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Abstract

The present thesis is devoted to operator theory. A classical result by
R. Rochberg says that every bounded Toeplitz operator T on the Paley-
Wiener space PW2

a has a bounded symbol ϕ. Moreover, one can choose
ϕ so that c · ‖ϕ‖L∞(R) 6 ‖T‖ 6 ‖ϕ‖L∞(R). We prove this estimate for

Toeplitz operators on Banach Paley-Wiener spaces PWp
a, 1 < p < +∞.
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1. Introduction

1.1. Problem setting and the statement of main result. Let S(R) denote the
classical Schwartz class of smooth complex-valued functions f ∈ C∞(R) such that for
every pair of integers n,m > 0 we have

sup
x∈R

(1 + |x|)n ·
∣∣∣dmf
dxm

(x)
∣∣∣ < +∞.

Define the Fourier transform on S(R) by

F [f ](ξ) = f̂(ξ) =

∫
R

e−2πiξxf(x) dx, ξ ∈ R.

Then the inverse Fourier transform is given by

F−1[f ](x) = f̌(x) =

∫
R

e2πiξxf(ξ) dξ, x ∈ R.

Since S(R) ⊂ L1(R), the integrals above are well defined. It is well known that the
Fourier transform is a homeomorphism of S(R) onto itself. It is also known that F
extends from S(R) as a unitary operator on L2(R), see e.g., Section 2.2.2 in [8]. The
support of f ∈ S(R) is defined by

supp f = clos{x ∈ R | f(x) 6= 0}.
Take a positive real number a and denote

Sa(R) = {f ∈ S(R) | supp f̂ ⊂ [−a, a]}.
For 1 6 p < +∞, the Paley-Wiener space PWp

a is a closed subspace of Lp(R) defined by

PWp
a = closLp(R) Sa(R).

Observe that PW2
a is a Hilbert space. In fact, we have

PW2
a = {f ∈ L2(R) | f̂ = 0 a.e. on R \ [−a, a]}.

Take a bounded measurable function m on R. The Fourier multiplier associated to symbol
m is the map defined by

f 7−→ F−1mF [f ], f ∈ S(R).

As we will see in Proposition 2.1 below, the Fourier multiplier whose symbol is the
indicator function χ[−a,a] is a densely defined bounded operator on Lp(R) for every 1 <

p < +∞. Since χ2
[−a,a] = χ[−a,a], this operator is, in fact, a linear bounded projector to

PWp
a. It will be denoted by Pa.

Let P(R) denote the set of all complex-valued functions defined on R that grow not
faster than polynomials:

P(R) = {f : R→ C | ∃n ∈ N : sup
x∈R
|f(x)| · (1 + |x|)−n < +∞}.

Let 1 < p < +∞. Toeplitz operator Tϕ : PWp
a → PWp

a with symbol ϕ ∈ P(R) is the
mapping densely defined by

Tϕ : f 7→ Pa[ϕ · f ], f ∈ Sa(R).

Since P(R) · Sa(R) ⊂ S(R), we have ϕ · f ∈ S(R) for every f ∈ Sa(R). Hence, Tϕ is well
defined. In case

sup{‖Tϕ[f ]‖Lp(R) | f ∈ Sa(R), ‖f‖Lp(R) = 1} < +∞,
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the operator Tϕ admits a unique bounded extension to PWp
a. This extension will be

denoted by the same letter Tϕ.

The symbol of a Toeplitz operator on PWp
a is not unique. We say that a Toeplitz

operator Tϕ on PWp
a has a bounded symbol ψ if Tϕ = Tψ for a function ψ ∈ L∞(R).

Clearly, any bounded symbol ϕ ∈ L∞(R) determines the bounded Toeplitz operator Tϕ
on PWp

a, and

‖Tϕ‖PWp
a→PWp

a
6 ‖ϕ‖L∞(R) .

The class of all bounded Toeplitz operators on PWp
a will be denoted by T (a, p). It is

easy to see that some unbounded symbols ϕ can produce bounded Toeplitz operators on
PWp

a. For instance, this is the case for the symbol

ϕ(z) = z · e2πiz·2a, z ∈ C.

Indeed, for every f ∈ Sa(R) we have suppF [ϕ·f ] ⊂ [a, 3a]. Thus, Pa[ϕ·f ] = 0 and Tϕ = 0
as an operator on PWp

a. It makes interesting the question about existence of a bounded
symbol for every bounded Toeplitz operator on PWp

a. In case p = 2 the affirmative answer
to this question was given by R. Rochberg [13] in 1987.

Our aim in the present thesis is to prove the following theorem.

Theorem 1.1. Let 1 < p < +∞. Every Toeplitz operator Tϕ on PWp
a with symbol

ϕ ∈ S(R) has a bounded symbol ψ such that

‖ψ‖L∞(R) 6 c

(
p+

1

p− 1

)
· ‖Tϕ‖PWp

a→PWp
a
,

for a universal constant c > 0.

We expect that this theorem can be used to prove existence of a bounded symbol for
every bounded Toeplitz operator on PWp

a, 1 < p < +∞.

1.2. Summary of known results. We use notation T = {z ∈ C | |z| = 1} for the unit
circle. Let m denote the Lebesgue measure on T normalized by m(T) = 1. Define the
Fourier coefficients of f ∈ L1(T) by

f̂(n) =

∫
T

f(z)z̄n dm(z).

For 1 6 p < +∞, a function f on T is said to belong to the Hardy space Hp in the unit
disk if f ∈ Lp(T) and f̂(n) = 0 for all integer n < 0. The space Hp is a closed subspace
of Lp(T). Denote by P+ the orthogonal projection in L2(T) to the subspace H2. The
classical Toeplitz operator Tϕ : H2 → H2 with symbol ϕ ∈ L∞(T) is defined by

Tϕ : f 7→ P+[ϕ · f ], f ∈ H2.

In 1964, A. Brown and P. Halmos [3] described basic algebraic properties of Toeplitz
operators on H2. In particular, they proved that the Toeplitz operator Tϕ on H2 with a
bounded symbol ϕ satisfies

‖Tϕ‖H2→H2 = ‖ϕ‖L∞(T) ,

see Corollary to Theorem 5 in [3]. This formula implies that the symbol of a Toeplitz
operator on H2 is unique.

For Toeplitz operators on the Paley-Wiener space PW2
a, the classical treatment of

their basic properties is due to R. Rochberg [13]. In 1987, he considered boundedness
and compactness, as well as Schatten classes Sp membership. As we mentioned above,
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he proved that every bounded Toeplitz operator on PW2
a has a bounded symbol. In this

thesis, we will apply his methods to prove a similar result for Toeplitz operators on PWp
a.

Toeplitz operators on the Paley-Wiener space are in fact examples of general truncated
Toeplitz operators that we defined below. A function θ ∈ H2 is called inner if |θ| = 1
m-almost everywhere on the unit circle T. With each non-constant inner function θ
we associate the subspace K2

θ = H2 	 θH2 of L2(T). Such subspaces are called model
subspaces [11]. Denote by Pθ the orthogonal projector from L2(T) onto K2

θ . Truncated
Toeplitz operator Tϕ : K2

θ → K2
θ with symbol ϕ ∈ L2(T) is densely defined by the

following expression

Tϕ : f 7→ Pθ[ϕ · f ], f ∈ K2
θ ∩ L∞(T).

As an example, if θ = zn, then truncated Toeplitz operator on K2
θ are Toeplitz matrices

of size n× n:

Tϕ =



c0 c1 c2 . . . cn−1

c−1 c0 c1 . . . cn−2

c−2 c−1 c0 . . . cn−3

...
...

...
. . .

...

c−n+1 c−n+2 c−n+3 . . . c0


, ck =

∫
T

ϕz̄k dm,

where we identify the operator with its matrix in the orthonormal basis {zk}n−1
k=0 of K2

θ .
Similarly, Toeplitz operators on the Paley-Wiener space are closely related to truncated
Toeplitz operators on the model subspace K2

θa
of the Hardy space H2

+ in the upper-half

plane C+ = {z ∈ C | Im z > 0} associated with the inner function θa = e2πiaz, a > 0. In
fact, PW2

a = θ̄aK
2
θ2a

, see [11].

General theory of truncated Toeplitz operators has been started with D. Sarason’s
paper [14] appeared in 2007. It plays the same role for truncated Toeplitz operators as A.
Brown and P. Halmos paper [3] plays for classical Toeplitz operators. D. Sarason posed
a number of important questions on truncated Toeplitz operators including the problem
of existence of a bounded symbol of a general bounded truncated Toeplitz operator.

In 2010, A. Baranov, I. Chalendar, E. Fricain, J. Mashreghi, and D. Timotin [2] con-
structed an inner function θ and a bounded truncated Toeplitz operator on K2

θ that has
no bounded symbol. In 2011, A. Baranov, R. Bessonov, and V. Kapustin [1] character-
ized inner functions θ such that every bounded Toeplitz operator on K2

θ has a bounded
symbol. In particular, this is the case for so-called one-component inner functions. An
inner function θ is called one-component if the set {z | |θ| < ε} is a connected subset (of
the unit disk or the upper half-plane of the complex plane) for some 0 < ε < 1. Since
the set {z ∈ C+ | |θa(z)| < ε} is connected for every 0 < ε < 1, this result generalizes
aforementioned theorem by R. Rochberg.

In 2011, M. Carlsson [4] proved an estimate similar to the one we want to prove in
Theorem 1.1. Instead of Toeplitz operators on PW2

a he dealt with Wiener-Hopf operators
on L2[0, 2a]. Following [4], define truncated Wiener-Hopf operator Wϕ on L2[0, 2a] with
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symbol ϕ ∈ S(R) by

Wϕ[f ](x) =

∫
R

ϕ̂(y)f(x+ y) dy, x ∈ [0, 2a],

where f is extended by zero to R \ [0, 2a]. One can consider more general symbols ϕ
including tempered distributions, for simplicity of presentation we limit ourselves by the
case ϕ ∈ S(R). M. Carlsson obtained the following estimate

1

3
· ‖ϕ‖L∞(R) 6 ‖Wϕ‖L2[0,2a]→L2[0,2a] 6 ‖ϕ‖L∞(R) ,

see Theorem 1.1 in [4]. We claim that

1

3
· ‖ϕ‖L∞(R) 6 ‖Tϕ‖PW2

a→PW2
a
6 ‖ϕ‖L∞(R) .

Indeed, let Ut denote the translation operator Ut[f ] = f(· + t) on L2(R). For every
f ∈ L2[0, 2a] we have

FθaTϕθ̄aF−1[f ] = FθaTϕF−1Ua[f ]

= U−aFTϕF−1Ua[f ]

= U−aχ[−a,a]F [ϕ · F−1Ua[f ]]

= χ[0,2a]U−a[ϕ̂ ∗ Ua[f ]]

= χ[0,2a] · (ϕ̂ ∗ f)

= Wϕ̃[f ],

where ϕ̃(x) = ϕ(−x) for x ∈ R and ∗ denotes the convolution of functions in L1(R):

(f1 ∗ f2)(x) =

∫
R

f1(x− y)f2(y) dy, x ∈ R.

Let, as before, K2
θ2a

= H2
+ 	 θ2

aH
2
+. Above argument says that the following diagram is

commutative:

L2[0, 2a] L2[0, 2a]

K2
θ2a

K2
θ2a

PW2
a PW2

a

Wϕ̃

F−1

θ̄a

F

Tϕ

θa

Since the operator h 7→ Fθa[h] is unitary, we have ‖Wϕ̃‖ = ‖Tϕ‖. Since also ‖ϕ‖L∞(R) =

‖ϕ̃‖L∞(R), the claim follows. Thus, in case p = 2, one can take c = 1 in Theorem 1.1 of

the present thesis.

More information about truncated Toeplitz operators can be found in survey [5] by I.
Chalendar, E. Fricain and D. Timotin.
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1.3. Plan of the proof. In this section, we describe the structure of the present thesis.
Let 1 < p < +∞. In Section 2 we show that projector Pa on Lp(R) is bounded and
admits an integral representation with the following kernel

sinca(z) =
sin(2πaz)

πz
, z ∈ C, a > 0.

In Section 2.2 we show that every Toeplitz operator on PWp
a also admits an integral

representation with the sinca(·) kernel.
Further, we fix some ϕ ∈ S(R). In Section 2.3 we define three smooth and compactly

supported functions with the help of which we construct left, central, and right parts of
the symbol ϕ. Next, given a Toeplitz operator Tϕ on PWp

a we construct Toeplitz operators
TL, TC, and TR. In Proposition 2.4, we prove the existence of a universal constant c > 0
such that

‖TL‖+ ‖TC‖+ ‖TR‖ 6 c · ‖Tϕ‖ .
In the beginning of the Section 3, we start with some preliminaries and prove auxiliary
statements. Then we prove the upper bound for the norm of the central part of the
symbol. In addition, in Section 4 we define Hankel operators with bounded symbols on
the Hardy space in the upper half-plane Hp

+ and sketch a proof of the Nehari theorem.

Furthermore, we show that any Hankel operator with symbol θ̄2
aϕ∗ such that ϕ∗ ∈ S(R)

and supp ϕ̂∗ ⊂ R+ corresponds to a Toeplitz operator on PWp
a. Finally, in Section 5 we

prove the main result of the present thesis.

2. Riesz projector and related operators. Splitting the symbol

2.1. Riesz projector. Let 1 6 p < +∞. The Hardy space Hp
+ in the upper half-plane

C+ can be defined by

Hp
+ = closLp(R){f ∈ S(R) | supp f̂ ⊂ R+}.

Let also
Hp
− = closLp(R){f ∈ S(R) | supp f̂ ⊂ R−}.

Basic theory of Hardy spaces can be found in [6], [7], [9], and [10].

Define the Riesz projector P+ to be the Fourier multiplier associated to symbol χR+ ,

χR+(x) =

{
1, x > 0,

0, x < 0.

For 1 < p < +∞, P+ extends from S(R) to a linear bounded operator on Lp(R), see e.g.,
Lecture 19.2 and 19.3 in [10]. Since χ2

R+
= χR+ , we have P2

+ = P+, that is, P+ operator

is a linear bounded projector to Hp
+ in Lp(R). Set

Ap = ‖P+‖Lp(R)→Lp(R) .

It is known that

Ap 6 A
p−1 , p −→ 1,

Ap 6 Ap, p −→ +∞,

for a universal constant A > 0, see [7]. Consider an inner function θa = e2πiaz, a > 0.
Recall that Ut is the translation operator f 7→ f(·+ t) and Pa is the projector to PWp

a.
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Proposition 2.1. We have ‖Pa‖Lp(R)→Lp(R) 6 2Ap.

Proof. We have

U2a[χR+ ]− U−a[χR+ ] = χ[−2a,+∞] − χ[a,+∞] = χ[−a,a].

By the definition of Fourier transform, F−1Ua = θ̄aF−1 for every a > 0. Hence,

Pa = F−1χ[−a,a]F = F−1χ[−2a,+∞]F − F−1χ[a,+∞]F
= F−1U2aχR+U−2aF − F−1U−aχR+UaF
= θ̄2

aP+θ
2
a − θaP+θ̄a.

The result follows. �

Let C∞0 (R) be the space of all complex-valued smooth functions on R with compact
support. Note that Pa(Lp(R)) = PWp

a. Indeed, since PWp
a is a closed subspace of

Lp(R), it is enough to prove that Pa(E) ⊂ PWp
a for some subset E ⊂ Lp(R) such that

closLp(R)E = Lp(R) and Sa(R) ⊂ E. This holds for

E = {f | ∃g ∈ C∞0 (R) : f = ǧ, ±a /∈ supp g}.

Whence, operator Pa is a bounded projector onto Paley-Wiener space PWp
a.

Our next aim is to derive an integral formula for Pa.

Corollary 2.2. For 1 < p < +∞, the projector Pa admits the following integral repre-
sentation:

Pa[f ](x) =

∫
R

sinca(x− y)f(y) dy, f ∈ Lp(R). (2.1)

Proof. Let us first show that function sinca ∈ Lp(R) for every 1 < p 6 +∞. Indeed, this
follows from the estimate

| sinca(x)| 6 1

π · |x|
, x ∈ R,

and boundedness of sinca near the origin. Therefore, the integral in (2.1) converges and
defines the function on R. Since

χ̌[−a,a](x) =

a∫
−a

e2πiξx dξ =
e2πixa − e−2πixa

2πix
=

sin(2πxa)

πx
= sinca(x), (2.2)

formula (2.1) holds for every f ∈ S(R) by the definition of Pa. Take an arbitrary function
f ∈ Lp(R) and consider a sequence {fn} ⊂ S(R) such that fn → f in Lp(R). Then
Pa[fn]→ Pa[f ] in Lp(R) and one can choose a subsequence {fnk

} such that Pa[fnk
](x)→

Pa[f ](x) for almost every x ∈ R. On the other hand,

Pa[fnk
](x) =

∫
R

sinca(x− y)fnk
(y) dy

converges to
∫
R sinca(x− y)f(y) dy for every x ∈ R, by Holder’s inequality. Hence, (2.1)

holds for every f ∈ Lp(R). �
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2.2. Toeplitz operators on PWp
a as integral operators. It is easy to see from Corol-

lary 2.2 that every Toeplitz operator on PWp
a with symbol ϕ ∈ P(R) admits the following

representation

Tϕ[f ](x) =

∫
R

sinca(x− y)f(y)ϕ(y) dy, f ∈ PWp
a. (2.3)

Given a function h on R, let h|A denote the restriction of h to a subset A ⊂ R.

Proposition 2.3. If ϕ ∈ S(R) is such that ϕ̂|[−2a,2a] = 0, then Tϕ = 0.

Proof. Take f ∈ Sa(R). By definition,

FTϕ[f ](x) = χ[−a,a](x)

∫
R\[−2a,2a]

f̂(x− y)ϕ̂(y) dy.

For x ∈ [−a, a] and y such that |y| > 2a, we have |x − y| > a. Hence, for such x and y

we have f̂(x− y) = 0 because supp f̂ ⊂ [−a, a]. �

2.3. Splitting procedure. Norm estimates. Consider a function ψL ∈ C∞0 (R) such
that ψL > 0, suppψL = [−4,−1

4 ] and ψL|[−2,−1
2 ]

= 1. Set ψR(x) = ψL(−x) and define

ψC = χ[− 1
2
, 1
2

](1−ψL−ψR). Then ψL, ψC, ψR are smooth compactly supported functions

such that ψL + ψC + ψR = 1 on [−2, 2], see Figure 1 below.

-2 -1 1 2

1

Figure 1. Graphs of functions ψL, ψC, ψR.

For a > 0 define ψC,a : x 7→ ψC(xa) and ψL,a, ψR,a similarly. Consider a Toeplitz
operator Tϕ : PWp

a → PWp
a with symbol ϕ ∈ S(R). Define ϕC = F−1ψC,aF [ϕ] and let

TC = TϕC
. Analogously, define ϕL, ϕR, TL, TR using functions ψL, ψR. We call TL, TC,

TR the left, central, and right parts of Tϕ, respectively.

Proposition 2.4. Let 1 < p < +∞. Consider a Toeplitz operator Tϕ on PWp
a with

symbol ϕ ∈ S(R). We have Tϕ = TL + TC + TR and

c
(
‖TL‖+ ‖TC‖+ ‖TR‖

)
6 ‖Tϕ‖ 6 ‖TL‖+ ‖TC‖+ ‖TR‖ ,

for a universal constant c > 0.

Proof. Since ψL,a +ψC,a +ψR,a = 1 on [−2a, 2a], we have ϕ̂ = ϕ̂L + ϕ̂C + ϕ̂R on [−2a, 2a].
Hence, we have Tϕ = TL + TC + TR by Lemma 2.3, and thus

‖Tϕ‖ 6 ‖TL‖+ ‖TC‖+ ‖TR‖ .
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Let us check the opposite inequality. Take f ∈ Sa(R). By Fubini–Tonelli Theorem and
(2.3), we have

TC[f ](x) =

∫
sinca(x− y)f(y) ·

[∫
ϕ(y − t)ψ̌C,a(t) dt

]
dy

=

∫
ψ̌C,a(t)

∫
sinca(x− y)f(y)ϕ(y − t) dy dt

=

∫
ψ̌C,a(t)

∫
sinca(x− t− ξ)f(ξ + t)ϕ(ξ) dξ dt

=

∫
ψ̌C,a(t) · U−tTϕUt[f ](x) dt.

Set p = |ψ̌C,a|/
∥∥ψ̌C,a

∥∥
L1(R)

, then ∫
R

p(x) dx = 1.

Jensen’s inequality gives

Φ

(∫
R

h(x)p(x) dx

)
6
∫
R

Φ(h(x))p(x) dx,

for every convex function Φ : R → R+ and every h such that hp ∈ L1(R). Choosing
Φ = |x|p, we obtain

‖TC[f ]‖pLp(R) =

∫ ∣∣∣∣∫ ψ̌C,a(t) · U−tTϕUt[f ](x) dt

∣∣∣∣p dx
6

∥∥ψ̌C,a

∥∥p
L1(R)

∫ ∣∣∣∣∫ |U−tTϕUt[f ](x)| · p(t) dt
∣∣∣∣p dx

6
∥∥ψ̌C,a

∥∥p−1

L1(R)

∫ ∫
|U−tTϕUt[f ](x)|p · p(t) dt dx

6
∥∥ψ̌C,a

∥∥p−1

L1(R)

∫
|ψ̌C,a(t)|

∫
|U−tTϕUt[f ](x)|p dx dt

=
∥∥ψ̌C,a

∥∥p−1

L1(R)

∫
|ψ̌C,a(t)| · ‖U−tTϕUt[f ]‖pLp(R) dt

6 ‖Tϕ‖p · ‖f‖pLp(R) ·
∥∥ψ̌C,a

∥∥p
L1(R)

.

Hence, ‖TC‖ 6 ‖Tϕ‖ ·
∥∥ψ̌C,a

∥∥
L1(R)

. Similar arguments apply to TL, TR and give us the

estimate

‖TL‖+ ‖TC‖+ ‖TR‖ 6
(∥∥ψ̌L,a

∥∥
L1(R)

+
∥∥ψ̌C,a

∥∥
L1(R)

+
∥∥ψ̌R,a

∥∥
L1(R)

)
· ‖Tϕ‖ .

It remains to note that the constant in the right hand side does not depend on a because∥∥ψ̌C,a

∥∥
L1(R)

=
∥∥ψ̌C

∥∥
L1(R)

and similar identities hold for ψ̌L,a, ψ̌R,a. �
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3. Reproducing kernels. Central part of the symbol

3.1. Paley-Wiener space as a Banach space of entire functions. In Section 2.1
we prove that Pa(Lp(R)) = PWp

a for 1 < p < +∞. In addition, Corollary 2.2 says that
for every function f ∈ PWp

a we have

f(x) = Pa[f ](x) =

∫
R

sinca(x− y)f(y) dy, (3.1)

almost everywhere on R. Note that the right hand side is an entire function with respect
to x. This follows from the fact that the integral∫

R

∂

∂z
sinca(z − y)f(y) dy =

∫
R

2a cos(2πa(z − y))− sinca(z − y)

z − y
f(y) dy

converges uniformly in a neighborhood of any point z ∈ C. This shows that any function
f ∈ PWp

a can be naturally identified with an entire function using (3.1). In other words,
for every f ∈ PWp

a one can find an entire function g : C → C such that g ∈ Lp(R) and
f = g almost everywhere on R. In particular, for every z ∈ C and f ∈ PWp

a the value
f(z) is well defined.

3.2. Reproducing kernels in PWp
a.

Lemma 3.1. Let 1 < p < +∞ and 1
p + 1

q = 1. For each z ∈ C the linear functional

φz : f 7→ f(z) on PWp
a is bounded and

φz(f) =

∫
R

sinca(z − y)f(y) dy, f ∈ PWp
a.

Moreover, for x ∈ R we have ‖φx‖ 6 ‖sinca‖Lq(R).

Proof. By definition (see also the discussion in Section 3.1), we have

φz(f) = f(z) =

∫
R

sinca(z − y)f(y) dy, f ∈ PWp
a.

Then, by Holder’s inequality for every f ∈ PWp
a we have

|φx(f)| 6 ‖U−z[sinca] · f‖L1(R) 6 ‖U−z[sinca]‖Lq(R) · ‖f‖Lp(R) .

It follows that φz is bounded and ‖φz‖ 6 ‖U−z[sinca]‖Lq(R). In particular, if x ∈ R, then

‖φx‖ 6 ‖sinca‖Lq(R). �

3.3. Upper bound for the norm of the central part of the symbol.

Proposition 3.2. Let 1 < p < +∞. Consider a Toeplitz operator Tϕ on PWp
a with

symbol ϕ ∈ S(R). Let TC be its central part constructed in Section 2.3. Then we have

‖ϕC‖L∞(R) 6 cp · ‖TC‖PWp
a→PWp

a
,

for some constant cp > 0 depending only on p.

Proof. Take ε = a
8 and fix some x ∈ R. From formula (2.2) we see that suppF [sincε(·)] ⊂

[−ε, ε], therefore, sincε ∈ PWp
a. Recall that supp ϕ̂C = [−a

2 ,
a
2 ], hence the support of

F [ϕC · U−x[sincε]] = (ψC,aϕ̂) ∗ (χ[−ε,ε]e
−2πixξ)
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is in [−a, a] by properties of convolution (supp f ∗ g ⊂ supp f + supp g). We have

φx(TCU−x[sincε]) = TCU−x[sincε](x)

= Pa[ϕC · U−x[sincε]](x)

= ϕC(x) · U−x[sincε](x)

= ϕC(x) · sincε(0)

= 2ε · ϕC(x).

By Lemma 3.1, we have φx ∈ (PWp
a)
∗, therefore

|ϕC(x)| 6 1

2ε
‖φx‖ · ‖TCU−x[sincε]‖Lp(R)

6
1

2ε
‖sinca‖Lq(R) · ‖TC‖ · ‖sincε‖Lp(R) .

It remains to note that
1

2ε
‖sinca‖Lq(R) · ‖sincε‖Lp(R) = 4 ‖sinc1‖Lq(R) ·

∥∥sinc1/8

∥∥
Lp(R)

does not depend on a. �

Lemma 3.3. Let 1 < p < +∞ and 1
p + 1

q = 1. We have

‖sinc1‖Lq(R) ·
∥∥sinc1/8

∥∥
Lp(R)

6 c ·
(
p+

1

p− 1

)
,

for a universal constant c > 0.

Proof. We have ∥∥sinc1/8

∥∥
Lp(R)

= 8
− 1

q ‖sinc1‖Lp(R) 6 ‖sinc1‖Lp(R) .

Clearly, | sinc1(x)| 6 2 for |x| 6 1
2π and | sinc1(x)| 6 1

π|x| for |x| > 1
2π . Then, we obtain

‖sinc1‖qLq(R) 6
2q

π
+

2

π

+∞∫
1/2

dx

xq
=

2q

π

(
1 +

1

q − 1

)
.

Then,(
2q

π

(
1 +

1

q − 1

)) 1
q

·

(
2p

π

(
1 +

1

p− 1

)) 1
p

=
4

π

(
1 +

1

q − 1

) 1
q

·
(

1 +
1

p− 1

) 1
p

,

and, by Bernoulli’s inequality, we have(
1 +

1

q − 1

) 1
q

·
(

1 +
1

p− 1

) 1
p

6

(
1 +

1

(q − 1)q

)
·
(

1 +
1

(p− 1)p

)
6

(
1 +

1

q − 1

)
·
(

1 +
1

(p− 1)p

)
= p ·

(
1 +

1

(p− 1)p

)
= p+

1

p− 1
.

Summarizing, one can take c = 4
π . �
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4. Nehari Theorem. Right and left parts of the symbol

4.1. Hankel operators on the Hardy space. Nehari Theorem. Hankel operator
Hϕ : H2 → zH2 with symbol ϕ ∈ L2(T) can be densely defined by

Hϕ : f 7→ P−[ϕ · f ], f ∈ H2 ∩ L∞(T),

where P− = I −P+. Consider p such that 1 < p < +∞. Similarly, one can define Hankel
operator Hϕ : Hp

+ → Hp
− with symbol ϕ ∈ L∞(R) by

Hϕ : f 7→ P−[ϕ · f ], f ∈ Hp
+,

where P− = I − P+, I being the identity operator on Lp(R). For an introduction to the
theory of Hankel operators, see the book [12] by V. Peller. The following theorem, which
characterizes bounded Hankel operators on H2, is due to Z. Nehari.

Theorem 4.1 ([12], Theorem 1.3). Let ϕ ∈ L2(T). The following statements are equiv-
alent:

(1) Hϕ is bounded on H2;
(2) there exists ψ ∈ L∞(T) such that Hψ = Hϕ and ‖ψ‖L∞(T) = ‖Hϕ‖H2→zH2 .

The following theorem can be proved in the same way as Nehari’s theorem.

Theorem 4.2. Let 1 < p < +∞ and let ϕ ∈ L∞(R). Then there exists a function
ψ ∈ L∞(R) such that Hψ = Hϕ and, moreover, ‖ψ‖L∞(R) 6 ‖Hϕ‖Hp

+→H
p
−

.

Let us give a sketch of the proof of this result.

Proof. Consider a function ϕ ∈ L∞(R). We have

‖Hϕ‖ = sup{〈ϕf,P−[g]〉 | f ∈ Hp
+, g ∈ Lq(R), ‖f‖Lp(R) 6 1, ‖g‖Lq(R) 6 1},

where 1
p + 1

q = 1 and

〈f1, f2〉 =

∫
R

f1f̄2 dx.

Choosing g ∈ Hq
− we see that

‖Hϕ‖ > sup{〈ϕ, fh〉 | f ∈ Hp
+, h ∈ H

q
+, ‖f‖Lp(R) 6 1, ‖h‖Lq(R) 6 1}.

Since every function F in the unit ball of H1
+ can be represented in the form F = fh for

some f ∈ Hp
+, h ∈ H

q
+, we have

‖Hϕ‖ > sup{〈ϕ, F 〉 | F ∈ H1
+, ‖F‖L1(R) 6 1}.

Extending the linear functional Φϕ : F → 〈ϕ, F 〉 from H1
+ to L1(R) by Hahn-Banach

theorem, we see that there exists a function ψ ∈ L∞(R) such that ‖ψ‖L∞(R) 6 ‖Hϕ‖
and 〈ϕ, F 〉 = 〈ψ, F 〉 for every F ∈ H1

+. In particular, we have 〈ϕf, g〉 = 〈ψf, g〉 for all
f ∈ Hp

+, g ∈ Hq
−. In other words Hϕ = Hψ. �
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4.2. Analytic Toeplitz operators on PWp
a as Hankel operators. We say that

Toeplitz operator Tϕ with symbol ϕ ∈ S(R) is an analytic if supp ϕ̂ ⊂ R+. One can
easily check that that for every 1 < p < +∞ and for every a > 0 we have

Pa = θaP−θ̄2
aP+θa.

This formula will be used in the proof of Lemma 4.3 below.

Lemma 4.3. Let 1 < p < +∞ and let ϕ ∈ S(R) be such that supp ϕ̂ ⊂ R+. Then

Hθ̄2aϕ
= θ̄aTϕθaP−θ̄2

a. (4.1)

Proof. First note that for any function g ∈ Hp
+, there are functions g1 ∈ PWp

a, g2 ∈ Hp
+

such that g = θag1 + θ2
ag2. We have

Hθ̄2aϕ
[g] = P−[θ̄aϕg1 + ϕg2] = Hθ̄2aϕ

[θag1],

because ϕg2 ∈ Hp
+. We also have

θ̄aTϕθaP−θ̄2
a[g] = θ̄aTϕθaP−[θ̄ag1 + g2] = θ̄aTϕ[g1].

On the other hand, taking into account (4.1), we obtain

θ̄aTϕ[g1] = θ̄aPa[ϕg1] = P−θ̄2
aP+[θaϕg1] = P−[θ̄aϕg1] = Hθ̄2aϕ

[θag1].

This proves the lemma. �

5. Proof of the main result. Concluding remarks

5.1. Proof of the main result. Recall that we want to prove that every Toeplitz op-
erator Tϕ on PWp

a, 1 < p < +∞, with symbol ϕ ∈ S(R) has a bounded symbol ψ such
that

‖ψ‖L∞(R) 6 c

(
p+

1

p− 1

)
· ‖Tϕ‖PWp

a→PWp
a
,

for a universal constant c > 0.

Proof. Define operators TL, TC, TR as in Section 2.3. By Proposition 2.4 we have

‖TL‖+ ‖TC‖+ ‖TR‖ 6 c · ‖Tϕ‖ ,
for a universal constant c > 0. By Proposition 3.2 we have

‖ϕC‖L∞(R) 6 cp · ‖TC‖ ,
for some constant cp > 0 depending only on p. Let us prove an upper bound for the left
and right parts of Toeplitz operators. By Nehari Theorem (see Theorem 4.2), there exists
ψr ∈ L∞(R) such that Hψr = Hθ̄2aϕR

, and, moreover,

‖ψr‖L∞(R) 6 ‖Hψr‖ =
∥∥θ̄aTRθaP−θ̄2

a

∥∥ 6 Ap ‖TR‖ ,
where we used the fact that ‖P−‖ = ‖P+‖ = Ap. We claim that TR = Tθ2aψr

. Since

Hψr = Hθ̄2aϕR
, we have Hψr [θ2

af ] = Hθ̄2aϕR
[θ2
af ] = 0 for every f ∈ Hp

+. Therefore,

P+[ψrθ
2
af ] = ψrθ

2
af −Hψr [θ2

af ] = ψrθ
2
af, f ∈ Hp

+.

Let h ∈ PWp
a and let f = θah. Then f ∈ Hp

+ and we have

Tθ2aψr
[h] = Pa[θ2

aψrh] = θaP−θ̄2
aP+[θ2

aψrf ] =

= θaP−[ψrf ] = θaHψr [f ] = θaHθ̄2aϕR
[f ].

By Lemma 4.3, we have θaHθ̄2aϕR
[g2] = TRθaP−[θ̄2

ag2] = TRθaP−[θ̄ah] = TR[h], and the
claim follows.
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Similarly, there exists ψl ∈ L∞(R) such that

‖ψl‖L∞(R) 6 Ap ‖TL‖ and TL = Tθ̄2aψl
.

Setting ψ = θ̄2
aψl + ϕC + θ2

aψr we obtain

Tϕ = TL + TC + TR = Tθ̄2aψl
+ TC + Tθ2aψr

= Tψ,

by Proposition 2.4. Since

‖ψ‖L∞(R) 6 ‖ψl‖L∞(R) + ‖ϕC‖L∞(R) + ‖ψr‖L∞(R)

6 Ap ‖TL‖+ cp ‖TC‖+Ap ‖TR‖
6 c̃ · (2Ap + cp) ‖Tϕ‖ ,

we have

‖ψ‖L∞(R) 6 c ·
(
p+

1

p− 1

)
‖Tϕ‖ ,

by Lemma 3.3 and the estimate for the Riesz projector norm from Section 2.1. The
theorem is proved. �

5.2. Concluding remarks. In this section, we describe a possible application of our
result to function theory.

In 2011, A. Baranov, R. Bessonov, and V. Kapustin [1] proved that the existence of
a bounded symbol for every truncated Toeplitz operator on K2

θ is equivalent to the fact

that every function f ∈ H1 ∩ θ2zH1 admits a weak factorization.

Theorem 5.1 ([1], Theorem 2.4). Let θ be an inner function on T. The following
assertions are equivalent:

(1) any bounded truncated Toeplitz operator on K2
θ has a bounded symbol;

(2) for any function f ∈ H1 ∩ θ2zH1 there exist xk, yk ∈ K2
θ with∑

k

‖xk‖L2(T) · ‖yk‖L2(T) < +∞ such that f =
∑
k

xkyk.

As we mentioned in Section 1.1, we expect that the main result of present thesis can
be used to prove existence of a bounded symbol for every bounded Toeplitz operator on
PWp

a, 1 < p < +∞. Our work and Theorem 5.1 motivate the following conjecture.

Conjecture 5.2. Let 1 < p <∞ and 1
p + 1

q = 1. For any function f ∈ PW1
2a there exist

xk ∈ PWp
a, yk ∈ PWq

a with∑
k

‖xk‖Lp(R) · ‖yk‖Lq(R) < +∞ such that f =
∑
k

xkyk.
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