Санкт-Петербургский государственный университет

# ГЕХТ Марта

## Выпускная квалификационная работа

# Новый подход к получению оксазоло[5,4-d]пиримидин-5,7-дионов путем формального Rh(II)-катализируемого [3+2]-циклоприсоединения с участием диазобарбитуровых кислот и нитрилов

Уровень образования: Бакалавриат Направление 04.03.01 «Химия» Основная образовательная программа «Химия» Профиль: органический профиль

> Научный руководитель: профессор кафедры химии природных соединений, д.х.н., Дарьин Дмитрий Викторович

Рецензент: доцент кафедры органической химии, к.х.н., Панькова Алена Сергеева

Санкт-Петербург 2020

# Содержание

| Содержание                                                                          | 2    |
|-------------------------------------------------------------------------------------|------|
| Введение                                                                            | 4    |
| 1. Обзор литературы                                                                 | 6    |
| 1.1 Реакция разложения α-диазокарбонильных соединений в присутствии нитрилов с      |      |
| образованием 1,3-оксазолов. Способы инициации и катализаторы                        | 6    |
| 1.1.1 Термическое и фотолитическое разложение α-диазокарбонильных соединений        | 6    |
| 1.1.2 Разложение диазокарбонильных соединений в присутствии нитрилов, катализируемо | e    |
| кислотами Льюиса                                                                    | 7    |
| 1.1.3 Разложение диазокарбонильных соединений в присутствии нитрилов, катализируемо | e    |
| переходными металлами                                                               | . 14 |
| 1.1.За Катализ соединениями меди(I) и меди(II)                                      | . 14 |
| 1.1.3b Катализ комплексами родия(II)                                                | . 15 |
| 1.1.4 Иные катализаторы                                                             | . 24 |
| 1.2 Субстраты в реакции синтеза оксазолов                                           | . 26 |
| 1.2.1 Тип диазосоединения. Моно- и дикарбонильные диазосоединения                   | . 26 |
| 1.2.2 Тип и структура нитрилов                                                      | . 27 |
| 1.2.2а Специфические нитрилы и другие субстраты                                     | . 31 |
| 1.3 Механизм реакции каталитического [3+2]-циклоприсоединения с участием α-         |      |
| диазокарбонильных соединений и нитрилов                                             | . 35 |
| 1.3.1 Механизм реакции в случае катализа кислотами Льюиса                           | . 35 |
| 1.3.2 Механизм реакции в случае катализа соединениями Rh(II)                        | . 37 |
| 1.4 Применение метода для решения различных синтетических задач                     | . 38 |
| 1.5 Известные превращения диазобарбитуровых кислот                                  | . 40 |
| 2. Обсуждение результатов                                                           | . 44 |
| 2.1 Цели и задачи данной работы                                                     | . 44 |
| 2.2. Реакция диазобарбитуровых кислот с нитрилами с образованием оксазоло[5,4-      |      |
| d]пиримидин-5,7-дионов                                                              | . 44 |
| 2.2.1 Синтез исходных соединений 1                                                  | . 44 |
| 2.2.2 Оптимизация условий реакции с нитрилами                                       | . 46 |
| 2.3. Реакции Rh(II)-катализируемого разложения других диазосоединений в присутствии |      |
| нитрилов                                                                            | . 49 |
| 2.3.1. Синтез исходных соединений.                                                  | . 49 |
| 2.3.2. Реакция разложения диазосоединений 3a-d в присутствии нитрилов               | . 50 |
| Выводы                                                                              | . 52 |

| 3. Экспериментальная часть                                | . 53 |
|-----------------------------------------------------------|------|
| 3.1 Синтезы с участием диазобарбитуровых кислот           | . 53 |
| 3.1.1 Синтез барбитуровых кислот                          | . 53 |
| 3.1.2 Синтез диазобарбитуровых кислот 1                   | . 54 |
| 3.1.3 Синтез оксазоло[5,6-d]пиримидинов 2                 | . 55 |
| 3.3. Синтезы с участием диазосоединений 3а-с и 4          | . 59 |
| 3.3.1 Синтез исходных соединений 5b, 5c                   | . 59 |
| 3.3.2 Синтез диазосоединений За-3с                        | . 60 |
| 3.3.3. Синтез оксазолов с участием диазосоединений За и 4 | . 61 |
| Благодарности                                             | . 63 |
| Список цитированной литературы                            | . 64 |

#### Введение

Барбитуровые кислоты и их производные часто используют в качестве строительных блоков для введения каркаса 2,4-пиримидиндиона в сложные гетероциклические соединения [1], среди которых конденсированные полициклические пиримидин-2,4-дионы представляют особый интерес за счет многообразия проявляемой ими биологической активности [2]. Один из таких хемотипов, а именно конденсированная гетероциклическая система оксазоло[5,4*d*]пиримидин-5,7-диона, применяется в медицинской химии для моделирования и синтеза биологически активных веществ. Данный скаффолд присутствует в ряде рецепторных антагонистов, например, рецептора аденозина (схема 1, структура 1) [3], ингибиторов ферментов FGFR1 (рецептор фактора роста фибробластов 1) [4] и металлопротеиназы (схема 1, структуры 2 и 3 соответственно) [5], и может быть использован в терапии раковых, вирусных и нейродегенеративных заболеваний. Помимо этого, данный скаффолд присутствует в серии пестицидов [6], один из которых представлен соединением **4**, схема 1.



Схема 1. Известные биологически активные соединения, содержащие фрагмент оксазоло[5,4-*d*]пиримидин-5,7-диона.

Несмотря на высокую потенциальную биологическую и фармацевтическую активность, оксазоло[5,4-*d*]пиримидин-5,7-дионы изучены не так хорошо, как можно было бы ожидать. В первую очередь это связано с тем, что известно не так много вариантов синтеза данных соединений [7]. Классический подход к синтезу оксазоло[5,4-*d*]пиримидин-5,7дионов основан на использовании 5-аминопиримидин-2,4,6-триона **7** (схема 2) [4], [8], [9], [10].



Схема 2. Классический подход к синтезу оксазоло[5,4-d]пиримидин-5,7-дионов.

Соединение 7, в свою очередь, получают в две стадии из барбитуровой кислоты 5 путем введения нитрозогруппы и ее последующего восстановления до аминогруппы. Полученный 5аминопиримидин-2,4,6-трион 7 участвует в конденсации с ароматическими альдегидами с образованием имина, который подвергается окислительной циклизации с тионилхлоридом или *N*-бромсукцинимидом с образованием целевого продукта 8. Данный метод имеет существенные недостатки, среди которых можно отметить большое число стадий и довольно ограниченный круг используемых субстратов.

Не так давно в нашей лаборатории был осуществлен синтез конденсированных гетероциклических 1,3-оксазолов из α-диазогомофталимидов с помощью Rh(II)катализируемого [3+2]-циклоприсоединения к нитрилам [11] (схема 3).



Схема 3. Синтез оксазоло[5,4-с]изохинолин-5(4H)-онов.

Успех данной работы побудил нас рассмотреть альтернативный синтез оксазоло[5,4-*d*]пиримидин-5,7-дионов путем [3+2]-циклоприсоединения карбеноидного интермедиата, получаемого при разложении 5-диазо-барбитуровых кислот, к нитрилам (схема 4). Данный вариант синтеза является простой и эффективной альтернативой ранее описанному подходу и отличается большей универсальностью.



Схема 4. Синтез оксазоло[5,4-*d*]пиримидин-5,7-дионов.

Таким образом, **целью** данной работы стала разработка нового удобного одностадийного подхода к синтезу оксазоло[5,4-*d*]пиримидин-5,7-дионов, перспективных с точки зрения потенциальной биологической активности. Для решения одной из ключевых задач исследования – выбора оптимальных условий проведения целевой реакции – были проанализированы научные работы, посвященные синтезу 1,3-оксазолов из αдиазокарбонильных соединений; также в литературном обзоре рассмотрены известные к настоящему моменту превращения диазобарбитуровых кислот.

#### 1. Обзор литературы

# 1.1 Реакция разложения α-диазокарбонильных соединений в присутствии нитрилов с образованием 1,3-оксазолов. Способы инициации и катализаторы

Методы получения 1,3-оксазолов на основе диазокарбонильных соединений являются важной альтернативой многим классическим подходам и зачастую позволяют получать структуры, недоступные другими способами. Это обусловлено уникальной реакционной способностью диазо-субстратов, которые могут преобразовываться в активные карбеновые или карбеноидные интермедиаты в относительно мягких условиях. Реакции с участием диазосоединений, вообще, и приводящие к образованию 1,3-оксазолов, в частности, могут инициироваться несколькими способами: термическим, фотолитическим и каталитическим [12].

# 1.1.1 Термическое и фотолитическое разложение α-диазокарбонильных соединений

Термическое разложение диазокарбонильных соединений в присутствии нитрилов было обнаружено Хьюзгеном в 1960-х годах при изучении реакций 1,3-диполярного циклоприсоединения [13], [14]. Так, кетокарбен, образующийся при разложении диазоацетофенона при 150 °C, участвует в формальном циклоприсоединении к бензонитрилу с образованием оксазола (схема 1.1). Выход 2,5-дифенилоксазола в данной реакции составил всего около 0.4%, в то время как выход продукта перегруппировки Вольфа составил более 50%.



Схема 1.1. Термическое разложение диазоацетофенонов.

Однако при введении электроноакцепторных заместителей в *орто*-положение ароматического кольца диазосубстрата выход оксазолов был увеличен до 38% и 45% для 2-хлор-диазоацетофенона и 2-нитро-диазоацетофенона, соответственно. Хьюзгеном также было обнаружено, что выход оксазола при разложении этилдиазоцетата в присутствии бензонитрила в полярном растворителе (нитробензоле) оказался практически в два раза выше, чем при проведении реакции в декалине [15]. Термическое разложение диазосоединений с образованием оксазолов было изучено еще несколькими научными группами [16], [17], [18]. Тем не менее, данный метод не получил широкого распространения в силу того, что выходы оксазолов в таких реакциях довольно низкие, хотя в отдельных случаях применяется и в настоящее время [19].

Фотолитически инициируемое 1,3-диполряное циклоприсоединение ацилкарбенов, генерируемых из диазокарбонильных соединений, к нитрилам также характеризуется зачастую низкими выходами. В работе Хьюзгена 1964-го года [15] и работе 1973-го года Комендантова [16] самые высокие выходы целевого продукта были достигнуты при разложении метилдиазоацетата и 4,7-диметил-2-диазоиндан-1-она и составили всего 20% и 38% соответственно. Как и в случае термического разложения, фотохимический метод синтеза оксазолов успешно применяется лишь в отдельных случаях. Так, при фотолитическом разложении этил-2-диазо-4,4,4-трифтор-3-оксобутаноата **1** в ацетонитриле соответствующий оксазол **2** был получен с выходом 60% (схема 1.2.) [20].



Схема 1.2. Фотолитически инициируемое разложение этил-2-диазо-4,4,4-трифтор-3оксобутаноата.

В исследовании 2004-го года был получен 3,4,8-триметилаценафто[1,2-*d*]оксазол 4 с выходом 52% при разложении 2-диазо-аценафтенона **3** в присутствии избытка ацетонитрила (схема 1.3.) [21].



Схема 1.3. Фотолитически инициируемое разложение 2-диазо-аценафтенона.

# 1.1.2 Разложение диазокарбонильных соединений в присутствии нитрилов, катализируемое кислотами Льюиса

Для повышения эффективности и расширения синтетического потенциала данной реакций с середины 1970-х годов были разработаны протоколы синтеза оксазолов, включающие в себя использование различных катализаторов. Одними из первых успешных каталитических систем стали системы, основанные на применении кислот Льюиса. В 1978-ом году М. Дойль и коллеги успешно синтезировали ряд оксазолов из различных α-

диазоацетофенонов в присутствии ненасыщенных нитрилов с применением безводного трихлорида алюминия (схема 1.4) с выходами 51–96% [22].



Схема 1.4. Разложение диазосубтратов 5, катализируемое хлоридом алюминия (III).

| <b>R</b> <sup>1</sup>                           | R <sup>2</sup>                    | Выход оксазола, %      |
|-------------------------------------------------|-----------------------------------|------------------------|
| p-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> | CH <sub>3</sub>                   | 94                     |
| C <sub>6</sub> H <sub>5</sub>                   | CH <sub>3</sub>                   | 96                     |
| C <sub>6</sub> H <sub>5</sub>                   | NCCH <sub>2</sub> CH <sub>2</sub> | 51 <sup><i>a</i></sup> |
| CH <sub>3</sub> (CH <sub>2</sub> ) <sub>5</sub> | CH <sub>3</sub>                   | 74                     |
| C <sub>6</sub> H <sub>5</sub>                   | H <sub>2</sub> C=CH               | 63                     |

Таблица 1.1 Выходы оксазолов **6** в зависимости от субстратов и условий [22]

<sup>*а*</sup> Реакция проводилось в дихлорметане с 15-ти кратным молярным избытком динитрила янтарной кислоты

По итогам данной работы был сделан ряд важных выводов. Во-первых, наиболее выходы были получены в реакциях, где использовался значительный избыток нитрила или же нитрилы использовались в качестве растворителя. Во-вторых, путем варьирования содержания хлорида алюминия в тестовой реакции разложения *n*-метил-αдиазоацетофенона в ацетонитриле при 25 °C было обнаружено, что необходимо использовать стехиометрическое количество катализатора. В противном случае в качестве основного продукта реакции образуется α-хлоро-*n*-метилацетофенон (таблица 1.2).

Таблица 1.2. Выход оксазола в зависимости от мольного соотношения хлорида алюминия и диазоацетофенона

| AlCl <sub>3</sub> , экв. | Выход оксазола, % | Выход α-хлоро- <i>п</i> -метилацетофенона, % |
|--------------------------|-------------------|----------------------------------------------|
| 0.2                      | 5                 | 48                                           |
| 0.6                      | 34                | 57                                           |
| 1.0                      | 56                | 37                                           |
| 2.4                      | 94                | 6                                            |

В том же году Ибата и Сато в качестве катализатора использовали эквимолярное количество BF<sub>3</sub>×Et<sub>2</sub>O и также получили ряд оксазолов из различных *мета-* и *пара-* замещенных диазоацетофенонов, этилдиазоацетата, дибензоилдиазометана с выходами

62–99% (схема 1.5), однако, при разложении диметилдиазомалонового эфира в ацетонитриле выход соответствующего 5-метоксиоксазола составил лишь 32% [23].

$$N_2 \xrightarrow{R^2} + R^3 CN \xrightarrow{BF_3 \times Et_2 O} \xrightarrow{R^1 \xrightarrow{R^2}} N$$

Схема 1.5 Разложение различных диазосоединений, катализируемое BF<sub>3</sub>×Et<sub>2</sub>O

В 1980-ом году [24] научной группой М. Дойля была исследована эффективность различных кислот Льюиса в модельной реакции разложения диазоацетофенона в ацетонитриле при комнатной температуре (схема 1.6). Часть полученных результатов представлена в таблице 1.3.



Схема 1.6 Разложение диазоацетофенона в присутствии различных кислот Льюиса

| Кислота Льюиса (LA)                | Выход <b>9</b> , % | Выход <b>10</b> , % |
|------------------------------------|--------------------|---------------------|
| AlCl <sub>3</sub>                  | 64                 | 36                  |
| ZrCl <sub>4</sub>                  | 69                 | 31                  |
| WCl <sub>6</sub>                   | 86                 | -                   |
| SnCl <sub>4</sub>                  | 76                 | 24                  |
| FeCl <sub>3</sub>                  | 76                 | -                   |
| BF <sub>3</sub> ×Et <sub>2</sub> O | 99                 | -                   |
| SbF <sub>5</sub>                   | 99                 | -                   |

Таблица 1.3. Зависимость выхода оксазола 9 от кислоты Льюиса

Как видно из таблицы, при использовании FeCl<sub>3</sub>, WCl<sub>6</sub>, BF<sub>3</sub>×Et<sub>2</sub>O и SbF<sub>5</sub> не наблюдается образования побочного продукта **10**, образующегося в результате переноса галогенид-иона, что является их основным преимуществом. Помимо этого было установлено, что в данных условиях NiBr<sub>2</sub>, ZnCl<sub>2</sub> и CuF не проявляют каталитической активности.

Для подтверждения универсальности и эффективности использования BF<sub>3</sub>×Et<sub>2</sub>O авторами было синтезировано природное соединение с оксазольным фрагментом – аннулолин, содержащееся в корнях растения рода плевел. Оксазол **11** с выходом 48% был получен в результате реакции разложения α-диазо-*p*-метоксиацетофенона в присутствии 3,4диметоксифенилакрилонитрила (схема 1.7.).



Схема 1.7. Синтез аннулолина.

В работе [25] Т. Ибата показал универсальность BF<sub>3</sub>×Et<sub>2</sub>O в качестве катализатора на примере синтеза ряда оксазолов, имеющих во 2-ом или 5-ом положениях заместитель с гетероатомом. Так, при реакции разложения различных *орто-*, *мета-* и *пара-*замещенных диазоацетофенонов **12** в присутствии метилтиоцианата и этилцианата соответствующие 2замещенные оксазолы были получены с выходами в 59–91% (схема 1.8). Данные по выходам оксазолов даны в таблице 1.4.

$$\begin{array}{c|c} N_2 & H & BF_3 \times Et_2O \\ \hline X-CN & Ar & \\ 12 & X=SCH_3 \\ 12 & X=SC_2H_5 \end{array} Ar \begin{array}{c} N \\ Ar & \\ 13 \end{array}$$

Схема 1.8. Разложение диазоацефенонов 12 в присутствии метил- и этилтиоцианата.

| N⁰ | Х                              | Ar                                                       | Выход 13, % |
|----|--------------------------------|----------------------------------------------------------|-------------|
| 1  | SCH <sub>3</sub>               | p-CH <sub>3</sub> O-C <sub>6</sub> H <sub>4</sub>        | 79          |
| 2  | SCH <sub>3</sub>               | <i>m</i> -CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> | 87          |
| 3  | SCH <sub>3</sub>               | <i>p</i> -Cl-C <sub>6</sub> H <sub>4</sub>               | 83          |
| 4  | SCH <sub>3</sub>               | <i>m</i> -Cl-C <sub>6</sub> H <sub>4</sub>               | 91          |
| 5  | SCH <sub>3</sub>               | p-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>         | 73          |
| 6  | SCH <sub>3</sub>               | m-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>         | 89          |
| 7  | SCH <sub>3</sub>               | <i>p</i> -Br-C <sub>6</sub> H <sub>4</sub>               | 82          |
| 8  | SC <sub>2</sub> H <sub>5</sub> | p-CH <sub>3</sub> O-C <sub>6</sub> H <sub>4</sub>        | 71          |
| 9  | SC <sub>2</sub> H <sub>5</sub> | C <sub>6</sub> H <sub>5</sub>                            | 66          |
| 10 | SC <sub>2</sub> H <sub>5</sub> | p-Cl-C <sub>6</sub> H <sub>4</sub>                       | 65          |

Более высокие выходы наблюдались для диазокарбонильных соединений с электроноакцепторным заместителем в фенильном кольце. Для синтеза 5-алкоксизамещенных оксазолов **15** были проведены реакции разложения арилдиазоуксусных эфиров **14** в ацетонитриле и пропионитриле. Однако с высокими выходами были получены лишь 5-метокси-4-(*n*-нитрофенил)оксазолы: 75% и 84%, соответственно. В остальных случаях в результате реакций на ряду с оксазолом **15** образуется кетазин **16** (схема 1.9).



Схема 1.9. Разложение арилдиазоуксусных эфиров в ацетонитриле и пропионитриле.

В работе, посвященной изучению циклофанов, С. Машраки и М. Кинн на первой стадии получения [2,2]-2,5-оксазолофанов **18** синтезировали оксазол **17** с выходом 30% (схема 1.10) [26]:



X=N, CH , Y=CH, N

Схема 1.10. Синтез [2,2]-2,5-оксазолофанов.

По сходной методике с использованием 25-ти кратного избытка BF<sub>3</sub>×Et<sub>2</sub>O удалось синтезировать производное оксазола с адамантильным заместителем **19** (схема 1.11); попытки провести циклизацию с ацетатом Rh(II) и в условиях фотохимического инициирования не увенчались успехом [27].



Схема 1.11. Синтез производного оксазола с адамантильным заместителем.

Разложение α-диазосоединений, катализируемое трифторидом бора, позволило синтезировать несколько ключевых интермедиатов в ходе синтеза различных биоактивных молекул. Так, в статье [28] описано получение соединения **20**, содержащего оксазол с индольным заместителем – фрагмент природного морского цитотоксина диазонамида, с выходом 64% (схема 1.12).



Схема 1.12. Синтез субстрата 20 для получения диазонамида.

Ингибитор CDK2 (циклинзависимая киназа) **23**, стабильный по отношению к метаболическому гидролизу за счет введения оксазолильного заместителя с помощью 2-(хлорметил)-5-этилоксазола **22**, который был получен в результате разложения диазокетона **21** в растворе хлорацетонитрила (схема 1.13) [29].



Схема 1.13. Синтеза ингибитор CDK2

Со сходным 5-алкилоксозальным фрагментом были также синтезированы производные 2-цианоакрилатов **24**, проявляющие противогрибковые и противовирусные свойства (схема 1.14) [30].



Схема 1.14. Синтез 2-цианоакрилатов 24.

В недавней работе 2019-ого года [31] был предложен альтернативный метод синтеза оксазолов с использованием объемной кислоты Льюиса B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> в качестве катализатора. В ходе работы авторы успешно провели реакции циклоприсоединения различных αдиазоэфиров к нитрилам, содержащим алкильные и арильные заместители с использованием каталитического количества B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>.

На примере модельной реакции разложения этил-2-диазо-3-оксо-3-фенилпропаноата **25** с бензонитрилом (схема 1.11) были подобраны оптимальные условия и оксазол **26** получен с выходом 78%.



Схема 1.15. Разложение этил-2-диазо-3-оксо-3-фенилпропаноата в бензонитриле

Увеличение количества катализатора до 10 мольных процентов позволило снизить время реакции до 4 часов, однако, выход продукта не изменился. При попытке провести синтез в тех же условиях, но с использованием 20-ти кратного избытка BF<sub>3</sub>×Et<sub>2</sub>O, продукт **26** не был получен.

Авторы также изучили влияние заместителей в диазосоединении на выход соответствующих оксазолов, данные представлены в таблице 1.4 (схема 1.16).



| N⁰ | $\mathbb{R}^1$ | $\mathbb{R}^2$                            | Время, ч | Выход оксазолов, % |
|----|----------------|-------------------------------------------|----------|--------------------|
| 1  | Ph             | COOEt                                     | 6        | 78                 |
| 2  | Me             | COOBn                                     | 8        | 78                 |
| 3  | Me             | NO <sub>2</sub>                           | 10       | 80                 |
| 4  | Me             | 0=                                        | 8        | 65                 |
| 5  | Me             |                                           | 10       | 60                 |
| 6  | Me             | O=O<br>O                                  | 19       | 84                 |
| 7  | OEt            | $OCH_2CF_3$<br>P $\sim$ OCH $_2CF_3$<br>O | 8        | 79                 |
| 8  | OEt            |                                           | 8        | 35                 |

Таблица 1.5. Зависимость выхода оксазолов 27 от заместителей R<sup>1</sup>, R<sup>2</sup>

Выход оксазолов при разложении бензилового и 3,5-динитробензилового диазокетоэфиров был сопоставим с выходом оксазола 26. С высоким выходом оксазолы были получены и в случае взаимодействия аллил-, пропаргил- и цианоэтил-замещенных диазосоединений с бензонитрилом, при этом выход 3-((5-метил-2-фенилоксазол-4-ил)окси)пропанонитрила составил 84% (Таблица 1.5, №6). С низким выходом (35%) был синтезирован оксазол, полученный при разложении несимметричного диазомалонового эфира (Таблица 1.5, №8).

Для изучения влияния электроноакцепторных и электронодонорных заместителей в фенильном кольце была проведена реакция с *n*-этоксифенил- и *n*-хлорфенил-α-диазоэфирами

в бензонитриле. Выходы соответствующих оксазолов оказались достаточно высокими в обоих случаях, 80% и 77%, соответственно.

# 1.1.3 Разложение диазокарбонильных соединений в присутствии нитрилов, катализируемое переходными металлами

#### 1.1.3а Катализ соединениями меди(I) и меди(II)

Еще в 1964-ом году Хьюзгену при изучении термического разложения αдиазокарбонильных соединений удалось значительно повысить выход оксазолов и понизить температуру синтеза благодаря использованию солей Cu(I) и Cu(II) [14].

В работе [32] были получены оксазолы **28а** и **28b** при разложении этилдиазопирувата в бензонитриле и ацетонитриле в присутствии Cu(acac)<sub>2</sub> (схема 1.17).



Схема 1.17. Разложении этилдиазопирувата в бензонитриле и ацетонитриле

В более поздних работах также опубликованы примеры успешного применения соединений меди в качестве катализаторов для данного типа реакций. Так, в работе 2012-ого года [33] используется модифицированный медью бентонит ('BCu', copper exchanged bentonite) в реакции разложения этилдиазоацетата в присутствии различных алифатических и ароматических нитрилов под действием микроволнового излучения (схема 1.14). Как и в предыдущих работах, реакция проводилась в избытке нитрила.

$$\begin{array}{c} N_{2} \\ 0 \end{array} + RCN \xrightarrow{BCu}_{MW, 20 \text{ min, } 135^{\circ}C} R \xrightarrow{V}_{O} OEt + R \xrightarrow{V}_{H} O \\ 29, 52-90\% \\ R=alkyl, aryl \end{array}$$

Схема 1.18 Разложения этилдиазоацетата, катализируемое 'BCu'.

В работе [34] авторам удалось синтезировать оксазол **31** с трифторметилсульфонильной группой (схема 1.19), за счет которой его потенциально можно использовать в качестве субстрата для синтеза биологически активных веществ.

$$\begin{array}{c} O \\ Ph \\ N_2 \end{array} \xrightarrow{SO_2CF_3} \frac{CuCl (20 \text{ mol-}\%)}{MeCN, 90^\circ C, 15h} \\ Me \\ \end{array} \xrightarrow{N}_{O} Ph \\ \textbf{31, 48\%} \end{array}$$

Схема 1.19. Разложение 2-диазо-1-фенил-2-((трифторметил)сульфонил)этанона.

В недавней статье 2018-го года [35] был предложен новый и относительно простой подход к синтезу оксазолов с различными функциональными группам путем разложения терминальных диазосоединений **33** в присутствии оксимов, катализируемого ацетатом меди(II) (схема 1.20). Зависимость выхода оксазола от заместителя в диазокарбонильном соединении представлена в таблице 1.6:



Схема 1.20. Разложение терминальных диазосоединений 33 в присутствии оксимов.

| № | $\mathbb{R}^1$                                           | $\mathbb{R}^2$     | R <sup>3</sup> | Время, ч | Выход <b>34</b> , % |
|---|----------------------------------------------------------|--------------------|----------------|----------|---------------------|
| 1 | p-F-C <sub>6</sub> H <sub>4</sub>                        | CO <sub>2</sub> Et | OEt            | 12       | 83                  |
| 2 | <i>p</i> -NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> | CO <sub>2</sub> Me | OEt            | 16       | 87                  |
| 3 | C <sub>6</sub> H <sub>5</sub>                            | CO <sub>2</sub> Et | OBn            | 16       | 77                  |
| 4 | p-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>         | CO <sub>2</sub> Et | OBn            | 24       | 80                  |
| 5 | <i>p</i> -MeC <sub>6</sub> H <sub>4</sub>                | CN                 | $C_6H_5$       | 30       | 60                  |
| 6 | C <sub>6</sub> H <sub>5</sub>                            | CN                 | $C_6H_5$       | 36       | 55                  |
| 7 | $p-NO_2C_6H_4$                                           | CO <sub>2</sub> Et | $C_6H_5$       | 38       | 70                  |

Таблица 1.6. Зависимость выхода оксазолов **34** от заместителей R<sup>1</sup>, R<sup>2</sup>.

Как видно из приведенных данных, лучшие выходы наблюдались в случаях, когда в качестве R<sup>3</sup> выступали этокси- и бензилокси-группы (№1-4), тогда как в случае фенильной группы выходы были либо сопоставимы (№7), либо ниже (№5-6).

Таким образом, соединения меди(I) и меди(II) можно использовать в качестве катализаторов при синтезе оксазолов, но их каталитическая активность, эффективность и универсальность в общем случае ниже, чем при использовании соединений Rh(II) (см. ниже).

#### 1.1.3b Катализ комплексами родия(II)

Среди всех подходов к синтезу 1,3-оксазолов путем разложения α-диазокарбонильных соединений в присутствии нитрилов реакции, катализируемые соединениями родия, наиболее эффективны и универсальны. Так как комплексы Rh(II) активно применяются в различных превращениях диазокарбонильных соединений, неудивительно, что уже в 1986-ом году Р. Коннелл и П. Хайлькист синтезировали ряд оксазолов **35**, проведя реакцию разложения диметилдиазомалоната с применением татраацетата диродия (Rh<sub>2</sub>(OAc)<sub>4</sub>) (схема 1.21) [36].

Основной целью работы было получение оксазолов с заданными функциональными группами, которые присутствуют в антибиотиках стрептограминах. Авторы также

протестировали различные катализаторы, в том числе Rh<sub>2</sub>(NHAc)<sub>4</sub>, Cu(OTf)<sub>2</sub>, Cu(Et-acac)<sub>2</sub>, Rh<sub>2</sub>(O<sub>2</sub>CC<sub>3</sub>F<sub>7</sub>)<sub>4</sub>, Rh<sub>3</sub>(CO)<sub>16</sub>, однако наиболее эффективным оказался Rh<sub>2</sub>(OAc)<sub>4</sub> [37].



Схема 1.21. Разложение диазомалоната, катализируемое комплексом Rh<sub>2</sub>(OAc)<sub>4.</sub>

Стоит отметить, что в данном случае реакция проводилась в хлороформе, а нитрил был взят в недостатке.

В продолжение серии работ, посвященных стрептограмину, авторы расширили данный подход на этил формилдиазоацетат (схема 1.22), получив незамещенные в пятом положении оксазолы **36** [38].



Схема 1.22. Разложение формилдиазоацетата катализируемое комплексом Rh<sub>2</sub>(OAc)<sub>4</sub>.

Выходы оксазолов **36** были значительно ниже, чем оксазолов **35**. Использование данного метода позволило авторам синтезировать замещенный правовращающий стрептограмин A (схема 1.23):

$$EtO_2C + BrCH_2CN \xrightarrow{Rh_2(OAc)_4} BrH_2C \xrightarrow{N} \xrightarrow{CO_2Et} \frac{Zn, THF}{R^1R^2C=0} \xrightarrow{R_2} \xrightarrow{R_1} \xrightarrow{N} \xrightarrow{CO_2Et} \frac{Zn}{R^1R^2C=0} \xrightarrow{R_2} \xrightarrow{R_1} \xrightarrow{N} \xrightarrow{CO_2Et} \frac{Zn}{R^1R^2C=0} \xrightarrow{R_2} \xrightarrow{R_1} \xrightarrow{N} \xrightarrow{CO_2Et} \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_2} \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_2$$

Схема 1.23. Синтез стрептограмина А.

В то же время научная группа Г. Ши опубликовала работу, в которой был описан синтез ряда CF<sub>3</sub>-замещенных оксазолов **38** путем разложения этил-3-трифтор-2-диазопропионата в присутствии ряда различных нитрилов [39], в том числе этилцианоформиата (схема 1.24) [40].



Схема 1.24. Разложения этил-3-трифтор-2-диазопропионата, катализируемое Rh<sub>2</sub>(OAc)<sub>4.</sub>

В работе 1994-ого года М. Дойль и К. Муди расширили данный метод синтеза, использовав в качестве субстратов различные диазосульфоны, диазофосфонаты, диазонитрилы [41], и получили ряд оксазолов, содержащих функциональную группу в положении 4 (**39**) (схема 1.25), а также несколько бис-оксазолов. Результаты представлены в таблице 1.7.



Схема 1.25. Разложение различных α-диазокарбонильных нитрилов, катализируемое Rh<sub>2</sub>(OAc)<sub>4.</sub>

| N⁰ | Z                    | R                                          | Выход <b>39</b> , % |
|----|----------------------|--------------------------------------------|---------------------|
| 1  | SO <sub>2</sub> Ph   | Et                                         | 52                  |
| 2  | SO <sub>2</sub> Ph   | Ph                                         | 71                  |
| 3  | SO <sub>2</sub> Ph   | o-ClC <sub>6</sub> H <sub>4</sub>          | 56                  |
| 4  | SO <sub>2</sub> Ph   | <i>p</i> -ClC <sub>6</sub> H <sub>4</sub>  | 46                  |
| 5  | SO <sub>2</sub> Ph   | <i>m</i> -MeOC <sub>6</sub> H <sub>4</sub> | 24                  |
| 6  | SO <sub>2</sub> Ph   | <i>p</i> -MeOC <sub>6</sub> H <sub>4</sub> | 28                  |
| 7  | PO(OEt) <sub>2</sub> | Ph                                         | 16                  |
| 8  | CN                   | Ph                                         | 25                  |

Таблица 1.7. Выход оксазолов **39** в зависимости от заместителей Z и R.

Как видно из таблицы, в случае диазофосфоната (№7) и диазонитрила (№8) выходы оказались значительно ниже, чем при разложении диазосульфонов. Интересно, что авторам удалось увеличить выход оксазола из диазофосфоната до 53%, использовав в качестве катализатора трифторацетамид родия(II). Также при разложении метил-2-циано-2диазоцетата в присутствии бензонитрила оксазол **41** (схема 1.26) был получен с несколько большим выходом (35%), чем в случае с этилдиазоацетатом:



Схема 1.26. Синтез бис-оксазолов с участием метил-2-циано-2-диазоцетата и диазомалоната.

Авторам также удалось синтезировать бис-оксазол **42** с достаточно высоким, по сравнению с предыдущими работами (4%), выходом, а также провести синтез бис-оксазола **43** всего в две стадии.

Синтез бис-оксазолов и трис-оксазолов **45** с участием диазомалоната и силилового эфира циангидрина также описан в статье К. Ю 1992-го года (схема 1.27) [42].



Схема 1.27. Синтез трис-оксазола.

В научной группе Т. Ибаты была исследована реакция разложения α-диазоацетофенона в присутствии *N*,*N*-дизамещенных цианамидов с целью синтезировать биологически активные 2-(*N*,*N*-диалкиламино)-5-арилоксазолы **46** (схема 1.28) [43]. Часть результатов представлена в таблице 1.8.



Схема 1.28 разложения α-диазоацетофенона в присутствии *N*,*N*-дизамещенных цианамидов.

| N⁰ | $\mathbb{R}^1$  | $\mathbb{R}^2$  | R <sup>3</sup>  | Выход <b>46</b> , % |
|----|-----------------|-----------------|-----------------|---------------------|
| 1  | NO <sub>2</sub> | <sup>i</sup> Pr | <sup>i</sup> Pr | 95                  |
| 2  | CN              | <sup>i</sup> Pr | <sup>i</sup> Pr | 79                  |
| 3  | Cl              | <sup>i</sup> Pr | <sup>i</sup> Pr | 75                  |
| 4  | Н               | <sup>i</sup> Pr | <sup>i</sup> Pr | 76                  |
| 5  | Me              | <sup>i</sup> Pr | <sup>i</sup> Pr | 83                  |
| 6  | OMe             | <sup>i</sup> Pr | <sup>i</sup> Pr | 70                  |

Таблица 1.8. Зависимость выхода оксазолов **46** от заместителя R<sup>1</sup>.

Как видно из таблицы, наиболее высокий выход был получен при разложении *n*-нитроα-диазоацетофенона. Тем не менее, при использовании других *n*-замещенных αдиазоацетофенонов выходы оксазолов **46** оказались также довольно высокими вне зависимости от донорного/акцепторного характера заместителя. Влияние заместителей в молекуле цианамида будет рассмотрено ниже.

В следующей работе [44] научной группы Т. Ибаты описано применение данного подхода с использованием α-диазоацетатов (схема 1.29). Данные по выходам 5-алкокси-2аминооксазолов **47** представлены в таблице 1.9.



Схема 1.29. Разложение α-диазоацетатов в присутствии диизопропилцианамида.

| N⁰ | R                      | Выход <b>47</b> , % |
|----|------------------------|---------------------|
| 1  | Et                     | Не выделено         |
| 2  | <sup>i</sup> Pr        | Не выделено         |
| 3  | <sup>t</sup> Bu        | 49                  |
| 4  |                        | 33                  |
| 5  |                        | Не выделено         |
| 6  | <sup>t</sup> Bu<br>tBu | 25                  |

Таблица 1.9. Выход оксазолов 47 в зависимости от заместителя R.

Однако выделить часть веществ, например, 2-(диизопропиламино)-5-этоксиоксазол, не удалось, так как вещества либо полностью разлагались, либо вступали в реакцию полимеризации. Это, вероятно, связано с необычно высокой реакционной способностью образующихся оксазолов, поэтому для стабилизации были введены объемные группы, такие как адамантанил, *трет*-бутил и 1,3-ди-*трет*-бутил-5-метилфенил. В этих случаях оксазол удалось выделить, но выходы все равно оказались достаточно низкими.

В 2000-ом году Ю. Ванг и С. Жу получили ряд оксазолов, содержащих перфторалкильный заместитель, с использованием ацетата родия(II) в качестве катализатора (схема 1.30) [45]. Авторы также протестировали каталитическую активность Cu(OAc)<sub>2</sub>, Pd(OAc)<sub>2</sub>, BF<sub>3</sub>×Et<sub>2</sub>O, но Rh<sub>2</sub>(OAc)<sub>4</sub> оказался наиболее эффективным.



Схема 1.30. Синтез оксазолов с перфторалкильным заместителем.

Ю. Исо с сотрудниками опубликовал исследование [46] реакционной способности α-ТМС-диазокетонов, ковалентно соединенных с твердофазным носителем на основе смолы Ванга. В том числе авторам работы удалось провести реакцию разложения данных αдиазокетонов в среде различных арилзамещенных нитрилов (схема 1.31):



Схема 1.31. Разложение α-ТМС-диазокетона в присутствии арилзамещенных нитрилов.

В том же году П. Дюсепт и С. Марсден в своей работе [47], посвященной синтезу и изучению реакционной способности 4-ТЭС-замещенных оксазолов, описали получение ряда примеров 5-алкокси-2-фенил-4-триэтилсилилоксазолов **48** (схема 1.32). Выходы оксазолов оказались высокими для различных арил-, алкил-, винил-замещенных нитрилов (см. раздел 2.1) стерически-требовательный заместитель в составе диазосоединения также не мешает протеканию реакции.



Схема 1.32. Синтез 5-алкокси-2-фенил-4-триэтилсилилоксазолов.

В работе 2004-го года [48] представлен простой способ синтеза оксазолов, имеющих фосфорильную группу в 4-м положении. Оптимальные условия протекания реакции представлены на схеме 1.33 Зависимость выхода оксазолов **49** от заместителей R<sup>1</sup>, R<sup>2</sup> представлена в таблице 1.10.



Схема 1.33. Разложение разлиных диазофосфонатов, катализируемое Rh<sub>2</sub>(OAc)<sub>4.</sub>

Таблица 1.10. Выход оксазолов 49 в зависимости от заместителей  $R^1$  и  $R^2$ .

| N⁰ | $\mathbb{R}^1$ | $\mathbb{R}^2$                     | Выход <b>49</b> , % |
|----|----------------|------------------------------------|---------------------|
| 1  | Me             | Ph                                 | 83                  |
| 2  | Me             | o-Me-C <sub>6</sub> H <sub>4</sub> | 55                  |

| N⁰ | $\mathbb{R}^1$  | $\mathbb{R}^2$                             | Выход <b>49</b> , % |
|----|-----------------|--------------------------------------------|---------------------|
| 3  | Me              | <i>м</i> -Ме-С <sub>6</sub> Н <sub>4</sub> | 85                  |
| 4  | Ph              | Ph                                         | 37                  |
| 5  | Ph              | <i>м</i> -Ме-С <sub>6</sub> Н <sub>4</sub> | 31                  |
| 6  | OMe             | Ph                                         | 61                  |
| 7  | OEt             | Ph                                         | 70                  |
| 8  | CF <sub>3</sub> | Ph                                         | 0                   |

Как видно из таблицы, при переходе от алкилзамещенных (№1-3,6,7) диазофосфонатов к арил-замещенным (№4-5) выходы оксазолов **49** заметно снижаются, что, скорее всего, связано со стерическими и электронными эффектами фенильной группы. Также при разложении  $\alpha$ -диазо-2-оксо-2-трифторметилэтанфосфоната (№8) соответствующий оксазол не образуется даже в течение 48 часов. Что, вероятно, объясняется сильным электроноакцепторным характером CF<sub>3</sub> группы.

В работах [49] и [50] представлены примеры синтеза оксазолов из циклических диазосоединений, разложение которых также катализировалось ацетатом родия (схема 1.34):



Схема 1.34. Разложение циклических диазосоединений, катализируемое Rh<sub>2</sub>(OAc)<sub>4.</sub>

В 2007-ом году в научной группе Ганема была предпринята попытка синтезировать оксазолы с использованием нитрила, содержащего сложные периферийные заместители (схема 1.35) [51].



Схема 1.35. Разложение диазомалоната в присутствии сложного нитрила.

Авторы протестировали несколько комплексов меди(II) и ацетатат родия(II); данные представлены в таблице 1.11:

| Катализатор                        | T,⁰C | Выход оксазола, % |
|------------------------------------|------|-------------------|
| Cu(tfacac) <sub>2</sub>            | 45   | 0                 |
| Cu(hfacac) <sub>2</sub>            | 70   | 20                |
| Cu(acac) <sub>2</sub>              | 70   | 25                |
| Rh <sub>2</sub> (OAc) <sub>4</sub> | 70   | 42                |

Таблица 1.11 Скрининг катализаторов.

Наиболее эффективным катализатором оказался ацетат родия, причем выход оксазола повысился до 52% при увеличении загрузки Rh<sub>2</sub>(OAc)<sub>4</sub> до 5%.

В работе 2007-ого года [52], посвященной синтезу новых азалактонов, в качестве субстратов были синтезированы 5-метоксиоксазолы **50** (схема 1.36). Интересно отметить, что в отличие от ранее упомянутой работы М. Дойля [41] выход продукта реакции с диазофосфонатом оказался высоким (81%).



В одной из статей серии работ, посвященных металл-катализируемым реакциям 2диазо-1,3-дикетонов [53] авторы приводят пример (схема 1.37) их разложения в различных нитрилах с образованием 2-замещенных-6,7-дигидробензо[*d*]оксазол-4(5*H*)-онов **51**:



Схема 1.37 Разложение 2-диазо-1,3-дикетонов, катализируемое Rh<sub>2</sub>(OAc)<sub>4</sub>.

В случае диазодимедона (R<sup>1</sup>=R<sup>2</sup>=Me) выходы оксазолов **51** были ниже по сравнению с 2-диазоциклогексан-1,3-дионом. При введении в реакцию других циклических диазокетонов, а именно соединений ряда циклооктана и циклопентана, целевой продукт не был получен.

В статье 2018-ого года П. Сахарова и М. Новикова [54] описан синтез (схема 1.38) нового типа оксазола, содержащего азириновый заместитель:



Схема 1.38. Синтез оксазолов с азириновым заместителями.

В том же году нашей научной группой также были опубликованы результаты синтеза ранее неописанных оксазоло[5,4-*c*]изохинолин-5(4*H*)-онов **52** (схема 1.39) [11]:



Схема 1.39. Синтез оксазоло [5,4-с]изохинолин-5(4H)-онов.

Было показано, что данный метод применим к широкому кругу различных алифатических и ароматических нитрилов, а также к диазогомофталимидам, содержащим различные заместители при атоме азота, и позволяет конструировать скаффолд, структурно аналогичный тем, которые входят в состав молекул нескольких биологических активных веществ.

В работе 2018-ого года [55] для синтеза оксазолов из диазоэфиров с относительно низкой реакционной способностью оказалось эффективной система катализаторов на основе кластеров со связью Bi–Rh (схема 1.40). При этом выход 5-этокси-2-метилоксазола оказался практически в два раза выше, чем при использовании широко применяемого в настоящее время комплекса – эспиноата родия(II) (Rh<sub>2</sub>(esp)<sub>2</sub>), структура которого приведена на схеме 1.41.



Схема 1.40. Разложение этилдиазоацетата с участием системы катализаторов Bi-Rh.



Схема 1.41. Структура эспиноата родия(II).

Сокатализатором при использовании комплексов родия(II) могут быть соли Zn(II), участвующие в циклизации образующегося интермедиата. В работе 2018-го года [56] описан пример синтеза оксазолил-замещенного пирролоиндола (53) с участием системы катализаторов на основе Rh(II)-ZnBr<sub>2</sub> (схема 1.42):



Схема 1.42. Синтеза оксазолил-замещенного пирролоиндола.

#### 1.1.4 Иные катализаторы

Некоторые другие катализаторы, например, соединения золота и серебра, также могут участвовать в реакциях синтеза оксазолов. Так, в работе 2013-ого года [57] авторы использовали комплексы Au(I) для катализа реакции разложения диазокарбонильных соединений, содержащих двойную связь, в среде нитрилов с образованием пирролов (винилзамещенные диазосоединения выступают в качестве источников 1,3-*C*,*C*-диполей). Однако введение сильного электроноакцепторного заместителя в винильный заместитель диазосоединения смещает равновесие реакции в сторону образования металл-карбеноида и ведет к образованию соответствующего оксазола (схема 1.43):



Схема 1.43. Разложение винилзамещенных диазосоединений, катализируемое Au(I).

Использование катализатора на основе одновалентного серебра при синтезе оксазолов было впервые описано не так давно, в работе 2014-ого года Д. Флореса [58]. Авторы статьи

использовали в качестве катализатора Ag<sub>3</sub>(µ2-3,5-(CF<sub>3</sub>)<sub>2</sub>PyrPy)<sub>3</sub>, который взаимодействует с ацетонитрилом с образованием мономерного интермедиата **54**, который и катализирует разложение этилдиазоацетата (схема 1.44).



Схема 1.44. Разложение этилдиазоацетата, катализируемое комплексом серебра.

Авторам удалось провести реакцию в бензонитриле и пивалонитриле, причем в обоих случаях реакция проходила за меньшее время, чем при использовании ацетонитрила.

В работе 2016-го года [59] описан синтез оксазолов в результате циклоприсоединения  $\alpha$ -иминокарбенов к нитрилам, катализируемого комплексом PPh<sub>3</sub>AuOTf (схема 1.45). Интересно отметить, что в случае использования Rh<sub>2</sub>(OAc)<sub>4</sub> и Cu(hfacac)<sub>2</sub> в качестве катализаторов выход оксазола **55** составил 0% и 18%, соответственно.



Схема 1.45. Синтез оксазолов 55 с участием комплекса золота PPh<sub>3</sub>AuOTf.

Данный подход применим к субстратам с достаточно широким кругом заместителей как в диазосоединениях, так и в нитрилах. Данные по выходу оксазолов в зависимости от заместителей R<sup>1</sup> и R<sup>2</sup> представлены в таблице 1.12.

| N⁰ | $\mathbb{R}^1$                              | $\mathbb{R}^2$                             | Выход <b>55</b> , % |
|----|---------------------------------------------|--------------------------------------------|---------------------|
| 1  | Me                                          | Ph                                         | 81                  |
| 2  | Ph                                          | Ph                                         | 89                  |
| 3  | <i>p</i> -MeO-C <sub>6</sub> H <sub>4</sub> | Ph                                         | 87                  |
| 4  | Furan-2-yl                                  | Ph                                         | 80                  |
| 6  | Me                                          | <i>p</i> -Me-C <sub>6</sub> H <sub>4</sub> | 83                  |

Таблица 1.12. Выход оксазолов 55 в зависимости от заместителей R<sup>1</sup> и R<sup>2</sup>.

| N⁰ | $\mathbb{R}^1$ | $\mathbb{R}^2$                                   | Выход <b>55</b> , % |
|----|----------------|--------------------------------------------------|---------------------|
| 7  | Me             | p-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> | 76                  |
| 8  | Me             | <i>p</i> -MeO-C <sub>6</sub> H <sub>4</sub>      | 56                  |
| 9  | Me             | p-F-C <sub>6</sub> H <sub>4</sub>                | 76                  |
| 10 | Me             | 2-Thienyl                                        | 80                  |
| 11 | Me             | Et                                               | 95                  |

#### 1.2 Субстраты в реакции синтеза оксазолов

## 1.2.1 Тип диазосоединения. Моно- и дикарбонильные диазосоединения

Формально оксазолы образуются в результате [3+2] циклоприсоединения карбонил карбенов, образующихся при разложении соответствующих диазокарбонильных соединений, к диполярофилам, в данном случае, к нитрилам. Одним из побочных продуктов может выступать димер карбонилкарбена **57** – продукт 1.3-диполярного циклоприсоединения карбонилкарбена к кетену – результату его перегруппировки Вольфа (схема 1.46).



Схема 1.46. Образование побочного продукта димера карбонилкарбена 57.

Для данной реакции наиболее предпочтительны такие дикарбонильные диазосоединения как диазомалонаты, диазокетоэфиры, диазофосфонаты и диазосульфоны, так как стабилизация второй электроноакцепторной группой позволяет избежать или значительно снизить вероятность образования продукта димеризации [47]. Также диазоацетаты могут быть стабилизированы  $\pi$ -акцепторной триметилсилильной группой [60], [47], [46] или электроноакцепторной трифторметильной группой [39], [40].

Однако при разложении монокарбонильных диазосоединений также можно получить оксазолы с достаточно высокими выходами, если изменить один или несколько параметров реакции. Так, в работе [33] димеризация этилдиазоацетата происходит при использовании эквимолярного количества бензонитрила, а при избытке безводного нитрила образуется исключительно оксазол (схема 1.47):



Схема 1.47. Условия образования побочного продукта димеризации этилдиазоацетата. Подобный эффект описан в ранее упомянутой работе [58], где описывается разложение этилдиазоацетата, катализируемое комплексом серебра(I) (схема 1.44, раздел 1.1.4).

В работе [61] при разложении бензилидендиазопропаноата авторы в качестве диполярофила используют альдоксимы (схема 1.48), при этом образования побочного продукта димеризации не наблюдается:



Схема 1.48 Разложение бензилидендиазопропаноата в присутствии альдоксимов.

В уже упомянутой статье 2018-го года [35] авторы описали синтез оксазолов с использованием диазоацетата и α-кетоксимов в присутствии ацетата меди(II) (схема 1.17 раздела 1.1.3а). Интересно отметить, что также была описана реакция циклоприсоединения этилдиазоацетата к *О*-ацилированным производным оксима (схема 1.49):



Схема 1.49 Разложение этилдиазоацетата в присутсвии *О*-ацилированного производного оксима

# 1.2.2 Тип и структура нитрилов

В данном методе синтеза оксазолов возможно использование различных алкил- и арилзамещенных нитрилов, что делает его достаточно универсальным. В некоторых описанных примерах выход оксазола зависит от структуры исходного нитрила, и выходы различаются для ароматических и алифатических нитрилов. Обычно выход оксазола выше при использовании бензонитрилов. Например, при каталитическом разложении диазомалоната (схема 1.21, раздел 1.1.3b) самый высокий выход оксазола (96%) наблюдается для *m*-Cl-

C<sub>6</sub>H<sub>4</sub>CN, в то время как для ацетонитрила он составляет 58%. Данные, характеризующие зависимость выхода оксазола от структуры нитрила, представлены в таблице 1.13.



Схема 1.21, раздел 1.1.3b

| N⁰ | R                                                | Выход <b>35</b> , % |
|----|--------------------------------------------------|---------------------|
| 1  | Ph                                               | 85                  |
| 2  | <i>p</i> -Cl-C <sub>6</sub> H <sub>4</sub>       | 90                  |
| 3  | <i>p</i> -MeO-C <sub>6</sub> H <sub>4</sub>      | 47                  |
| 4  | p-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> | 0                   |
| 5  | <i>m</i> -Cl-C <sub>6</sub> H <sub>4</sub>       | 96                  |
| 6  | C <sub>6</sub> H <sub>5</sub> -CH=CH             | 44                  |
| 7  | Me                                               | 58                  |
| 8  | "Pr                                              | 59                  |
| 9  | <sup>t</sup> Bu                                  | 46                  |
| 10 | ${}^{n}C_{8}H_{17}$                              | 58                  |
| 11 | CH <sub>2=</sub> CH-CH <sub>2</sub>              | 45                  |
| 12 | CH <sub>3</sub> CH=CH                            | 74 <sup>a</sup>     |

Таблица 1.13. Зависимость выхода оксазолов 35 от заместителя R.

<sup>а</sup> Суммарный выход *Е*- и *Z*-изомеров.

Важно отметить, что выход оксазола также снижается в случае использования ненасыщенных нитрилов.

Похожие результаты представлены в работе [38] для этил-2-диазо-3-оксопропаноата: при разложении диазоацетата в бензонитриле выход соответствующего оксазола составил 45%, а в случае ацетонитрила только 18%. Тенденция сохраняется для диазосульфонов (схема 1.50) [41], хотя выходы оксазолов, полученные при разложении диазоацетата в замещенных бензонитрилах ниже, чем для пропионитрила (таблица 1.14).



Схема 1.50. Разложение диазосульфонов в присутствии различных нитрилов.

| № | R                                           | Выход <b>58</b> , % |
|---|---------------------------------------------|---------------------|
| 1 | Et                                          | 52                  |
| 2 | Ph                                          | 71                  |
| 3 | o-Cl-C <sub>6</sub> H <sub>4</sub>          | 56                  |
| 4 | <i>p</i> -Cl-C <sub>6</sub> H <sub>4</sub>  | 46                  |
| 5 | <i>m</i> -MeO-C <sub>6</sub> H <sub>4</sub> | 24                  |
| 6 | <i>p</i> -MeO-C <sub>6</sub> H <sub>4</sub> | 28                  |
| 7 | 2-thienyl                                   | 22                  |

Таблица 1.14. Зависимость выхода оксазолов 58 от нитрила

Данные, полученные при изучении каталитической активности B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> в реакции разложения диазосоединений аналогичны вышеупомянутым, для алкилзамещенных нитрилов выходы несколько ниже [31].

Тем не менее, имеется ряд работ, в которых явной зависимости выхода оксазола от типа нитрила не было выявлено. Так, в ранее рассмотренной работе, посвященной разложению циклических  $\alpha$ -диазодикетонов, выходы при использовании ацетонитрила составили 81–87%, а для бензонитрила 80–83% [53]. Данные, полученные в нашей научной группе при изучении реакции циклоприсоединения диазогомофталимидов к нитрилам (схема 1.39, раздел 1.1.3b), аналогичны (таблица 1.15): выход оксазоло[5,4-*c*]изохинолин-5(4*H*)-онов примерно одинаково высокий в случае насыщенных алкил- и арилзамещенных нитрилов, и несколько ниже для ненанысещенных и стерически затрудненных нитрилов.



Схема 1.39, раздел 1.1.3b

| N⁰ | $\mathbb{R}^1$ | $\mathbb{R}^2$                      | Выход 52, % |
|----|----------------|-------------------------------------|-------------|
| 1  | Me             | Me                                  | 80          |
| 2  | Me             | Et                                  | 72          |
| 3  | Me             | <sup>i</sup> Pr                     | 88          |
| 4  | Me             | <sup>t</sup> Bu                     | 35          |
| 5  | Me             | Ph                                  | 81          |
| 6  | Me             | PhCH <sub>2</sub>                   | 41          |
| 7  | Me             | CH <sub>2</sub> =CH-CH <sub>2</sub> | 33          |

Таблица 1.15. Зависимость выхода оксазолов 52 от заместителя в нитриле.

| N⁰ | $\mathbb{R}^1$  | $\mathbb{R}^2$                    | Выход 52, % |
|----|-----------------|-----------------------------------|-------------|
| 8  | <sup>i</sup> Pr | p-ClC <sub>6</sub> H <sub>5</sub> | 78          |
| 9  | Ph              | Ph                                | 63          |

Сходная тенденция наблюдается и в работе [33], где авторы также исследовали зависимость выхода оксазола (см. раздел 1.1.3а, схема 1.18) от структуры нитрила, результаты представлены в таблице 1.16.



Схема 1.18, раздел 1.1.3а

Таблица 1.16. Зависимость выхода оксазолов 29 от нитрила.

| R                                                        | T, ℃ | Выход <b>29</b> ,% | Выход <b>30</b> ,% |
|----------------------------------------------------------|------|--------------------|--------------------|
| Ph                                                       | 135  | 90                 | 0                  |
| o-Me-C <sub>6</sub> H <sub>4</sub>                       | 135  | 82                 | 0                  |
| <i>p</i> -Me-C <sub>6</sub> H <sub>4</sub>               | 145  | 66                 | 0                  |
| p-Cl-C <sub>6</sub> H <sub>4</sub>                       | 135  | 52                 | 0                  |
| <i>p</i> -NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> | 150  | 0                  | 0                  |
| Me                                                       | 80   | 61                 | 10                 |
| Et                                                       | 97   | 69                 | 5                  |
| <sup>i</sup> Pr                                          | 165  | 67                 | 0                  |

В основном оксазолы были получены с достаточно хорошими выходами. Однако в случае *p*-нитробензонитрила был обнаружен лишь продукт димеризации исходного этилдиазоацетата. Также в реакциях с алифатическими нитрилами наблюдалось образование побочного продукта **30**, что, вероятно, связано с наличием воды в реакционной смеси.

В работе [47] научной группой Дюсепта была исследована зависимость выхода триметилселилзамещенных оксазолов (схема 1.32, раздел 1.1.3b), результаты представлены в таблице 1.17. Как видно из приведенных данных, выход оксазола примерно одинаков для арил- и алкил-замещенных нитрилов, но ниже для винил- и карбоксил замещенных.



Схема 1.32, раздел 1.1.3b.

| № | $\mathbb{R}^1$  | $\mathbb{R}^2$       | Выход <b>59</b> , % |
|---|-----------------|----------------------|---------------------|
| 1 | Et              | Ph                   | 80                  |
| 2 | Et              | Me                   | 81                  |
| 3 | Et              | Et                   | 80                  |
| 4 | Et              | CH <sub>3</sub> CO   | 69                  |
| 5 | Et              | MeO <sub>2</sub> C   | 66                  |
| 6 | Et              | CH <sub>2</sub> =CH- | 79                  |
| 7 | <sup>t</sup> Bu | Ph                   | 77                  |
| 8 | Et              | 2-thiphenyl          | 60                  |
| 9 | Et              | 2-furyl              | 56                  |

Таблица 1.17 Зависимость выхода оксазолов **59** от заместителей R<sup>1</sup> и R<sup>2</sup>.

#### 1.2.2а Специфические нитрилы и другие субстраты

В части приведенных выше работ описаны примеры получения оксазолов с использованием таких специфических диполярофилов как кето- и альдоксимы, цианамиды, нитрилы, содержащие сложные заместители. Один из первых примеров описывается в статье [43] с участием *N*,*N*-замещенных цианамидов (схема 1.28, см. раздел 1.1.3b). Авторы изучили зависимость выхода оксазолов от заместителей  $\mathbb{R}^2$ ,  $\mathbb{R}^3$  на примере разложения *p*-нитро- $\alpha$ -диазоацетофенона, результаты представлены в таблице 1.18.



Схема 1.28, раздел 1.1.3b

Таблица 1.18. Зависимость выхода оксазолов **46** от заместителей R<sup>2</sup>, R<sup>3</sup> в нитриле.

| N⁰ | $\mathbb{R}^1$  | $\mathbb{R}^2$                     | R <sup>3</sup>  | Выход <b>46</b> , % |
|----|-----------------|------------------------------------|-----------------|---------------------|
| 1  | NO <sub>2</sub> | <sup>i</sup> Pr                    | <sup>i</sup> Pr | 95                  |
| 2  | NO <sub>2</sub> | Н                                  | <sup>t</sup> Bu | 33                  |
| 3  | NO <sub>2</sub> | Н                                  | Н               | 7                   |
| 4  | NO <sub>2</sub> | Me                                 | Me              | 82                  |
| 5  | NO <sub>2</sub> | Et                                 | Et              | 98                  |
| 6  | NO <sub>2</sub> | Me                                 | Et              | 74                  |
| 7  | NO <sub>2</sub> | Me                                 | Ph              | 84                  |
| 8  | NO <sub>2</sub> | -(CH <sub>2</sub> ) <sub>5</sub> - |                 | 70                  |

Как видно из таблицы, реакция с *N*,*N*-диалкилцианамидами, например, диметил-, диэтил, этилметил- и метилфенилцианамидом проходит с высокими выходами, а в случае *N*цианопиперидина с выходом в 70% (№8). Однако для монозамещенных и незамещенного цианамидов выход соответствующих оксазолов значительно ниже.

Использование альдоксимов описано в работе 2012-ого года К. Ксу и М. Дойля [61], где также был исследован ряд ароматических альдоксимов, участвующих в реакции с разложением бензилидендиазопропионата (схема 1.48, см. раздел 1.1.3b). Результаты представлены в таблице 1.19.



Схема 1.48, раздел 1.1.3b.

Во всех случаях не наблюдается образования побочных продуктов, и все оксазолы получены с хорошими или высокими выходами. Электроноакцепторные и электронодонорные заместители в фенильном кольце не оказывают существенного влияния на выход соответствующих оксазолов.

| №  | Ar                                          | Выход оксазола <b>60</b> , % |
|----|---------------------------------------------|------------------------------|
| 1  | <i>p</i> -Cl-C <sub>6</sub> H <sub>4</sub>  | 82                           |
| 2  | p-F-C <sub>6</sub> H <sub>4</sub>           | 71                           |
| 3  | Ph                                          | 83                           |
| 4  | $p-NO_2-C_6H_4$                             | 91                           |
| 5  | <i>p</i> -MeO-C <sub>6</sub> H <sub>4</sub> | 67                           |
| 6  | o-Me-C <sub>6</sub> H <sub>4</sub>          | 72                           |
| 7  | <i>m</i> -Me-C <sub>6</sub> H <sub>4</sub>  | 71                           |
| 8  | <i>p</i> -MeO-C <sub>6</sub> H <sub>4</sub> | 77                           |
| 9  | 2-Furyl                                     | 62                           |
| 10 | 2-Naphthyl                                  | 87                           |

Таблица 1.19 Зависимость выхода оксазолов 60 от арильного заместителя в оксиме.

На схеме 1.20 (см. раздел 1.1.3а) приведен пример синтеза оксазолов с использование α-кетоксимов. Для оценки универсальности метода авторы провели ряд реакций с оксимами, имеющими различные заместители R<sup>1</sup>, R<sup>2</sup>. Часть результатов представлена в таблице 1.20.



Таблица 1.20. Зависимость выхода оксазолов **34** от заместителей R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>.

| N⁰ | <b>R</b> <sup>1</sup>                            | $\mathbb{R}^2$     | R <sup>3</sup>                | Время, ч | Выход <b>34</b> , % |
|----|--------------------------------------------------|--------------------|-------------------------------|----------|---------------------|
| 1  | p-F-C <sub>6</sub> H <sub>4</sub>                | CO <sub>2</sub> Et | OEt                           | 12       | 83                  |
| 2  | p-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> | CO <sub>2</sub> Me | OEt                           | 16       | 87                  |
| 3  | 2-Thienyl                                        | CO <sub>2</sub> Et | OEt                           | 24       | 81                  |
| 4  | Me                                               | CO <sub>2</sub> Me | OEt                           | 28       | 65                  |
| 5  | $C_6H_5$                                         | COMe               | OEt                           | 28       | 50                  |
| 6  | p-ClC <sub>6</sub> H <sub>4</sub>                | CN                 | OEt                           | 36       | 65                  |
| 7  | C <sub>6</sub> H <sub>5</sub>                    | CN                 | OEt                           | 20       | 73                  |
| 8  | <i>p</i> -Me-C <sub>6</sub> H <sub>4</sub>       | CN                 | C <sub>6</sub> H <sub>5</sub> | 30       | 60                  |
| 9  | C <sub>6</sub> H <sub>5</sub>                    | CN                 | C <sub>6</sub> H <sub>5</sub> | 36       | 55                  |
| 10 | $p-NO_2-C_6H_4$                                  | CO <sub>2</sub> Et | C <sub>6</sub> H <sub>5</sub> | 38       | 70                  |

Как видно из приведённых данных, в случае проведения реакции с оксимами с электроноакцепторным заместителем (№1-2) выход оксазолов выше, чем с электронодонорным (№4). Также более высокие выходы наблюдались при использовании оксимов со сложноэфирной группой  $\mathbb{R}^2$  (№1-4), в то время как кето- и цианозамещенные (№5-9) субстраты давали относительно низкие выходы соответствующих оксазолов **34**. Авторы синтезировали оксазол с тиенильным заместителем (№3) с высоким выходом, однако при попытке провести синтез с трифторметилдиазометаном вместо целевого продукта была получена смесь не идентифицированных соединений.

Участие в реакции полифункционального нитрила сложной структуры, описанное в работе [51] К. Ганема (схема 1.51), также следует рассмотреть отдельно, поскольку чем больше функциональных групп содержит нитрил, тем выше шанс протекания побочных реакций, снижающих выход целевого продукта оксазола. Зависимость выхода оксазола от заместителей в нитриле представлена в таблице 1.21.



Схема 1.51. Разложение диазомалоната в присутствии сложного нитрила.

| N⁰ | $\mathbf{R}^1$      | $\mathbb{R}^2$ | R <sup>3</sup>                    | Выход <b>61</b> ,% |
|----|---------------------|----------------|-----------------------------------|--------------------|
| 1  | Me                  | Me             | <sup>t</sup> Bu                   | 52                 |
| 2  | Me                  | Me             | "Bu                               | 50                 |
| 3  | ${}^{n}C_{6}H_{11}$ | Bn             | ${}^{n}C_{6}H_{11}$               | 42                 |
| 4  | Me                  | Me             | EtO <sub>2</sub> CCH <sub>2</sub> | 31                 |

Таблица 1.21 Зависимость выхода оксазолов **61** от заместителей R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> в нитриле.

#### 2.2.3. Синтез оксазолов с участием амидов

Ввиду того, что для синтеза оксазолов путем разложения диазосоединений нитрилы используются чаще всего в большом избытке или в качестве растворителя, данный метод в основном применим к простым нитрилам, что является серьезным ограничением применения данного метода. Альтернативным способом получения оксазолов из диазокарбонильных соединений является внедрение родиевого карбеноида, образующегося при каталитическом разложении диазосоединения, в N-H связь амидов с последующими стадиями циклизации и дегидратации (схема 1.52). В статье М. Бэгли и М. Дойля [62] описан синтез функционализированных оксазолов с участием амидов, полученных из таких аминокислот как глицин, (S)-валин и (S)-пролин, данные представлены в таблице 1.22:



Таблица 1.22. Зависимость выхода оксазолов **63** от заместителей R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>

| № | $\mathbb{R}^1$              | $\mathbb{R}^2$ | R <sup>3</sup>     | Выход <b>63</b> , % |
|---|-----------------------------|----------------|--------------------|---------------------|
| 1 | CbzNHCH <sub>2</sub>        | Me             | CO <sub>2</sub> Me | 56                  |
| 2 | (S)-CbzNHCHMe               | Me             | CO <sub>2</sub> Me | 66                  |
| 3 | (S)-PhthNHCHPr <sup>i</sup> | OMe            | CO <sub>2</sub> Me | 65                  |
| 4 | (S)-BocNHCHPr <sup>i</sup>  | OMe            | CO <sub>2</sub> Me | 88                  |
| 5 | (S)-CbzNHCHPr <sup>i</sup>  | OMe            | CO <sub>2</sub> Me | 31                  |

В 2004-ом году научная группа К. Муди провела синтез различных 1,3-оксазолов с участием различных алифатических и ароматических амидов (схема 1.52), тем самым значительно расширив круг получаемых с помощью этого подхода оксазолов [63]. Данные приведены в таблице 1.23.

| N⁰ | $R^1$                                     | $\mathbb{R}^2$     | R <sup>3</sup>                             | Выход <b>63,</b> % |
|----|-------------------------------------------|--------------------|--------------------------------------------|--------------------|
| 1  | Н                                         | CO <sub>2</sub> Me | Me                                         | 45                 |
| 2  | Н                                         | Ph                 | Ph                                         | 78                 |
| 3  | Н                                         | CO <sub>2</sub> Me | <i>p</i> -Cl-C <sub>6</sub> H <sub>4</sub> | 65                 |
| 4  | C5H11                                     | CO <sub>2</sub> Me | Me                                         | 79                 |
| 5  | Ph                                        | CO <sub>2</sub> Et | Me                                         | 80                 |
| 6  | 2-BnO-5-MeO-C <sub>6</sub> H <sub>3</sub> | CO <sub>2</sub> Me | Me                                         | 23                 |
| 7  | 2-BnO-5-MeO-C <sub>6</sub> H <sub>3</sub> | CO <sub>2</sub> Et | Ph                                         | 67                 |

Таблица 1.23. Зависимость выхода оксазолов от заместителей. R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>

В работе 2010-ого года Б. Ши и К. Муди описали синтез ряда 4- и 5-замещенных оксазолов, с участием диазокарбоксилатов, диазофосфонатов и диазосульфонов [64]. Однако в случае диазофсофонатов и диазосульфонов оксазолы были получены напрямую из амидов, а не в результате циклизации продукта N-H внедрения (схема 1.53).





Только для 1-диазо-2-оксопропилфосфоната было получено промежуточное *N*ацилированное аминодикарбонильное соединение (схема 1.54).



Схема 1.54. Реакция с участием 1-диазо-2-оксопропилфосфоната.

# 1.3 Механизм реакции каталитического [3+2]-циклоприсоединения с участием αдиазокарбонильных соединений и нитрилов

#### 1.3.1 Механизм реакции в случае катализа кислотами Льюиса.

На настоящий момент предложены два варианта механизма реакции в случае использования льюисовских кислот в качестве катализатора. Один из них был предложен в научной группе Ибаты в 1979-ом году и представлен на схеме 1.55 [65].



Схема 1.55. Механизм реакции в случае катализа кислотами Льюиса, предложенный Т. Ибата.

Согласно приведенной схеме механизм реакции включает в себя несколько стадий и протекает через образование бетаина.  $BF_3$  атакует атом кислорода карбонильной группы с образованием интермедиата – бетаина **A**, далее происходит нуклеофильная атака бетаина **A** атомом азота нитрила с отщеплением  $N_2$  и образованием бетаина **B**. Далее происходит циклизация интермедиата в 1,3-оксазол **C**. Однако, при наличии в системе воды происходит образование побочных продуктов **D** и **F**, что, согласно Т. Ибата, подтверждает наличие интермедиатов **A** и **B**. При этом взаимодействие бетаина **B** с водой является конкурирующей реакцией при синтезе оксазола.

В научной группе М. Дойля в 1980-ом году была предпринята попытка провести реакцию разложения диазокарбонильного соединения в присутствии воды, но авторам не удалось получить амиды, подтверждающие механизм, предложенный Т. Ибатой [24]. Авторы предположили (схема 1.56), что бетаин А может претерпевать отщепление молекулы азота с образование активного интермедиата G, который тут же взаимодействует с нитрилом и далее циклизуется в оксазол I.



Схема 1.56. Механизм реакции в случае катализа кислотами Льюиса, предложенный М. Дойлем.

Однако, судя по данным, полученным для диазоацетата, бетаины A достаточно стабильны даже при 115 °C. Поэтому авторы предложили альтернативный механизм, представленный на схеме 1.57:

Схема 1.57. Альтернативный механизм реакции разложение диазосоединений в случае катализа кислотами Льюиса.

На первой стадии происходит ассоциация кислоты Льюиса с нитрилом с образованием интермедиата J. Далее цвиттер-ион J атакует карбоксильный атом кислорода диазосоединения с образованием диполярного эфира алкендиазониевой соли K, которая далее циклизуется в оксазол L. Для изучения разницы между двумя механизмами был проведен эксперимент с изменением последовательности введения реагентов в реакцию. Так, при добавлении  $\alpha$ -диазоацетофенона к смеси 1.0 эквивалента SbF<sub>5</sub> и 3-х эквивалентов ацетонитрила при –78 °C был получен оксазол с выходом 12%, и было выделено исходное диазосоединение с выходом 47%. В случае же добавления 3-х эквивалентов ацетонитрила к смеси катализатора и  $\alpha$ -диазоацетофенона были обнаружены лишь следовые количества оксазола. Полученные результаты свидетельствуют о том, что в течение реакции реализуется равновесие, представленное на схеме 1.58

$$R'-C \equiv \stackrel{+}{N}-\stackrel{-}{B}F_{3} + R-C-C = N_{2} \xrightarrow{} F_{3}BO' = \stackrel{+}{R}C = C-\stackrel{+}{N}_{2} + R'CN$$

Схема 1.58. Равновесие между алкилдиазониевой солью и бетаином.

#### 1.3.2 Механизм реакции в случае катализа соединениями Rh(II)

На данный момент не существует единого общепринятого механизма реакций разложения α-диазокарбонильных соединений под действием соединений переходных металлов в присутствии нитрилов. На схеме 1.59 приведены три предполагаемых механизма, по которым может протекать реакция.

В первом случае, предложенном Р. Конеллом в работе [38], реакция протекает как 1,3диполярное циклоприсоединение карбонилкарбена **A**, образующегося при разложения исходного диазосоединения, к нитрилу.



Схема 1.59. Возможные механизмы реакции в случае катализа комплексами Rh(II)/

Им же в работе [37] описан механизм 2, в котором изначально образуется карбеновый комплекс **B**, который далее подвергается нуклеофильной атаке нитрила с образованием илида **C**. Далее происходит внутримолекулярное 1,5-циклизация илида с образованием оксазола **F**. Данный механизм также предложен в работе [33] с участием модифицированного медью бентонита ('BCu', copper exchanged bentonite) в качестве катализатора.

В работе [52] был предложен альтернативный механизм *3*, в котором сначала происходит образование азирина **E**, который претерпевает перегруппировку в оксазол **F**.

#### 1.4 Применение метода для решения различных синтетических задач

Уже к середине 1990-х рассматриваемый подход к синтезу 1,3-оксазолов был использован для получения нескольких биологически активных веществ. Так, в работе 1993го года [66] авторы получили оксозафурин (схема 1.60), структурный аналог тиазофурина, обладающий потенциальной активностью против ВИЧ. Несмотря на то, что выход продукта **64** оказался низким, данный метод представляет собой хорошую альтернативу ранее используемому многостадийному синтезу:



Схема 1.60. Синтез оксозафурина.

М. Дойль и К. Муди в работе [67] описали двухстадийный синтез (схема 1.61) биологически активных алколоидов пимпрининов, содержащих оксазольный фрагмент:



Схема 1.61. Синтез пимпрининов.

В работе 1999-го года [68] приведен пример синтеза цитотоксичных макролидов форбоксазолов А и В, имеющих в своей структуре фрагменты 2,4-дизамещенных оксазолов (схема 1.62):



В статье 2005-го года [69] описан подход к синтезу леокскандролида A (схема 1.63), биологического вещества, обладающего потенциальной активностью против раковых клеток. В качестве исходного соединения был использован диазомалонат.



Схема 1.63. Синтез леокскандролида А.

В 2011-ом году в научной группе М. Барцело [70] были синтезированы гетероциклические производные аминобутирофенона (схема 1.64), которые потенциально обладают фармакологической активностью и имеют антипсихотические свойства.



Схема 1.64. Синтез производных аминобутирофенона.

В работе 2015-ого года [71], посвященной поиску и синтезу биологически активных веществ, которые потенциально могут быть агонистами андрогиновых рецепторов, был синтезирован ряд замещенных оксазолов **66**. На схеме 1.65 приведены некоторые примеры.



Схема 1.65. Синтез биологически активных замещенных оксазолов 66.

В данном разделе приведена лишь часть примеров синтеза сложных природных объектов и биологически активных молекул с использованием метода синтеза 1,3-оксазолов путем разложения диазокарбонильных соединений в присутствии нитрилов. Такой метод является важной альтернативой классическим методам построения пятичленных колец за счет своей высокой эффективности и универсальности и позволяет синтезировать огромный спектр различных соединений, включающих в себя оксазольный или бис-/трис-оксазольные фрагменты. Важно помнить, что за счет разработки более простых и безопасных методов синтеза диазосоединений химия с их участием становится все более популярной, а значит, и привлекательность эффективного одностадийного метода синтеза оксазолов с участием диазокарбонильных соединений будет только расти.

#### 1.5 Известные превращения диазобарбитуровых кислот

Диазобарбитуровые кислоты представляют собой важный класс гетероциклических соединений, содержащих функциональной α-диазокарбонильный фрагмент в составе цикла, и являются исходными субстратами для образования активного металл-карбенового интермедиата. Так, в работе 2013-ого года [72] в научной группе Х. Ванга и Я. Ли был разработан относительно простой и эффективный метод синтеза спиробарбитуратов и спиротиобарбитуратов **67** с циклопропановым кольцом с участием стиролов и диазобарбитуровых кислот (схема 1.66).

40



Схема 1.66 Синтез спиробарбитуратов и спиротиобарбитуратов.

На примере реакции стирола с 5-диазо-1,3-диметилбарбитуровой кислотой авторы провели тестирование ряда родиевых катализаторов, а также ацетата меди(II) и производных палладия, и обнаружили, что наиболее эффективным оказался Rh<sub>2</sub>(OPiv)<sub>4</sub>. Выходы продуктов 67 были высокими как при использовании стиролов с электронодонорнымми, так и  $\mathbb{R}^1$ . электроноакцепторными заместителями Однако при введении В реакцию диазотиобарбитуровой кислоты выход продукта снизился до 52-63%, хотя при взаимодействии с 1-хлор-3-винилбензолом продукт был получен с сопоставимым выходом 71%.

В следующей работе научной группы Я. Ли и С. Кима [73] было показано, что при изменении таких параметров, как растворитель, температура и время проведения реакции при взаимодействии 5-диазо-1,3-диметилбарбитуровых кислот со стиролами образуется смесь спиробарбитуратов **69** и дигидрофуро[2,3-*d*]пиримидин-2,4-дионов **68** (схема 1.67). При проведении реакции с 2-винилнафталином образование продукта **69** не наблюдалось.



Схема 1.67. Условия образования дигидрофуро[2,3-*d*]пиримидин-2,4-дионов.

Также продукт формального [3+2]-циклоприсоединения **70** был единственным в случае использования 5-диазо-1,3-диэтилтиобарбитуровой кислоты (схема 1.68).



Схема 1.68. Взаимодействие -диазо-1,3-диэтилтиобарбитуровой кислоты со стиролами.

В этой же работе описан синтез различных фуро[2,3-*d*]пиримидин-2,4-дионов **71**, путем формального [3+2]-циклоприсоединения продуктов разложения диазобарбитуровых кислот к арилацетиленам (схема 1.69).



Схема 1.69. Синтез различных фуро[2,3-d]пиримидин-2,4-дионов

Для оценки влияния заместителя в бензольном кольце был проведен ряд реакций с электронодонорными и электроноакцепторными заместителями R<sup>1</sup> и было выявлено, что выход продукта **71** примерно одинаковый в обоих случаях. Тем не менее, при введении в реакцию 1-этинил-4-метоксибензола выход соответствующего продукта составил всего 50%. Как и в предыдущей работе, в случае реакции с 5-диазо-1,3-диметил-тиобарбитуровой кислотой выходы в целом были несколько ниже.

В статье [74] впервые был описан синтез биологически активных 5-арилзамещенных барбитуровых кислот путем Rh(II)-катализируемого разложения диазобарбитуровых кислот и последующего C<sub>Ar</sub>-H внедрения с участием аренов (схема 1.70). Реакция применима к широкому кругу монозамещенных бензолов, а также к *мета*-ксилолу и 1,3-диметоксибензолу.



Схема 1.70. Синтез 5-арилзамещенных барбитуровых кислот.

Хотя наиболее высокие выходы 5-арилзамещенных барбитуровых кислот были получены в случае электроноизбыточных аренов, при проведении реакции с *p*-бром- и *p*-хлори *p*-трифторметоксибензолом продукты реакции **72** были получены с хорошими выходами (70%, 74% и 68%, соответственно). Интересно отметить, что аналогичная реакция С-Н внедрения протекает также с циклогексаном (схема 1.71).



Схема 1.71. Синтез 5-циклогексилбарбитуровой кислоты.

В работе, направленной на изучение реакций дихлорирования α-диазо-βдикарборнильных соединений, среди прочих был описан пример реакции с 5-диазо-1,3диметилбарбитуровой кислоты с использованием дихлорида йодбензола (схема 1.72) [75].



Схема 1.72. Реакция дихлорирования диазобарбитуровой кислоты.

В статье 2018-ого года описана реакция ОН-внедрения с участием 5-диазо-1,3диметилбарбитуровой кислоты с образованием метилензамещенных спироэфиров **73** (схема 1.73) [76]. В данном случае родий-карбеновый интермедиат, образующийся при разложении диазобарбитуровой кислоты, региоселективно связывается с замещенными пропаргиловыми спиртами в присутствии комплексов золота(I).



Схема 1.73. Реакция ОН-внедрения с участием 5-диазо-1,3-диметилбарбитуровой кислоты

Таким образом, можно заключить, что, несмотря на растущую доступность диазобарбитуровых кислот, их химия остается слабо изученной, и в литературе представлены лишь очень немногие превращения, из числа известных для диазокарбонильных соединений. Синтетический потенциал диазобарбиутровых кислот, которые могут выступать исходными соединениями для синтеза сложных биологически значимых полигетероциклических скаффолдов и высоко функциональных пиримидиновых производных, остается нераскрытым и требует дальнейшего изучения.

43

#### 2. Обсуждение результатов

#### 2.1 Цели и задачи данной работы

Целью данной работы стала разработка альтернативного подхода к синтезу оксазоло[5,4-*d*]пиримидин-5,7-дионов **2**, перспективных с точки зрения потенциальной биологической активности, в одну стадию из диазобарбитуровых кислот (**1**) с участием различных нитрилов (схема 2.1).



Схема 2.1 Синтез оксазоло [5,4-*d*] пиримидин-5,7-дионов.

В рамках обозначенной цели были поставлены следующие задачи:

1. Синтезировать замещенные диазобарбитуровые и диазотиобарбитуровые кислоты.

2. Оптимизация условий реакции разложения диазобарбитуровых кислот в присутствии (в среде) нитрилов, включая подбор катализатора.

3. Оценить влияние заместителей в диазобарбитуровых кислотах и нитрилах на выход целевого продукта.

4. Синтезировать ряд оксазоло[5,4-*d*]пиримидин-5,7-дионов **2**, содержащих различные заместители.

2.2. Реакция диазобарбитуровых кислот с нитрилами с образованием оксазоло[5,4*d*]пиримидин-5,7-дионов

#### 2.2.1 Синтез исходных соединений 1

Некоторые *N*,*N*<sup>-</sup>дизамещенные барбитуровые кислоты для синтеза из них диазопроизводных имелись в нашей лаборатории. Часть исходных барбитуровых кислот (схема 2.2) была синтезирована по стандартной методике путем конденсации замещенных мочевин с малоновой кислотой или диэтилмалонатом в присутствии метилата натрия или ацетилхлорида (схема 2.2).

В качестве субстратов для исследования в целевой реакции с нитрилами было решено использовать 5-диазо-1,3-дизамещенные барбитуровые кислоты с алкильными (**1a,1c**) и арильными заместителями (**1b**), а также несимметрично замещенные кислоты (**1e,1f**) для изучения регионаправленности реакции.

44



Схема 2.2. Получение барбитуровых кислот.

Все диазобарбитуровые кислоты 1 были синтезированы по протоколу SAFE (<u>sulfonyl-azid-free</u>) [77], разработанному в нашей лаборатории (схема 2.3). Данный протокол обеспечивает возможность эффективного и удобного синтеза диазосоединений в водной среде с применением азида натрия и 3-(хлорсульфонил)бензойной кислоты в присутствии поташа. При этом целевые диазосоединения выделяются с помощью экстракции хлороформом или этилацетатом, и в большинстве случаев не требуют дополнительной хроматографической очистки.



2.3. Схема синтеза диазобарбитуровых кислот.

Синтезированные нами 5-диазо-1,3-дизамещенные барбитуровые и одна тиобарбитуровая кислоты представлены на схеме 2.4. Все диазобарбитуровые кислоты были получены с выходами от средних до высоких, за исключением монофенилдиазобарбитуровой кислоты **1**е.



Схема 2.4. Диазобарбитуровые кислоты 1а-f, использованные в данной работе.

#### 2.2.2 Оптимизация условий реакции с нитрилами

За основу протокола проведения исследуемой реакции с целью получения оксазолопиримидинов 2 были выбраны условия аналогичные тем, которые использовались ранее в нашей научной группе при получении конденсированных 1,3-оксазолов из αдиазогомофталимидов [78]. На модельной реакции разложения диметилдиазобарбиутровой кислоты (1а) в присутствии ацетонитрила был проведен скрининг катализаторов различных типов (схема 2.5). Реакции проводили при микроволновом облучении при температуре 120 °C в течение 2 часов. Результаты представлены в таблице 2.1.



Схема 2.5. Модельная реакция разложения 1,3-диметилбарбитуровой кислоты в присутствии ацетонитрила.

| Катализатор                        | Количество<br>(мольные %) | Выход <b>2а</b> (%) |
|------------------------------------|---------------------------|---------------------|
| Rh <sub>2</sub> (OAc) <sub>4</sub> | 1                         | 65                  |
| $Rh_2(C_3F_7CO_2)_4$               | 1                         | Следовые количества |
| Rh <sub>2</sub> (esp) <sub>2</sub> | 1                         | 86                  |
| Rh <sub>2</sub> (Piv) <sub>4</sub> | 1                         | 78                  |
| $Rh_2(CF_3CO_2)_4$                 | 1                         | 47                  |
| BF <sub>3</sub> ·Et <sub>2</sub> O | 101                       | Следовые количества |
| AgOTf                              | 10                        | Следовые количества |

Таблица 2.1. Тестирование эффективности катализаторов.



Схема 2.6. Структурная формула эспиноата родия.

Как видно из приведенных данных, среди всех соединений родия(II) наиболее эффективным катализатором оказался эспиноат родия (Rh<sub>2</sub>(*esp*)<sub>2</sub>), структура которого приведена на схеме 2.6. Обнаружено, что при снижении времени реакции до 1 часа (MW, 120 °C) наблюдалась неполная конверсия диазобарбитуровой кислоты **1а**. При использовании

конвенционного нагревания реакционной смеси вместо микроволнового облучения сходный выход целевого продукта (82%) был достигнут при более высокой температуре (130 °C) и проведении реакции в течение 3 часов. В дальнейшем оба протокола, приводящие к высокому выходу оксазолопиримидина **2a**, были использованы для получения целевых соединений из других субстратов.

После определения оптимальных условий реакции был проведен синтез ряда оксазоло[5,4-*d*]пиримидин-5,7-дионов **2**, структуры и выходы приведены на схеме 2.7.



Схема 2.7 Полученные в работе оксазоло[5,4-*d*]пиримидин-5,7-дионы 2а-і.

Наиболее высокие выходы наблюдались в случае симметричных 1,3-дизамещенных диазобарбитуровых кислот **1а-с**, причем выходы оставались достаточно высокими, как при микроволновом облучении, так и при нагревании на масляной бане. В качестве субстратов был использован ряд алифатических нитрилов, а также бензонитрил. Были получены продукты с галогеналкильными заместителями (**2e**, **2f**), однако, в случае γ-хлорбутиронитила выход целевого соединения **2f** неожиданно оказался низким.

При проведении реакции с несимметрично замещенной 5-диазо-1-метил-3фенилбарбитуровой кислотой (**1d**) была получена смесь региоизомерных продуктов **2j** и **2j'** в соотношении 4:1 (схема 2.8).



Схема 2.8. Разложение диазобарбитуровой кислоты 1d в присутствии ацетонитрила.

Для установления структур данных соединений были зарегистрированы корреляционные спектры HMBC, показывающие дальние спин-спиновые взаимодействия (обычно через две, три или иногда четыре связи) между протонами и ядрами <sup>13</sup>С (схема 2.9).



Схема 2.9. Корреляции, проявляющиеся в спектре НМВС для оксазолов 2ј и 2ј'.

Исходя из соотношения полученных региоизомеров **2j** и **2j**' можно предположить, что в реакции в большей степени участвует карбонильная группа, более склонная к енолизации (в исходной барбитуровой кислоте); или, другими словами, карбонильная группа с менее эффективным амидным сопряжением (за счет влияния фенильной группы). Можно предположить, что при образовании в ходе реакции карбеноидного интермедиата на атоме кислорода этой группы будет сосредоточен несколько больший частичный отрицательный заряд.

К сожалению, при проведении реакции разложения монофенилзамещенной диазобарбитуровой кислоты **1e** в ацетонитриле (схема 2.10) соответствующего конденсированного оксазола получено не было, ни при микроволновом облучении, ни при конвенционном нагревании.



Схема 2.10. Разложение монофенилдиазобарбитуровой кислоты 1е.

Несмотря на то, что в реакции разложения 5-диазо-1,3-диметилбарбитуровой кислоты (1а) в присутствии ацетонитрила оксазол 2а был получен с высоким выходом, проведение реакции с ее тиоаналогом 1f (схема 2.11) позволило получить оксазол 2e с выходом только 20%. В силу данного обстоятельства тиодиазобарбитуровую кислоту 1e было решено не использовать в превращениях с другими нитрилами.



Схема 2.11. Реакция разложения 5-диазо-1,3-диметилтиобарбитуровой (**1f**) кислоты в ацетонитриле.

# 2.3. Реакции Rh(II)-катализируемого разложения других диазосоединений в присутствии нитрилов

В рамках данного исследования в качестве диазо-субстратов, разложение которых в присутствии нитрилов может приводить к гетероконденсированным 1,3-оксазолам, нами были использованы некоторые другие гетероциклические диазокарбонильные соединения (схема 2.12), а именно диазохинолиндионы **За-с** и диазопроизводное кислоты Мельдрума **4**.



Схема 2.12. Полученные в работе диазохинолиндионы **За-с** и диазопроизводное кислоты Мельдрума **4**.

# 2.3.1. Синтез исходных соединений.

Дигидрохинолиндионы **5b** и **5c** были синтезированы согласно схеме 2.13 в две стадии:



Схема 2.13. Синтез дигидрохинолиндионов **5b-с**.

Дигидрохинолиндион 5а был предоставлен сотрудниками лаборатории.

Далее соединения **5а-с** были введены в реакцию диазопереноса с азидом натрия и 3-(хлорсульфонил)бензойной кислотой по методике SAFE для получения соответствующих диазопроизводных (схема 2.14).



Схеме 2.14. Синтез 3-диазохинолин-2,3-дионов **За-с**. Диазопроизводное кислоты Мельдрума 4 было получено ранее в рамках другого проекта и было предоставлено сотрудниками лаборатории.

#### 2.3.2. Реакция разложения диазосоединений За-д в присутствии нитрилов

В реакции были использованы условия, подобранные ранее для разложения диазобарбитуровых кислот (п. 2.2.1): реакцию проводили при микроволновом облучении, перемешивая смесь при температуре 120 °C в течение 2 часов (схема 2.15).



Схема 2.15. Разложение диазосоединения За в присутствии нитрилов.

На схеме 2.15 приведены реакции разложения диазохинолиндиона **За** в ацетонитриле и в бензонитриле. Несмотря на то, что в первом случае оксазол **6a** был получен с достаточно хорошим выходом, в случае проведения реакции в бензонитриле целевой продукт **6b** получить не удалось даже при использовании более продолжительного нагревания.



Схема 2.16. Разложение диазохинилондионов **3b** и **3c**. 50

В случае разложения соединения **3b** (схема 2.16) в ацетонитриле выход целевого вещества **6c** оказался низким (~23%), и, согласно спектру <sup>1</sup>Н ЯМР, наблюдалось образование побочных продуктов. Очистить хроматографически соединение **6c** не удалось. При проведении реакции разложения 3-диазо-1-метилхинолин-2,4(1*H*,3*H*)-диона **3c** в бензонитриле образование соответствующего конденсированного оксазола зафиксировано не было.

При разложении диазопроизводного кислоты Мельдрума **4** (схема 2.17) был получен не ожидаемый конденсированный оксазол, а 2,5-диметил-7*H*-оксазол[4,5-*e*][1,3]оксазин-7-он (**7**) с умеренным выходом. Предполагаемый путь реакции приведен на схеме 2.17.



Схема 2.17. Результат и возможный механизм реакции диазосоединения 4 с ацетонитрилом.

Вероятно, на ключевой стадии происходит отщепление молекулы ацетона от промежуточно образующегося оксазола с образованием ацилкетена, который далее вступает в реакцию формального [4+2]-циклоприсоединения с еще одной молекулой ацетонитрила, в результате чего образуется конечный продукт 7.

#### Выводы

1. Разработан новый метод синтеза биологически значимых оксазоло[5,4*d*]пиримидин-5,7-дионов путем каталитического разложения 1,3-дизамещенных диазобарбитуровых кислот в присутствии нитрилов.

2. Оптимизированы условия протекания данной реакции, определен наилучший катализатор разложения диазобарбитуровых кислот. Показано, что образование оксазолов происходит как при микроволновом облучении, так и при конвенционном нагревании реакционной смеси.

3. Продемонстрирована универсальность разработанного синтетического подхода с использованием ряда симметричных 1,3-дизамещеных диазобарбитуровых кислот и набора алифатических и ароматических нитрилов.

4. Показано, что несимметрично замещенная 5-диазо-1-метил-3-фенил-барбитуровая кислота реагирует с образованием смеси региоизомеров.

5. Обнаружено, что при проведении реакции с диазопроизводным кислоты Мельдрума промежуточно образующийся оксазол неустойчив в условиях реакции и при разложении реагирует со второй молекулой нитрила, давая ранее не описанный 2,5-диметил-7*H*-оксазол[4,5-*e*][1,3]оксазин-7-он.

Основные результаты работы опубликованы в статье: Gecht, M; Kantin, G; Dar'in, D; & Krasavin, M. A novel approach to biologically relevant oxazolo[5,4-d]pyrimidine-5,7-diones via readily available diazobarbituric acid derivatives. *Tetrahedron Letters*, **2019**, *60*, 151120.

#### 3. Экспериментальная часть

Все доступные реагенты, если отдельно не указано, использовались без дополнительной очистки. Все нитрилы были обезвожены перегонкой с P<sub>2</sub>O<sub>5</sub> и хранились над молекулярными ситами 3 Å. Спектры ЯМР <sup>1</sup>Н и <sup>13</sup>С записаны на приборе Bruker 400 МГц Аvance с рабочей частотой 400 МГц на ядрах <sup>1</sup>Н и 100 МГц на ядрах <sup>13</sup>С; растворитель – ДМСО– $d_6$  или CDCl<sub>3</sub>; в качестве внутренних стандартов использовали остаточные сигналы δ 7.28 (CHCl<sub>3</sub>) и 2.51 м.д. (ДМСО- $d_6$ ) для ядер <sup>1</sup>Н и δ 77.7 (CDCl<sub>3</sub>) и 39.9 м.д. (ДМСО- $d_6$ ) для ядер <sup>13</sup>С, химические сдвиги указаны в миллионых долях ( $\delta$ , м.д.); аббревиатуры мультиплетов: с = синглет, д = дублет, т = триплет, к = квартет, м = мультиплет, ш = широкий, тт = триплет триплетов, кд = квартет дуплетов. Масс-спектры были сняты на спектрометре microTOF. Температуры плавления измерены на приборе Stuart STПЛ30 Melting Point Apparatus.

#### 3.1 Синтезы с участием диазобарбитуровых кислот

### 3.1.1 Синтез барбитуровых кислот

#### 1,3-Дифенилпиримидин-2,4,6(1H,3H,5H)-трион



Дифенилмочевину (0. 01 моль) растворили в 10 мл ацетилхлорида и при постоянном перемешивании прибавили малоновую кислоту (0.01 моль). Реакционную смесь перемешивали в течении суток при 50 °C. После смесь перенесли в стакан с колотым льдом, полученный осадок отфильтровали и

перекристаллизовали из водного этанола. Раствор с кристаллами оставили на несколько часов в морозильной камере до завершения кристаллизации. Выпавший осадок отфильтровали, промыли водой, сушили на воздухе. Выход составил 1.36 г (64%). Спектр ЯМР <sup>1</sup>H,  $\delta$ , м. д. (*J*, Гц), CDCl<sub>3</sub>:  $\delta$  = 4.03 (c, 2H, CH<sub>2</sub>), 7.26, 7.27, 7.29 (м, 4H), 7.47, 7.49, 7.50, 7.52, 7.54(м, 6H).

#### 1-Фенилпиримид-2,4,6(1*H*,3*H*,5*H*)-трион



К раствору натрия (0. 1 моль) в 30 мл метанола при постоянном перемешивании прибавили малоновый эфир (0.05 моль). После небольшими порциями при постоянном перемешивании внесли 0.05 моль монофенилмочевины. Кипятили в течение трех часов с обратным

холодильником и хлоркальциевой трубкой. Часть растворителя удалили при пониженном давлении. К полученному осадку прибавили несколько миллилитров воды. Полученную смесь подкислили концентрированной соляной кислотой до pH 1–2. Смесь охлаждали в течение часа в холодильнике (5 °C). Выпавший осадок отфильтровали, промыли водой, сушили на воздухе.

Выход составил 2.6 г (38%). Спектр ЯМР <sup>1</sup>Н, δ, м. д. (*J*, Гц) (400 MHz, DMSO-*d*<sub>6</sub>) δ 11.48 (s, 1H), 7.46 (q, *J* = 8.9, 8.0 Hz, 3H), 7.24 (d, *J* = 7.3 Hz, 2H), 3.74 (s, 2H).

#### 3.1.2 Синтез диазобарбитуровых кислот 1

Карбонат калия (24.6 ммоль), азид натрия (15.4 ммоль) и 3-(хлорсульфонил)бензойная кислота (10.2 ммоль) растворили в воде (16 мл). К полученному прозрачному раствору при постоянном перемешивании прибавили соответствующую барбитуровую кислоту (8.2 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение двух часов (контроль за полнотой протекания реакции осуществляли при помощи TCX). Реакционную смесь экстрагировали хлороформом (3×20 мл). Полученный раствор сушили сульфатом натрия, растворитель удалили при пониженном давлении и полученный осадок сушили в вакууме.

# 5-Диазо-1,3-диметилпиримидин-2,4,6(1*H*,3*H*,5*H*)-трион (1а) [79]



Синтез вещества **1а** осуществляли согласно выше приведенному методу с использованием диметилбарбитуровой кислоты (8.2 ммоль, 1.28 г), азида натрия (15.4 ммоль, 0.99 г), 3-(хлорсульфонил)бензойной кислоты (10.2 ммоль, 2.26г) и карбоната калия (24.6 ммоль, 3.39 г). Выход составил 1.07 г (83%), кристаллы бледно-желтого цвета,  $T_{n\pi} = 160.8 - 162.8$  °C.

Спектр ЯМР <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>), δ, м.д. (*J*/Гц) δ 3.34 (с, 6H, 2CH<sub>3</sub>). Спектр ЯМР <sup>13</sup>C (101 МГц, CDCl<sub>3</sub>) δ 158.2, 150.5, 71.7 (C=N<sub>2</sub>), 28.5 (2CH<sub>3</sub>).

# 5-Диазо-1,3-дифенилпиримидин-2,4,6(1H,3H,5H)-трион (1b) [77]



Синтез вещества **1b** осуществляли согласно выше приведенному методу с использованием дифенилбарбитуровой кислоты [80] (1.1 ммоль, 0.30 г), азид натрия (2.0 ммоль, 0.130 г), 3-(хлорсульфонил)бензойной кислоты (1.31 ммоль, 0.33 г) и карбоната калия (3.0 ммоль, 0.406 г). Вещество очищали с помощью флэш-хроматографии на силикагеле, элюент – CH<sub>2</sub>Cl<sub>2</sub>. Выход

составил 0.217 г (72%), кристаллы бледно-серого цвета, T<sub>пл</sub> = 103.4-105 °C. Спектр ЯМР <sup>1</sup>Н (400 MHz, CDCl<sub>3</sub>), δ, м.д. (*J*/Гц): δ 7.57 – 7.43 (м, 3H), 7.34 – 7.29 (м, 2H). Спектр ЯМР <sup>13</sup>С (101 МГц, CDCl<sub>3</sub>) : δ 157.9 (4,6-С), 150.0 (2-С), 133.5, 129.4, 129.4, 128.6, 72.7 (C=N<sub>2</sub>). HRMS (ESI +ve) вычислено для C<sub>16</sub>H<sub>10</sub>N<sub>4</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup> : 329.0645, найдено 329.0657.

# 1,3-Дициклогексил-5-диазопиримидин-2,4,6(1H,3H,5H)-трион (1c) [77]



Синтез вещества **1с** осуществляли согласно выше приведенному методу с использованием 1,3-дициклогексилбарбитуровой кислоты [81] (3.14 ммоль, 0.65 г), азида натрия (5.89 ммоль, 0.40 г), 3- (хлорсульфонил)бензойной кислоты (3.93 ммоль, 0.91г) и карбоната калия (8,83 ммоль, 1,24г). Выход составил 0.47 г (72%), оранжевые

кристаллы. Т<sub>пл</sub> = 111.6–112.9 °С.

Спектр ЯМР <sup>1</sup>Н (400 MHz, CDCl<sub>3</sub>), δ, м.д (*J*/Гц): δ 4.68 (тт, *J* = 12.2, 3.8, 2H), 2.31 (кд, *J* = 12.4, 3.5, 4H), 1.89 – 1.82 (м, 4H), 1.75 – 1.60 (м, 6H), 1.44 – 1.30 (м, 4H), 1.29 – 1.16 (м, 2H). Спектр ЯМР <sup>13</sup>С (101 МГц, CDCl<sub>3</sub>) δ 158.5 (4,6-С), 149.8 (2-С), 72.2 (C=N2), 55.6, 29.2, 26.4, 25.1. HRMS (ESI +ve) вычислено для C<sub>16</sub>H<sub>22</sub>N<sub>4</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup>: 341.1584, найдено 341.1585.

# 5-Диазо-1,3-диметио-2-тиоокснодигидропиримидин-4,6(1H,5H)-дион (1e) [77]



Синтез вещества **1e** осуществляли согласно выше приведенному методу с использованием диметилтиобарбитуровой кислоты (7,6 ммоль, 1.31 г), азида натрия (14.2 ммоль, 0.93 г), 3-(хлорсульфонил)бензойной кислоты (9.5 ммоль, 2.09 г) и карбоната калия 20.9 ммоль, 2.88 г). Выход составил 1.08 г (83%), желтые кристаллы, T<sub>пл</sub> = 103.4 –104.7 °C.

Спектр ЯМР <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>), δ, м.д. (*J*/Гц): δ 3.72 (s, 6H, 2CH3). Спектр ЯМР <sup>13</sup>C (101 МГц, CDCl<sub>3</sub>): δ 178.9 (C=S), 156.8 (2C=O), 73.9 (C=N2), 35.41 (2CH3). HRMS (ESI) вычислено для C<sub>6</sub>H<sub>6</sub>N<sub>4</sub>NaO<sub>2</sub>S [M+Na]<sup>+</sup> : 221.0104, найдено 221.0104

# 3.1.3 Синтез оксазоло[5,6-d]пиримидинов 2

Метод А: В виалу объемом 5 мл поместили диазобарбитуровую кислоту 1, перегнанный обезвоженный нитрил (3–4.5 мл) и бис[родий(*α*,*α*,*α*',*α*'-тетраметил-1,3бензолдипропионат)] (Rh<sub>2</sub>(*esp*)<sub>2</sub>) (0.0066 ммоль, 1%, 5.9 мг). Реакцию проводили в течение двух часов в микроволновом реакторе при 120°С (давление 1-6 бар). Растворитель удаляли при пониженном давлении, продукт выделяли при помощи жидкостной хроматографии на силикагеле.

Метод В: В виалу объемом 5 мл поместили диазобарбитуровую кислоту 1, перегнанный обезвоженный нитрил (3–4.5 мл) и Rh<sub>2</sub>(*esp*)<sub>2</sub> (0.0066 ммоль, 1%, 5.9 мг). Реакционную смесь нагревали на масляной бане при 130 °C в течение 2–3 часов. Растворитель удаляли при пониженном давлении, продукт выделяли при помощи жидкостной хроматографии на силикагеле.

# 2,4,6-Триметилоксазол[5,4-*d*]пиримидин-5,7(4*H*,6*H*)-дион (2а)



Синтез вещества 2а осуществляли согласно выше приведенному методу А с использованием диазобарбитуровой кислоты (1а) (0.66 ммоль, 0.120 g), ацетонитрила (3.0 мл) и Rh<sub>2</sub>(*esp*)<sub>2</sub> (0.0066 ммоль, 1 mol %, 5.9 мг). Вещество выделяли с помощью жидкостной хроматографии, элюент – дихлорметан. Выход составил 0.111 г (86%), белые кристаллы, T<sub>пл</sub> = 149.2 – 150.6 °С.

Спектр ЯМР <sup>1</sup>Н (400 MHz, CDCl<sub>3</sub>), б, м.д. (*J*/Гц): *δ* 3.57 (с, 3H), 3.42 (с, 3H), 2.56 (с, 3H). Спектр ЯМР <sup>13</sup>С (101 МГц, CDCl<sub>3</sub>): *δ* 156.3, 154.5, 150.3, 111.3, 30.4, 28.6, 120.8, 13.9. HRMS (ESI), *m/z* вычислено для C<sub>8</sub>H<sub>9</sub>N<sub>3</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup> 218.0536, найдено 218.0543.

# 2-Этил-4,6-диметилоксазол[5,4-*d*]пиримидин-5,7(4*H*,6*H*)-дион (2b)



Синтез вещества 2b осуществляли согласно выше приведенному методу А с использованием диазобарбитуровой кислоты (1а) (0.66 ммоль, 0.120 г), пропионитрила (3.0 мл) и Rh<sub>2</sub>(*esp*)<sub>2</sub> (0.0066 ммоль, 1%, 5.9 мг). Вещество выделяли с помощью жидкостной хроматографии, элюент – дихлорметан. Выход составил 0.106 г (77%), кристаллы светло-серого цвета, Т<sub>пл</sub> = 82.6 -

82.7 °C.

Спектр ЯМР <sup>1</sup>Н (400 MHz, CDCl<sub>3</sub>), δ, м.д. (*J*/Гц): δ 3.56 (с, 3H), 3.41 (с, 3H), 2.85 (к, *J* = 7.8 Hz, 2H, CH<sub>3</sub>CH<sub>2</sub>), 1.39 (τ, J = 7.9 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>). Cπεκτρ *ЯМР* <sup>13</sup>C (101 MΓ<sub>4</sub>, CDCl<sub>3</sub>): δ 160.8, 156.4, 154.4, 150.3, 111.7, 30.4, 28.6, 21.6 16.8. HRMS (ESI), *m/z* вычислено для C<sub>9</sub>H<sub>11</sub>N<sub>3</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup> 232.0693, найдено 232.0704.

# 2-Изопропил-4,6-диметилоксазоло[5,4-*d*]пиримидир-5,7(4*H*,6*H*)-дион (2c)



Синтез вещества 2с осуществляли согласно выше приведенному методу А с использованием диазобарбитуровой кислоты (1а) (0.66 ммоль, 0.12) г), изобутиронитрила (3.0 мл) и Rh<sub>2</sub>(*esp*)<sub>2</sub> (0.0066 ммоль, 1%, 5.9 мг). Вещество выделяли с помощью жидкостной хроматографии, элюент дихлорметан. Выход 0.079г (54%), белые кристаллы, T<sub>пл</sub> = 104.0 – 105.2

°C.

Спектр ЯМР <sup>1</sup>Н (400 MHz, CDCl<sub>3</sub>), δ, м.д. (*J*/Гц): δ 3.56 (с, 3H), 3.40 (с, 3H), 3.15 (септет, *J* = 7.8 Hz, 1H, CH), 1.39 (д, J = 7.9 Hz, 6H). Спектр ЯМР <sup>13</sup>С (101 МГц, CDCl<sub>3</sub>):  $\delta$  163.9, 156.5, 154.3, 150.3, 111.0, 30.5, 28.61, 28.59, 20.1. **HRMS** (ESI), *m/z* вычислено дляС<sub>10</sub>H<sub>14</sub>N<sub>3</sub>O<sub>3</sub> [M+H]<sup>+</sup> 224.1030, найдено 224.1040

# 4,6-Диметил-2-фенилоксазоло[5,4-*d*]пиримидн-5,7(4*H*,6*H*)-дион (2d)



Синтез вещества 2d осуществляли согласно выше приведенному методу A с использованием диазобарбитуровой кислоты (1a) (0.66 ммоль, 0.120 г), бензонитрила (3.0 мл) и Rh<sub>2</sub>(*esp*)<sub>2</sub> (0.0066 ммоль, 1%, 5.9 мг). Вещество выделяли с помощью жидкостной хроматографии, элюент: смесь хлороформ-этилацетат в соотношении 3:1. Выход составил 0.114 г (67%),

белые кристаллы,  $T_{\pi\pi} = 232.4 - 233.2$  °C.

Спектр ЯМР <sup>1</sup>Н (400 MHz, CDCl<sub>3</sub>), δ, м.д. (*J*/Гц): δ 8.24 – 7.96 (м, 1H), 7.62 – 7.42 (м, 2H), 3.69 (с, 2H), 3.48 (с, 2H). Спектр ЯМР <sup>13</sup>С (101 МГц, CDCl<sub>3</sub>): δ 156.6, 156.5, 154.4, 150.0, 131.4, 129.0, 126.6, 125.5, 112.6, 30.6, 28.8. **HRMS** (ESI), *m*/*z* вычислено дляС<sub>13</sub>H<sub>11</sub>N<sub>3</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup> 280.0693, найдено 280.0698.

# **2-(Хлорметил)-4,6-диметилоксазол[5,4-***d*]пиримидин-5,7(4*H*,6*H*)-дион (2е)



Синтез вещества **2e** осуществляли согласно выше приведенному методу В с использованием диазобарбитуровой кислоты (**1a**) (0.66 ммоль, 0.120 г), 3-хлорпропионитрила (3.0 мл) и Rh<sub>2</sub>(*esp*)<sub>2</sub> (0.0066 ммоль, 1%, 5.9 мг). Вещество выделяли с помощью жидкостной хроматографии, элюент: смесь хлороформ-этилацетат в соотношении 4:1. Выход составил 0.144 г (60%), белые кристалы,  $T_{nn} = 232.4 - 233.2$  °C.

Спектр ЯМР <sup>1</sup>Н (400 MHz, CDCl<sub>3</sub>), δ, м.д. (*J*/Гц): δ 4.66 (с, 2H), 3.60 (с, 3H), 3.41 (с, 3H). Спектр ЯМР <sup>13</sup>С (101 МГц, CDCl<sub>3</sub>): δ 156.0, 155.1, 153.6, 150.0, 111.6, 35.6, 30.6, 28.7. HRMS (ESI), *m/z* вычислено дляС<sub>8</sub>H<sub>8</sub>ClN<sub>3</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup> 252.0146, найдено 252.0149.

# 2-(3-Хлорпропил)-4,6-диметилоксазол[5,4-d]пиримидин-5,7(4H,6H)-дион (2f)



Синтез вещества **2f** осуществляли согласно выше приведенному методу A с использованием диазобарбитуровой кислоты (**1a**) (0.66 ммоль, 0.120 г), 4-хлорбутиронитрила (3.0 мл) и Rh<sub>2</sub>(*esp*)<sub>2</sub> (0.0066 ммоль, 1%, 5.9 мг). Вещество выделяли с помощью жидкостной хроматографии, элюент: смесь хлороформ-этилацетат в соотношении 1:1. Выход составил 0.037 г (22%), оранжевые

кристаллы, Т<sub>пл</sub> = 134.6 – 135.4 °С.

Спектр ЯМР <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>),  $\delta$ , м.д. (*J*/Гц):  $\delta$  3.71 (т, *J* = 6.1 Hz, 2H), 3.58 (с, 3H), 3.42 (с, 3H), 3.04 (т, *J* = 7.2 Hz, 2H), 2.33 (п, *J* = 6.7 Hz, 2H). Спектр ЯМР <sup>13</sup>С (101 МГц, CDCl<sub>3</sub>):  $\delta$  158.4, 156.4, 154.5, 150.2, 111.3, 43.5, 36.5, 28.8, 28.7, 25.0. **HRMS** (ESI), *m*/*z* вычислено для C<sub>10</sub>H<sub>12</sub>ClN<sub>3</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup> 280.0465, найдено 280.0459.

# 2-Метил-4,6-дифенилоксазол[5,4-*d*]пиримид-5,7(4*H*,6*H*)-дион (2g)



Синтез вещества **2g** осуществляли согласно выше приведенному методу A с использованием диазобарбитуровой кислоты (**1b**) (0.66 ммоль, 0.202 г), ацетонитрила (3.0 мл) и Rh<sub>2</sub>(*esp*)<sub>2</sub> (0.0066 ммоль, 1%, 5.9 мг). Вещество выделяли с помощью жидкостной хроматографии, элюент: смесь хлороформ-этилацетат в соотношении 3:1. Выход составил 0.132 г (64%),

белые кристаллы,  $T_{\pi\pi} = 166.2 - 167.0$  °C.

Спектр ЯМР <sup>1</sup>Н (400 MHz, CDCl<sub>3</sub>), δ, м.д. (*J*/Гц): δ 7.64 – 7.41 (м, 8H), 7.38 – 7.28 (м, 2H), 2.51 (с, 3H).<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): 156.9, 156.1, 154.3, 149.8, 135.1, 132.8, 129.8, 129.7, 129.4, 128.9, 128.6, 127.5, 112.2, 13.9. HRMS (ESI), *m*/*z* вычислено дляС<sub>18</sub>H<sub>13</sub>N<sub>3</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup> 342.0849, найдено 342.0855.

### 2,4,6-Трифенилоксазоло[5,4-*d*]пиримидин-5,7(4*H*,6*H*)-дион (2h)



Синтез вещества **2h** осуществляли согласно приведенному выше методу В с использованием диазобарбитуровой кислоты (**1b**) (0.66 ммоль, 0.202 г), бензонитрила (3.0 мл) и  $Rh_2(esp)_2$  (0.0066 ммоль, 1%, 5.9 мг). Вещество выделяли с помощью жидкостной хроматографии, элюент: смесь хлороформ-этилацетат в соотношении 6:1. Выход составил 0.132 г (53%),

белые кристаллы,  $T_{III} = 109.5 - 111.2$  °C.

Спектр ЯМР <sup>1</sup>Н (400 MHz, CDCl<sub>3</sub>), δ, м.д. (*J*/Гц): δ 8.05 – 7.90 (м, 2H), 7.67 – 7.43 (м, 11H), 7.36 (дд, *J* = 7.4, 1.8 Hz, 2H). Спектр ЯМР <sup>13</sup>С (101 МГц, CDCl<sub>3</sub>): δ 157.0, 156.4, 154.2, 149.8, 135.1, 132.8, 131.49, 131.47, 129.9, 129.8, 129.5, 129.0, 128.7, 127.5, 126.7, 125.4, 113.6. HRMS (ESI), *m/z* вычислено для C<sub>23</sub>H<sub>15</sub>N<sub>3</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup> 404.1006, найдено 404.0995.

# 4,6-Дициклогексил-2-фенилоксазоло[5,4-d]пиримидин-5,7(4H,6H)-дион (2i)



Синтез вещества **2i** осуществляли согласно приведенному выше методу В с использованием диазобарбитуровой кислоты (**1c**) (0.66 ммоль, 0.210 г), бензонитрила (3.0 мл) и Rh<sub>2</sub>(*esp*)<sub>2</sub> (0.0066 ммоль, 1%, 5.9 мг). Вещество выделяли с помощью жидкостной хроматографии, элюент: смесь хлороформ-этилацетат в соотношении 6:1. Выход

составил 0.095 г (37%), белые кристаллы,  $T_{nn} = 109.5 - 111.2$  °С.

Спектр ЯМР <sup>1</sup>Н (400 MHz, CDCl<sub>3</sub>), δ, м.д. (*J*/Гц): δ 8.11 – 8.03 (м, 2H), 7.61 – 7.47 (м, 3H), 5.03 – 4.90 (м, 1H), 4.85 – 4.74 (м, 1H), 2.59 – 2.41 (м, 2H), 2.22 – 2.10 (м, 2H), 2.05 – 1.95 (м, 4H), 1.92 – 1.79 (м, 2H), 1.74 – 1.64 (м, 4H), 1.58 – 1.30 (м, 6H). Спектр ЯМР <sup>13</sup>С (101 МГц,

CDCl<sub>3</sub>): δ 156.8, 156.4, 154.0, 149.5, 131.2, 129.0, 126.5, 113.6, 56.4, 54.7, 30.4, 28.5, 26.4, 26.0, 25.32, 25.30. HRMS (ESI), *m*/*z* вычислено C<sub>23</sub>H<sub>27</sub>N<sub>3</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup> 416.1945, найдено 416.1949.

# 2,6-Диметил-4-фенилоксазоло[5,4-*d*]пиримидин-5,7(4*H*,6*H*)-дион (2j) и 2,4-Диметил-6-фенилоксазоло[5,4-*d*]пиримидин-5,7(4*H*,6*H*)-дион (2j')



Синтез веществ **2j**, **2j**' осуществляли согласно выше приведенному методу В с использованием 5-диазо-1метил-3-фенилбарбитуровой кислоты (**1d**) (0.99 ммоль, 0.242 г), ацетонитрила (4.5 мл) и Rh<sub>2</sub>(*esp*)<sub>2</sub> (0.0099 ммоль, 1%, 8.7 мг). Реакционную смесь фильтровали через слой силикагеля, промыли дихлорметаном и растворитель

удалили при пониженном давлении. Получена смесь региоизомеров (1:0.27). Выход 0.110 г (44%), бледно-розовые кристаллы.

Спектр ЯМР <sup>1</sup>Н (400 MHz, CDCl<sub>3</sub>), δ, м.д. (*J*/Гц): сигналы от преобладающего изомера: δ 7.60 – 7.51 (м, 3H), 7.44 – 7.37 (м, 2H), 3.43 (с, 3H, N-CH<sub>3</sub>), 2.44 (с 3H, 2-CH<sub>3</sub>); сигналы от минорного изомера δ 7.51 – 7.44 (м, 3H), 7.23 – 7.18 (м, 2H), 3.57 (с, 3H, N-CH<sub>3</sub>), 2.56 (с, 3H, 2-CH<sub>3</sub>). Спектр ЯМР <sup>13</sup>С (101 МГц, CDCl<sub>3</sub>): сигналы от преобладающего изомера: δ 156.7 (2-С), 156.3 (7-С), 153.8 (3a-C), 149.8 (5-С), 133.0, 129.8, 129.8, 127.5, 111.7 (7a-C), 28.7 (N-CH<sub>3</sub>), 13.8 (2-CH<sub>3</sub>); сигналы от минорного изомера: 156.6 (2-С), 156.1 (7-С), 155.1 (3a-C), 150.3 (5-С), 135.3, 129.4, 128.8, 128.5, 111.7 (7a-C), 30.5 (N-CH<sub>3</sub>), 13.9 (2-CH<sub>3</sub>). HRMS (ESI), *m/z* вычислено для C<sub>13</sub>H<sub>11</sub>N<sub>3</sub>NaO<sub>3</sub> [M+Na]+ 280.0693, получено 280.0684

## 2,4,6-Триметил-5-тиооксо-5,6-дигидрооксазоло[5,4-d]пиримидин-7(4H)-он (2e)



Синтез вещества **2e** осуществляли согласно выше приведенному методу с использованием диазо 2-тиобарбитуровой кислоты (**1e**) (0.066 ммоль, 0.120 г), ацетонитрила (3.0 мл) и Rh<sub>2</sub>(*esp*)<sub>2</sub> (0.0066 ммоль, 1%, 5.9 мг). Вещество выделяли с помощью жидкостной хроматографии, элюент: дихлорметан. Выход 0.028 г (20%), белые кристаллы,  $T_{nn} = 149.2 - 150.6$  °C.

Спектр ЯМР <sup>1</sup>Н (400 MHz, CDCl<sub>3</sub>), δ, м.д. (*J*/Гц): δ 3.93 (с, 3H), 3.84 (с, 3H), 2.61 (с, 3H). Спектр ЯМР <sup>13</sup>С (101 МГц, CDCl<sub>3</sub>): δ 174.9, 157.2, 155.2, 154.5, 114.5, 37.2, 35.9, 14.0. HRMS (ESI), *m/z* вычислено для C<sub>8</sub>H<sub>9</sub>N<sub>3</sub>NaO<sub>2</sub>S [M+Na]<sup>+</sup> 234.0308, найдено 234.0303.

## 3.3. Синтезы с участием диазосоединений За-с и 4

#### 3.3.1 Синтез исходных соединений 5b, 5c

К нагретому до 220 °C раствору триэтилметантрикарбоксилата (0.01 моль) в дифениловом эфире (5 мл) при постоянном перемешивании по каплям внесли 1,2,3,4-

тетрагидрохинолин (0.01 моль) в случае **5b** или *N*-метиланилин в случае **5c**. Реакционную смесь нагревали при 220 °C в течение 2 часов, после охладили до комнатной температуры и смешали с 10% раствором карбоната калия (15 мл). Реакционную смесь экстрагировали этилацетатом (10 мл), водную фазу подкислили концентрированной HCl до pH 1–2. Выпавший осадок отфильтровали, промыли водой и высушили на воздухе. К полученному соединению прибавили ДМСО (12 мл) и воду (0,24 мл) и перемешивали при 160 °C в течение часа. Далее реакционную смесь охладили до комнатной температуры, прибавили воду (10 мл). Выпавший осадок промыли водой (10 мл), метанолом (4 мл) и этиловым эфиром (4 мл).

# **1-Гидрокси-6,7-дигидропирид**[3,2,1-*ij*]хинолин-3(5*H*)-он (5b) [77]



Выход вещества составил 0.64 г (46%), светло-желтые кристаллы, Т<sub>пл</sub>. 293.9–295.4 °С.

Спектр ЯМР <sup>1</sup>Н (400 MHz, DMSO-*d*<sub>6</sub>, 80 °C), δ, м.д. (*J*/Гц): δ 10.90 (c, 1H), 7.75 – 7.71 (m, 1H), 7.37 – 7.32 (м, 1H), 7.10 (дд, *J* = 8.0, 7.3 Hz, 1H), 5.87 (c, 1H), 4.06 – 3.92 (м, 2H), 2.94 (т, *J* = 6.2 Hz, 2H), 2.05 – 1.94 (м, 2H).

Спектр ЯМР <sup>13</sup>С (101 МГц, CDCl<sub>3</sub>): (101 МНz, 80°С, DMSO-*d*<sub>6</sub>) δ 162.6, 161.4, 137.2, 130.6, 125.0, 121.4, 121.9, 116.3, 98.4, 41.6, 27.7, 20.9. HRMS, *m/z* вычислено для C<sub>12</sub>H<sub>11</sub>NNaO<sub>2</sub> [M+Na]<sup>+</sup>: 224.0682, найдено 224.0689.

# 4-Гидрокси-1-метилхинолин-2(1Н)-он (5с)



Выход вещества составил 0.36 г (34%), светло-серые кристаллы. Спектр ЯМР <sup>1</sup>Н (400 MHz, CDCl<sub>3</sub>), δ, м.д. (*J*/Гц): δ 12.51 (с, 1Н), 8.22 – 8.17 (м, 1Н), 7.62 – 7.57 (м, 1Н), 7.42 – 7.38 (м, 1Н), 7.35 – 7.29 (м, 2Н), 4.05 (с, 1Н), 3.80 (с, 4Н).

Спектр ЯМР <sup>13</sup>С NMR (CDCl<sub>3</sub>, 101 MHz) δ 29.98, 41.06, 114.02, 122.41,

124.46, 130.76.

# 3.3.2 Синтез диазосоединений За-Зс.

Синтез диазосоединений **3a**, **3c** осуществлялся аналогично синтезу диазобарбитуровых кислот (3.1.2). К реакционной смеси прибавляли 4мл MeCN, реакцию проводили в течение 4-х часов. **5-Диазо-1***H***-пирроло[3,2,1-***ij***]хинолин-4,6(2***H***,5***H***)-дион <b>3a**[77].



Синтез вещества **За** осуществляли согласно выше приведенному методу с использованием 6-гидрокси-1*H*-пирроло[3,2,1-*ij*]хинолин-4(2*H*)-она (140 мг, 0.75 ммоль), время реакции – 2 часа. Выход 125 мг (78%), светложелтые кристаллы. Т<sub>пл</sub> = 168.7–171.1 °С(МеОН). Спектр ЯМР <sup>1</sup>Н (400 MHz, CDCl<sub>3</sub>), δ, м.д. (*J*/Гц): 7.76 (дк, J = 8.0, 1.0 Hz, 1H), 7.45 (дк, J = 7.3, 1.2 Hz, 1H), 7.14 (дд, J = 8.0, 7.3 Hz, 1H), 4.32 – 4.23 (м, 2H), 3.37 (ддт, J = 9.5, 7.6, 1.1 Hz, 2H). Спектр ЯМР <sup>13</sup>С (101 МГц, CDCl<sub>3</sub>): δ 176.7 (6-С), 157.4 (4-С), 144.0, 131.1, 130.3, 123.6, 122.8, 117.3, 80.3 (C=N<sub>2</sub>), 46.1 (2-С), 27.3 (1-С). HRMS (ESI +ve) Вычислено для C<sub>11</sub>H<sub>8</sub>N<sub>3</sub>O<sub>2</sub> [M+H]<sup>+</sup> : 214.0611, найдено для 214.0612.

# **2-Диазо-6,7-дигидропирид[3,2,1-ij]хинолин-1,3(2H,5H)-дион (3b)** [77]



Синтез вещества **3b** осуществляли согласно выше приведенному методу с использованием 1-гидрокси-6,7-дигидропирид[3,2,1-*iJ*]хинолин-3(5*H*)-он (1.5 ммоль), азида натрия (2.5 ммоль), 3-(хлорсульфонил)бензойной кислоты (1.8 ммоль) и карбоната калия (4.0 ммоль). Выход составил 232 мг

(68%), кристаллы светло-розового цвета, Т<sub>пл</sub> = 163.1–164.8 °С.

Спектр ЯМР <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>),  $\delta$ , м.д. (*J*/Гц): 8.02 (ддт, *J* = 7.9, 1.5, 0.6 Hz, 1H), 7.41 (ддт, *J* = 7.4, 1.9, 1.0 Hz, 1H), 7.14 (т, *J* = 7.6 Hz, 1H), 4.14 – 4.06 (м, 2H), 3.00 – 2.92 (м, 2H), 2.13 – 2.02 (м, 2H). Спектр ЯМР <sup>13</sup>С (101 МГц, CDCl<sub>3</sub>):  $\delta$  175.7 (1-С), 158.7 (3-С), 137.9, 135.2, 125.8, 124.7, 122.5, 120.5, 79.3 (C=N<sub>2</sub>), 42.1 (5-С), 28.0 (7-С), 20.3 (6-С). HRMS (ESI +ve) Вычислено для C<sub>12</sub>H<sub>9</sub>N<sub>3</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> : 250.0587, найдено 250.0598.

# **4-Диазо-2-метилизохинолин-1,3(2H,4H)-дион (3c)** [82]



Синтез вещества **3с** осуществляли согласно выше приведенному методу с использованием 4-гидрокси-1-метилхинолин-2(1*H*)-она **4c** (3.0 ммоль), азида натрия (5.0 ммоль), 3-(хлорсульфонил)бензойной кислоты (3.6 ммоль) и карбоната калия (8.0 ммоль). Выход составил 0.683 г (88%),

белые кристалы;  $T_{пл} = 164.2 - 165.8$  °C.

Спектр ЯМР <sup>1</sup>Н *б* м.д. (*J*/Гц), CDCl<sub>3</sub>: *δ* 8.20 (дд, **J** = 8.0, 1.7, 1Н), 7.68 (ддд, **J** = 8.7, 7.3, 1.7, 1Н), 7.32 – 7.23 (м, 2Н), 3.59 (с, 3Н, CH3). Спектр ЯМР <sup>13</sup>С (101 МГц, CDCl<sub>3</sub>): *δ* 175.5 (4-C), 159.2 (2-C), 141.5, 135.2, 126.6, 123.0, 120.7, 115.0, 79.8 (C=N<sub>2</sub>), 29.3 (CH<sub>3</sub>).

# 3.3.3. Синтез оксазолов с участием диазосоединений За и 4

Синтез соединений 6а, 7 осуществляли аналогично методу А, описанному в пункте 3.

# 9-Метил-4*H*-оксазол[4,5-*c*]пиррол[3,2,1-*ij*]хинолин-7(5*H*)-он (6а)



Синтез вещества **6a** проводили с использованием 4-диазо-2метилизохинолин-1,3(2*H*,4*H*)-диона (**3a**) (0.44ммоль, 0.100 г), ацетонитрила (3.0 мл) и Rh<sub>2</sub>(*esp*)<sub>2</sub> (0.0044 ммоль, 1%, 3.3 мг). Вещество выделяли с помощью жидкостной хроматографии, элюент: смесь дихлорметан-ацетон в соотношении 4:1. Выход составил 0.126 г (64%), порошок серого цвета.  $T_{n\pi} = 141.3-142.7$  °C.

Спектр ЯМР <sup>1</sup>Н  $\delta$  м.д. (*J*/Гц), CDCl<sub>3</sub>:  $\delta$  7.57 (д, *J* = 8.0 Hz, 1H), 7.35 (д, *J* = 7.2 Hz, 1H), 7.22 (т, *J* = 7.6 Hz, 1H), 4.56 – 4.44 (m, 2H), 3.48 (т, *J* = 8.1 Hz, 2H), 2.69 (с, 3H). Спектр ЯМР <sup>13</sup>С (101 МГц, CDCl<sub>3</sub>):  $\delta$   $\delta$  14.36,

# 2,5-Диметил-7Н-оксазоло[4,5-е][1,3]оксазин-7-он (7)



Синтез вещества 7 осуществляли согласно выше приведенному методу с использованием диазосоединения 4 (0.49 ммоль, 0.100 г), ацетонитрила (3.0 мл) и Rh<sub>2</sub>(*esp*)<sub>2</sub> (0.0049 ммоль, 1%, 4.8 мг). Вещество выделяли с помощью жидкостной хроматографии, элюент: смесь дихлорметан-этилацетат в соотношении 5:1. Выход составил 0.023 г (43%), белые кристаллы, T<sub>пл</sub> = 94.8

– 96.0 °C.

Спектр ЯМР <sup>1</sup>Н  $\delta$  м.д. (*J*/Гц), CDCl<sub>3</sub>:  $\delta$  2.61 (с, 3H), 2.56 (с, 3H). Спектр ЯМР <sup>13</sup>С (101 МГц, CDCl<sub>3</sub>):  $\delta$  168.4, 163.7, 160.9, 153.8, 115.7, 21.7, 14.4. HRMS (ESI), *m*/*z* вычислено для С<sub>7</sub>H<sub>6</sub>N<sub>2</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup> 189.0271, найдено 189.0279.

# Благодарности

Автор работы выражает благодарность ресурсныым центры «Магнитно-резонансные методыисследования» и «Методы анализа состава вещества» научного парка Санкт-Петербургского государственного университета за полученные спектральные данные.

Автор также искренне благодарит научного руководителя Дарьина Д. В. и сотрудника лаборатории Кантина Г. П. за помощь в выполнении данной работы.

#### Список цитированной литературы

[1] Ziarani, G; Aleali, F., Lashageri, N. RSC Adv. 2016, 6, 50895.

[2] Welsch, M; Snyder, S; Stockwell, B; Curr. Opin. Chem. Biol. 2010, 14, 1.

[3] Bruns, R. Biochem. Pharmacol. 1981, 30, 325.

[4] Ye, F; Wang, Y; Nian, S; Wang, Y, Chen, D; Yu, S., Wang, S;. J. Enzyme Inhib. Med. 2015, 30, 961.

[5] Wilson, M. Chem Abs. 2004, 140.

[6] Jeanmart, S; Stierl, D.I; Hoffman, T; Schaetzer, J; Pitterna, T; Gagnepain, J. Chem. Abs. 2015 162.

[7] De Coen, L; Roman, B; Movsisyan, M; Heugebaert, T; Stevens, C. Eur. J. Org. Chem. 2018, 2148.

- [8] Senga, K; Sato, J; Nischigaki S; Heterocycles, 1977, 6, 689.
- [9] Senga, K; Sato, J; Nishigaki, S. Chem. Pharm. Bull. 1978, 6, 765.
- [10] Senga, K; Sato, J; Shimizu, K; Nishigaki, S. Heterocycles, 1977, 6, 1919.
- [11] Kantin, G; Dar'in, D; Krasavin, M. Eur. J. Org. Chem. 2018, 4857.
- [12] Ibata, T; Sato, R. ChemLett. 1978, 7, 129.
- [13] Heisgen, R; Angew. Chem. Int. Ed. Engl. 1963, 2, 565.
- [14] Huisgen, R; Binsch, G; Ghosez, L. Chem. Ber. 1964, 97, 2628.
- [15] Heisgen, R; Sturm, H; Binsch, G. Chem. Ber. 1964, 97, 2864.
- [16] Komendantov, M; Novinskii, M; Bekmukhametov, R. J. Org. Chem. USSR, 1973, 9, 431.
- [17] Kuo, Y.-C; Aoyama, T; Shioir, T. Chem. Pharm. Bull. 1982, 30, 526.
- [18] Williams, E; *Tetrahedron Lett*.**1992**, *33*, 1033.
- [19] Vasin, V; Fadin, M; Tarasova, I. Russ. J. Org. Chem. 2017, 53, 1815.
- [20] Dworschak, H; Weygand, F; Chem. Ber. 1968, 101, 302.
- [21] Blair, P; Chang, S.-J.; Shechter, H. J. Org. Chem. 2004, 69, 7123.

- [22] Doyle M., Oppenhuizen M., Elliott R., Boelkins M. 26, Tetrahedron Lett., crp. 2247.
- [23] Ibata, T; Sato, R. Chem. Lett. 1978, 7, 1129.
- [24] Doyle, M; Buhro, W; Davidson, J; Elliott, R. J. Org. Chem. 1980, 45, 3657.
- [25] Ibata, T; Sato, R. Bull. Chem. Soc. Jpn. 1984, 57, 2450.
- [26] Mashraqui, S; Keehn, M; J. Am. Chem. Soc. 1982, 104, 4461.
- [27] Ohno, M; Itoh, M; Ohash, Toshiaki, Shoji, E. Synthesis. 1993, 793
- [28] Konopelski, J; Hottenroth, J; Oltra, H; Veliz, E; Yang, Z.-C. SynLett, 1996, 603.
- [29] Kim, K; Kimball, D; Mistra, R; Rawlins, D; Webster, K et. al. J. Med. Chem, 2002, 45, 3905.
- [30] Zhao, Q; Liu, S; Li, Y; Wang, Q. J. Agric. Food Chem. 2009, 57, 2849.
- [31] Kumaraswamy, G; Gangadhar, M. ChemSelect. 2019, 4, 8973.
- [32] Alonso, M; Jano, P. J. Heterocyclic Chem. 1980, 17, 721.
- [33] Bendedouche, C; Benhaoua, H. J. of Chem. Research. 2012, 149.
- [34] Huang, Z; Jia, S; Wang, C; Tokunaga, E; Sumii, Y; Shibata, N. ., J. Fluor. Chem. 2017, 198, 61.
- [35] Nagaraju, A; Sandeep, K; Swamy, K. Tetrahedron Lett. 2018, 59, 2238.
- [36] Connel, R; Scavo, F; Helquist, P. Tetrahedron Lett . 1986, 47, 5559.
- [37] Connel, R; Tebbe, M; Gangloff, A; Helquist, P. Tetrahedron Lett. 1993, 49, 5445.
- [38] Connel, R; Tebbe, M; Helquist, P. Tetrahedron Lett. 1991, 32, 17.
- [39] Shi, G; Xu, Y. J. Chem. Commun. 1989, 607.
- [40] Shi, G; Xu, Y; Xu, M; J. of Flur. Chem. 1991, 52, 149.
- [41] Doyle, K; Moody, C. Tetrahedron. 1994, 50, 3761.
- [42] Yoo, S.-K; Tetrahedron Lett. 1992, 33, 2159.
- [43] Fukushima, K; Ibata, T. Heterocycles. 1995, 40, 148.
- [44] Fukushima, K; Lu, Y.-Q; Ibata, T. Bull. Chem. Soc. Jpn. 1996, 69, 3289.
- [45] Wang, Y; Zhu, S. J. of Fluor. Chem. 2000, 103, 139.

- [46] Iso, Y; Shindo, H; Hamana H. Tetrahedron. 2000, 56, 5353.
- [47] Ducept, P; Marsden, S. SynLett. 2000, 5, 692.
- [48] Gong, D; Zhang, L; Yuan, C. Synth. Commun. 2004, 34, 3259.
- [49] Kallstrom, K; Hedberg, C; Brandt, P; Bayer, A; Andersson, P. J. Am. Chem. Soc. 2004, 134, 14308.
- [50] Brehu, L.; Fernandes, A.-C.; Lavergne, O. Tetranedron Lett. 2005, 46, 1437.
- [51] Clemenson, I.; Ganem, B. Tetrahedron. 2007, 63, 8665.
- [52] Lu, L.; Lu, P.; Ma, S. Eur. J. Org. Chem. 2007, 676.
- [53] Fan, C.; He, X.; Zuo, Y.; Shang, Y. Synth. Commun. 2018, 3.
- [54] Sakharov, P.; Novikov, M.; Khlebnikov, A. J. Org. Chem. 2018, 83, 8304.
- [55] Collins, L.; Gactel, M.; Neese, F.; Furstner, A. J. Am. Chem. Soc. 2018, 140, 13042.
- [56] Bhat, A.; Alavi, S.; Grover, H. Org. Lett. 2020.
- [57] Lonzi, G.; Lopez, L. Adv. Synth. Catal. 2013, 355, 1948.
- [58] Flores, J.; Pal, K.; Carrol, M.; Pink, M.; Karty, J.; Caulton, G. Organometallics. 2014, 33, 1544.
- [59] Loy, N.; Choi, S.; Kim, S.; Park, C.-M. Chem. Comm. 2016, 52, 7317.
- [60] Alt, M.; Maas, G. Tetrahedron. 1994, 50, 7435.
- [61] Xu, X.; Zavalij, P.; Hu, W.; Doyle, M. Chem. Comm. 2012, 48, 11522.
- [62] Bagley, M.; Buck, R.; Hind, S.; Moody C. J. Chem. Soc. Perkin Trans. 1. 1998, 1, 591.
- [63] Davies, J.; Kane, P.; Moody, C. Tetrahedron. 2004, 60, 3967.
- [64] Shi, B.; Blake, A.; Lewis, W.; Campbell, I.; Judkins, B.; Moody, C. J. Org. Chem. 2010, 75, 152.
- [65] Ibata, T.; Sato, R. Bull. Chem. Soc. Japan. 1979, 52, 3597.
- [66] Franchetti, P.; Messini, L.; Cappelacci, L.; Grifantine, M. ., Nucleosides Nucleotides Nucleic Acids. 1993, 12, 359.
- [67] Doyle, K.; Moody, C. Synthesis. 1994, 1021.

- [68] Wolbers, P.; Misske, A.; Hoffman, Tetrahedron Lett. 1999, 40, 4527.
- [69] Wang, Y.; Janjic, J.; Kozmin, S. Pure Appl. Chem. 2005, 77, 1161.
- [70] Barcelo, M.; Ravina, E.; Varela, M.; Brea, J.; Loza, M.; Masaguer, C. *Med. Chem. Commun.***2011**, *2*, 1194.
- [71] Karageorgis, G.; Dow, M.; Aimon, A.; Warriner, S.; Nelson, A. Angew. Chem. Int. Ed. 2015, 54, 13538.
- [72] Wang, X.; Lee, Y.-R. Bull. Korean Chem. Soc. 2013, 34, 1735.
- [73] Magar, K.; Yong, R.-L.; Kim, S. Mol. Divers. 2013, 17, 679.
- [74] Best, D.; Burns, D. J.; Lam, H. W. Angew. Chem. Int. Ed. 2015, 54, 7410.
- [75] Coffey, K.; Murphy, G. SynLett. 2015, 26, 1003.
- [76] Hunter, A.; Schlitzer, S.; Stevens, J.; Almutwalii, B.; Sharma, I. J.Org. Chem. 2018, 83, 2744.
- [77] Dar'in, D.; Kantin, G.; Krasavin, M. Chem. Commun. 2019, 5, 5239.
- [78] Kantin, G.; Dar'in, D.; Krasavin, M. Eur. J. Org. Chem. 2018, 4857.
- [79] Kokel, B.; Viehe, H. Angew. Chem. 1980, 92, 754.
- [80] Ingle, V. N. et al. Intern. J. Pharm. Tech. Res. 2009, 1, 605.
- [81] Xia, G. et al. J. Med. Chem. 2011, 54, 2409.
- [82] Shrestha, R.; Lee, G. J.; Lee, Y. R. RSC Adv. 2016, 6, 63782.