BaO и SnO [24] позволили вычислить значения стандартных энтальпий образования и атомизации газообразных Ba₂O₂ и BaSnO₂ (см. Таблицу 12). Для расчета энтальпий образования и атомизации BaSnO₂ по реакции (117) была использована величина энтальпии образования Ba₂O₂ (газ), полученная в настоящей работе при изучении реакции (116). Значения энтальпии образования и атомизации BaSnO₂, полученные по двум реакциям, (115) и (117), совпали в пределах погрешности, что позволило провести их усреднение.

Таблица 12 – Энтальпии образования и атомизации газообразных BaSnO₂ и Ba₂O₂, полученные на основе экспериментальных данных

${\it \Delta H}_{T}^{\circ}$, кДж/моль	(115)	(117)	(116)	Средняя величина по реакциям (115), (117)
$-\Delta_f H_0^{\circ}(\text{BaSnO}_2, \Gamma)$	452 ± 23	439 ± 17	-	446 ± 23
$-\Delta_{f}H^{\circ}_{298}$ (BaSnO ₂ , г)	459 ± 23	445 ± 17	-	452 ± 23
$-\Delta_{f}H_{0}^{\circ}(\mathrm{Ba_{2}O_{2}},\mathrm{r})$	-	-	574 ± 23	-

$-\Delta_{f}H^{\circ}_{298}(\mathrm{Ba_{2}O_{2}},\Gamma)$	-	-	580 ± 23	-
$\Delta_{at}H_0^{\circ}(\text{BaSnO}_2, \Gamma)$	1426 ± 23	1413 ± 17	-	1420 ± 23
$\Delta_{at}H^{\circ}_{298}$ (BaSnO ₂ , г)	1438 ± 23	1424 ± 17	-	1431 ± 23
$\Delta_{at}H_0^{\circ}(\mathrm{Ba_2O_2},\mathrm{r})$	-	-	1427 ± 23	-
$\Delta_{at} H_{298}^{\circ}(\mathrm{Ba_2O_2}, r)$	-	-	1436 ± 23	-

В паре над системой BaO – SnO₂, обогащенной оксидом олова, дополнительно был обнаружен ион Sn₂O₂⁺, характерный для масс-спектров пара над индивидуальным оксидом SnO [18]. Несмотря на то, что ионный ток Sn₂O₂⁺ быстро снижался до уровня фона, нам удалось измерить одну константу равновесия газофазной реакции (118) и определить энтальпию этой реакции по III закону. Значения приведенной энергии Гиббса и разницы теплосодержаний для Sn₂O₂ и BaSnO₂ получены методом MP2. Экспериментальные данные приведены в Таблице 13.

$$BaO + \frac{1}{2}Sn_2O_2 = BaSnO_2$$
(118)

Таблица 13 – Парциальные давления компонентов пара над системой BaO – SnO₂ и энтальпия газофазной реакции (118) при 0 К

T, K		р _i ×10 ⁻² , П	$-\Delta_{\mu}H_{0}^{\circ}$. кЛж	
,	BaO	Sn ₂ O ₂	BaSnO ₂	7 05 74
1745	29.34	2.28	4.11	197.3

Величина энтальпии реакции (118) была также рассчитана различными методами квантовой химии. Результаты вычислений в совокупности с экспериментальной величиной помещены в Таблицу 14.
		$-\Delta_r H_0^{\circ}$, кДж, расчет (метод)				$-\Delta_r H_0^\circ$, кДж,
Реакция	M06	TPSSh	PBE0	MP2	SCS- MP2	III закон (эксперимент)
$BaO(^{1}\Sigma^{+}) + 0.5 Sn_{2}O_{2}$ $(D_{2h}, {}^{1}A_{g}) = BaSnO_{2}$ $(C_{2v}, {}^{1}A_{1})$	189	192	191	208	205	197.3

Таблица 14 – Энтальпия реакции (118) при 0 К, рассчитанная различными методами квантовой химии и полученная на основе экспериментальных данных

Определение энтальпии реакции (118), пересчитанной на температуру 0 К, в совокупности с величинами энтальпий образования BaO, SnO [24] и Sn₂O₂ [18] позволило получить величину $\Delta_f H_{298}^{\circ}$ (BaSnO₂, Γ) = -465 кДж/моль. Величина, полученная при изучении реакции (118), в пределах погрешности совпала с величинами, полученными для реакций (115) и (117).

2.3.2 Антимонаты свинца

Для синтеза газообразных антимонатов свинца проводили испарение системы PbO – Sb_2O_3 состава 80 мол. % PbO – 20 мол. % Sb_2O_3 из сдвоенной однотемпературной камеры Кнудсена. Так же, как и при изучении парообразования смеси оксидов бария и олова, один отсек эффузионной камеры был изготовлен из платины, а другой из молибдена. В отсек, изготовленный из платины, помещали образец. Серебро, выбранное в качестве стандарта давления [97], помещали в отсек из молибдена. Несмотря на то, что платина является нейтральной по отношению к оксидам свинца и сурьмы, после проведения трех серий измерений платиновый отсек камеры пришел в негодность вследствие механического разрушения. Это связано с тем, что в результате термической диссоциации PbO и Sb_2O_3 в камере появляются атомарные свинец и сурьма, которые растворяются в платине, образуя легкоплавкие эвтектики и соединения [123, 124].

В температурном интервале 1400 – 1425 К в масс-спектре пара над образцом присутствовали ионы Pb⁺, PbO⁺, SbO⁺, Sb4O₆⁺, PbSbO₂⁺ и PbSb₂O₄⁺. Ионный ток O₂⁺ нами не фиксировался по причине большого фонового сигнала. Соотношение интенсивностей ионных токов в масс-спектре пара зависело от температуры и времени испарения образца.

Для определения природы ионов масс-спектра измерили их энергии появления, которые составили (\pm 0.3 эВ): 7.6 (Pb⁺), 9.9 (PbO⁺), 9.2 (Sb₄O₆⁺), 12.2 (PbSbO₂⁺) и 9.5 (PbSb₂O₄⁺). Энергию появления SbO⁺ не измеряли из-за низкой интенсивности ионного тока. Энергии появления ионов Pb⁺, PbO⁺ и Sb₄O₆⁺ в пределах погрешности измерений совпали с величинами энергий ионизации соответствующих молекул, равных 7.416 эВ для Pb [111, 125], 9.0 \pm 0.5 эВ для PbO [44] и 9.31 для Sb₄O₆ [126]. Энергия появления иона PbSb₂O₄⁺ в пределах погрешности соответствует энергии ионизации молекулы PbSb₂O₄, которая была вычислена нами квантово-химически и составила 9.7 эВ. Согласно данным работы [48], PbSbO₂⁺ при температуре порядка 1400 К является продуктом диссоциативной ионизации молекулы PbSb₂O₄. Таким образом, на основании анализа масс-спектров пара, величин энергий появления ионов и литературных данных, был сделан вывод, что пар над изученным образцом при температуре порядка 1400 К состоял из PbO, Sb₄O₆, PbSb₂O₄, атомарного свинца и кислорода.

При повышении температуры до 1480 - 1670 К интенсивности ионных токов Sb₄O₆⁺ и PbSb₂O₄⁺ уменьшались до уровня фона, а интенсивность ионного тока SbO⁺ увеличивалась. Величина энергии появления иона SbO⁺ составила 8.2 эВ, что в пределах погрешности совпадает с энергией ионизации SbO [127]. ЭП ионов Pb⁺ и PbO⁺ не изменились, а ЭП (PbSbO₂⁺) уменьшилась от 12.2 до 7.0 эВ. Измеренная величина в пределах погрешности измерений совпала с энергией ионизации PbSbO₂, равной 6.9 эВ, и рассчитанной нами квантово-химически. Таким образом, пар над изученным образцом в интервале 1480 – 1670 К состоял из смеси Pb, PbO, SbO, PbSbO₂ и кислорода.

Парциальные давления молекулярных форм пара были определены методом сравнения ионных токов по уравнению (105). Необходимые для этого величины сечений ионизации рассчитывались согласно рекомендациям работ [119, 120].

В результате измерения констант равновесия газофазных реакций (119) и (120) были определены величины энтальпий этих реакций по III закону при температуре 298.15

К. При определении парциального давления PbSb₂O₄ суммировали интенсивности молекулярного иона PbSb₂O₄⁺ и осколочного PbSbO₂⁺.

$$PbO + \frac{1}{2}Sb_4O_6 = PbSb_2O_4$$
(119)

$$PbO + SbO = PbSbO_2$$
(120)

Определить энтальпии реакций (119) и (120) по II закону не удалось из-за того, что константы равновесия этих реакций оказалось возможным измерить только в узком интервале температур. Величины парциальных давлений компонентов пара и энтальпий реакций (119), (120) при температуре 298.15 К приведены в Таблицах 15, 16. Необходимые для расчетов термодинамические функции для PbO, SbO и Sb4O₆ были взяты из справочника [28], а для PbSbO₂ и PbSb₂O₄ рассчитывались методом статистической термодинамики в приближении «жесткий ротатор – гармонический осциллятор». Молекулярные параметры и частоты нормальных колебаний были получены методом MP2. В разделе «*Обсуждение экспериментальных результаты*, полученные при выборе различных наборов квантовохимических данных.

Необходимо отметить, что в справочнике [28] вместо значений Φ_T° приведены значения $\Phi_T^{'}$, где $\Phi_T^{'} \equiv -\frac{G_T^{\circ} - H_{298}^{\circ}}{T}$. Указанные величины связаны уравнением (121)

$$\Phi_{T}^{'} = \Phi_{T}^{\circ} + \frac{H_{298}^{\circ} - H_{0}^{\circ}}{T}$$
(121)

В качестве разницы теплосодержаний справочник [28] приводит величины $H_T^{\circ} - H_{298}^{\circ}$. В связи с этим, значения энтальпий реакций были получены нами для температуры 298.15 К.

Кроме того, в справочнике [28] термодинамические функции Sb₄O₆ приведены только до температуры 1000 К. Для того, чтобы получить значения приведенной энергии Гиббса для температурного интервала 1300 – 1700 К, провели аппроксимацию

справочных данных полиномом 2 степени. Результаты вычислений приведены в Приложении В.

ТК		<i>р</i> і, Па		$-\Lambda H_{222}^{\circ}$ KIIK		
-,	PbO	Sb ₄ O ₆	PbSb ₂ O ₄	<u></u> 298, 124,11		
1410	17.18	24.69	31.82	155.1		
1405	18.43	24.61	35.59	154.8		
1400	16.40	28.02	33.63	154.0		
1401	16.41	24.54	31.42	154.1		
1401	13.79	24.54	26.96	154.3		
1403	13.15	15.80	18.66	153.5		
1415	37.79	82.60	97.62	152.7		
1408	63.34	64.58	104.61	147.8		
1411	51.57	52.95	89.20	150.0		
1415	65.64	59.00	117.51	150.3		
1405	67.15	46.87	103.74	148.4		
1410	61.44	47.62	76.81	146.6		
1411	57.52	37.07	66.41	147.3		
1407	37.58	29.92	39.66	146.9		
1408	37.61	21.14	29.73	145.7		
1411	31.74	17.65	19.16	144.1		
1407	27.69	17.60	20.56	145.9		
1423	82.01	37.38	69.96	145.5		
1422	61.97	44.47	52.27	144.2		
1421	51.94	17.78	33.27	146.2		
1423	44.01	21.36	20.39	141.6		
1422	27.98	14.23	14.25	145.0		
	1	I	1	1		

Таблица 15 – Парциальные давления компонентов пара над системой PbO – Sb₂O₃ и энтальпии газофазной реакции (119) при 298.15 К, рассчитанные по III закону

1415	29.84	5.90	6.82	139.7
	148.4 ± 3.7			

Таблица 16 – Парциальные давления компонентов пара над системой PbO – Sb₂O₃ и энтальпии газофазной реакции (120) при 298.15 К, рассчитанные по III закону

т к		<i>p</i> i, Па				
1, 1	PbO	SbO	PbSbO ₂ ×10 ⁻²	$= \Delta_r 11_{298}, кдл$		
1469	0.99	0.39	8.28	338.0		
1470	0.77	0.30	8.28	344.4		
1462	0.55	0.27	4.81	341.6		
1469	0.44	0.23	4.14	345.7		
1528	1.61	0.76	21.53	348.7		
1519	1.48	0.76	21.40	347.4		
1523	1.09	0.76	15.02	347.9		
1523	0.74	0.54	8.58	350.0		
1527	0.86	0.54	9.32	350.2		
1523	0.51	0.45	7.15	354.6		
1528	0.34	0.45	3.59	352.2		
1554	0.58	0.82	3.65	344.5		
1561	0.26	0.69	1.47	347.0		
1488	2.72	0.71	41.86	341.9		
1497	1.19	0.66	39.49	354.1		
1485	0.90	0.71	13.06	340.5		
1482	0.48	0.65	13.90	349.5		
1512	0.85	1.61	21.27	343.1		
	I	I	l	I		

1518	0.68	2.06	18.68	342.6
1516	0.58	2.11	12.44	338.8
1520	0.51	2.34	11.58	339.1
1521	0.30	2.34	7.13	340.0
1567	0.55	6.32	24.80	346.9
1576	0.44	6.36	24.02	351.5
1577	0.31	6.36	21.26	354.8
1593	0.22	6.43	14.94	358.3
1601	0.18	5.46	14.08	364.6
1602	0.12	5.29	9.39	365.3
1596	0.07	3.86	9.35	375.6
1667	0.19	12.84	17.59	370.0
	349.6 ± 7.0			

Полученные квантово-химические данные представлены в Таблицах 17 – 19. На Рисунках 5, 6 приведены равновесные структуры молекул PbSbO₂ и PbSb₂O₄ соответственно.

Таблица 17 — Молекулярные параметры, частоты нормальных колебаний и значения свободной энергии PbSbO₂ (г) (C_{2v} , ¹A₁) в основном состоянии, рассчитанные методом DFT (функционалы M06, TPSSh, PBE0) в базисном наборе def2-QZVPPD с поправкой на скалярный релятивистский эффект по схеме DKH2 и *ab initio* методами MP2 и SCS-MP2

Молекулярные	Метод расчета					
параметры	M06	TPSSh	PBE0	MP2 (Full)	SCS-MP2 (Full)	
R _{Pb-O} , Å	2.143	2.138	2.119	2.102	2.106	
R _{Sb-O} , Å	1.952	1.966	1.956	1.966	1.966	
<o-pb-o, td="" °<=""><td>76</td><td>77</td><td>77</td><td>79</td><td>78</td></o-pb-o,>	76	77	77	79	78	
< O-Sb- O, °	85	86	85	85	85	

78

B ₁	178	166	167	170	178	
A_1	200	197	204	202	205	
B_2	409	419	432	440	438	
A_1	515	524	552	547	550	
B_2	570	556	566	557	561	
\mathbf{A}_1	615	597	619	639	643	
Свободные энергии, а.е.						
-(E+ZPE)	583.742	583.567	583.550	582.887	582.734	

Частоты нормальных колебаний, см-1

Таблица 18 – Молекулярные параметры, частоты нормальных колебаний и значения свободной энергии $PbSb_2O_4$ (г) (C_s , 1A_1) в основном состоянии, рассчитанные методом DFT (функционалы M06, TPSSh, PBE0) в базисном наборе def2-QZVPPD с поправкой на скалярный релятивистский эффект по схеме DKH2 и *ab initio* методами MP2 и SCS-MP2

Молекулярные		Метод расчета					
параметры	M06	TPSSh	PBE0	MP2(Full)	SCS-MP2(Full)		
R _{Pb-O1} , Å	2.179	2.180	2.162	2.162	2.162		
R _{Pb-O4} , Å	2.536	2.487	2.514	2.421	2.437		
Rsb1-01, Å	1.905	1.912	1.902	1.901	1.901		
R _{Sb1-O3} , Å	1.975	1.983	1.970	1.970	1.969		
R _{Sb1-O4} , Å	2.043	2.055	2.037	2.038	2.037		
<01-Pb-O2, °	99	100	99	99	99		
<pb-o1-sb1, td="" °<=""><td>109</td><td>107</td><td>108</td><td>106</td><td>107</td></pb-o1-sb1,>	109	107	108	106	107		
<pb-o4-o3, td="" °<=""><td>96</td><td>97</td><td>96</td><td>98</td><td>98</td></pb-o4-o3,>	96	97	96	98	98		
<pb-o4-sb1, td="" °<=""><td>92</td><td>93</td><td>92</td><td>93</td><td>93</td></pb-o4-sb1,>	92	93	92	93	93		
<03- Sb1-O4, °	80	81	81	81	81		
< Sb1-O3-Sb2, °	102	101	101	101	101		
< Sb1-O4-Sb2, °	97	96	97	96	96		
Частоты нормальных колебаний, см-1							
A'	102	110	102	126	119		

A'	134	132	137	149	151		
A''	153	151	155	151	153		
A''	181	176	183	187	187		
A'	223	217	226	224	228		
A'	267	269	268	294	293		
A'	311	303	315	315	314		
A''	403	403	415	421	422		
A''	461	456	471	468	473		
A'	476	471	485	485	486		
A'	501	493	510	503	506		
A''	580	574	589	569	573		
A'	600	584	605	588	594		
A''	699	685.	704.2	687	692		
Α'	718	704	723	706	710		
Свободные энергии, а.е.							
-(E+ZPE)	974.651	974.386	974.294	973.390	973.148		

Таблица 19 — Молекулярные параметры, частоты нормальных колебаний и значения свободной энергии Sb_4O_6 (г) (T_d , 1A_1) в основном состоянии, рассчитанные *ab initio* методами MP2 и SCS-MP2

Молекулярные	Метод расчета				
параметр	MP2 Full	SCS-MP2			
RSb-O, Å	1.943-1.945	1.944-1.945			
<o-sb-o, td="" °<=""><td>98,99</td><td>96,97,99</td></o-sb-o,>	98,99	96,97,99			
<sb-o-sb, td="" °<=""><td>130</td><td>130</td></sb-o-sb,>	130	130			
Частоты нормальных колебаний, см-1					
	73.55	82.31			
	82.09	93.55			
	87.88	102.07			
	128.28	130.35			

80

	135.69	137.78		
	166.56	172.63		
	172.4	175.91		
	173.16	178.16		
	261.96	272.39		
	262.97	274.22		
	273.34	282.06		
	280.26	283.69		
	421.99	420.75		
	425.01	423.7		
	430.84	430.51		
	431.06	431.36		
	435.13	436.85		
	466.31	470.7		
	633.33	637.39		
	633.51	637.71		
	634.59	638.59		
	816.5	822.05		
	817.13	822.36		
	817.76	823.22		
Свободные энергии, а.е.				
-(E+ZPE)	1411 201	1/11 055		

Рисунок 5 – Оптимальная равновесная структура PbSbO2 (C2v), полученная методом MP2

Рисунок 6 – Равновесные структуры молекулы $PbSb_2O_4$: оптимальная по энергии геометрия C_s , метод расчета MP2 (A); неоптимальные по энергии структуры C_{2v} , метод расчета DFT M06 (B) и структура типа «бабочка», C_2 (C)

На ППЭ молекулы PbSb₂O₄ было обнаружено три минимума. Энергетически выгодной оказалась структура симметрии C_s (Рисунок 6А). Второй минимум, соответствующий структуре C_{2v} (Рисунок 6В), расположен примерно на 5 кДж выше. Структура симметрии C₂ («бабочка», Рисунок 6С) расположена более чем на 200 кДж выше структуры C_s. Согласно *ab initio* расчету методом MP2, структура симметрии C_{2v} имеет одну мнимую частоту, то есть, является переходным состоянием. Атом свинца в структуре симметрии C_s относительно свободно перемещается в плоскости Pb-O₃-O₄, за счет чего структура переходит в зеркально отраженную, проходя через структуру симметрии C_{2v}.

Величины разностей теплосодержаний, необходимые для пересчета экспериментально полученных величин энтальпий реакций $\Delta_r H_{298}^{\circ}$ на температуру 0 К, для PbO взяли из справочника JANAF [26, 27], для PbSbO₂ и PbSb₂O₄ – из результатов расчетов настоящей работы (методом MP2), для SbO и Sb₄O₆ эту величину оценили на основании справочных данных [28], построив аппроксимацию имеющихся справочных

данных на температуру 0 К (Приложения Γ и Д). Полученные значения $H_{298}^{\circ} - H_0^{\circ}$ приведены в Таблице 20.

Таблица 20 – H_{298}° – H_0° для PbO, SbO, Sb₄O₆, PbSbO₂ и PbSb₂O₄

	PbO [26, 27]	SbO [28]	Sb ₄ O ₆ [28]	PbSbO ₂	PbSb ₂ O ₄
$H_{298}^{\circ}-H_{0}^{\circ}$, кДж/моль	8.961	10.332	56.828	15.052	24.297

Энтальпии газофазных реакций (119) и (120) были дополнительно вычислены различными методами квантовой химии. Результаты представлены в Таблице 21.

Таблица 21 – Энтальпии реакций (119) и (120) при 0 К, рассчитанные различными методами квантовой химии и полученные на основе экспериментальных данных по III закону

Dooyuurg	$-\Delta_{\!r} H_0^{\circ}$, кДж, расчет (метод)				$-\varDelta_{r}H_{0}^{\circ}$, кДж,
Реакция	M06	TPSSh	PBE0	MP2	эксперимент
$PbO(^{1}\Sigma^{+}) + 1/2 Sb_{4}O_{6}(^{1}A_{1}) =$ $PbSb_{2}O_{4}(C_{s}, ^{1}A')$	134	141	138	133	135 ± 4
$PbO(^{1}\Sigma^{+}) + SbO(^{2}A) =$ $PbSbO_{2}(C_{2v}, ^{1}A_{1})$	324	320	331	294	345 ± 7

Комбинация полученных величин энтальпий реакций (119) и (120) и стандартных энтальпий образования PbO (68.1 кДж/моль, [24]), SbO (-103.5 кДж/моль, [28]) и Sb₄O₆ (-1215.5 кДж/моль, [28]) позволила получить величины стандартных энтальпий образования и атомизации газообразных PbSbO₂ и PbSb₂O₄ при температуре 298.15 K, которые приведены в Таблице 22.

Таблица 22 – Энтальпии образования и атомизации газообразных PbSbO₂ и PbSb₂O₄, полученные на основе экспериментальных данных

${\it \Delta H}_{T}^{\circ}$, кДж/моль	(119)	(120)
$-\Delta_f H_{298}^{\circ}(\text{PbSbO}_2, \Gamma)$	-	383 ± 7
$-\Delta_{f}H^{\circ}_{298}(PbSb_{2}O_{4}, \Gamma)$	686 ± 4	-
$\Delta_{at} H_{298}^{\circ}$ (PbSbO ₂ , г)	-	1341 ± 7
$\Delta_{at} H_{298}^{\circ}$ (PbSb ₂ O ₄ , г)	2407 ± 4	-

ГЛАВА З

Обсуждение экспериментальных результатов

В результате проведения масс-спектрального эксперимента были получены константы равновесия реакций синтеза газообразных солей кислородсодержащих кислот из газообразных оксидов (115) – (120). Величины энтальпий этих реакций были получены по уравнениям (110) и (111). В выражения для констант равновесия входят парциальные давления участников изученных реакций. Парциальные давления во всех случаях были получены методом сравнения ионных токов по уравнению (105) с использованием внешнего стандарта давления, рекомендованного ИЮПАК [96, 97]. Пересчет величин энтальпий реакций осуществлялся с использованием соответствующих термодинамических функций, полученных методом статистической термодинамики в приближении «жесткий ротатор – гармонический осциллятор». Необходимые для этого молекулярные параметры и частоты нормальных колебаний рассчитывали различными методами квантовой химии.

Для обсуждения достоверности определенных нами величин энтальпий образования и атомизации впервые синтезированных газообразных солей необходимо обсудить влияние всех факторов на полученные величины.

3.1 Определение парциальных давлений участников газофазных реакций и вычисление констант равновесия

В уравнение (105) входят следующие величины: давление пара стандарта (2), отношение интенсивностей ионных токов образца (1) и стандарта (2), отношение температур, при которых измерены интенсивности ионных токов образца и стандарта, отношение сечений ионизации $\sigma(2)/\sigma(1)$, отношение коэффициентов конверсии вторично-электронного умножителя $\gamma(2)/\gamma(1)$.

Интенсивности ионных токов, относящиеся к стандарту давления и исследуемому веществу, определяют с одинаковой точностью. То же самое можно сказать о температуре, измеряемой с точностью ± 10 К. Коэффициенты конверсии вторичноэлектронного умножителя γ пропорциональны обратной величине корня квадратного из значения молярной массы [99, 100]. Поскольку молярные массы стандарта и исследуемого вещества в нашем случае были близки, то величина $\gamma(1)/\gamma(2)$, которая равна $\sqrt{M(2)}/\sqrt{M(1)}$, не оказывает существенного влияния на получаемые результаты.

Наибольшее влияние на величину константы равновесия может оказывать величина $\sigma(2)/\sigma(1)$. Значения сечений ионизации для атомов, как правило, берутся из работ [119] или [128]. При расчете величин сечений ионизации молекул традиционно используется метод аддитивности. Отношение сечений ионизации полимер/мономер вычисляется по правилу Майера-Линча [129]. Согласно работе [130], в том случае, когда молекула состоит из четырех и более атомов, вводится поправочный коэффициент 0.7. К настоящему времени был накоплен достаточно обширный материал по определению абсолютных и относительных величин сечений ионизации, что дало возможность авторам работы [119] обобщить полученные результаты и сформулировать рекомендации, касающиеся расчетов сечений ионизации многоатомных молекул. В частности, $\sigma(MO) = 0.65 \cdot \sigma(M)$; $\sigma(M_2O_2) = 1.25 \cdot \sigma(MO)$. В работе [120] сечения ионизации газообразных солей кислородсодержащих кислот было предложено рассчитывать как сумму сечений ионизации оксидов, образующих соль, умноженную на 0.7, т.е. $\sigma(MXO_n) = 0.7 \cdot [\sigma(MO) +$ $<math>\sigma(XO_{n-1})]$.

Для сравнения в Таблице 23 помещены величины сечений ионизации всех участников изученных нами газофазных реакций (115) – (120), рассчитанные различными способами. Молекулу Sb₄O₆ рассматривали как димер Sb₂O₃. Сечения ионизации атомов взяты из работы [119].

Таблица 23 – Величины сечений ионизации участников газофазных реакций (115) – (120), рассчитанные различными способами

σ	Правило аддитивности, [129, 130]	[119, 120]
BaO	18.53	11.22
SnO	8.97	5.01
Ba_2O_2	19.46	14.02
Sn_2O_2	9.42	6.26
BaSnO ₂	19.25	11.36

PbO	9.12	5.10
SbO	8.46	4.67
Sb_4O_6	12.73	8.76
PbSb ₂ O ₄	19.12	8.47
PbSbO ₂	12.31	6.84
Au	5.85	
Ag	5.05	

Разница в значениях сечений ионизации, полученных разными способами, тем больше, чем больше молекула, и для $PbSb_2O_4$ и Sb_4O_6 сечения ионизации, полученные по методу аддитивности, примерно в 2 раза превышают значения сечений, полученных согласно рекомендациям работ [119, 120].

В Таблице 24 приведены значения констант равновесия газофазных реакций (115) – (120) и энтальпий этих реакций при температуре 298.15 К, при определении которых по III закону (111) использовали различные способы расчета сечений ионизации участников реакций. Можно сделать вывод о том, что ни для одной из изученных реакций (115) – (120) выбор способа расчета сечений ионизации молекул не оказывает существенного влияния на итоговую величину энтальпии реакции. Энтальпии реакций (115), (117), (119) и (120), при определении которых сечения ионизации участников реакций рассчитывали двумя разными способами, совпали в пределах погрешности. В случае реакции (116) разница составила около 2 кДж. Для реакции (118) разница составила около 1% от величины энтальпии реакции.

Таблица 24 – Значения констант равновесия и энтальпий газофазных реакций (115) – (120), определенные с учетом сечений ионизации участников реакций, рассчитанных различными способами

	$\ln K_p$, способ расчета σ		$-\Delta_r H_{298.15}^{\circ}$, кДж, сі	пособ расчета σ
Реакция	Правило		Правило	
	аддитивности,	[119, 120]	аддитивности,	[119, 120]
	[129, 130]		[129, 130]	
(115)	8.06 ± 0.64	7.50 ± 0.64	358.1 ± 3.9	349.9 ± 3.9
(116)	7.46 ± 0.59	6.78 ± 0.59	346.4 ± 3.6	336.4 ± 3.6
(117)	4.12 ± 0.31	3.91 ± 0.31	184.5 ± 3.0	181.2 ± 3.0
(118)	5.87	5.69	200.8	198.2
(119)	4.15 ± 0.37	4.19 ± 0.37	147.9 ± 3.7	148.4 ± 3.7
(120)	10.34 ± 0.48	9.75 ± 0.48	357.1 ± 7.0	349.6 ± 7.0

3.2 Выбор различных квантово-химических методов расчета наборов молекулярных параметров и частот нормальных колебаний, необходимых для получения термодинамических функций

Таблицы значений термодинамических функций для Ba₂O₂, BaSnO₂, Sn₂O₂, PbSbO₂, PbSb₂O₄ и Sb₄O₆, полученные с помощью различных методов квантовой химии, приведены в Приложениях А – Б. Термодинамические функции газообразных оксидов SbO и Sb₄O₆ получали аппроксимацией данных справочника [28] (см. Приложения В – Д).

Значения приведенных энергий Гиббса, полученные на основании расчетов разными квантово-химическими методами, для каждой из указанных молекул близки между собой. Отличие в значениях приведенной энергии Гиббса составляет примерно 1 Дж/(моль·К) при 298.15 К и 5 Дж/(моль·К) при 3000 К. Наибольшее различие наблюдается для многоатомных молекул. Но даже для PbSb₂O₄ разница в значениях Φ_T° ,

полученных методами DFT и MP2, укладывается в указанные пределы. В Таблице 25 приведены значения энтальпий реакций (115) – (117) при температуре 0 К, определенные по III закону (уравнение (111), при выборе различных квантово-химических методов расчета наборов молекулярных параметров, необходимых для получения термодинамических функций для BaSnO₂ и Ba₂O₂.

Таблица 25 – Величины энтальпий реакций (115) – (117) при 0 К, определенные по III закону, при разном выборе термодинамических функций для BaSnO₂ и Ba₂O₂

Реакция	 – Д_r.H₀°, кДж, эксперимент (III закон), квантово-химический метод расчета термодинамических функций 			
	M06	TPSSh	PBE0	MP2 Full
(115)	343.2 ± 3.8	342.1 ± 3.8	344.7 ± 3.8	347.5 ± 3.8
(116)	329.7 ± 3.6	330.1 ± 3.6	332.0 ± 3.6	334.5 ± 3.6
(117)	179.5 ± 3.0	178.3 ± 3.0	179.8 ± 3.0	179.9 ± 3.0

Аналогичные данные для энтальпий реакций (119) и (120) при температуре 298.15 К приведены в Таблице 26.

Таблица 26 – Величины энтальпий реакций (119) и (120) при температуре 298.15 К, определенные по III закону, при разном выборе термодинамических функций для PbSbO₂ и PbSb₂O₄

акция	 – Д_r H[°]₂₉₈, кДж, эксперимент (III закон), квантово-химический метод расчета термодинамических функций 				
Pe	M06	TPSSh	PBE0	SCS-MP2 Full	MP2 Full
(119)	142.5 ± 3.8	141.3 ± 3.8	144.8 ± 3.7	148.6 ± 3.7	$148.4 \pm 3.7*$
(120)	348.1 ± 7.0	346.9 ± 7.0	349.2 ± 7.0	350.5 ± 7.1	349.6 ± 7.0

* При использовании термодинамических функций Sb₄O₆, полученных аппроксимацией справочных данных [28], -156.9 ± 4.0 кДж/моль

Значения энтальпии реакции (119), полученные с использованием термодинамических функций Sb₄O₆, рассчитанных квантово-химически в настоящей работе, и определенных аппроксимацией справочных данных [28], совпали в пределах погрешности.

Для всех изученных реакций итоговые значения энтальпий реакций, рассчитанные с использованием различных наборов термодинамических функций участников реакций, совпали в пределах погрешности. На основании этого нами сделан вывод, что в случае изученных в данной работе реакций (115) – (117) и (119), (120) выбор квантовохимического метода расчета молекулярных параметров для получения термодинамических функций молекул в пределах погрешности измерений не влияет на величину энтальпии реакции.

3.3 Проверка достоверности получаемых данных с позиций концепции термической устойчивости газообразных солей кислородсодержащих кислот и

соответствия закономерности изменения энтальпии атомизации

Согласно концепции термической устойчивости газообразных солей кислородсодержащих кислот, термическая устойчивость и относительное содержание соли в паре зависит от разницы кислотно-основных свойств оксидов, образующих соль [12, 13].

Несмотря на небольшую разницу кислотно-основных свойств BaO и SnO (см. Таблицу 1), нам удалось синтезировать газообразный BaSnO₂. Содержание BaSnO₂ в паре составило 1.5 - 2%. В качестве сравнения можно привести данные по синтезу газообразного молибдата бария [131]. Согласно Таблице 1, величина отношения средних орбитальных электроотрицательностей оксидов $\bar{\chi}$ (BaO)/ $\bar{\chi}$ (MoO₃) составляет 0.72, тогда как отношение $\bar{\chi}$ (BaO)/ $\bar{\chi}$ (SnO) равно 0.82. Уменьшение отношения средних орбитальных электроотрицательностей оксидов говорит об увеличении разницы их кислотно-основных свойств, что должно приводить к увеличению термической

стабильности соли, которую они образуют. Действительно, относительное содержание BaMoO₄ в паре над системой BaO – MoO₃ значительно выше, чем в случае со станнатом бария.

Что касается антимонатов свинца, то величина $\bar{\chi}$ (PbO)/ $\bar{\chi}$ (SbO) больше, чем $\bar{\chi}$ (PbO)/ $\bar{\chi}$ (Sb4O₆), и относительное содержание в паре PbSbO₂ меньше, чем PbSb₂O₄.

Подводя итог, следует признать достаточно достоверной закономерность зависимости относительного содержания соли в паре от разницы кислотно-основных свойств (электроотрицательностей) оксидов, образующих эту соль.

Согласно работам [12, 13], «рассмотрение характера изменения энтальпий атомизации в группах солей, образующих изокатионные ряды, позволяет оценивать энтальпии атомизации и рассчитывать энтальпии образования не исследованных еще соединений, в том числе и оксидов, а также корректировать полученные экспериментальные данные, выходящие за пределы линейной зависимости».

Согласно уравнению (3), величина стандартной энтальпии атомизации соли линейно зависит от величины энтальпии атомизации ее анион-образующего оксида. В том случае, когда изокатионный ряд содержит достаточное количество данных, с помощью уравнения (3) можно вычислять энтальпии атомизации и образования не исследованных до сих пор газообразных солей, а также оценивать достоверность данных, получаемых при экспериментальном определении соответствующих величин. Зная коэффициенты k и b уравнения (3) для соответствующего изокатионного ряда и энтальпию атомизации анион-образующего оксида, можно оценить величину энтальпию атомизации и, следовательно, энтальпию образования еще не изученной газообразной соли. С другой стороны, экспериментально определив значения энтальпий образования и атомизации впервые синтезированной газообразной соли, можно оценить степень достоверности полученных величин.

Изокатионный ряд бария на сегодняшний день является одним из самых хорошо изученных и включает в себя 28 солей (Приложение Е). Коэффициенты k и b равны 1.0324 \pm 0.014 и 961.6 \pm 25.0 соответственно [14]. Зависимость энтальпий атомизации

газообразных солей бария от энтальпий образования газообразных анион-образующих оксидов представлена на Рисунке 7.

Рисунок 7 – Зависимость энтальпий атомизации газообразных солей бария от энтальпий атомизации газообразных анион-образующих оксидов. В таблицах представлены коэффициенты линейной зависимости (3) до и после внесения полученных нами данных по определению энтальпий образования и атомизации BaSnO₂

Полученная величина энтальпии атомизации газообразного станната бария уменьшила погрешность определения коэффициентов *k* и *b* уравнения (3), полученных для изокатионного ряда бария, что свидетельствует о достоверности полученных нами данных.

С другой стороны, ввиду схожести кислотно-основных свойств SnO и BaO, BaSnO₂ можно рассматривать и как соль бария, и как соль олова, SnBaO₂. Предпосылкой к этому является рассмотрение изокатионного ряда олова, включающего в себя 8 солей (Приложение Ж). Зависимость энтальпий атомизации газообразных солей олова от энтальпий образования газообразных анион-образующих оксидов представлена на Рисунке 8. Коэффициенты *k* и *b* для изокатионного ряда олова составляют 1.005 \pm 0.022 и 891.6 \pm 60.4 соответственно [14]. Так же, как и для изокатионного ряда бария, полученная нами величина энтальпии атомизации ассоциата SnBaO₂ уменьшила погрешность

определения коэффициентов *k* и *b* в уравнении (3), полученного для изокатионного ряда олова.

Рисунок 8 – Зависимость энтальпий атомизации газообразных солей олова от энтальпий атомизации газообразных анион-образующих оксидов. В таблицах представлены коэффициенты линейной зависимости (3) до и после внесения полученных нами данных по определению энтальпий образования и атомизации SnBaO₂

Для того, чтобы определить, является ли полученный газообразный ассоциат солью бария, BaSnO₂, или солью олова, SnBaO₂, мы рассчитали величины порядков связей Ba – O и Sn – O, характеризирующие степень ионности связи, и позволяющие определить природу соли. Величины порядков связей, полученные в результате квантово-химических расчетов представлены в Таблице 27. Согласно всем использованным методам, порядок связи Sn – O значительно больше порядка связи Ba – O. To есть, связь Ba – O носит более ионный характер, чем связь Sn – O. Это свидетельствует о том, что ассоциат является солью бария, BaSnO₂, где BaO выполняет роль катион-образующего оксида, a SnO – анион-образующего. Это, в свою очередь, свидетельствует об амфотерности SnO.

Таблица 27 – Порядки связи в газообразной молекуле BaSnO₂, рассчитанные различными методами квантовой химии

Связь	M06	PBE0	MP2
Ba – O	0.39	0.40	0.33
Sn - O	0.71	0.70	0.69

Достоверность определения величин энтальпий образования и атомизации антимонатов свинца, полученных нами, можно подтвердить, рассмотрев изокатионный ряд газообразных солей свинца. К настоящему времени ряд насчитывает 12 солей (Приложение И). Следует отметить тот факт, что установить достоверность определения полученных нами термохимических величин удалось только для PbSbO₂. Для PbSb₂O₄ такую оценку провести не удалось, ввиду отсутствия справочных данных для энтальпии образования Sb₂O₃ (газ). Зависимость энтальпий атомизации газообразных солей олова от энтальпий образования газообразных анион-образующих оксидов представлена на Рисунке 9. Коэффициенты *k* и *b* изокатионного ряда свинца равны 1.014 ± 0.015 и 756.6 \pm 38.4 соответственно [14]. Полученная нами величина энтальпии атомизации антимоната свинца, PbSbO₂, уменьшила погрешность определения коэффициентов *k* и *b* в уравнении (3), полученном для изокатионного ряда свинца.

Рисунок 9 – Зависимость энтальпий атомизации газообразных солей свинца от энтальпий атомизации газообразных анион-образующих оксидов. В таблицах представлены коэффициенты линейной зависимости (3) до и после внесения полученных нами данных по определению энтальпий образования и атомизации PbSbO₂

О корректности полученных нами данных во всех трех случаях свидетельствует то, что добавление новых данных на график для соответствующего изокатионного ряда привело к уменьшению погрешностей коэффициентов k и b и повысило коэффициент регрессии. В случае изокатионного ряда бария коэффициент регрессии практически не изменился, это связано с достаточно большим количеством экспериментальных данных.

3.4 Величины энтальпии реакций, полученные различными квантовохимическими методами

В Таблицах 11, 14 и 21 приведено сопоставление значений энтальпий реакций (115) – (120) при температуре 0 К, рассчитанных различными методами квантовой химии и полученных экспериментально.

В целом, можно сделать вывод о том, что значения энтальпий реакций (115) – (120), полученные квантово-химически в рамках методов DFT и MP2, и определенные на основании экспериментальных данных, согласуются между собой.

В случае реакции (119) наблюдается наибольшая разница: расчет методом MP2 привел к заниженному значению энтальпии реакции. Наиболее вероятной причиной расхождения методов DFT и MP2 в данном случае является то, что реакция (119) протекает через образование различных изомеров молекулы $Pb_2Sb_4O_8$, которые при температуре опыта распадаются на две молекулы $PbSb_2O_4$. На данном этапе развития квантовой химии этот процесс описать сложно, так как расчеты равновесных геометрических изомеров проводят при температуре 0 К. Механизм этой реакции в рамках данной работы не изучался.

3.5 Оценка величин энтальпий атомизации и образования газообразных солей, не изученных к настоящему времени

Как было сказано выше, с помощью уравнения (3) можно с достаточно высокой степенью достоверности оценивать величины энтальпий образования не изученных до сих пор газообразных солей. В частности, средние орбитальные электроотрицательности, $\bar{\chi}$, CaO (4.81), SrO (4.82) и BaO (4.80) очень близки, поэтому в рамках существующей теории термической устойчивости газообразных солей кислородсодержащих кислот [12, 13] можно ожидать, что станнаты стронция и кальция также будут стабильны в паре. К сожалению, обеспечить условия сосуществования газообразных SrO или CaO и SnO достаточно трудно. Это связано с большим различием летучестей оксидов кальция и стронция по сравнению с летучестью оксида олова. Для решения этой проблемы для синтеза газообразных станнатов кальция и стронция можно было бы применить двойную двухтемпературную эффузионную камеру. Однако, кроме того, синтез этих солей затруднен тем, что в паре над оксидами кальция и стронция относительное содержание СаO либо SrO не превышает 2 – 5%. Летучесть оксида бария значительно выше, чем оксидов кальция и стронция, а относительное содержание оксида бария в паре над ВаO составляет почти 100 %, что значительно упростило задачу синтеза BaSnO₂.

Тем не менее, наличие данных для определения коэффициентов *k* и *b*, полученных для изокатионных рядов кальция и стронция, дает возможность с достаточно высокой степенью достоверности оценить величины энтальпий атомизации и образования газообразных CaSnO₂ и SrSnO₂ при температуре 298.15 К. Для изокатионного ряда кальция (17 солей) $k = 1.027 \pm 0.014$, $b = 889.0 \pm 23.4$. Для изокатионного ряда стронция (20 солей) $k = 1.027 \pm 0.017$, $b = 900.8 \pm 27.6$ [47]. Это дало возможность получить значения энтальпий атомизации газообразных CaSnO₂ и SrSnO₂ и SrSnO₂, которые составляют при температуре 298.15 К, соответственно, 1433 и 1441 кДж/моль. Величины энтальпий образования равны: $\Delta_f H_{298}^{\circ}$ (CaSnO₂, г, 298.15 K) = -456 кДж/моль и $\Delta_f H_{298}^{\circ}$ (SrSnO₂, г, 298.15 K) = -477 кДж/моль.

Кроме того, мы предсказали величины стандартных энтальпий атомизации и образования для BaSbO₂ (газ), которые при температуре 298.15 К составили 1599 кДж/моль и -657 кДж/моль соответственно. Такая соль могла бы быть термически устойчива в паре благодаря большому различию в величинах средних орбитальных электроотрицательностей BaO и SbO (χ (BaO): χ (SbO) = 0.78).

В работе [48] было высказано предположение о возможности существования газообразного арсената свинца PbAsO₂. Используя данные справочника [28], мы вычислили энтальпию атомизации анион-образующего оксида AsO (газ), равную 460 кДж/моль при температуре 298.15 К, и оценили величину энтальпии атомизации PbAsO₂, используя данные по определению коэффициентов *k* и *b* для изокатионного ряда свинца. Полученные величины составили: $\Delta_{at} H_{298}^{\circ}$ (PbAsO₂, газ, 298.15 К) = 1223 кДж/моль и $\Delta_{f} H_{298}^{\circ}$ (PbAsO₂, газ, 298.15 К) = -376 кДж/моль.

Уравнение (3) позволяет не только оценивать энтальпии атомизации не исследованных ранее газообразных солей, но и получать данные по определению энтальпий атомизации и образования анион-образующих оксидов, не представленных в справочных изданиях и оригинальной литературе. В частности, на основании полученных данных по определению коэффициентов k и b для изокатионного ряда свинца и величины энтальпии атомизации PbSb₂O₄, полученной в настоящей работе, можно оценить еще не известные величины стандартных энтальпий атомизации и образования знальпий атомизации и образования стандартных оксидов в настоящей работе, можно оценить еще не известные величины стандартных энтальпий атомизации и образования газообразного

Sb₂O₃ при температуре 298.15 К. $\Delta_{at} H_{298}^{\circ}$ (Sb₂O₃) = 1628 кДж/моль и $\Delta_{f} H_{298}^{\circ}$ (Sb₂O₃) = 351 кДж/моль.

3.6 Сравнение полученных нами результатов по определению величин энтальпий образования газообразных Ba₂O₂ и PbSb₂O₄ с имеющимися литературными

данными

Если синтез и термодинамическое описание газообразных BaSnO₂ и PbSbO₂ проведены нами впервые, то о существовании газообразных Ba₂O₂ и PbSb₂O₄ было известно из литературы [16, 122] и [48] соответственно.

Энтальпия газофазной реакции димеризации ВаО (116) была ранее определена Кудиным [122] при температуре 298.15 К и Инграмом [16] при температуре 1700 К. Полученная нами величина энтальпии реакции (116) при температуре 298.15 К равна -327 \pm 23 кДж и в пределах погрешности измерений согласуется с результатами работы [122] (-360 \pm 23 кДж). Для пересчета энтальпии реакции (116), полученной в работе [16] для температуры 1700 К, мы использовали значения разниц теплосодержаний для Ва₂O₂, полученные в настоящей работе на основании квантово-химического расчета методом MP2 (см. Приложение А), а для ВаО брали из справочника [24]. Энтальпия реакции (116) при температуре 0 К, полученная в данной работе (-327 \pm 23 кДж), в первом приближении совпала с величиной, пересчитанной нами с использованием данных работы [16] (-381 \pm 46 кДж). Следует отметить тот факт, что в работе [122] пересчет энтальпий изученных термодинамических функций. В свою очередь, результаты работы [16] получены достаточно давно при несовершенной масс-спектральной технике и методике измерений.

Полученные нами данные и результаты работ [16, 122] кардинально отличаются от значения энтальпии образования Ba₂O₂, полученного при анализе работы [121]. В этой работе была изучена реакция (122), энтальпия которой при температуре 1800 К, определенная по II закону, составила 594 кДж.

$$2 \operatorname{BaO}(\mathrm{TB}) = \operatorname{Ba_2O_2}(\Gamma) \tag{122}$$

Это дало нам возможность вычислить энтальпию образования Ba₂O₂ (газ), пересчитав энтальпию реакции (122) на температуру 298.15 К. Необходимые для этого разницу теплосодержаний и энтальпию образования при температуре 298.15 К для BaO (тв) взяли из справочника [24]; разницу теплосодержаний для Ba₂O₂ рассчитали квантовохимическим методом MP2 (Приложение А). Энтальпия реакции (122), пересчитанная на температуру 298.15 К, составила 643 кДж, что позволило получить величину $\Delta_f H_{298}^{\circ}$ (Ba₂O₂, газ) = -453 кДж/моль, что примерно на 100 кДж/моль отличается от наших данных и данных, опубликованных в работах [16, 122]. Достойного объяснения этому факту мы найти не смогли.

Антимонат свинца PbSb₂O₄ известен и термодинамически охарактеризован в работе [48]. В результате проведения расчетов методом DFT с использованием базиса def2-TZVP/RI-BP86 авторы [48] пришли к выводу, что минимальной по энергии структурой является структура симметрии C_s. Такой же результат был получен и в настоящей работе. Энтальпия образования PbSb₂O₄ при температуре 298.15 K, полученная экспериментально в работе [48] (-669.0 ± 18.5 кДж/моль) в пределах погрешности измерений согласуется с величиной, полученной в настоящей работе (-686 ± 4 кДж/моль).

3.7 Анализ литературных данных по определению энтальпий образования газообразных солей, образованных оксидами бария и свинца, которые, по нашему мнению, являются некорректными

В ходе анализа литературных данных, касающихся определения энтальпий образования газообразных солей, образованных оксидами бария и свинца, были обнаружены величины, которые, по нашему мнению, являются некорректными.

В частности, согласно данным работы [37], энтальпии атомизации и образования газообразного BaGeO₂ при температуре 0 К составляют 1457 ± 15 и -414.7 ± 13.0 кДж/моль соответственно. В работе [12] указанные величины были пересчитаны на температуру 298.15 К и составили 1461.4 и -415.0 кДж/моль. Использование

коэффициентов k и b уравнения (3), выведенного для изокатионного ряда бария, позволило получить энтальпии атомизации и образования газообразного BaGeO₂, равные 1642 и -593 кДж/моль при температуре 298.15 К соответственно. Такое большое расхождение результатов расчета и экспериментальных данных, полученных в работе [37], можно объяснить тем, что молекулярные параметры BaGeO₂ в работе [37] не рассчитывались, а были оценены на основании известных на тот момент данных для газообразных Ge₂O₂ и BaMoO₄. Кроме того, интенсивности ионных токов и пропорциональные им величины парциальных давлений BaGeO₂ были на уровне чувствительности прибора, что внесло значительную погрешность в определение констант равновесия изученной газофазной реакции.

То же самое можно сказать о величине энтальпии образования газообразного молибдата бария, BaMoO₂. В работе [117] были получены энтальпии атомизации газообразного BaMoO₂, которые при температуре 298.15 К составили 1912 и -577 ± 70 кДж/моль. Наши расчеты привели к сильно отличающимся результатам, 1549 и -213 кДж/моль соответственно. По аналогии с BaGeO₂ такую большую разницу трудно объяснить только затруднениями в проведении необходимых квантово-химических расчетов и некорректностью определения константы равновесия соответствующей реакции.

При построении изокатионного ряда для газообразных солей свинца мы не использовали данные работ [48 – 50] по определению энтальпий образования арсенатов PbAs₂O₄, Pb₃As₂O₆, теллуратов Pb₂TeO₄, Pb₂Te₂O₆ и молибдатов PbMo₂O₇, PbMo₂O₇, PbMo₃O₁₀ свинца. Как уже было сказано выше, энтальпия образования PbSb₂O₄ согласно данным, полученным в настоящей работе, в пределах погрешности совпадает с соответствующей величиной, полученной в работе [48]. То же самое можно сказать о корректности определения термохимических величин, полученных для PbTeO₃ [49] и PbMoO₄ [50]. В то же время, абсолютные величины энтальпий образования PbMo₂O₇ (-1397.2 ± 12.7 кДж/моль) и PbMo₃O₁₀ (-2076.3 ± 3.7 кДж/моль), полученные в работе [50] для температуры 298.15 К, по нашей оценке, сильно занижены. Использование справочных величин энтальпий образования катион-образующих оксидов Mo₂O₆ и Mo₃O₉ [24] позволяет получить энтальпии атомизации для Mo₂O₆ и Mo₃O₉, при температуре 298.15 К равные 3962.4 и 6121.5 кДж/моль соответственно. На основании этих данных

значения энтальпий атомизации PbMo₂O₇ и PbMo₃O₁₀ получаются равными 4774.5 и 6963.8 кДж/моль. Вычисление стандартной энтальпии образования PbMo₂O₇ приводит к -1517 кДж/моль, что хорошо согласуется с данными работы [71] (-1473 кДж/моль). Оценка величины энтальпии образования газообразного молибдата свинца PbMo₃O₁₀ дает -2300 кДж/моль, в то время как эта же величина, полученная в работе [38], равна большое разногласие 2076.3±3.7 кДж/моль. Такое термохимических величин, определенных в работе [50], оцененных нами и частично подтвержденных экспериментально в работе [71] для PbMo₂O₇, можно объяснить тем, что авторы работы [50] использовали термохимические характеристики PbO и оксидов молибдена, взятые из ненадежного источника [132]. Например, согласно справочнику [132], величина стандартной энтальпии образования газообразного Mo₂O₆ равна -984.9 кДж/моль, в то время как эта же величина согласно фундаментальному справочнику [24] равна -1149.4 кДж/моль.

Что касается арсенатов свинца PbAs₂O₄ и Pb₃As₂O₆, то оценить достоверность величин, определенных в работе [49], не представляется возможным по причине отсутствия данных по определению энтальпий образования соответствующих анионобразующих оксидов.

3.8 Закономерность изменения энтальпий образования в изоанионных рядах солей, где катион-образующий оксид представляет собой MO, M = Ge, Sn, Pb

Согласно предложенному критерию термической устойчивости газообразных солей кислородсодержащих кислот [12, 13], устойчивость соли возрастает по мере увеличения различия кислотно-основных свойств оксидов, образующих соль. Согласно Периодическому закону, основные свойства оксидов усиливаются по мере продвижения вниз по группе ПС, то есть, в случае солеобразующих оксидов элементов 14 группы – от GeO к PbO. Кроме того, как известно, термически прочные соединения должны обладать достаточно низкими значениями стандартной энтальпии образования, абсолютные значения которых должны увеличиваться при переходе от солей германия к солям свинца.

Работоспособность предложенного критерия [12, 13] для кислородсодержащих солей, в которых в качестве катион-образующих оксидов выступают оксиды элементов

14 группы типа MO (M = Ge, Sn, Pb) можно рассмотреть на примерах изменения энтальпий образования солей германия, олова и свинца в изоанионных рядах.

Наиболее репрезентативными для указанных солей являются данные по определению энтальпий образования молибдатов, вольфраматов, ванадатов и фосфатов. Стандартные энтальпии образования солей МХО4, МХ2O7 (X = Mo, W), MV2O6 и MPO3 при температуре 298.15 К определены для всех рассматриваемых элементов и приведены в Таблице 28. Следует отметить, что структуры солей одинакового состава, отличающихся только сортом катион-образующего элемента, одинаковы.

Таблица 28 — Значения стандартных энтальпий образования некоторых газообразных солей германия, олова и свинца

Анион- образующий оксид, XO _n	Катион- образующий элемент М	ー ⊿ _f H [°] ₂₉₈ (M _m XO _n , газ) кДж/моль	Литература	Год опубликования
	Ge	765 ± 4	[55]	2000
MoO ₃	Sn	699 ± 29	[38]	2008
	Pb	676.3 ± 7.5	[50]	2014
	Ge	760.3	[61]	1982
WO_3	Sn	777.9 ± 71.1	[6, 40]	2015, 2002
	Pb	735.6	[71]	1981
	Ge	1449 ± 41	[19]	2014
Mo_2O_6	Sn	1456 ± 60	[6, 40]	2015, 2002
	Pb	1473	[50]	2014
	Ge	1531.5	[61]	1982
W_2O_6	Sn	1570.7 ± 104.6	[6, 40]	2015, 2002
	Pb	1596	[71]	1981
	Ge	1520 ± 42	[5]	2015
V_2O_5	Sn	1520 ± 43	[5]	2015
	Pb	1477 ± 45	[69]	2006
PO ₂	Ge	668.4 ± 5.7	[45]	1995
• • • 2	Sn	601 ± 3	[39]	1996

 _			
Pb	625 ± 56	[21, 23]	2016

103

На основании данных, приведенных в Таблице 28, можно сделать вывод, что газообразные соли, содержащие оксид МО (M = Ge, Sn, Pb) в качестве катионобразующего оксида, в целом не противоречат предложенному в работах [12, 13] критерию термической устойчивости. С учетом погрешностей определяемых величин, почти во всех рассмотренных в Таблице 28 изоанионных рядах стандартная энтальпия образования соли, образованной МО (M = Ge, Sn, Pb), уменьшается от Ge к Pb.

Тем не менее, при рассмотрении тенденции изменения величин свободных энергий образования солей, представленных в Таблице 28, следует учитывать как объективный, так и субъективный факторы. Объективный фактор связан со степенью развития квантово-химических методов получения молекулярных постоянных и частот нормальных колебаний. Эти данные в значительной степени влияют на значения термодинамических функций, необходимые пересчета экспериментально для определенных энтальпий газофазных реакций синтеза солей на температуры 0 или 298.15 К. В пятой колонке Таблицы 28 представлен год опубликования полученных авторами данных. Как было сказано в разделе 1.8, в работах, выполненных около 2000-х гг и ранее, термодинамические функции лишь оценивались. В частности, межъядерные расстояния и частоты нормальных колебаний М – О, как правило, переносились из соответствующих молекул газообразных димеров M₂O₂. Не исключено, что использование более корректных величин межъядерных расстояний, углов и частот нормальных колебаний повлияет на величины стандартных энтальпий образования.

Что касается субъективного фактора, то в настоящей главе уже отмечались ошибки, допущенные авторами работ [48 – 50] при получении экспериментальных данных. То же самое можно сказать и о результатах работы [71], некорректность результатов которой обсуждается в работе [72].

Таким образом, для того, чтобы сделать вывод о корректности предложенного критерия термической устойчивости газообразных солей кислородсодержащих кислот, необходимо пересчитать и перепроверить экспериментальные данные, полученные в старых работах. Для этого можно предложить две стратегии. Первая стратегия связана с воспроизведением эксперимента и получением нового набора экспериментальных

данных, необходимых для определения констант равновесия газофазных реакций синтеза солей. Кроме того, в случае отсутствия термодинамических функций газообразных участников реакций в надежной справочной литературе, их требуется получить на основании расчетов молекулярных параметров и частот нормальных колебаний современными квантово-химическими методами. Вторая стратегия состоит в том, чтобы воспользоваться приведенными в статьях данными по константам реакций и уточнить лишь термодинамические функции ассоциатов, проведя заново необходимые квантово-химические расчеты. В обоих случаях также необходимо проверить корректность величин стандартных энтальпий образования катион- и анион-образующих оксидов, использованных авторами при расчетах.

ЗАКЛЮЧЕНИЕ

- Впервые установлена амфотерность газообразного оксида олова SnO. Синтезирована газообразная соль кислородсодержащей кислоты, при получении которой SnO выполняет роль анион-образующего оксида.
- Впервые получены и термодинамически охарактеризованы газообразные BaSnO₂ и PbSbO₂.
- 3) B результате квантово-химического исследования ДЛЯ всех полученных газообразных ассоциатов рассчитаны молекулярные параметры, частоты нормальных колебаний и значения полной энергии. Методом статистической термодинамики в приближении «жесткий ротатор – гармонический осциллятор» получены термодинамические функции BaSnO₂, PbSbO₂ и PbSb₂O₄. Вычислены энтальпии изученных газофазных реакций. Результаты, полученные в рамках двух различных методов, DFT и MP2, согласуются между собой.
- 4) Экспериментально получены константы равновесий и рассчитаны значения энтальпий всех исследованных газофазных реакций. Результаты, полученные на основе экспериментальных данных, в пределах погрешности согласуются с результатами, рассчитанными методами квантовой химии.
- 5) Скорректированы коэффициенты уравнений зависимости энтальпий атомизации газообразных солей от энтальпий атомизации газообразных анион-образующих оксидов, полученных ранее для изокатионных рядов бария и свинца. Предсказана термическая стабильность и оценены стандартные энтальпии образования и атомизации еще не изученных SrSnO₂, CaSnO₂, BaSbO₂ и PbAsO₂. Оценены величины стандартной энтальпии образования и атомизации газообразного Sb₂O₃.

СПИСОК ЛИТЕРАТУРЫ

- [1] Казенас, Е.К. Испарение Оксидов / Е.К. Казенас, Ю.В. Цветков. М.: Наука, 1997.
 С. 543.
- [2] Asano, M. Determination of Heats of Formation for Solid and Liquid Lithium Metasilicates by Vaporization Method / M. Asano, K. Kubo, H. Nakagawa // J. Nucl. Mater. – 1983. – Vol. 20. – № 12. – P. 1051–1053.
- [3] Nakagawa, H. Mass Spectrometric Study of the Vaporization of Lithium Metasilicate / H. Nakagawa, M. Asano, K. Kubo // J. Nucl. Mater. 1981. Vol. 102. № 3. P. 292–297.
- [4] Shugurov, S.M. Mass Spectrometric Study of Thermodynamic Properties of Gaseous Tin Borates SnB₂O₄ and Sn₂B₂O₅ / S.M. Shugurov, S.I. Lopatin, A.I. Panin, K.A. Emelyanova // Int. J. Mass Spectrom. – 2015. – Vol. 392. – № 3. – P. 69–72.
- [5] Shugurov, S.M. Formation and Thermodynamics of Gaseous Germanium and Tin Vanadates: a Mass Spectrometric and Quantum Chemical Study / S.M. Shugurov, A.I. Panin, S.I. Lopatin, K.A. Emelyanova // Dalton Trans. 2015. Vol. 44. № 21. P. 10014–10021.
- [6] Shugurov, S.M. Thermodynamic Study of Gaseous Tin Molybdates by High-temperature Mass Spectrometry / S.M. Shugurov, A.I. Panin, S.I. Lopatin, K.A. Emelyanova // Rapid Commun. Mass Spectrom. – 2015. – Vol. 29. – № 15. – P. 1427–1436.
- [7] Лопатин, С.И. Термохимическое Исследование Газообразных Солей Кислородсодержащих Кислот. XIX. Соли Олова / С.И. Лопатин, С.М. Шугуров, А.И. Панин, К.А. Емельянова // ЖОХ. 2015. Т. 85. Вып. 6. С. 881–900 // Lopatin, S.I. Thermochemical Study of Gaseous Salts of Oxygen-Containing Acids: XIX. Tin Salts / S.I. Lopatin, S.M. Shugurov, A.I. Panin, K.A. Emel'yanova // Rus. J. Gen. Chem. 2015. Vol. 85. № 6. Р. 1351-1369.
- [8] Sidorov, L.N. High Temperature Chemistry Applications of Mass Spectrometry. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering / L.N.

Sidorov, S.I. Lopatin // Encyclopedia of Spectroscopy and Spectrometry (3-d Ed.) / J.C. Lindon, G.E. Tranter, D.W. Koppenaal. – London: Academic Press, 2017. – P. 95–102.

- [9] Gilles, P.W. Ternary Species at High Temperatures / P.W. Gilles // Pure Appl. Chem. 1962. – Vol. 5. – P. 543–556.
- [10] Семенов, Г.А. Об Устойчивости в Газовой Фазе Тройных Окисных Соединений / Г.А. Семенов // Проблемы Современной Химии Координационных Соединений / Г.А. Семенов. – Л.: Изд-во Ленинградского ун-та, 1970. – С. 16–33.
- [11] Семенов, Г.А. Газообразные Соли Кислородсодержащих Кислот. Энтальпии образования // Исследование Структуры и Энергетики Молекул / Г.А. Семенов. – Иваново, 1986. – С. 132–141.
- [12] Лопатин, С.И. Термодинамические Свойства Газообразных Солей Кислородсоедржащих Кислот: дис. ... докт. хим. наук: 02.00.01 / Лопатин Сергей Игоревич. – Спб., 2001. – 331 с.
- [13] Лопатин, С.И. Газообразные Соли Кислородсодержащих Кислот: Термическая Устойчивость, Строение и Термодинамические Свойства / С.И. Лопатин // ЖОХ. 2007. Т. 77. Вып. 11. С. 1761–1793 // Lopatin, S.I. Gaseous Salts of Oxygen-Containing Acids: Thermal Stability, Structure, and Thermodynamic Properties / S.I. Lopatin // Rus. J. Gen. Chem. 2007. Vol. 77. № 11. Р. 1823–1854.
- [14] Шугуров, С.М. Термическая Устойчивость Неорганических Ассоциатов в Газовой Фазе: дис. ... докт. хим. наук: 02.00.01 / Шугуров Сергей Михайлович. Спб., 2018. 305 с.
- [15] Aldrich, L.T. The Evaporation Products of Barium Oxide from Various Base Metals and of Strontium Oxide from Platinum / L.T. Aldrich // J. Appl. Phys. 1951. Vol. 22. № 9. P. 1168–1174.
- [16] Inghram, M.G. Mass Spectrometric Study of Barium Oxide Vapor / M.G. Inghram, W.A. Chupka, R.F. Porter // J. Chem. Phys. 1955. Vol. 23. № 11. P. 2159–2165.

- [17] Drowart, J. Mass Spectrometric Determination of the Dissociation Energy of the Molecules MgO, CaO, SrO and Sr₂O / J. Drowart, G. Exsteen, G. Verhaegen // J. Chem. Soc. Faraday Trans. – 1964. – Vol. 60. – № 503. – P. 1920–1933.
- [18] Colin, R. Mass-spectrometric Study of the Vaporization of Tin Oxides / R. Colin, J. Drowart, G. Verhaegen // J. Chem. Soc. Faraday Trans. 1965. Vol. 61. № 511. P. 1364–1371.
- [19] Lopatin, S.I. Thermal Stability and Structures of Gaseous GeB₂O₄ and GeMo₂O₇ / S.I.
 Lopatin, A.I. Panin, S.M. Shugurov, K.A. Emelyanova // RSC Adv. 2014. Vol. 4. №
 1. P. 39725–39731.
- [20] Лопатин, С.И. Термохимическое Исследование Газообразных Солей Кислородсодержащих Кислот. ХХ. Соли Германия / С.И. Лопатин, С.М. Шугуров, А.И. Панин, К.А. Емельянова // ЖОХ. 2015. Т. 85. Вып. 7. С. 1062–1072 // Lopatin, S.I. Thermochemical Study of Gaseous Salts of Oxygen-Containing Acids: XX. Germanium Salts / S.I. Lopatin, S.M. Shugurov, A.I. Panin, K.A. Emel'yanova // Rus. J. Gen. Chem. 2015. Vol. 85. № 7. Р. 1588-1598.
- [21] Емельянова, К.А. Термохимическое Исследование Газообразных Солей Кислородсодержащих Кислот. ХХІІ. Соли Свинца / К.А. Емельянова, С.М. Шугуров, А.И. Панин, С.И. Лопатин // ЖОХ. 2016. Т. 86. № 10. С. 1591–1604 // Emelyanova, К.А. Thermochemical Study of Gaseous Salts of Oxygen-Containing Acids: XXII. Lead Salts / К.А. Emelyanova, S.M. Shugurov, A.I. Panin, S.I. Lopatin // Rus. J. Gen. Chem. 2016. Vol. 86. № 10. Р. 2243-2255.
- [22] Shugurov, S.M. Mass Spectrometric Study of Thermodynamic Properties of Gaseous Lead Tellurates. Estimation of Formation Enthalpies of Gaseous Lead Polonates / S.M. Shugurov, A.I. Panin, S.I. Lopatin, K.A. Emelyanova // J. Nucl. Mater. – 2016. – Vol. 479. – P. 271–278.
- [23] Emelyanova, K.A. Thermodynamic Properties of the Gaseous Lead Phosphates / K.A. Emelyanova, S.M. Shugurov, A.I. Panin, S.I. Lopatin // J. Chem. Thermodyn. 2016. Vol. 101. P. 337–342.
- [24] Термодинамические Свойства Индивидуальных Веществ. Справочник / под ред.
 В.П. Глушко. М. : Изд-во АН СССР, 1978-1984. Т. 1-4.
- [25] Термические Константы Веществ. Справочник / под ред. В.П. Глушко. М. : Издво ВИНИТИ, 1965-1982. – Вып. 1-10.
- [26] Stull, D.R. JANAF Thermochemical Tables, 2nd ed. National Standard Reference Data System / D.R. Stull, H. Prophet. – Washington: National Bureau of Standards, U.S. Department of Commerce, 1971. – P. 1141.
- [27] NIST-JANAF Thermochemical Tables [Электронный ресурс] / Режим доступа: https://janaf.nist.gov.
- [28] Barin, I. Thermochemical Data of Pure Substances / I. Barin. Basel: VCH, 1995. P. 2003.
- [29] Hildenbrand, D.L. Mass Spectrometric Searches for Gaseous Sodium Carbonates / D.L.
 Hildenbrand, K.H. Lau // J. Phys. Chem. 1991. Vol. 95. № 7. P. 8972–8975.
- [30] Simmons, L.L. A Mass Spectrometric Study of K₂CO₃ and K₂O / L.L. Simmons, L.F. Lowden, T.C. Ehlert // J. Phys. Chem. 1977. Vol. 81. № 8. P. 706–709.
- [31] Гусаров, А. Масс-спектрометрическое Изучение Испарения Карбоната Цезия / А.В. Гусаров, Л.Н. Горохов, А.Г. Ефимова // Теплофизика высоких температур. 1967. Т. 5. Вып. 5. С. 783–788 // Gusarov, A.V. Mass Spectrometric Study of Cesium Carbonate Evaporation Products / A.V. Gusarov, L.N. Gorokhov, A.G. Efimova // High Temp. Vol. 5. № 5. Р. 783-788.
- [32] Лопатин, С.И. Термохимическое Исследование Газообразных Солей Кислородсодержащих Кислот. IV. Хромит, Молибдат(V) и Силикат Лития / С.И. Лопатин, Г.А. Семенов // ЖОХ. 2000. Т. 70. Вып. 8. С. 1233–1236 // Lopatin, S.I. Thermochemical Study of Gaseous Salts of Oxygen-Containing Acids: IV. Lithium Chromite, Molybdate(V), and Silicate / S.I. Lopatin, G.A. Semenov // Rus. J. Gen. Chem. 2000. Vol. 70. № 8. Р. 1157-1160.

- [33] Stolyarova, V.L. High Temperature Mass Spectrometric Study of Thermodynamic Properties of the CaO-SiO₂ System / V.L. Stolyarova, S.I. Shornikov, G.G. Ivanov, M.M. Shultz // J. Electrochem. Soc. – 1991. – Vol. 138. – № 12. – P. 3710–3714.
- [34] Asano, M. Thermochemical Properties of SrSiO(g) and SrBO₂(g) / M. Asano, T. Kou //
 J. Chem. Thermodyn. 1990. Vol. 22. № 12. P. 1223–1230.
- [35] Лопатин, С.И. Термодинамические Свойства Силикатных Стекол и Расплавов. II. Система SrO SiO₂ / С.И. Лопатин, С.М. Шугуров, В.Л. Столярова, Н.Г. Тюрнина // ЖОХ. 2006. Т. 76. Вып. 12. С. 1966–1973 // Lopatin, S.I. Thermodynamic Properties of Silicate Glasses and Melts: II. System SrO-SiO₂ / S.I. Lopatin, S.M. Shugurov, V.L. Stolyarova, N.G. Tyurnina // Rus. J. Gen. Chem. 2006. Vol. 76. № 12. Р. 1878-1884.
- [36] Cordfunke, E.H.P. A Thermodynamic Study of Gaseous BaSiO₃ / E.H.P. Cordfunke, C.P. Groen, M.E. Huntelaar, C.A. Alexander, J.S. Ogden // J. Chem. Thermodyn. 2000. Vol. 3. № 1. P. 839–845.
- [37] Семенов, Г.А. Термодинамические Свойства Газообразного Германата Бария BaGeO₂ по Данным Высокотемпературной Масс-спектрометрии / Г.А. Семенов // ЖФХ. 1996. Т. 70. Вып. 6. С. 997–998 // Semenov, G.A. The Thermodynamic Properties of Gaseous Barium Germanate BaGeO₂ According to High-temperature Mass Spectrometry Data / G.A. Semenov // Russ. J. Phys. Chem. A. 1996. Vol. 70. № 6. Р. 997–998.
- [38] Лопатин, С.И. Термохимическое Исследование Газообразных Солей Кислородсодержащих Кислот. XXII. Молибдаты Олова / С.И. Лопатин, С.М. Шугуров // ЖОХ. – 2008. – Т. 78. – Вып. 5. – С. 705–711 // Lopatin, S.I. Thermochemical Study of Gaseous Salts of Oxygen-containing acids: XXII. Tin Molybdates / S.I. Lopatin, S.M. Shugurov // Rus. J. Gen. Chem. – 2008. – Vol. 78. – № 5. – P. 847-853.
- [39] Лопатин, С.И. Масс-спектрометрическое Исследование Испарения Sn₂P₂O₇ / С.И. Лопатин, Г.А. Семенов // ЖОХ. 1996. Т. 66. Вып. 2. С. 180–183 // Lopatin, S.I.

Mass Spectrometric Study of Vaporization of $Sn_2P_2O_7$ / S.I. Lopatin, G.A. Semenov // Rus. J. Gen. Chem. – 1996. – Vol. 66. – No 2. – P. 170-173.

- [40] Bulova, M.N. High-temperature Thermodynamic Study of Micro- and Nanocrystalline SnO₂ – WO₃ Systems / M.N. Bulova, A.S. Alikhanyan, A.M. Gas'kov // Inorg. Mater. – 2002. – Vol. 38. – № 7. – P. 688–693.
- [41] Витинг, Л.М. Высокотемпературные Растворы-расплавы / Л.М. Витинг. М.: Издво Московского ун-та, 1991. – С. 220.
- [42] Daasch, L.W. Mass Spectra of Phosphorus and Phosphorus oxides / L.W. Daasch, J.N. Weber, M.A. Ebner, G. Sparrow // Int. J. Mass Spectrom. 1969. Vol. 2. № 6. P. 500–503.
- [43] Mulliken, R.S. A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities / R.S. Mulliken // J. Chem. Phys. 1934. Vol. 2. –P. 782–793.
- [44] Гурвич, Л.В. Энергии Разрыва Химических Связей: Потенциалы Ионизации и Сродство к Электрону / Л.В. Гурвич, В.Н. Кондратьев. М.: Наука, 1974. С. 352.
- [45] Лопатин, С.И. Процессы Парообразования Дифосфатов Кремния и Германия / С.И. Лопатин, Г.А. Семенов // ЖОХ. 1995. Т. 65. Вып. 7. С. 1060–1064 // Lopatin, S.I. Vaporization Processes in Silicon and Germanium Diphosphates / S.I. Lopatin, G.A. Semenov // Rus. J. Gen. Chem. 1995. Vol. 65. № 7. Р. 1060–1064.
- [46] Лопатин, С.И. Закономерности Образования Фосфатов Элементов IVa Группы Периодической Системы / С.И. Лопатин, Г.А. Семенов // Физика и Химия Стекла. – 2001. – Т. 27. – Вып. 1. – С. 22–29 // Lopatin, S.I. Regularities of Vaporization of Periodic Table Group IVA Element Phosphates / S.I. Lopatin, G.A. Semenov // Glass Physics and Chemistry. – 2001. – Vol. 27. – № 1. – Р. 16–21.
- [47] Лопатин, С.И. Неорганические Ассоциаты в Высокотемпературном Паре / С.И. Лопатин, С.М. Шугуров // ЖОХ. 2019. Т. 89. Вып. 6. С. 832–842 // Lopatin, S.I. Inorganic Associates in a High-Temperature Vapor / S.I. Loptin, S.M. Shugurov // Rus. J. Gen. Chem. 2019. Vol. 89. № 6. Р. 1059-1068.

- [48] Kunkel, K. A Mass Spectrometric and Quantum Chemical Study of the Vaporization of Lead Monoxide in a Flow of Gaseous Arsenic and Antimony Trioxides / K. Kunkel, E.
 Milke, M. Binnewies // Dalton Trans. – 2014. – Vol. 43. – № 14. – P. 5401–5408.
- [49] Kunkel, K. Formation and Stability of Gaseous Ternary Oxides of Group 14 16 Elements and Related Oxides of Group 15 Elements: Mass Spectrometric and Quantum Chemical Study / K. Kunkel, E. Milke, M. Binnewies // Eur. J. Inorg. Chem. – 2015. – Vol. 1. – P. 124–133.
- [50] Kunkel, K. Formation of Ternary Lead-molybdenum Oxides PbMoO₄, PbMo₂O₇, Pb₂MoO₅ and PbMo₃O₁₀ in the Gas Phase: a Mass Spectrometric and Quantum Chemical Investigation / K. Kunkel, E. Milke, M. Binnewies // Int. J. Mass Spectrom. 2014. Vol. 374. P. 12–19.
- [51] Bondar, V.V. High-temperature Thermodynamic Properties of the Al₂O₃ SiO₂ System / V.V. Bondar, S.I. Lopatin, V.L. Stolyarova // Inorg. Mater. 2005. Vol. 41. № 4. P. 434–441.
- [52] Тюрнина, З.Г. Термодинамические Свойства Силикатных Стекол и Расплавов. І. Система ВаО SiO₂ / З.Г. Тюрнина, С.И. Лопатин, С.М. Шугуров, В.Л. Столярова // ЖОХ. 2006. Т. 76. Вып. 10. С. 1588–1597 // Туигліпа, Z.G. Thermodynamic Properties of Silicate Glasses and Melts: I. System BaO-SiO₂ / Z.G. Tyurnina, S.I. Lopatin, S.M. Shugurov, V.L. Stolyarova // Rus. J. Gen. Chem. 2006. Vol. 76. № 10. Р. 1522-1530.
- [53] Stolyarova, V.L. Thermodynamic Properties of Gaseous Barium Silicates / V.L. Stolyarova, S.I. Lopatin, Z.G. Tyurnina // Doklady Physical Chemistry. 2006. Vol. 407. № 4. P. 85–87.
- [54] Казенас, Е.К. Давление и Состав Пара над Окислами Химических Элементов / Е.К. Казенас, Д.М. Чижиков. – М.: Наука, 1976. – С. 342.
- [55] Лопатин, С.И. Термохимическое Исследование Газообразных Солей Кислородсодержащих Кислот. III. Молибдат Германия GeMoO₄ / С.И. Лопатин, Г.А. Семенов, Т.С. Пилюгина // ЖОХ. – 2000. – Т. 70. – Вып. 4. – С. 529–531 // Lopatin,

S.I. Thermochemical Study of Gaseous Salts of Oxygen-containing Acids: III. Germanium Molybdate GeMoO₄ / S.I. Lopatin, G.A. Semenov, T.S. Pilyugina // Rus. J. Gen. Chem. $-2000. - Vol. 70. - N_{2} 4. - P. 493-495.$

- [56] Шульц, М.М. Исследование Термодинамических Свойств Расплавов Системы GeO₂-B₂O₃ Масс-спектрометрическим Методом / М.М. Шульц, В.Л. Столярова, Г.А. Семенов // ФХС. 1978. Т. 4. Вып. 6. С. 653–661 // Shul'ts, М.М. Thermodynamic Properties of Melts in the GeO₂ B₂O₃ System Using Mass Spectroscopy / M.M. Shul'ts, V.L. Stolyarova, G.A. Semenov // Glass Physics and Chemistry. 1978. Vol. 4. № 6. Р. 570–578.
- [57] Shimazaki, E. The Vapor Pressure of Germanium Dioxide / E. Shimazaki, N. Matsumoto,
 K. Niwa // Bull. Chem. Soc. Jpn. 1957. Vol. 30. № 9. P. 969-971.
- [58] Drowart, J. Thermochemical Study of the Germanium Oxides Using a Mass Spectrometer. Dissociation Energy of the Molecule GeO / J. Drowart, F. Degrave, G. Verhaegen, R. Colin // J. Chem. Soc. Faraday Trans. – 1965. – Vol. 61. – № 610. – P. 1072-1085.
- [59] Казенас, Е.К. Термодинамика Процессов Испарения, Диссоциации и Газофазных Реакций в Парах над Системой Германий – Кислород / Е.К. Казенас, М.А. Больших, А.А. Петров // Металлы. – 1996. – Т. 3. – С. 29–35 // Kazenas, E.K. Thermodynamics of Processes of Vaporization, Dissociation, and Gas-phase Reactions in Vapors over Germanium – Oxygen System / E.K. Kazenas, M.A. Bol'shikh, A.A. Petrov // Russian Metallurgy (Metally). – 1996. – Vol. 3. – Р. 16–22.
- [60] Лопатин, С.И. Термодинамические Свойства Газообразных GeNbO₃, GeMoO₃ и GeWO₃ / С.И. Лопатин, С.М. Шугуров, Г.А. Семенов // Вестник СПбГУ. Серия 4. Физика и Химия. – 2003. – Т. 2. – С. 50–53.
- [61] Plies, V.V. Zur Thermochemie von Gasförmigem GeWO₄ und GeW₂O₇ / V.V. Plies //
 Z. Anorg. Allg. Chem. 1982. Vol. 484. № 1. P. 165–172.
- [62] Stolyarova, V.L. Mass Spectrometric Study of Vaporization Processes and Thermodynamic Properties in the GeO, P₂O₅ System / V.L. Stolyarova, S.I. Shornikov,

G.G. Ivanov, M.M. Shultz // Rapid Commun. Mass Spectrom. – 1990. – Vol. 4. – № 12. – P. 510–512.

- [63] Verhaegen, G. Mass Spectrometric Determination of the Stability of Gaseous Molybdites, Tungstites, Molybdates and Tungstates of Magnesium, Calcium, Strontium and Tin / G. Verhaegen, R. Colin, G. Exsteen, J. Drowart // J. Chem. Soc. Faraday Trans. – 1965. – Vol. 61. – P. 1372–1375.
- [64] Huang, C.-H. Phosphates of Tetravalent Elements and a Mössbauer Study of SnP₂O₇ / C.-H. Huang, O. Knop, D.A. Othen, F.W. Woodhams, R.A. Howie // Can. J. Chem. 1975. Vol. 53. № 1. P. 79–91.
- [65] Smoes, S. Determination of the Atomization Energies of CP, C2P, CP2 and C2P2 by High Temperature Knudsen Cell Mass Spectrometry / S. Smoes, C.E. Myers, J. Drowart // Chem. Phys. Lett. – 1971. – Vol. 8. – № 1. – P. 10–12.
- [66] Drowart, J. Mass-spectrometric Study of the Vaporization of Lead Monoxide / J. Drowart,
 R. Colin, G. Exsteen // J. Chem. Soc. Faraday Trans. 1965. Vol. 61. № 511. P.
 1376–1383.
- [67] Казенас, Е.К. Термодинамика Процессов Испарения, Диссоциации и Газофазных Реакций в Парах над Системой Свинец Кислород / Е.К. Казенас, А.А. Петров // Металлы. 1996. Т. 4. С. 22–27 // Kazenas, E.K. Thermodynamics of Processes of Vaporization, Dissociation, and Gas-phase Reactions in Vapors over Pb O System / E.K. Kazenas, A.A. Petrov // Russian Metallurgy (Metally). 1996. Vol. 4. Р. 17–22.
- [68] Popovič, A. Mass Spectrometric Investigation of the Evaporation Properties of Lead Oxide / A. Popovič, A. Lesar, M. Guček, L. Bencze // Rapid Commun. Mass Spectrom. – 1997. – Vol. 11. – № 5. – P. 459–468.
- [69] Лопатин, С.И. Парообразование и Термодинамические Свойства Системы PbO V₂O₅ / С.И. Лопатин, И.Я. Миттова, Ф.С. Герасимов, С.М. Шугуров, В.Ф. Кострюков, С.М. Скороходова // ЖНХ. 2006. Т. 51. Вып. 10. С. 1749–1756 // Lopatin, S.I. Vaporization and Thermodynamic Properties of the PbO-V₂O₅ System / S.I.

Lopatin, I.Ya. Mittova, F.S. Gerasimov, S.M. Shugurov, V.F. Kostryukov, S.M. Skorokhodova // Rus. J. Inorg. Chem. – 2006. – Vol. 51. – № 10. – P. 1646-1652.

- [70] Семенихин, В.И. Масс-спектрометрическое Изучение Испарения Монооксида Свинца / В.И. Семенихин, А.Н. Рыков, Л.Н. Сидоров // ЖФХ. – 1983. – Т. 57. – Вып. 7. – С. 1663.
- [71] Наливайко, А.Г. Состав Паровой Фазы Вольфрамата Свинца / А.Г. Наливайко, Н.Л. Смоляг, И.А. Ратьковский // Химия и Химическая технология. 1981. Т. 16. С. 46.
- [72] Николаев, Е.Н. О Составе Пара над Молибдатом и Вольфраматом Свинца / Е.Н. Николаев, К.В. Овчинников, Г.А. Семенов // ЖОХ. 1984. Т. 54. Вып. 5. С. 977–978.
- [73] Semenov, G.A. Mass Spectrometric Study of Vaporization Behavior in the PbO-V₂O₅
 System / G.A. Semenov, T.M. Prokofyeva, B.V. Slobodin // Abstr. Intern. Conf. IX
 HTMC. Pennsylvania, 1997. P. 702.
- [74] Семенихин, В.И. Молекулярный Состав Пара и Активности Компонентов Расплавов Системы PbO B₂O₃ / В.И. Семенихин, И.Д. Сорокин, Л.Ф. Юрков, Л.Н. Сидоров // ФХС. 1988. Т. 13. Вып. 4. С. 542–547 // Semenikhin, V.I. Molecular Composition of the Vapor and the Activity of the Components of Melts of the PbO B₂O₃ System / V.I. Semenikhin, I.D. Sorokin, L.F. Yurkov, L.N. Sidorov // Glass Physics and Chemistry. 1988. Vol. 13. № 4. Р. 282-286.
- [75] Семенов, Г.А. Масс-спектрометрическое Исследование Газовой Фазы над Системой PbO-Re₂O₇ / Г.А. Семенов, Е.Н. Николаев, К.В. Овчинников // Вестник ЛГУ. – 1978. – Т. 22. – С. 85–89.
- [76] Семенов, Г.А. Масс-спектрометрическое Исследование Процессов Испарения Фосфатов Свинца и Висмута / Г.А. Семенов, К.Е. Францева, В.А. Ульрих // VI Всесоюзн. конф. по фосфатам «Фосфаты-84». – Т. 1. – Алма-Ата, 1984. – С. 202– 203.

- [77] Ратьковский, И.А. Масс-спектр Насыщенного Пара РbMoO₄ / И.А. Ратьковский, Л.Я. Крисько, А.Г. Наливайко, В.С. Шорников // Изв. АН БССР. Сер. Хим. 1977. Вып. 6. С. 84.
- [78] Наливайко, А.Г. Термодинамика Процессов Парообразования Бинарных Оксидных Систем PbO-ЭO₃, где Э – Cr, Mo, W: автореф. дис. ... канд. хим. наук: 02.00.01 / Наливайко Александр Григорьевич. – Минск, 1983. – С. 16.
- [79] Ogden, J.S. Matrix Isolation Studies on Cs₂[CO₃], Rb₂[CO₃], and K₂[CO₃]. The Shape of Molecular K₂[CO₃] / J.S. Ogden, S.J. Williams // Dalton Trans. 1981. Vol. 2. P. 456–462.
- [80] Ogden, J.S. Matrix Isolation Studies of Group IV Oxides. II. Infrared Spectra and Structures of GeO, Ge₂O₃, Ge₃O₃, and Ge₄O₄ / J.S. Ogden, M.J. Ricks // J. Chem. Phys. – 1970. – Vol. 52. – № 1. – P. 345–352.
- [81] Ogden, J.S. Matrix Isolation Studies of Group IV Oxides. III. Infrared Spectra and Structures of SnO, Sn₂O₂, Sn₃O₃, and Sn₄O₄ / J.S. Ogden, M.J. Ricks // J. Chem. Phys. – 1970. – Vol. 53. – № 3. – P. 1038–1039.
- [82] Zhao, Y. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-class Functionals and 12 Other Function / Y. Zhao, D.G. Truhlar // Theor. Chem. Acc. – 2008. – Vol. 120. – P. 215–241.
- [83] Adamo, C. Toward Reliable Density Functional Methods Without Adjustable Parameters: the PBE0 Model / C. Adamo, V. Barone // J. Chem. Phys. – 1999. – Vol. 110. – № 13. – P. 6158–6170.
- [84] Tao, J.M. Climbing the Density Functional Ladder: Nonempirical Meta-generalized Gradient Approximation Designed for Molecules and Solids / J.M. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria // Phys. Rev. Lett. – 2003. – Vol. 91. – № 14. – P. 146401– 146404.

- [85] Staroverov, V.N. Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen-bonded Complexes / V.N. Staroverov, G.E. Scuseria // J. Chem. Phys. – 2003. – Vol. 119. – № 23. – P. 12129–12137.
- [86] Casida, M.E. Molecular Excitation Energies to High-lying Bound States from Timedependent Density-functional Response Theory: Characterization and Correction of the Time-dependent Local Density Approximation Ionization Threshold / M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub // J. Chem. Phys. – 1998. – Vol. 108. – № 11. – P. 4439–4449.
- [87] Eshuis, H. Dynamics of Molecules in Strong Oscillating Electric Fields Using Timedependent Hartree–Fock Theory / H. Eshuis, G.G. Balint-Kurti, F.R. Manby // J. Chem. Phys. – 2008. – Vol. 128. – № 11. – P. 114113.
- [88] GAUSSIAN [Электронный ресурс] / Режим доступа: https://gaussian.com.
- [89] ChemCraft [Электронный ресурс] / Режим доступа: http://www.chemcraftprog.com.
- [90] Hanwell, M.D. Avogadro: an Advanced Semantic Chemical Editor, Visualization, and Analysis Platform / M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison // J. Cheminformatics. – 2012. – Vol. 4. – № 1. – P. 17.
- [91] Коновалов, С.И. Ab initio Исследование Геометрического Строения Молекулы Li₂CO₃ / С.И. Коновалов, В.Г. Соломоник // ЖСХ. – 1983. – Т. 24. – Вып. 2. – С. 163–164.
- [92] Коновалов, С.И. Ab initio Исследование Потенциальной Поверхности и Колебательного Спектра Молекулы Li₂CO₃ / С.И. Коновалов, В.Г. Соломоник // ЖСХ. – 1985. – Т. 26. – Вып. 1. – С. 15–21.
- [93] Чаркин, Д.О. Неэмпирическое Исследование Структуры и Стабильности Карбонатов, Силикатов, Нитратов, Фосфатов, Боратов и Алюминатов L₂AO₃ и MAO₃ (L = Li, Na; M = Be, Mg; A = C, Si, N⁺, P⁺, B⁻, Al⁻) / Д.О. Чаркин, М.Л. МакКи, O.П. Чаркин // ЖНХ. – 1998. – Т. 43. – Вып. 10. – С. 1694–1709 // Charkin, D.O. Ab Initio Study of the Structure and Stability of L₂AO₃ and MAO₃ Carbonates, Silicates, Nitrates, Phosphates, Borates, and Aluminates (L = Li and Na; M = Ba and Mg; and A =

C, Si, N⁺, P⁺, B⁻, and Al⁻) / D.O. Charkin, M.L. McKee, O.P. Charkin // Rus. J. Inorg. Chem. – 1998. – Vol. 43. – № 10. – P. 1694–1709.

- [94] Рафальсон, А.Э. Масс-спектрометрические Приборы / А.Э. Рафальсон, А.М. Шершевский. М.: Атомиздат, 1968. С. 236.
- [95] Лопатин, С.И. Применение Масс-спектрометрии в Неорганической Химии и Материаловедении / С.И. Лопатин. Спб.: BBM, 2009. С. 107.
- [96] Paule, R.C. Analysis of Interlaboratory Measurements of the Vapor Pressure of Gold /
 R.C. Paule, M.J. Mandel // Pure Appl. Chem. 1972. Vol. 31. № 3. P. 371–394.
- [97] Paule, R.C. Analysis of Interlaboratory Measurements on the Vapor Pressure of Cadmium and Silver / R.C. Paule, M.J. Mandel // Pure Appl. Chem. – 1972. – Vol. 31. – № 3. – P. 395–432.
- [98] Scientific Instrument Services (SIS) / Режим доступа: https://www.sisweb.com.
- [99] Pottie, R. Discrimination in Electron Multipliers for Atomic Ions. II. Comparison of Yields for 61 Atoms / R. Pottie, D. Cocke, K. Gingerich // Int. J. Mass Spectrom. 1973.
 Vol. 11. № 1. P. 41–48.
- [100] Inghram, M. Mass Spectrometry in Physics Research / M. Inghram, R. Hayden, D. Hess
 // National Bureau of Standards Circular. 1953. Vol. 522. P. 257.
- [101] Schmidt, M.W. General Atomic and Molecular Electronic Structure System / M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, Sh. Koseki, N. Matsunaga, K.A. Nguyen, Sh. Su, T.L. Windus, M. Dupuis, Jr J.A. Montgomery // J. Comput. Chem. 1993. Vol. 14. № 11. P. 1347–1363.
- [102] Mark Gordon's Quantum Theory Group. GAMESS [Электронный ресурс] / Режим доступа: http://www.msg.ameslab.gov/gamess.
- [103] Neese, F. The ORCA Program System / F. Neese // Wiley Interdiscip. Rev. Comput. Mol. Sci. – 2011. – Vol. 2. – № 1. – P. 73–78.
- [104] Moller, C. Note on an Approximation Treatment for Many-electron Systems / C. Moller,
 M.S. Plesset // Phys. Rev. 1934. Vol. 46. P. 618–622.

- [105] Grimme, S. Improved Second-order Moller-Plesset Perturbation Theory by Separate Scaling of Parallel- and Antiparallel-spin Pair Correlation Energies / S. Grimme // J. Chem. Phys. 2003. Vol. 118. № 20. P. 9095–9102.
- [106] Pollak, P. Segmented Contracted Error-consistent Basis Sets of Double- and Triple-ζ Valence Quality for One- and Two-component Relativistic All-electron Calculations / P. Pollak, F. Weigend // J. Chem. Theory Comput. – 2017. – Vol. 13. – № 8. – P. 3696–3705.
- [107] Weigend, F. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy / F. Weigend, R. Alhrichs // Phys. Chem. Chem. Phys. – 2005. – Vol. 7. – № 18. – P. 3297–3305.
- [108] Douglas, M. Quantum Electrodynamical Corrections to Fine-structure of Helium / M. Douglas, N.M. Kroll // Ann. Phys. (N. Y.). 1974. Vol. 82. № 1. P. 89–155.
- [109] Hess, B.A. Applicability of the No-pair Equation with Free-particle Projection Operators to Atomic and Molecular-structure Calculations / B.A. Hess // Phys. Rev. A. – 1985. – Vol. 32. – № 2. – P. 756–763.
- [110] Hess, B.A. Relativistic Electronic-structure Calculations Employing a 2-Component Nopair Formalism with External-field Projection Operators / B.A. Hess // Phys. Rev. A. – 1986. – Vol. 33. – № 6. – P. 3742–3748.
- [111] Lias, S.G. Gas-phase Ion and Neutral Thermochemistry / S.G. Lias, J.E. Bartmess, J.F. Liebman, J.L. Holmes, R.D. Levin, W.G. Mallard // J. Phys. Chem. Ref. Data. 1988. Vol. 17. № 1. P. 1–861.
- [112] Lopatin, S.I. Thermodynamic Properties of the Gaseous Barium Silicates BaSiO₂ and BaSiO₃ / S.I. Lopatin, S.M. Shugurov, V.L. Stolyarova, Z.G. Turnina // J. Chem. Thermodyn. 2006. Vol. 38. № 12. P. 1706–1710.
- [113] Shugurov, S.M. Thermodynamics of Gaseous Cobaltates CaCoO₂, SrCoO₂ and BaCoO₂ / S.M. Shugurov, S.I. Lopatin // J. Chem. Thermodyn. 2005. Vol. 37. № 7. P. 715–719.

- [114] Stolyarova, V.L. Thermodynamic Properties of Gaseous Strontium and Barium Ferrates /
 V.L. Stolyarova, S.I. Lopatin, S.M. Shugurov // Doklady Physical Chemistry. 2004. –
 Vol. 397. № 1/3. P. 158–160.
- [115] Семенов, Г.А. Термохимическое Исследование Газообразных Солей Кислородсодержащих Кислот. VII. Ниобаты Щелочноземельных Металлов / Г.А. Семенов, С.И. Лопатин // ЖОХ. – 2001. – Т. 71. – Вып. 6. – С. 884–888 // Semenov, G.A. Thermochemical Study of Gaseous Salts of Oxygen-containing Acids: VII. Alkalineearth Metal Niobates / G.A. Semenov, S.I. Lopatin // Rus. J. Gen. Chem. – 2001. – Vol. 71. – № 6. – Р. 828-832.
- [116] Лопатин, С.И. Термохимическое Исследование Газообразных Солей Кислородсодержащих Кислот I. Танталаты Щелочноземельных Металлов / С.И. Лопатин, Г.А. Семенов, Т.С. Пилюгина // ЖОХ. – 1999. – Т. 69. – Вып. 11. – С. 1761– 1765 // Lopatin, S.I. Thermochemical Study of Gaseous Salts of Oxygen-containing Acids: I. Alkaline-earth Metal Tantalates / S.I. Lopatin, G.A. Semenov, T.S. Pilyugina // Rus. J. Gen. Chem. – 1999. – Vol. 69. – № 11. – Р. 1685-1689.
- [117] Кудин, Л.С. Масс-спектрометрическое Определение Стабильности Газообразных Молекул ВаМоО₂, Ва₂МоО₄, Ва₂МоО₅, Ва₂Мо₂О₈ / Л.С. Кудин, Д. Балдуччи, Г. Джильи, М. Гвидо // Химия и Химическая Технология. – 1982. – Т. 25. – Вып. 3. – С. 259–263.
- [118] Lopatin, S.I. Thermodynamics of Gaseous Barium Chromates / S.I. Lopatin, S.M. Shugurov, G.A. Semenov // Doklady Physical Chemistry. 2002. Vol. 386. № 4/6. P. 255–256.
- [119] Drowart, J. High-temperature Mass Spectrometry: Instrumental Techniques, Ionization Cross-sections, Pressure Measurements and Thermodynamic Data (IUPAC Technical Report) / J. Drowart, C. Chatillon, J. Hastie, D. Bonnell // Pure Appl. Chem. – 2005. – Vol. 77. – № 4. – P. 683–737.
- [120] Lopatin, S.I. Evaluation of Relative Electron Ionization Cross-sections for Some Oxides and Oxyacid Salt / S.I. Lopatin, S.M. Shugurov, A.I. Panin, E.A. Vasil'eva // Rapid Commun. Mass Spectrom. – 2017. – Vol. 31. – № 19. – P. 1559–1564.

- [121] Newbury, R.S. Vapor Species of the Barium-Oxygen System / R.S. Newbury, Jr. G.W. Barton, A.W. Searcy // J. Chem. Phys. 1968. Vol. 48. № 2. P. 793–800.
- [122] Kudin, L.S. Mass-spectrometric Determination of Bond Breaking Energy in Ba₂O₂ and Ba₂O Molecules / L.S. Kudin // Khimia i Khimicheska Tekhnologiya. 1981. Vol. 24.
 № 7. P. 837–841.
- [123] Lbibb, R. Thermodynamic Investigation of Pt-Pb Binary Alloys / R. Lbibb, R. Castanet,
 A. Rais // J. Alloys Compd. 2000. Vol. 302. № 1/2. P. 155–158.
- [124] Itkin, V.P. The Pt-Sb (platinum-antimony) System / V.P. Itkin, C.B. Alcock // Journal of Phase Equilibria. – 1996. – Vol. 17. – № 4. – P. 356–361.
- [125] The periodic table of the elements by WebElements [Электронный ресурс] / Режим доступа: https://www.webelements.com.
- [126] Egdell, R.G. Electronic Structure of the Group 5 oxides: Photoelectron Spectra and Ab Initio Molecular Orbital Calculations / R.G. Egdell, M.H. Palmer, R.H. Findlay // Inorg. Chem. – 1979. – Vol. 19. – № 5. – P. 1314–1319.
- [127] Семенов, Г.А. Определение Энтальпии Образования Газообразного Монооксида Сурьмы Масс-спектрометрическим Методом / Г.А. Семенов // ЖФХ. – 1985. – Т. 59.
 – Вып. 6. – С. 1520-1521.
- [128] Mann, J.B. Ionization Cross Sections of the Elements Calculated from Mean-square Radii of Atomic Orbitals / J.B. Mann // J. Chem. Phys. – 1967. – Vol. 46. – № 5. – P. 1646.
- [129] Meyer, R. Re-evaluation of Carbon Vapor-pressures and Third Law Heats of Formationtriatomic Carbon / R. Meyer, A. Linch // High Temp. Sci. – 1973. – Vol. 5. – № 3. – P. 192–205.
- [130] Guido, M. Mass-spectrometric Study of Gaseous PrCN Molecule / M. Guido, G. Gigli // High Temp. Sci. – 1975. – Vol. 7. – № 2. – P. 122–125.
- [131] Лопатин, С.И. Термохимическое Исследование Газообразных Солей Кислородсодержащих Кислот. XIII. Молибдаты и Вольфраматы Щелочноземельных Металлов / С.И. Лопатин, Г.А. Семенов, С.М. Шугуров // ЖОХ.

-2003. - T. 73. - Вып. 2. - С. 187–193 // Lopatin, S.I. Thermochemical Study of Gaseous Salts of Oxygen-containing Acids: XIII. Molybdates and Tungstates of Alkaline-Earth Metals / S.I. Lopatin, G.A. Semenov, S.M. Shugurov // Rus. J. Gen. Chem. – 2003. – Vol. 73. – № 2. – Р. 169–175.

- [132] Binnewies, M. Thermochemical Data of Elements and Compounds, 2-nd ed. / M. Binnewies, E. Milke. – Weinheim: Wiley-VCH, 2002. – P. 936.
- [133] Лопатин, С.И. Термохимическое Исследование Газообразных Солей Кислородсодержащих Кислот. XIV. Фосфаты Бария и Хрома / С.И. Лопатин, С.М. Шугуров, Г.А. Семенов // ЖОХ. – 2003. – Т. 73. – Вып. 12. – С. 1972–1975 // Lopatin, S.I. Thermochemical Study of Gaseous Salts of Oxygen-containing Acids: XIV. Barium and Chromium Phosphates / S.I. Lopatin, S.M. Shugurov, G.A. Semenov // Rus. J. Gen. Chem. – 2003. – Vol. 73. – № 12. – Р. 1866-1869.
- [134] Semenov, G. Thermodynamics of Formation of the Gaseous Ternary Oxide Compounds of Alkaline-earth Metals at High Temperatures / G. Semenov, S. Lopatin, N. Kozyukova, L. Kuligina // HTHP. 1988. Vol. 20. № 6. P. 637–641.
- [135] Лопатин, С.И. Термохимическое Исследование Газообразных Солей Кислородсодержащих Кислот. VI. Метабораты Бария / С.И. Лопатин, Г.А. Семенов, С.М. Шугуров // ЖОХ. 2001. Т. 71. Вып. 1. С. 68–73 // Lopatin, S.I. Thermochemical Study of Salts of Oxygen-containing Acids in the Gas Phase: VI. Barium Metaborates / S.I. Lopatin, G.A. Semenov, S.M. Shugurov // Rus. J. Gen. Chem. 2001. Vol. 71. № 1. Р. 61–66.
- [136] Лопатин, С.И. Термохимическое Исследование Газообразных Солей Кислородсодержащих Кислот XI. Титанаты Щелочноземельных Металлов / С.И. Лопатин, Г.А. Семенов // ЖОХ. – 2001. – Т. 71. – Вып. 10. – С. 1607–1611 // Lopatin, S.I. Thermochemical Study of Gaseous Salts of Oxygen-containing Acids: XI. Alkalineearth Metal Titanates / S.I. Lopatin, G.A. Semenov // Rus. J. Gen. Chem. – 2001. – Vol. 71. – № 10. – Р. 1522-1526.

- [137] Семенов, Г. Термодинамические Свойства Перренатов Щелочноземельных Элементов / Г. Семенов, Е. Николаев, К. Овчинников, А. Стародубцев // Вестник ЛГУ. – 1985. – Т. 25. – С. 42–47.
- [138] Шугуров, C.M. Термохимическое Исследование Газообразных Солей Кислородсодержащих Кислот. XX. Фосфаты Бериллия И Бериллаты Щелочноземельных Металлов / С.М. Шугуров, С.И. Лопатин // ЖОХ. – 2006. – Т. 76. – Вып. 6. – С. 910–914 // Shugurov, S.M. Thermochemical Study of Gaseous Salts of Oxygen-containing Acids: XX. Phosphates of Beryllium and Beryllates of Alkaline-earth Metals / S.M. Shugurov, S.I. Lopatin // Rus. J. Gen. Chem. – 2006. – Vol. 76. – № 6. – P. 871-874.
- [139] Lopatin, S.I. Thermodynamics of Gaseous Barium Cerate Studied by Knudsen Effusion Mass Spectrometry / S.I. Lopatin, S.M. Shugurov, A.I. Panin // Rapid Commun. Mass Spectrom. – 2016. – Vol. 30. – № 18. – P. 2027–2032.

ПРИЛОЖЕНИЕ А

Значения термодинамических функций, полученные с помощью различных методов квантовой химии для Ba₂O₂, BaSnO₂ и Sn₂O₂

1) Ba₂O₂, M06

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	Ср, Дж
298.15	277.94	332.55	16283.13	54.61
1500	385.83	461.47	113448.57	75.63
1600	390.73	466.8	121716.03	76.07
1700	395.35	471.82	129988.88	76.46
1800	399.73	476.55	138266.23	76.81
1900	403.89	481.03	146547.37	77.13
2000	407.86	485.27	154831.74	77.42
2100	411.64	489.32	163118.88	77.68
2200	415.26	493.17	171408.41	77.91
2300	418.73	496.86	179700.04	78.13
2400	422.06	500.39	187993.48	78.33
2500	425.26	503.78	196288.54	78.52
2600	428.34	507.03	204585.02	78.69
2700	431.32	510.16	212882.76	78.85
2800	434.19	513.18	221181.63	78.99
2900	436.96	516.09	229481.52	79.13
3000	439.65	518.91	237782.32	79.26

BaSnO₂, M06

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	Ср, Дж
298.15	274.14	327.04	15770.11	52.89
1500	379.7	454.48	112157.81	74.77
1600	384.55	459.8	120410.5	75.26
1700	389.12	464.81	128670.29	75.69

1800	393.46	469.54	136936	76.08
1900	397.58	474.01	145206.71	76.42
2000	401.51	478.25	153481.68	76.74
2100	405.26	482.29	161760.31	77.03
2200	408.85	486.14	170042.09	77.29
2300	412.29	489.83	178326.63	77.53
2400	415.6	493.35	186613.58	77.76
2500	418.78	496.74	194902.65	77.96
2600	421.84	499.99	203193.6	78.15
2700	424.79	503.12	211486.22	78.33
2800	427.64	506.14	219780.33	78.49
2900	430.4	509.05	228075.79	78.65
3000	433.07	511.86	236372.45	78.79

Sn₂O₂, M06

_

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	Ср, Дж
298.15	269.18	319.45	14988.77	50.27
1500	371.49	445.12	110446.8	73.63
1600	376.26	450.43	118682.2	74.18
1700	380.77	455.43	126926.7	74.66
1800	385.05	460.15	135178.9	75.1
1900	389.12	464.61	143437.4	75.49
2000	393	468.85	151701.4	75.85
2100	396.71	472.89	159970.1	76.18
2200	400.26	476.74	168242.8	76.47
2300	403.67	480.42	176519.1	76.75
2400	406.94	483.94	184798.4	77
2500	410.09	487.32	193080.5	77.23
2600	413.12	490.57	201365	77.45
2700	416.05	493.7	209651.7	77.65

2800	418.87	496.71	217940.2	77.84
2900	421.61	499.62	226230.5	78.01
3000	424.26	502.43	234522.3	78.17

2) Ba₂O₂, TPSSh

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	Ср, Дж
298.15	277.97	332.42	16232.45	54.44
1500	385.65	461.2	113330.5	75.55
1600	390.54	466.54	121596.7	76
1700	395.16	471.55	129868.5	76.39
1800	399.53	476.28	138144.9	76.75
1900	403.69	480.76	146425.2	77.07
2000	407.65	485.01	154708.8	77.35
2100	411.43	489.05	162995.3	77.62
2200	415.05	492.91	171284.2	77.86
2300	418.51	496.59	179575.2	78.08
2400	421.84	500.12	187868.1	78.28
2500	425.04	503.51	196162.7	78.47
2600	428.12	506.76	204458.8	78.64
2700	431.09	509.89	212756.1	78.8
2800	433.96	512.91	221054.6	78.95
2900	436.74	515.82	229354.1	79.09
3000	439.42	518.64	237654.6	79.22

BaSnO₂, TPSSh

т <i>и</i>	ΦIm	С Път		СЛи
1, K	Ψ, Дж	5, Дж	п(т)-п(0), дж	Ср, Дж
298.15	274.59	327.64	15816.14	53.05
1500	380.3	455.13	112231.9	74.82
1600	385.15	460.45	120485.1	75.3
1700	389.73	465.46	128745.4	75.73
1800	394.07	470.19	137011.6	76.12
1900	398.19	474.66	145282.8	76.46
2000	402.12	478.9	153558.1	76.78
2100	405.88	482.94	161837.1	77.07
2200	409.47	486.8	170119.2	77.33
2300	412.91	490.48	178404	77.57
2400	416.22	494.01	186691.2	77.79
2500	419.4	497.39	194980.5	77.99
2600	422.46	500.64	203271.7	78.18
2700	425.41	503.77	211564.5	78.36
2800	428.27	506.79	219858.8	78.52
2900	431.02	509.7	228154.4	78.67
3000	433.69	512.51	236451.3	78.82

Sn₂O₂, TPSSh

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	Ср, Дж
298.15	269.47	319.83	15015.26	50.36
1500	371.86	445.53	110489	73.66
1600	376.64	450.84	118724.8	74.2
1700	381.15	455.84	126969.6	74.69
1800	385.43	460.56	135222	75.12
1900	389.5	465.02	143480.8	75.52
2000	393.39	469.26	151745	75.87
2100	397.1	473.3	160013.9	76.2

2200	400.65	477.14	168286.8	76.49
2300	404.06	480.82	176563.2	76.77
2400	407.33	484.35	184842.7	77.02
2500	410.48	487.73	193124.9	77.25
2600	413.51	490.98	201409.6	77.47
2700	416.44	494.11	209696.3	77.67
2800	419.27	497.12	217985	77.85
2900	422	500.03	226275.4	78.03
3000	424.65	502.84	234567.3	78.19

3) Ba₂O₂, PBE0

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	С _р , Дж
298.15	277.32	331.36	16112.89	54.04
1500	384.56	459.98	113123	75.42
1600	389.44	465.31	121387.7	75.87
1700	394.05	470.33	129658.1	76.27
1800	398.42	475.06	137933.2	76.63
1900	402.58	479.53	146212.4	76.95
2000	406.53	483.78	154495	77.25
2100	410.31	487.82	162780.6	77.51
2200	413.92	491.68	171068.6	77.76
2300	417.38	495.36	179358.9	77.98
2400	420.7	498.89	187651.1	78.19
2500	423.9	502.28	195945.1	78.38
2600	426.98	505.53	204240.5	78.55
2700	429.95	508.66	212537.3	78.72
2800	432.81	511.68	220835.3	78.87
2900	435.58	514.59	229134.3	79.01
3000	438.26	517.41	237434.3	79.14

BaSnO₂, PBE0

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	Ср, Дж
298.15	273.8	326.35	15668.1	52.55
1500	378.92	453.54	111923.2	74.62
1600	383.75	458.86	120173.4	75.11
1700	388.32	463.87	128431	75.55
1800	392.65	468.59	136694.7	75.94
1900	396.77	473.07	144963.7	76.3
2000	400.69	477.31	153237.1	76.62
2100	404.43	481.35	161514.3	76.91
2200	408.02	485.2	169794.8	77.18
2300	411.46	488.88	178078.1	77.43
2400	414.76	492.41	186363.9	77.65
2500	417.93	495.79	194652	77.86
2600	420.99	499.04	202942	78.05
2700	423.94	502.17	211233.8	78.23
2800	426.79	505.19	219527.1	78.4
2900	429.54	508.1	227821.8	78.56
3000	432.21	510.91	236117.8	78.71

Sn₂O₂, PBE0

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	Ср, Дж
298.15	268.66	318.56	14876.36	49.9
1500	370.48	443.94	110183.7	73.46
1600	375.24	449.25	118416.2	74.01
1700	379.74	454.25	126658.1	74.5
1800	384.02	458.97	134907.9	74.95
1900	388.08	463.43	143164.4	75.35
2000	391.95	467.67	151426.5	75.71
2100	395.66	471.7	159693.5	76.04

2200	399.2	475.55	167964.7	76.35
2300	402.6	479.23	176239.5	76.63
2400	405.87	482.75	184517.6	76.88
2500	409.01	486.13	192798.5	77.12
2600	412.04	489.38	201081.9	77.34
2700	414.96	492.51	209367.5	77.54
2800	417.79	495.52	217655.1	77.73
2900	420.52	498.43	225944.5	77.91
3000	423.16	501.24	234235.5	78.08

4) Ba₂O₂, MP2(Full)

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	С _р , Дж
298.15	277.32	331.49	16149.2	54.16
1500	384.7	460.16	113191.3	75.46
1600	389.59	465.5	121456.5	75.91
1700	394.2	470.51	129727.4	76.31
1800	398.57	475.24	138003	76.67
1900	402.73	479.72	146282.6	76.99
2000	406.68	483.97	154565.6	77.28
2100	410.46	488.01	162851.5	77.55
2200	414.07	491.87	171139.8	77.79
2300	417.54	495.55	179430.4	78.01
2400	420.86	499.08	187722.9	78.22
2500	424.06	502.47	196017.1	78.41
2600	427.14	505.72	204312.7	78.58
2700	430.11	508.85	212609.7	78.74
2800	432.97	511.87	220907.9	78.9
2900	435.74	514.78	229207.1	79.04
3000	438.43	517.6	237507.3	79.17

BaSnO₂, MP2(Full)

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	Ср, Дж
298.15	273.3	325.6	15592.85	52.3
1500	378.21	452.77	111844.2	74.56
1600	383.04	458.1	120094.4	75.06
1700	387.6	463.1	128352.1	75.5
1800	391.93	467.83	136615.9	75.9
1900	396.04	472.3	144884.9	76.26
2000	399.96	476.54	153158.3	76.58
2100	403.71	480.58	161435.6	76.87
2200	407.29	484.43	169716.1	77.14
2300	410.72	488.12	177999.5	77.39
2400	414.02	491.64	186285.4	77.62
2500	417.2	495.03	194573.5	77.83
2600	420.25	498.28	202863.5	78.02
2700	423.2	501.41	211155.3	78.21
2800	426.05	504.42	219448.6	78.37
2900	428.8	507.33	227743.4	78.53
3000	431.47	510.15	236039.3	78.68

Sn₂O₂, MP2(Full)

Τ, Κ	Ф, Дж	S, Дж	H(T)-H(0), Дж	Ср, Дж
298.15	269.8	320.35	15070.68	50.55
1500	372.37	446.08	110566.5	73.71
1600	377.15	451.4	118802.7	74.25
1700	381.66	456.4	127047.8	74.73
1800	385.95	461.12	135300.5	75.17
1900	390.02	465.58	143559.6	75.56
2000	393.91	469.82	151824	75.91
2100	397.62	473.85	160093.1	76.23

	2200	401.17	477.7	168366.2	76.53
	2300	404.58	481.38	176642.9	76.8
	2400	407.85	484.91	184922.5	77.05
	2500	411	488.29	193204.9	77.28
	2600	414.04	491.54	201489.7	77.5
	2700	416.97	494.66	209776.6	77.7
	2800	419.8	497.68	218065.4	77.88
	2900	422.53	500.59	226355.9	78.05
-	3000	425.18	503.4	234647.9	78.22

ПРИЛОЖЕНИЕ Б

Значения термодинамических функций, полученные с помощью различных методов квантовой химии для PbSbO₂, PbSb₂O₄ и Sb₄O₆

1) PbSbO₂, M06

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	С _р , Дж
298.15	275.36	326.23	15167.19	50.87
1300	368.09	440.81	94532.41	72.72
1400	373.5	446.9	102752.5	73.39
1500	378.59	452.58	110984.9	73.99
1600	383.38	457.9	119227.3	74.52
1700	387.91	462.9	127478	74.99
1800	392.21	467.62	135735.7	75.41
1900	396.3	472.09	143999.1	75.79
2000	400.19	476.33	152267.6	76.13
2100	403.92	480.36	160540.3	76.45
2200	407.48	484.21	168816.7	76.73
2300	410.9	487.9	177096.3	77
2400	414.18	491.42	185378.7	77.24
2500	417.34	494.8	193663.7	77.47
2600	420.38	498.05	201950.8	77.67
2700	423.31	501.18	210239.8	77.87
2800	426.15	504.2	218530.7	78.05
	1			1

PbSb₂O₄, M06

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	Ср, Дж
298.15	326.93	409.54	24631.32	82.61
1300	490.27	623.92	173745.6	133.65
1400	500.24	635.47	189320.8	135.23
1500	509.61	646.23	204925	136.62

1600	518.47	656.32	220552.8	137.85
1700	526.86	665.8	236200.2	138.94
1800	534.83	674.76	251863.8	139.92
1900	542.42	683.23	267541.2	140.81
2000	549.66	691.28	283230.4	141.62
2100	556.59	698.94	298929.6	142.35
2200	563.23	706.25	314637.6	143.02
2300	569.6	713.23	330353.1	143.63
2400	575.73	719.93	346075.3	144.2
2500	581.62	726.35	361803.4	144.72
2600	587.31	732.52	377536.6	145.21
2700	592.8	738.46	393274.5	145.66
2800	598.1	744.18	409016.5	146.08

2) PbSbO₂, TPSSh

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	С _р , Дж
298.15	275.82	326.93	15238.96	51.11
1300	368.81	441.64	94672.36	72.82
1400	374.23	447.73	102894.4	73.5
1500	379.32	453.41	111128.4	74.09
1600	384.12	458.73	119372.3	74.61
1700	388.66	463.73	127624.3	75.07
1800	392.96	468.45	135883.1	75.49
1900	397.05	472.92	144147.6	75.87
2000	400.95	477.16	152417	76.21
2100	404.68	481.2	160690.5	76.52
2200	408.25	485.05	168967.7	76.8
2300	411.67	488.73	177248	77.06
2400	414.95	492.26	185531.1	77.3
2500	418.11	495.64	193816.6	77.53
2600	421.16	498.89	202104.3	77.73

2700	424.09	502.02	210393.9	77.92
2800	426.93	505.03	218685.2	78.1

PbSb₂O₄, TPSSh

T, K $\Phi, Д \mathfrak{m}$ S, $Д \mathfrak{m}$ H(T)-H(0), $Д \mathfrak{m}$ $C_p, J \mathfrak{m}$ 298.15327.03410.1224773.4783.091300491.02624.97174131.9133.951400501.01636.52189714135.511500510.4647.29205324.1136.881600519.28657.38220957.1138.11700527.68666.87236609.1139.181800535.67675.82252276.8140.151900543.27684.3267957.9141.032000550.52692.35283650.4141.832100557.46700.01299352.7142.552200564.11707.32315063.4143.212300570.49714.31330781.5143.822400576.62721346506144.382500582.53727.42362236.1144.892600588.22733.59377971.4145.372700593.71739.53393711145.822800599.02745.26409454.7146.23						
298.15327.03410.1224773.4783.091300491.02624.97174131.9133.951400501.01636.52189714135.511500510.4647.29205324.1136.881600519.28657.38220957.1138.11700527.68666.87236609.1139.181800535.67675.82252276.8140.151900543.27684.3267957.9141.032000550.52692.35283650.4141.832100557.46700.01299352.7142.552200564.11707.32315063.4143.212300570.49714.31330781.5143.822400576.62721346506144.382500582.53727.42362236.1144.892600588.22733.59377971.4145.372700593.71739.53393711145.822800599.02745.26409454.7146.23	r	Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	С _р , Дж
1300491.02624.97174131.9133.951400501.01636.52189714135.511500510.4647.29205324.1136.881600519.28657.38220957.1138.11700527.68666.87236609.1139.181800535.67675.82252276.8140.151900543.27684.3267957.9141.032000550.52692.35283650.4141.832100557.46700.01299352.7142.552200564.11707.32315063.4143.212300570.49714.31330781.5143.822400576.62721346506144.382500582.53727.42362236.1144.892600588.22733.59377971.4145.372700593.71739.53393711145.822800599.02745.26409454.7146.23	2	98.15	327.03	410.12	24773.47	83.09
1400501.01636.52189714135.511500510.4647.29205324.1136.881600519.28657.38220957.1138.11700527.68666.87236609.1139.181800535.67675.82252276.8140.151900543.27684.3267957.9141.032000550.52692.35283650.4141.832100557.46700.01299352.7142.552200564.11707.32315063.4143.212300570.49714.31330781.5143.822400576.62721346506144.382500582.53727.42362236.1144.892600588.22733.59377971.4145.372700593.71739.53393711145.822800599.02745.26409454.7146.23		1300	491.02	624.97	174131.9	133.95
1500510.4647.29205324.1136.881600519.28657.38220957.1138.11700527.68666.87236609.1139.181800535.67675.82252276.8140.151900543.27684.3267957.9141.032000550.52692.35283650.4141.832100557.46700.01299352.7142.552200564.11707.32315063.4143.212300570.49714.31330781.5143.822400576.62721346506144.382500582.53727.42362236.1144.892600588.22733.59377971.4145.372700593.71739.53393711145.822800599.02745.26409454.7146.23		1400	501.01	636.52	189714	135.51
1600519.28657.38220957.1138.11700527.68666.87236609.1139.181800535.67675.82252276.8140.151900543.27684.3267957.9141.032000550.52692.35283650.4141.832100557.46700.01299352.7142.552200564.11707.32315063.4143.212300570.49714.31330781.5143.822400576.62721346506144.382500582.53727.42362236.1144.892600588.22733.59377971.4145.372700593.71739.53393711145.822800599.02745.26409454.7146.23		1500	510.4	647.29	205324.1	136.88
1700527.68666.87236609.1139.181800535.67675.82252276.8140.151900543.27684.3267957.9141.032000550.52692.35283650.4141.832100557.46700.01299352.7142.552200564.11707.32315063.4143.212300570.49714.31330781.5143.822400576.62721346506144.382500582.53727.42362236.1144.892600588.22733.59377971.4145.372700593.71739.53393711145.822800599.02745.26409454.7146.23		1600	519.28	657.38	220957.1	138.1
1800535.67675.82252276.8140.151900543.27684.3267957.9141.032000550.52692.35283650.4141.832100557.46700.01299352.7142.552200564.11707.32315063.4143.212300570.49714.31330781.5143.822400576.62721346506144.382500582.53727.42362236.1144.892600588.22733.59377971.4145.372700593.71739.53393711145.822800599.02745.26409454.7146.23		1700	527.68	666.87	236609.1	139.18
1900543.27684.3267957.9141.032000550.52692.35283650.4141.832100557.46700.01299352.7142.552200564.11707.32315063.4143.212300570.49714.31330781.5143.822400576.62721346506144.382500582.53727.42362236.1144.892600588.22733.59377971.4145.372700593.71739.53393711145.822800599.02745.26409454.7146.23		1800	535.67	675.82	252276.8	140.15
2000550.52692.35283650.4141.832100557.46700.01299352.7142.552200564.11707.32315063.4143.212300570.49714.31330781.5143.822400576.62721346506144.382500582.53727.42362236.1144.892600588.22733.59377971.4145.372700593.71739.53393711145.822800599.02745.26409454.7146.23		1900	543.27	684.3	267957.9	141.03
2100557.46700.01299352.7142.552200564.11707.32315063.4143.212300570.49714.31330781.5143.822400576.62721346506144.382500582.53727.42362236.1144.892600588.22733.59377971.4145.372700593.71739.53393711145.822800599.02745.26409454.7146.23	/	2000	550.52	692.35	283650.4	141.83
2200564.11707.32315063.4143.212300570.49714.31330781.5143.822400576.62721346506144.382500582.53727.42362236.1144.892600588.22733.59377971.4145.372700593.71739.53393711145.822800599.02745.26409454.7146.23	/	2100	557.46	700.01	299352.7	142.55
2300570.49714.31330781.5143.822400576.62721346506144.382500582.53727.42362236.1144.892600588.22733.59377971.4145.372700593.71739.53393711145.822800599.02745.26409454.7146.23	/	2200	564.11	707.32	315063.4	143.21
2400576.62721346506144.382500582.53727.42362236.1144.892600588.22733.59377971.4145.372700593.71739.53393711145.822800599.02745.26409454.7146.23		2300	570.49	714.31	330781.5	143.82
2500582.53727.42362236.1144.892600588.22733.59377971.4145.372700593.71739.53393711145.822800599.02745.26409454.7146.23		2400	576.62	721	346506	144.38
2600588.22733.59377971.4145.372700593.71739.53393711145.822800599.02745.26409454.7146.23		2500	582.53	727.42	362236.1	144.89
2700593.71739.53393711145.822800599.02745.26409454.7146.23		2600	588.22	733.59	377971.4	145.37
2800 599.02 745.26 409454.7 146.23		2700	593.71	739.53	393711	145.82
		2800	599.02	745.26	409454.7	146.23

3) PbSbO₂, PBE0

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	Ср, Дж
298.15	275.2	325.78	15078.72	50.57
1300	367.5	440.03	94277.77	72.52
1400	372.9	446.12	102493.5	73.21
1500	377.98	451.79	110722.1	73.81
1600	382.76	457.11	118961.2	74.35

1700	387.28	462.11	127209	74.83
1800	391.57	466.83	135464	75.26
1900	395.65	471.3	143725.1	75.64
2000	399.54	475.54	151991.4	76
2100	403.26	479.57	160262.2	76.32
2200	406.81	483.42	168536.8	76.61
2300	410.22	487.1	176814.9	76.88
2400	413.5	490.63	185095.8	77.12
2500	416.65	494.01	193379.4	77.35
2600	419.69	497.26	201665.3	77.56
2700	422.62	500.39	209953.2	77.76
2800	425.45	503.4	218242.9	77.94

PbSb₂O₄, PBE0

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	Ср, Дж
298.15	326.13	408.15	24453.49	82.02
1300	488.76	622.11	173353.3	133.35
1400	498.7	633.65	188922.8	134.94
1500	508.06	644.41	204522.1	136.35
1600	516.9	654.5	220145.6	137.59
1700	525.28	663.98	235789	138.7
1800	533.24	672.93	251449.3	139.69
1900	540.81	681.41	267123.6	140.59
2000	548.05	689.45	282810	141.41
2100	554.96	697.11	298506.7	142.15
2200	561.59	704.42	314212.4	142.82
2300	567.96	711.4	329925.9	143.45
2400	574.07	718.09	345646.2	144.02
2500	579.96	724.51	361372.5	144.55
2600	585.64	730.68	377104.1	145.04
2700	591.12	736.62	392840.4	145.5
	I			I

	1	1	I	1
2800	596.42	742.35	408581	145.92

4) PbSbO₂, MP2

	1			1
Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	Ср, Дж
298.15	275.05	325.53	15051.73	50.48
1300	367.23	439.7	94206.26	72.47
1400	372.63	445.78	102420.7	73.16
1500	377.69	451.46	110648.2	73.77
1600	382.47	456.78	118886.4	74.3
1700	386.99	461.78	127133.3	74.78
1800	391.28	466.5	135387.5	75.22
1900	395.36	470.96	143647.9	75.6
2000	399.24	475.2	151913.6	75.96
2100	402.96	479.24	160183.9	76.28
2200	406.51	483.09	168458	76.57
2300	409.92	486.77	176735.6	76.84
2400	413.2	490.29	185016.1	77.09
2500	416.35	493.67	193299.3	77.32
2600	419.39	496.92	201584.8	77.53
2700	422.32	500.05	209872.4	77.73
2800	425.15	503.06	218161.8	77.91

PbSb₂O₄, MP2

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	Ср, Дж
298.15	323.93	405.43	24296.53	81.49
1300	486.34	619.7	173364.6	133.36
1400	496.28	631.24	188939.7	134.96
1500	505.64	642	204543.7	136.36
1600	514.48	652.09	220171.4	137.61
1700	522.86	661.58	235818.6	138.72

1800	530.82	670.53	251482.1	139.71
1900	538.4	679.01	267159.5	140.61
2000	545.63	687.05	282848.6	141.42
2100	552.55	694.71	298547.8	142.17
2200	559.18	702.02	314255.7	142.84
2300	565.54	709.01	329971.2	143.47
2400	571.66	715.7	345693.3	144.04
2500	577.55	722.12	361421.3	144.57
2600	583.23	728.29	377154.6	145.06
2700	588.71	734.23	392892.4	145.52
2800	594.01	739.95	408634.4	145.94

Sb₄O₆, MP2

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	Ср, Дж
298.15	370.75	488.89	35222.96	118.14
1300	607.3	802.43	253667.6	195.13
1400	621.85	819.41	276578.5	197.56
1500	635.56	835.25	299537.3	199.69
1600	648.51	850.09	322535.4	201.58
1700	660.78	864.06	345565.8	203.27
1800	672.44	877.24	368623.4	204.79
1900	683.55	889.71	391703.9	206.16
2000	694.16	901.56	414803.9	207.4
2100	704.31	912.84	437920.7	208.53
2200	714.03	923.6	461052	209.57
2300	723.37	933.89	484196	210.52
2400	732.35	943.75	507351	211.4
2500	740.99	953.2	530515.9	212.21
2600	749.33	962.29	553689.4	212.96
2700	757.38	971.04	576870.5	213.66
2800	765.17	979.47	600058.6	214.31

5) PbSbO₂, SCS-MP2

	[n
Τ, Κ	Ф, Дж	S, Дж	H(T)-H(0), Дж	Ср, Дж
298.15	274.75	325.04	14992.63	50.29
1300	366.72	439.11	94103.2	72.39
1400	372.11	445.2	102316.5	73.08
1500	377.18	450.88	110543	73.7
1600	381.95	456.19	118780.3	74.24
1700	386.47	461.19	127026.4	74.72
1800	390.75	465.91	135279.9	75.16
1900	394.83	470.37	143539.7	75.55
2000	398.71	474.61	151804.9	75.9
2100	402.42	478.65	160074.6	76.23
2200	405.97	482.5	168348.3	76.52
2300	409.38	486.18	176625.4	76.79
2400	412.66	489.7	184905.6	77.04
2500	415.81	493.08	193188.4	77.28
2600	418.84	496.33	201473.6	77.49
2700	421.77	499.46	209760.8	77.69
2800	424.6	502.48	218050	77.87

PbSb₂O₄, SCS-MP2

Т, К	Ф, Дж	S, Дж	H(T)-H(0), Дж	С _р , Дж
298.15	324.08	405.44	24257.43	81.36
1300	486.28	619.54	173234	133.26
1400	496.21	631.08	188806.5	134.86
1500	505.57	641.84	204408.3	136.27
1600	514.4	651.93	220034	137.52
1700	522.77	661.41	235679.5	138.63
	l			l

1800	530.73	670.36	251341.5	139.63
1900	538.3	678.84	267017.4	140.54
2000	545.53	686.89	282705.3	141.35
2100	552.45	694.54	298403.3	142.1
2200	559.07	701.85	314110.2	142.78
2300	565.43	708.84	329824.8	143.4
2400	571.55	715.53	345546.1	143.98
2500	577.44	721.95	361273.3	144.51
2600	583.12	728.12	377005.8	145
2700	588.6	734.06	392742.9	145.46
2800	593.89	739.78	408484.2	145.89
	1			L

ПРИЛОЖЕНИЕ В

Аппроксимация справочных данных [28] по $\varPhi_{T}^{'}$ для Sb₄O₆

Данные для $\Phi_{T}^{'}$ (Sb₄O₆), полученные аппроксимацией справочных данных [28] от 298 до 1000 К

Т, К	$arPsi_{T}^{'},$ Дж/моль*К
1300	611.52
1400	633.76
1500	656.96
1600	681.14
1700	706.29

ПРИЛОЖЕНИЕ Г

Аппроксимация справочных данных [28] по $H_T^{\circ}-H_{298}^{\circ}$ для Sb4O6

приложение д

Аппроксимация справочных данных [28] по $H_T^{\circ} - H_{298}^{\circ}$ для SbO

ПРИЛОЖЕНИЕ Е

	$A U^{\circ} (\mathbf{VO})$	$A U^{\circ}$ (D VO)	
Соль	$\Delta_{at}H_{298}(\mathrm{XO}_{\mathrm{n-1}})$	$\Delta_{at}H_{298}(\text{BaXO}_n)$	Литература
	кДж	/МОЛЬ	
BaPO ₂	593.6	1492.8	[133]
BaPO ₃	1096.3	2066	
BaVO ₂	617.9	1592.7	[134]
BaVO ₃	1248.3	2310.9	
BaGeO ₂	655.9	1461.4	[37]
BaNbO ₂	761.3	1706.6	
BaNbO ₃	1422.7	2434.1	[115]
BaNb ₂ O ₆	3913	4988.4	
BaTaO ₂	789.2	1809	[116]
BaTaO ₃	1454.6	2516	
BaBO ₂	804.4	1836	[135]
BaB_2O_4	2713.2	3730	[155]
BaMoO ₃	1171.6	2231.3	
BaMoO ₄	1769.6	2818.2	
BaWO ₃	1320.5	2436.7	[131, 136]
BaWO ₄	1918.5	3052.4	
BaW_2O_7	4408	5596	
BaTiO ₃	1295	2282	[136]
BaSiO ₂	798	1637.4	[112]
BaSiO ₃	1270.5	2260.9	
BaRe ₂ O ₈	4416.8	5354	[137]
BaCrO ₂	460.1	1381.8	
BaCrO ₃	1003.5	1985	
BaFeO ₂	395.9	1338.1	[14]
BaCoO ₂	389.3	1353	
BaNiO ₂	379.3	1348.4	

Данные для построения изокатионного ряда бария
BaBeO ₂	439.3	1486	[138]
BaCeO ₃	1236.8	2419	[139]
BaSnO ₂	529.6	1431	

ПРИЛОЖЕНИЕ Ж

Соль	$\Delta_{at}H^{\circ}_{298}(\mathrm{XO}_{n-1})$	$\Delta_{at} H_{298}^{\circ}(SnXO_n)$	Литература
	кДж/моль		
SnPO ₂	593.6	1442	[39]
SnPO ₃	1096.3	1976	
SnWO ₄	1918.5	2906.2	[40]
SnW_2O_7	4408	5257	[10]
SnB ₂ O ₄	2194	3072	
SnMoO ₄	1769.6	2654.6	[7]
SnMo ₂ O ₇	3959.8	4816.8	[']
SnV_2O_6	3381.6	4433	
BaSnO ₂	552.1	1431	

Данные для построения изокатионного ряда олова

приложение и

$\Delta_{at} H^{\circ}_{298}(\mathrm{XO}_{n-1})$ $\Delta_{at}H^{\circ}_{298}(PbXO_n)$ Литература Соль кДж/моль 593.6 PbPO₂ 1360 PbTeO₃ 763.3 1443.8 [21] PbPO₃ 1096.3 1883 3874.84 PbP₂O₆ 3003 PbBO₂ 804.4 1620 [74] PbB₂O₄ 2713.2 3389.2 PbMoO₄ 1769.8 2550.9 PbMo₂O₇ 3950 4728 [71, 77, 78] PbWO₄ 1918.5 2778.8 PbW_2O_7 4408 5238 PbV₂O₆ 3381.6 4202 [69, 73] PbSbO₂ 617.2 1341

Данные для построения изокатионного ряда свинца