
Санкт-Петербургский государственный университет

Софронова Анастасия Александровна

Выпускная квалификационная работа

Lower bounds for branching programs with
bounded repetitions on search problems

Уровень образования: магистратура
Направление: 01.04.01 «Математика»

Основная образовательная программа: ВМ.5832.2019
Профиль (при наличии): нет

Научный руководитель:
доцент,

Санкт-Петербургский государственный университет,
факультет математики и компьютерных наук,

к. ф.-м. н. Соколов Дмитрий Олегович

Рецензент:
Software Engineer,

Google,
к. ф.-м. н. Кноп Александр Анатольевич

Санкт-Петербург
2021

Contents

1. Introduction 3
1.1. Our results . 5
1.2. Technique . 5

2. Preliminaries 7
2.1. Branching programs . 7

3. Expanders 10

4. Lower bounds for (1,+𝑘)-BP 12
4.1. Hard Formulas . 13

4.1.1. Locally Consistent Assignments . 15
4.2. Proof of Theorem 1.4 . 16

4.2.1. Construction of the Garland . 17
4.3. Unreachable Leaves . 20
4.4. Directing the Flow . 22

5. Conclusion 28

References 29

A. Missed Lemmas 32
A.1. Lemma 4.5 . 32
A.2. Lemma 4.10 . 35

B. Garland in the Paths 38

2

1 Introduction
Definition 1.1 ([CR79])

Proof system for a language 𝐿 ⊆ {0, 1}∗ is a polynomial-time computable function
Π: : {0, 1}∗ × {0, 1}∗ → {0, 1} such that:

1. If 𝑥 ∈ 𝐿, then there exists 𝑦 ∈ {0, 1}∗ such that Π(𝑥, 𝑦) = 1.

2. If there exists 𝑦 ∈ {0, 1}∗ such that Π(𝑥, 𝑦) = 1 then 𝑥 ∈ 𝐿.

Propositional proof complexity theory studies proof systems for UNSAT, the language of
unsatisfiable propositional formulas. Studying lower bounds on size of such proofs is closely
related to the question whether NP and coNP coincide or not. Non-equivalence of those
classes would be equivalent to existence of hard formulas for any propositional proof system
— that is, formulas which do not have short, polynomial-size proofs.

There exists so-called Cook’s program, which proposes to prove superpolynomial lower
bounds for stronger and stronger proof systems until the techniques are developed to do it in
a general case. Currently there exist lower bounds only for some specific proof systems.

For many proof systems, the proofs describe the runs of specific classes of SAT-solving al-
gorithms. Which means that lower bounds of the size of proofs give us lower bounds on run-
ning time of SAT- solvers, as well as some other algorithms. For example, Resolution describes
DPLL algorithms [DLL62; Gol79], Cutting Planes corresponds to combinatorial optimization
[Gom58; Gom60; Gom63], Nullstellensatz and Polynomial Calculus are related to calculating
Gröbner basis [CEI96; Bus+97]. For all those systems there are known lower bounds. The
majority of theorem-proving systems is based on propositional proofs as well.

Proofs of unsatisfiability of a formula are closely connected to a certain search relation:
given an assignment, it is required to find an unsatisfied clause. Formally it is defined in the
following way:

Definition 1.2
An unsatisfied clause search problem Search𝜑 for an unsatisfiable CNF formula 𝜑 ≔
⋀
𝑖∈𝐼

𝐶𝑖 on 𝑛 variables is defined as follows:

input: an 𝑛-variable assignment 𝑧 ∈ {0, 1}𝑛;

output: an element 𝑖 ∈ 𝐼 such that clause 𝐶𝑖 of 𝜑 is falsified by 𝑧.

Informally speaking, we may think that if we can solve the Search𝜑 problem in some
computational model ℭ, then the description of 𝐶 ∈ ℭ that solves Search𝜑 is a “certificate of
unsatisfiability” of a formula 𝜑. So we may think of this model as a proof system.

We study a computational model named branching programs. A proof system based on

3

this model could be defined in a way described above [Kno17]. Regular Resolution, which is
the restriction of general Resolution, is, in those terms, equivalent to a read-once branching
program that searches for an unsatisfied clause [Lov+95].

Branching program is a computational model that is described by a directed acyclic graph.
In each vertex a variable is queried, andwe proceed along one of the outgoing edges depending
on its value. A total assignment corresponds to a path from source to one of the sinks (a
computation path), and in the sink a value of a function is written. Let us state the formal
definition.

Definition 1.3
Let 𝑋 ≔ {𝑥1,… , 𝑥𝑛} be a set of propositional variables and 𝒪 be a finite set.

A branching program for a relation 𝑆 ⊆ {0, 1}𝑛 × 𝑂 is a directed acyclic graph
with one source. Every sink of the graph is labeled with 𝑜 ∈ 𝑂, every inner vertex is
labeled with 𝑥𝑖 ∈ 𝑋 and it has exactly two outgoing edges labeled by 0 and 1.

Every total assignment 𝜌 : 𝑋 → {0, 1}𝑛 to 𝑋 variables induces a path in a branch-
ing program in the following way. We start in the root of the program. If the current
vertex is labeled with variable 𝑥𝑖, we proceed along the edge 𝜌(𝑥𝑖).

Let 𝑜 ∈ 𝑂 be the label in the sinkwe ended up in. We require the following property:
(𝜌(𝑥1),… , 𝜌(𝑥𝑛), 𝑜) ∈ 𝑆.

This is one of the most fundamental models in theoretical computer science: it captures
the space complexity of many versions of restricted and unrestricted Turing machine etc. The
read-once version queries each bit only once on every path. This model corresponds to the
eraser Turing machines. Exponential lower bounds for this model were proven in [Weg88;
Žák86].

The connection between regular Resolution and branching programs makes it interesting
to consider some less restricted models of branching programs in application to the Search𝜑
problems. Some of these models were considered in [Kno17]. In this paper we focus on
(1,+𝑘)-BPs (branching programs with bounded repetitions).

It is a natural generalization of read-once branching programs that was described in
[Sie96]. In this model, we allow our branching programs to requery variables, but on each
computation only 𝑘 input bits may be queried more than one time. There are two natural
points of view on this model:

syntactic: if we apply the restriction on every path;

semantic: if we apply the restriction on consistent paths

(for formal definition see section 2.1). The semantic version is more powerful andmay capture
strong Turing machine models (for details see [JR98]).

4

Exponential lower bounds on (1,+𝑘)-BP were shown in [SŽ97; Sie96; SW94; JR98] for
various parameters 𝑘. Lower bounds from [JR98] hold for 𝑘 = Ω(𝑛

log𝑛) and the lower bound
from [Juk08] holds even for 𝑘 = Ω(𝑛), where 𝑛 is the number of input bits. We refer the
reader to the books [Juk12;Weg00]with the detailed description of results related to branching
programs.

Described lower bounds for (1,+𝑘)-BP are given for “complicated” functions (usually it is
characteristic functions of an error-correcting code with additional properties). In particular,
these functions are complicated in terms of the certificate complexity, which is not true for
Search𝜑 relation, so the usual techniques do not work in this case. Despite the success in
proving lower bounds on the Resolution (and hence read-once programs) the lower bounds
for (1,+𝑘)-BP on the Search𝜑 are an open question even for 𝑘 = 1.

Apart from small certificate complexity, there arises another issue in proving lower
bounds on Search𝜑. It is that (1,+𝑘)-BP is much stronger than general Resolution on some
classes of formulas [Kno17] even for small constant 𝑘 and syntactic model. This is a crucial
observation and it means that we cannot directly apply general techniques for proving lower
bounds in proof complexity like [BW01; AR03] etc., since these techniques cannot distinguish
between considered classes of formulas and other hard examples for Resolution. Hence if we
want to prove lower bound for (1,+𝑘)-BP on Search𝜑 we need some additional arguments
in comparison to Resolution lower bounds.

In this work, we introduce a technique for proving such lower bounds on the semantic
(1,+𝑘)-BP where 𝑘 = 𝒪 (log𝑛/ log log𝑛) where 𝑛 is the number of variables.

1.1 Our results

The main result is an exponential lower bound on the size of (1,+𝑘)-BPs in application
to Search𝜑 for 𝑘 = 𝒪(log𝑛

log log𝑛).
Theorem 1.4

For all 𝑘0 ∈ N there is an unsatisfiable formula 𝜑 on 𝑛 variable of size 𝑛𝒪(𝑘0) such that
any semantic (1,+𝑘0)-BP solving Search𝜑 requires size exp [Ω (𝑛

2𝒪(𝑘0))].

1.2 Technique

The key ingredients for the lower bound are:

garlands: aka (𝑠, ℓ)-chains, that is a standard technique for proving lower bounds on the
branching programs [SŽ97; Sie96; SW94; JR98; Juk12];

5

closure: a technique that allows to make large partial restriction and keep the search
problem hard for branching programs (and proof systems) [Ale+04; AR03];

amplification: a trick from [Ale+07] that makes formula hard for regular Resolution (and read-
once branching programs) and help us to force the branching program to use
the repetitions in a very structured way;

Flow-Cut: the famousTheorem [FF56] that shows the duality between the maximum flow
and the minimum cut, that we use to extend partial assignments to total as-
signments with good properties.

Let us introduce a general sketch of the proof. In section 4.1 we define an unsatisfiable
formula Flow𝐺 [AR03] that states: in graph 𝐺 we have a source of a flow but there is no sink.
We require graph 𝐺 to be an algebraic expander, but, in fact, we need two properties:

• 𝐺 is a combinatorial expander; namely, each set of vertices of the size at most 𝑟 =
Ω(𝑛

log𝑛) has a lot of neighbours (this is a “local” property, since we care only about
small enough sets);

• max-balanced-cut of the graph𝐺 is large enough (this is a “global” property of the graph
𝐺), where “balanced” means that each piece has size at least Ω(𝑟).

It is not clear how to show the lower bound for this formula itself and we amplify Flow𝐺
formulas by using the trick from [Ale+07]. Denote the result of amplification by 𝜑.

1. For the sake of contradiction we assume that we have a small (1,+𝑘)-BP solving
Search𝜑. We generate a big family of paths and, using the upper bound on the size
of our program, we find some paths in the program that form a “garland” structure (see
section 4). This idea is similar to the idea from [JR98].

2. These paths correspond to some assignments and we keep our formula “hard” under
these assignments. To do it we use a modification of the “closure” technique [AR03]
(an easier version of this iterative modification was used in [Sok20]). Here we use a
combinatorial expansion of the graph 𝐺.

3. By using the fact that we deal with an amplified version of Flow𝐺 we show that from
the end point of paths that form the garland we cannot reach any leaf that is marked by
one of the clauses from some set 𝑇 ⊆ 𝜑. Here we use the fact that 𝑘 is small enough.

4. To conclude the proof, we use the Max-Flow Min-Cut Theorem (and global properties
of our graph) to show that there should be some path from the garland to some clause
from the set 𝑇 .

See section 4 for more details.

6

2 Preliminaries

Let𝑋 be a set of boolean variables. For a variable 𝑥 ∈ 𝑋 we denote 𝑥1 ≔ 𝑥 and 𝑥0 ≔ ¬𝑥.
We say that 𝛼: 𝑋 → {0, 1, ∗, ?} is a generalized partial assignment and 𝛼 assigns or touches
𝑥 ∈ 𝑋 iff 𝛼(𝑥) ∈ {0, 1, ?}. And an assignment 𝛾 is an instance of 𝛼 iff:

• 𝛼(𝑥) ∈ {0, 1, ∗} implies 𝛾(𝑥) = 𝛼(𝑥);

• 𝛼(𝑥) = ? implies 𝛾(𝑥) ∈ {0, 1}.

If𝛼 and𝛽 are two partial assignments to variables from the set𝑋, we say that a generalized
partial assignment 𝛼 ⊍ 𝛽 : 𝑋 → {0, 1, ∗, ?} is a joint assignment iff:

• if 𝛼(𝑥) = 𝑎 and 𝛽(𝑥) ∈ {𝑎, ∗}, then 𝛼 ⊍ 𝛽(𝑥) = 𝑎;

• if 𝛽(𝑥) = 𝑎 and 𝛼(𝑥) ∈ {𝑎, ∗}, then 𝛼 ⊍ 𝛽(𝑥) = 𝑎;

• if 𝛼(𝑥) = 𝑎 and 𝛽(𝑥) = 1 − 𝑎, then 𝛼 ⊍ 𝛽(𝑥) = ?;

• if 𝛼(𝑥) = 𝛽(𝑥) = ∗, then 𝛼 ⊍ 𝛽(𝑥) = ∗,

where 𝑎 ∈ {0, 1}.
We will also use the famous Max-Flow Min-Cut Theorem.

Theorem 2.1 (Max-Flow Min-Cut [FF56])

Let 𝐺 ≔ (𝑉 ,𝐸). For any 𝑠, 𝑡 ∈ 𝑉 the maximum value of an 𝑠-𝑡 flow is equal to the
minimum capacity over all 𝑠-𝑡 cuts.

2.1 Branching programs

Let𝑋 ≔ {𝑥1,… , 𝑥𝑛} be a set of propositional variables and𝒪 be a finite set. A branching
program is a directed acyclic graph with one source. Every vertex of the graph is labeled by
a variable from 𝑋, or by an element of the set 𝒪 with respect to the following properties:

• if a vertex is labeled by 𝑜 ∈ 𝒪, then it is a sink;

• if a vertex is labeled by a variable, then it has exactly two outgoing edges: one edge is
labeled by 0 and the other one is labeled by 1.

Every branching program 𝐵 defines a function 𝑓𝐵 : {0, 1}𝑛 → 𝒪. We assume that every
input 𝑧 ∈ {0, 1}𝑛 induces a path from source to sink in a natural way. If this path ends in a
vertex with a label 𝑜 ∈ 𝒪 then we define 𝑓𝐵(𝑧) ≔ 𝑜.

We say that𝐵 is a branching program for the relation 𝑆 ⊆ {0, 1}×𝒪 iff 𝑓𝐵 is consistent
with 𝑆: namely if 𝑓𝐵(𝑧) = 𝑜 then (𝑧, 𝑜) ∈ 𝑆.

7

Let 𝐷 be a branching program and 𝑞 be a path in it from the root to some node 𝑝. The
subprogram of 𝐷 with the root 𝑝 we denote by 𝐷(𝑝) and define as a subgraph of 𝐷 that is
reachable from 𝑝. Also for a partial assignment 𝜌 we define a branching program 𝐷|𝜌 as the
following transformation applied to 𝐷:

• for each variable 𝑦 to which 𝜌 assigns a value 𝑎, contract edges 𝑦 = 𝑎 and delete edges
𝑦 = ¬𝑎;

• delete all vertices that are unreachable from the root.

These operations only decrease the size of the program.
If 𝑝 is a consistent path in a branching program, we denote a partial assignment that

corresponds to this path by 𝜏𝑝.
Let us also define some classical restrictions of the general branching programs.

Definition 2.2
Let 𝐵 be a branching program. We say that 𝐵 is a (syntactic) read-once branching
program or 1-BP iff on every path from the source to a sink we can see each variable
at most once.

We say that 𝐵 is a (1,+𝑘)-BP iff on every path 𝑝 from the source to a sink there
is a set of variables 𝑋𝑝 of size at most 𝑘 such that all other variables appear in 𝑝 at
most once. And we can twist this definition a little bit and say that 𝐵 is a semantic
(1,+𝑘)-BP iff on every consistent path from 𝑝 source to sink there is a set of variables
𝑋𝑝 of size at most 𝑘 such that all other variables appear in 𝑝 at most once.

If a branching program 𝐵 computes a boolean function, we say that it is satisfiable iff 𝑓𝐵
is not identically zero.

Theorem 2.3 (Savický [Sav98])

There is an algorithm the check a satisfiability of a syntactic (1,+𝑘)-BP in time
𝒪[(4𝑒𝑛

𝑘)𝑘 𝑠𝑛].

The following algorithm also will be useful for us.
Theorem 2.4 (Savický [Sav98])

The test whether an input branching program is a syntactic (1,+𝑘)-BP can be done in
time 𝒪[(3𝑒𝑛

𝑘+1)
𝑘+1 𝑠].

The next observation is natural and extremely useful for proving lower bounds.

8

Lemma 2.5
Let𝐷 be a (1,+𝑘)-BP for Search𝜑, 𝑝 be a consistent path from the root to some node 𝑣.
If 𝑝 has a variable 𝑥 queried more than one time on it then𝐷(𝑣)|𝜏𝑝 is a (1,+(𝑘 − 1))-BP
for the Search𝜑|𝜏𝑝 . The result holds for both: semantic and syntactic models.

Proof. A program 𝐷(𝑣)|𝜏𝑝 is a program for the Search𝜑|𝜏𝑝 by the correctness of the program
𝐷. Consider a path 𝑠 in 𝐷 from 𝑣 to some leaf. Let 𝑋𝑠 be a set of variables that are queried
more than one time on 𝑠. If |𝑋𝑠| = 𝑘 and 𝑥 ∉ 𝑋𝑠, the path 𝑝𝑠 has at least 𝑘+1 variables that
are queried more that one time. This is a contradiction. If |𝑋𝑠| = 𝑘 and 𝑥 ∈ 𝑋𝑠, note that in
𝐷(𝑣)|𝜏𝑝 we contract all edges that correspond to the 𝑥 variable and hence we transform this
path into a path with at most 𝑘 − 1 repetitions.

9

3 Expanders

We are given a graph 𝐺 ≔ (𝑉 ,𝐸). For two subsets of vertices 𝐴,𝐵 we write 𝐸(𝐴,𝐵) to
denote the set of pairs (𝑣, 𝑒) where 𝑣 ∈ 𝐴, 𝑒 is an edge that is incident to 𝑣 and 𝑒 connects 𝑣
with some vertex in 𝐵. We will think about it as about set of edges between 𝐴 and 𝐵, but if
𝐴 and𝐵 intersect we count edges within intersection twice. We also use a shortcut notations
𝐸(𝑆) ≔ 𝐸(𝑆, 𝑉) and 𝑆 ≔ 𝑉 ⧵ 𝑆. If the graph we consider is unclear from the context we
specify it as a subscript: 𝐸𝐺(𝐴,𝐵).

Remark 3.1
Assuming that 𝐺 is Δ-regular graph this definition allows us to use natural equalities:

• |𝐸(𝑆)| = Δ|𝑆|;

• |𝐸(𝐴,𝐴)| = Δ|𝐴| − |𝐸(𝐴,𝐴)|.

We write N𝐺(𝑣) to denote the set of neighbours of 𝑣 in the graph 𝐺. We extend this
notion to sets and denote by N𝐺(𝑆) ≔ {𝑣 ∣ ∃𝑢 ∈ 𝑆, (𝑢, 𝑣) ∈ 𝐸} the neighbourhood of a set
of vertices 𝑆 ⊆ 𝑉 .

A graph 𝐺 ≔ (𝑉 ,𝐸) is an (𝑛,Δ, 𝛼)-algebraic expander (or just expander), if:

• |𝑉 | = 𝑛;

• the degree of any vertex 𝑣 ∈ 𝑉 equals Δ;

• the absolute value of the second largest eigenvalue of the adjacency matrix of 𝐺 is at
most 𝛼Δ.

Lemma 3.2 (Mixing Lemma [AC88])

Let𝐺 ≔ (𝑉 ,𝐸) be an (𝑛,Δ, 𝛼)-expander. For any two subsets𝐴,𝐵 ⊆ 𝑉 the following
holds:

∣|𝐸(𝐴,𝐵)| − Δ|𝐴||𝐵|
𝑛 ∣ ≤ 𝛼Δ√|𝑆||𝑇 |.

We also need combinatorial edge expansion. We say that 𝐺 ≔ (𝑉 ,𝐸) satisfies (𝑟, 𝛽)-
(edge) expansion property for some 𝑟, 𝛽 > 0, if for all 𝑆 ⊆ 𝑉 of size at most 𝑟 holds
𝐸(𝑆, 𝑆) ≥ 𝛽Δ|𝑆|. The Mixing Lemma says that any expander graph satisfies expansion
property for suitable parameters.

Corollary 3.3

If 𝐺 ≔ (𝑉 ,𝐸) is an (𝑛,Δ, 𝛼)-expander, then for any 0 < 𝛽 < 1 − 𝛼 the graph 𝐺
satisfy ((1 − 𝛼 − 𝛽)𝑛, 𝛽)-expansion property.

10

Proof. Consider some 𝐴 ⊆ 𝑉 of size at most (1 − 𝛼 − 𝛽)𝑛. Note that |𝐸(𝐴,𝐴)| = Δ|𝐴| −
|𝐸(𝐴,𝐴)|. By Mixing Lemma:

|𝐸(𝐴,𝐴)| ≤ Δ|𝐴|2
𝑛 + 𝛼Δ|𝐴| = Δ|𝐴|(|𝐴|

𝑛 + 𝛼) ≤ Δ|𝐴|(1 − 𝛽).

Hence |𝐸(𝐴,𝐴)| ≥ 𝛽Δ|𝐴| by Remark 3.1.

The “vertex analog” of the next proposition is well known in the literature (for example
[GMT09]). We turn it into edge version.

Proposition 3.4

Let 𝐺 ≔ (𝑉 ,𝐸) be a graph of degree Δ. If 𝐺 satisfies (𝑟, 𝛽)-expansion property then
for any set 𝑆 ⊆ 𝑉 of size 𝑘 ≤ 𝑟 there is an enumeration 𝑣1, 𝑣2,… , 𝑣𝑘 ∈ 𝑆 and a
sequence 𝑅1,… ,𝑅𝑘 ⊆ 𝐸(𝑆) such that:

• 𝑅𝑖 = 𝐸({𝑣𝑖}, 𝑉 ⧵ {𝑣1, 𝑣2,… , 𝑣𝑖});

• |𝑅𝑖| ≥ 𝛽Δ.

Proof. We create this sequence in reversed order. Since |𝑆| ≤ 𝑟, it holds that |𝐸(𝑆, 𝑆)| ≥
𝛽Δ|𝑆| and there is a vertex 𝑣𝑘 ∈ 𝑆 such that |𝐸({𝑣𝑘}, 𝑆)| ≥ 𝛽Δ. Let 𝑅𝑘 ≔ |𝐸({𝑣𝑘}, 𝑆)|,
and repeat the process for 𝑆 ⧵ {𝑣𝑘}.

11

4 Lower bounds for (1,+𝑘)-BP
In this section, we will prove the following theorem:

Theorem 1.4

For all 𝑘0 ∈ N there is an unsatisfiable formula 𝜑 on 𝑛 variable of size 𝑛𝒪(𝑘0) such that
any semantic (1,+𝑘0)-BP solving Search𝜑 requires size exp [Ω (𝑛

2𝒪(𝑘0))].

Let us describe the main ideas used in the proof. To prove this Theorem we would like to
construct an exponentially big set of paths, which cannot be compactly “glued” together in
(1,+𝑘)-BP, correctly solving Search𝜑.

To give a detailed plan we need an auxiliary definition.
Definition 4.1

A ℓ-garland in a branching program is a pair of paths (𝑎, 𝑏) from the root such that 𝑎 ≔
𝑣0𝑎1𝑣1𝑎2𝑣2𝑎3 …𝑎ℓ𝑣ℓ and 𝑏 ≔ 𝑣0𝑏1𝑣1𝑏2𝑣2𝑏3 …𝑏ℓ𝑣ℓ where 𝑎𝑖, 𝑏𝑖 are possibly empty
paths and paths 𝑣𝑗𝑎𝑗+1𝑣𝑗+1 and 𝑣𝑗𝑏𝑗+1𝑣𝑗+1 are different for all 0 ≤ 𝑗 < ℓ (see fig. 1).

𝑣0

𝑣1

𝑣2

𝑎1 𝑏1

𝑎2 𝑏2

Figure 1: 2-garland

Let us consider the detailed plan.

1. By induction on 𝑘 we want to show that Search𝜑|𝜌 is hard for (1,+𝑘)-BP even after
some “good” restriction 𝜌.

2. For the sake of contradiction we assume that we have a small (1,+𝑘)-BP solving
Search𝜑|𝜌 . In the section 4.2.1 we generate a family of paths starting from the root
of the program and find in this family a (𝑘 + 1)-garland (see fig. 1). This idea is similar
to [JR98].

3. To argue that we can find a garland we generate exponentially many paths by walk-
ing from root (section 4.2). During this process, we have to make sure that on these
paths our branching program cannot determine an answer (that would mean that we
cannot walk anymore). To avoid it we use the “closure” technique that is motivated by

12

technique from [Ale+04; AR03] and avoid “local contradictions”. And hence we have to
choose the formula 𝜑 very carefully, but we still have some freedom.

4. If we found a repetition while constructing a garland, we use Lemma 2.5 and apply
induction hypothesis. This is a place where we use that formula 𝜑 is still hard even
after the restriction.

5. In the section 4.3 we combine different parts of garland and argue about the reachability
of certain leaves. We have to make sure that the paths we consider are consistent and
that when we reach the endpoint of the garland, formula 𝜑 remains hard. We achieve
it by using the following properties.

• We have already removed repetitions from the garland by using Lemma 2.5 and
induction hypothesis.

• To show that combinations of different parts of the garland give us consistent
paths we equip the closure technique by the notion of “strongly satisfied” (see
Section 4.1.1) constraints. This is the second place that requires specific properties
of the formula 𝜑.

At the end of this section, we will have a set of clauses ℭ ⊆ 𝜑 such that leaves marked
by elements of this set should be unreachable from the endpoint of the garland.

6. For the last part (section 4.4) we consider an arbitrary path 𝑟 in our garland and note
that 𝜑 ⧵ ℭ is a satisfiable formula even under the restriction 𝜏𝑟. It is hard to show this
property for the formulas that encode natural combinatorial principles. We use the trick
from [Ale+07] to change the formula 𝜑 to make sure that ℭ is large enough.

Here we use the global structure of our formula 𝜑 (in our case we use the Max-Flow
Min-Cut Theorem) to satisfy all clauses in 𝜑 ⧵ ℭ.

We start with defining the hard formulas on a suitable expander graph.

4.1 Hard Formulas

Let 𝐺 ≔ (𝑉 ,𝐸) be a directed graph. Each edge 𝑒 ∈ 𝐸 has the corresponding variable 𝑥𝑒,
where 𝑥𝑒 = 1 indicates that a flow of size 1 is going through an edge 𝑒. Let 𝑢 be an arbitrary,
but fixed vertex of the graph.

The formula Flow𝐺,𝑢 consists of the following constraints written in CNF for all 𝑣 ∈ 𝑉 :

∑
𝑒∈𝐸:st(𝑒)=𝑣

𝑥𝑒 − ∑
𝑒∈𝐸:en(𝑒)=𝑣

𝑥𝑒 ≥ 𝑐(𝑣),

where 𝑒 = (st(𝑒), en(𝑒)) and 𝑐 : 𝑉 → {0, 1} is a labeling function:

13

• 𝑐(𝑣) = 0, for all 𝑣 ∈ 𝑉 ⧵ {𝑢};

• 𝑐(𝑢) = 1.

This formulas states: for all vertices in the graph the flow is non-negative, and at least for
one vertex it is strictly positive. It is easy to see that Flow𝐺,𝑢 is unsatisfiable. We omit index
𝑢 since in our applications it is an arbitrary vertex.

We use the most naive CNF encoding of these constraints. We represent each constraint
separately. Consider a vertex 𝑣 ∈ 𝑉 and a set of edges 𝐸𝑣 ≔ {𝑒1, 𝑒2,… , 𝑒𝑠} ⊆ 𝐸 that are
incident to 𝑣. Let 𝜌𝑣 : 𝐸𝑣 → {0, 1} be an assignment that violates the constraint in 𝑣. In this
case we add to the formula a clause 𝐶 :

𝑥1−𝜌(𝑥𝑒1)𝑒1 ∨ 𝑥1−𝜌(𝑥𝑒2)𝑒2 ∨… ∨ 𝑥1−𝜌(𝑥𝑒𝑠)𝑒𝑠 ,

and we also say that this assignment has a gap:

𝑔(𝜌𝑣) ≔ 𝑐(𝑣) − ∑
𝑒∈𝐸:st(𝑒)=𝑣

𝜌𝑣(𝑥𝑒) + ∑
𝑒∈𝐸:en(𝑒)=𝑣

𝜌𝑣(𝑥𝑒).

For our purpose we consider Flow𝐺 based on expanders. To be precise, we start with a
graph 𝐺 that is an (𝑛,Δ, 𝛼)-expander, where Δ = Θ(log𝑛) and 𝛼 is some fixed constant,
and replace each undirected edge by two directed edges (we say that these edges are dual).
The exact value of Δ depends on a value of 𝑘.

Remark 4.2
We consider only proper partial assignments 𝜌 that satisfy the following property for
all pairs of dual edges (𝑒, 𝑒′):

• 𝜌(𝑥𝑒) ∈ {0, 1} iff 𝜌(𝑥𝑒′) ∈ {0, 1};

• if 𝜌(𝑥𝑒) = 1 then 𝜌(𝑥𝑒′) = 0.

We also identify supp(𝜌) with an undirected set of edges that are assigned by 𝜌.

To make the formula somewhat “confusing” for (1,+𝑘)-BP, we would like to add more
variables to clauses. These variables do not really affect the physical meaning of the formula,
but make it hard for (1,+𝑘)-BP to extract additional information from repetitions on paths.
This transformation is sensitive to the exact CNF encoding of the constraints that is written
above.

14

Definition 4.3
Let 𝐺 ≔ (𝑉 ,𝐸) be an undirected graph and 𝒞𝑣 be a subset of clauses corresponding
to vertex 𝑣 in Flow𝐺. Let 𝜂𝑘𝑣 : 𝒞𝑣 → (𝐸𝑘) be a mapping, and 𝜂𝑘 ≔ {𝜂𝑘𝑣 ∣ 𝑣 ∈ 𝑉 } be a
family of such mappings. We define Flow𝜂𝑘

𝐺 the following way:

• for each 𝑣 ∈ 𝑉 we consider each 𝐶 ∈ 𝒞𝑣;

• we take 𝜂𝑘𝑣(𝐶) = {𝑒1,… , 𝑒𝑘}, which is a set of 𝑘 edges;

• we replace 𝐶 by 22𝑘 clauses of the form:

𝐶 ∨⋁
𝑖
𝑥𝑎𝑖𝑠𝑖 ∨ 𝑥𝑎′

𝑖
𝑠′𝑖

enumerated by 𝑎𝑖, 𝑎′𝑖 ∈ {0, 1}, where 𝑖 ∈ [𝑘] and 𝑠𝑖, 𝑠′𝑖 are directed copies of the
edge 𝑒𝑖.

As described in the plan, at some point in the proof we would like to construct an assign-
ment that leaves certain clauses (to which a certain set of variables was added) unsatisfied.
For our purpose, we would like those clauses to “strongly unsatisfy” the condition in their
vertices.

Let us describe the construction of 𝜂𝑘. Assume that Δ ≥ 50 ⋅ 𝑘 log𝑛. For each 𝑣 ∈ 𝑉 we
define 𝜂𝑣 independently. Wewill be interested in adding variables to clauseswhich correspond
to large incoming flow.

1. Let us consider a set of clauses 𝒞 that corresponds to 𝑣 and a proper partial assignment
on edges incident to 𝑣 with gap equal to ∆

4 + 1.

2. Note that |𝒞| ≥ (∆
∆/4) ≥ 4∆/4 ≥ 𝑛4𝑘. The first inequality holds since we can choose

arbitrary Δ/4 + 1 incoming edges to obtain the desired gap and set all other incident
edges to zero.

3. There are at most (𝑛∆𝑘) ≤ (𝑛∆𝑒
𝑘)𝑘 ≤ 𝑛2𝑘 different sets of 𝑘 edges. Hence we can choose

a subset of 𝐵 ⊆ 𝒞 and define 𝜂𝑘𝑣 to be a bijection between 𝐵 and all possible choices of
sets of 𝑘 edges.

Note that the existence of (1,+𝑘)-BP of size 𝑆 solving Search
Flow𝜂𝑘

𝐺
(for any 𝜂𝑘) implies

the existence of (1,+𝑘)-BP of size 𝑆 solving SearchFlow𝐺
.

4.1.1 Locally Consistent Assignments

We need a notion of “good assignments”, i.e. assignments that reduce Flow𝐺 formulas to
smaller, but “equally hard” instances.

15

Let 𝐺 ≔ (𝑉 ,𝐸) be a graph. A proper assignment 𝜌 𝛿-satisfies a set of vertices 𝑈 ⊆ 𝑉 iff
for all 𝑣 ∈ 𝑈 the following holds:

• 𝜌 assigns all edges that are incident to 𝑣;

• 𝜌 satisfies the constraint for 𝑣;

• ∑
𝑒∈𝐸:st(𝑒)=𝑣

𝜌(𝑥𝑒) ≥ 𝛿 ⋅ Δ.

We also say that a proper assignment 𝜌 is (𝑟, 𝛿, 𝛽)-locally consistent iff there is a set of
vertices 𝑉𝜌 of size at most 𝑟 such that:

• 𝜌 𝛿-satisfies 𝑉𝜌;

• (𝑉 ⧵ 𝑉𝜌, 𝐸 ⧵ supp(𝜌)) satisfies (𝑟, 𝛽)-expansion property.

Remark 4.4
If 𝜌 is an (𝑟, 𝛿, 𝛽)-locally consistent assignment for some 𝛽 > 0, then 𝑉𝜌 is uniquely
defined.

Proof. For the sake of contradiction assume that there are two candidates𝐴,𝐵. Wlog𝐴⧵𝐵 ≠
∅. Pick an arbitrary vertex 𝑣 ∈ 𝐴 ⧵ 𝐵. Since 𝐴 satisfies the required properties, 𝜌 assigns all
edges that are incident to 𝑣, which contradicts the fact that (𝑉 ⧵ 𝐵,𝐸 ⧵ supp(𝜌)) satisfies
(𝑟, 𝛽)-expansion property.

4.2 Proof of Theorem 1.4

Let 𝐺 be an (𝑛,Δ, 𝛼)-expander and 𝜂𝑘0+1 be a mapping defined in section 4.1. In this
section we prove an exponential lower bound on Search

Flow𝜂𝑘0+1
𝐺

for (1,+𝑘0)-BP. We assume
that 𝑛 is large enough.

Let us fix some parameters:

• Δ = 100𝑘0 log𝑛 and Δ > 200;

• 𝛼 ≔ 0.01 is the second eigenvalue of the normalized adjacency matrix of 𝐺;

• 𝑟 ≔ 𝑛
∆ and 𝛽 ≔ 0.96 is the “combinatorial expansion” of the graph 𝐺;

• 𝛽′ ≔ 0.95 is an expansion parameter that we try to maintain after removing some
vertices and edges from 𝐺;

• 𝜈𝑘 ≔ (1
4(𝛽 − 𝛽′))𝑘+3 is a scaling factor that indicates the fraction of edges that we

want to assign in our partial assignment.

16

Note that 𝑟 ≪ (1 − 𝛽 − 𝛼)𝑛 = 0.03 ⋅ 𝑛 and hence by Corollary 3.3 𝐺 satisfies (𝑟, 𝛽)-
expansion property, hence we can use all combinatorial expansion properties and tools.

To formulate the induction hypothesis we need one more definition. Let 𝑀 ⊆ 𝐸 and 𝜌 is
a proper assignment. We say that 𝜌 is 𝛾-minimal local consistent extension or (mlce) on 𝑀
iff:

• 𝜌 is (𝑟, 0.6, 𝛾)-locally consistent assignment;

• supp(𝜌) = 𝑀 ∪ 𝐸(𝑉𝜌);

• |𝐸(𝑉𝜌, 𝑉𝜌) ⧵𝑀| < 𝛾Δ|𝑉𝜌|.

Informally we may think about it in the following way: after we assign edges from 𝑀 some-
how, 𝜌 should assign also 𝑉𝜌 as a “minimal” set of vertices to take care of in order to be locally
consistent.

Let 𝜑 ≔ Flow𝜂𝑘0+1

𝐺 . By induction on 𝑘 ≤ 𝑘0 we show the following statement. For all sets
of edges 𝑀 ⊆ 𝐸 of size at most 𝜈𝑘Δ𝑟 and all 𝛽′-mlce 𝜌 on 𝑀 any (1,+𝑘)-BP for Search𝜑|𝜌
has size at least 2

𝜈𝑘
4(𝑘+1)2 ∆𝑟.

Fix some 𝑀 , 𝜌, 0 ≤ 𝑘 ≤ 𝑘0 and for the sake of contradiction assume that we have a
(1,+𝑘)-BP 𝐷 of size 2

𝜈𝑘
4(𝑘+1)2 ∆𝑟 for Search𝜑|𝜌 .

4.2.1 Construction of the Garland

To fulfill our plan of the proof, described at the beginning of the section, we start con-
structing the garland by obtaining an exponentially big set of paths with the corresponding
assignments. Let us remind that |𝑀| ≤ 𝜈𝑘Δ𝑟 and 𝜌 is 𝛽′-mlce on 𝑀 .

We say that triple (𝑝, 𝑈𝑝, 𝜎𝑝) is 𝛾-good iff:

• 𝑝 is a path from the root of the branching program;

• 𝑈 is a subset of edges such that corresponding variables are queried on 𝑝, so-called
“branching variables”;

• 𝜎𝑝 is a partial assignment such that:

– 𝜎𝑝 extends 𝜌 ∪ 𝜏𝑝;
– 𝜎𝑝 is a 𝛾-mlce on 𝑀 ∪𝑈𝑝;

– 𝜎𝑝 0.8-satisfies 𝑉𝜎𝑝
⧵ 𝑉𝜌,

where 𝜏𝑝 is an assignment that corresponds to 𝑝.

17

We maintain the set of 𝛽′-good triples 𝒫 and an auxiliary set 𝒮 of triples that appear in
the set 𝒫 at some moment during the process. In the beginning of our construction 𝒫 ≔
{(∅, ∅, 𝜌)} and 𝒮 ≔ 𝒫.

We repeat the following process while we have at least one triple (𝑝, 𝑈𝑝, 𝜎𝑝) ∈ 𝒫 such
that |𝑈𝑝| ≤ 𝜈𝑘Δ𝑟.

Consider the triple described above. Let 𝑣 be the end of 𝑝 and 𝑥𝑒 be the variable asked in
𝑣.

1. If 𝑥𝑒 was queried on 𝑝 we stop the process. In this case we return “Repetition” and we
remember the path 𝑝.

2. Erase the triple (𝑝, 𝑈𝑝, 𝜎𝑝) from 𝒫.

3. If 𝜎𝑝(𝑥𝑒) ∈ {0, 1}, then we continue along the edge 𝑥𝑒 = 𝜎𝑝(𝑥𝑒). Consider a path 𝑝′
that is the extension of 𝑝 along this edge, 𝑈𝑝′ ≔ 𝑈𝑝 and 𝜎𝑝′ ≔ 𝜎𝑝. Put (𝑝′, 𝑈𝑝′, 𝜎𝑝′)
into 𝒫 and 𝒮 and repeat the process from the beginning.

4. If 𝜎𝑝(𝑥𝑒) = ∗, then it is a “branching node”, and we call this step a branching step.

(a) Let 𝑝′ be a path obtained by continuing 𝑝 along the edge 𝑥𝑒 = 0, and 𝑝″ be a path
obtained by continuing 𝑝 along the edge 𝑥𝑒 = 1.

(b) 𝑈𝑝′ ≔ 𝑈𝑝 ∪ 𝑒, 𝑈𝑝″ ≔ 𝑈𝑝 ∪ 𝑒.
(c) 𝜏 ′ ≔ 𝜎𝑝 ∪ {𝑥𝑒 = 0, 𝑥𝑒′ = 0}, 𝜏″ ≔ 𝜎𝑝 ∪ {𝑥𝑒 = 1, 𝑥𝑒′ = 0}, where 𝑥𝑒′ is a dual

edge.

(d) (𝑝′, 𝑈𝑝′, 𝜏 ′) is (𝛽′ − 0.01)-good triple. We extend an assignment 𝜏 ′ to make this
triple 𝛽′-good. For the formal statement see Lemma 4.5. Here we describe an idea.
Let 𝑅 ⊆ 𝐸 be a set of edges that are unassigned by 𝜏 ′ (or 𝜏″), and 𝐵 ⊆ 𝑉 ⧵ 𝑉𝜎𝑝

be the maximal set of vertices that satisfies:

• |𝐵| ≤ 𝑟;
• |𝐸(𝐵,𝐵) ∩ 𝑅| ≤ 𝛽′Δ|𝐵|.

Let 𝜅 be an assignment on variables that correspond to edges in the set 𝐸(𝐵) ⧵
supp(𝜏 ′) such that 𝜏 ′ ∪ 𝜅 0.8-satisfies the constraints for all 𝑣 ∈ 𝐵. This assign-
ment 𝜅 always exists (and moreover it is independent of the value of 𝑥𝑒, but we
do not use this fact).

(e) We denote 𝜎𝑝′ ≔ 𝜏 ′ ∪ 𝜅, 𝜎𝑝″ ≔ 𝜏″ ∪ 𝜅 and put (𝑝′, 𝑈𝑝′, 𝜎𝑝′) and (𝑝″, 𝑈𝑝″, 𝜎𝑝″)
into 𝒫 and into 𝒮.

To conclude the construction we want to show the following claims.

18

• Repetition case. In the first case of the proof (if we have a repetition) we can reduce
the problem to a lower bound on (1,+(𝑘 − 1))-BP.

• Correctness. The branching step can be done and triples (𝑝′, 𝑈𝑝′, 𝜎𝑝′) and
(𝑝″, 𝑈𝑝″, 𝜎𝑝″) satisfy the required properties.

• Garland extraction. Among these paths we can find an 𝑘-garland (𝑎, 𝑏) and a locally
consistent extension of 𝜌.

Correctness. We show that if we have a triple (𝑝, 𝑈𝑝, 𝜏𝑝) which is 𝛽′-good then after pro-
cessing it with our algorithm we also put in our sets 𝛽′-good triples. Let us formulate the
general Lemma that helps us with it.

Lemma 4.5
Let (𝑝, 𝑈𝑝, 𝜎𝑝) and (𝑞, 𝑈𝑞, 𝜎𝑞) be 0.9-good triples. Then there is an assignment 𝜅 such
that:

• for any 𝛾 that is an instance of 𝜎𝑝 ⊍ 𝜎𝑞 an assignment 𝛾 ∪ 𝜅 is a 𝛽′-mlce on
supp(𝜎𝑝) ∪ supp(𝜎𝑞);

• | supp(𝛾 ∪ 𝜅)| ≤ 𝜈𝑘−1Δ𝑟.

Moreover if 𝑝 = 𝑞 then triple (𝑝, 𝑈𝑝, 𝜎𝑝 ∪ 𝜅) is 𝛽′-good.

Proof. The proof was motivated by the closure technique developed in [AR03; Ale+04]. For
the full version of the proof see Appendix A.

If the branching step was not done, then we do not change 𝑈 and 𝜏 , and we extend the
path 𝑝 according to the assignment 𝜏 hence the triple remains 𝛽′-good. We are left with the
branching step. Note that (𝑝′, 𝑈𝑝′, 𝜏 ′) is 0.9-good andwe apply Lemma 4.5 to a pair composed
of two identical triples (𝑝′, 𝑈𝑝′, 𝜏 ′) and obtain 𝜅 that satisfies the required properties.

Repetition case. First let us note that if there is a repetition, then 𝑘 > 0. Suppose we found
a repetition while considering a triple (𝑝, 𝑈𝑝, 𝜎𝑝). The size of𝑀∪𝑈𝑝 is at most 2𝜈𝑘Δ𝑟 and 𝜎𝑝
is 𝛽′-mlce on 𝑀 ∪𝑈𝑝. Let 𝑣 be an end node of 𝑝. The program 𝐷(𝑣)|𝜎𝑝

is a (1,+(𝑘 − 1))-BP
for Search

Flow𝜂𝑘
𝐺 |𝜎𝑝

by Lemma 2.5. Thus by induction hypothesis we have a lower bound of

2
𝜈𝑘−1
4𝑘2 ∆𝑟 ≥ 2

𝜈𝑘
4(𝑘+1)2 ∆𝑟 on the size of 𝐷(𝑣)|𝜎𝑝

and in this case we are done.

Garland extraction. The following Lemma gives us a pair of triples (𝑝, 𝑈𝑝, 𝜎𝑝), (𝑞, 𝑈𝑝, 𝜎𝑞) ∈
𝒫 such that (𝑝, 𝑞) forms a (𝑘 + 1)-garland.

19

Lemma 4.6
There are (𝑝, 𝑈𝑝, 𝜎𝑝), (𝑞, 𝑈𝑞, 𝜎𝑞) ∈ 𝒮 such that (𝑝, 𝑞) forms a (𝑘 + 1)-garland.

Proof. For the proof see Appendix B.

To continue the proof we need some additional property that we can “avoid repetitions” in
this garland. We say that there is a repetition in a garland 𝑝 = 𝑣0𝑝1𝑣1𝑝2𝑣2𝑝3 …𝑝𝑘0+1𝑣𝑘0+1
and 𝑞 = 𝑣0𝑞1𝑣1𝑞2𝑣2𝑞3 …𝑞𝑘0+1𝑣𝑘0+1 iff there is path in the garland, i.e. path 𝑟 of the form
𝑣0𝑟1𝑣1𝑟2𝑣2𝑟3 …𝑟𝑘0+1𝑣𝑘0+1, such that some variable is queried more than one time on it,
where 𝑟𝑖 ∈ {𝑝𝑖, 𝑞𝑖}.

Consider a path 𝑟 in our garland (𝑝, 𝑞) that contains a repetition and 𝑟′ ⊆ 𝑟 the largest
initial segment of 𝑟 without repetitions. Let 𝑣 be its end node. We apply Lemma 4.5 to
triples (𝑝, 𝑈𝑝, 𝜎𝑝), (𝑞, 𝑈𝑞, 𝜎𝑞), which gives us assignment 𝜅, and choose a instance 𝛾 of
𝜎𝑝 ⊍ 𝜎𝑞 that is consistent with 𝜏𝑟′ . Moreover, | supp(𝛾 ∪ 𝜅)| ≤ 𝜈𝑘−1Δ𝑟, and 𝛾 ∪ 𝜅 is
a 𝛽′-mlce on supp(𝜎𝑝) ∪ supp(𝜎𝑞). Hence by Lemma 2.5 we can use the induction hy-
pothesis for (1,+𝑘 − 1)-BP 𝐷(𝑣)|𝜏𝑟′ and formula 𝜑|𝛾∪𝜅. The size of 𝐷(𝑣)|𝜏𝑟′ is at least

2
𝜈𝑘−1
4𝑘2 ∆𝑟 ≥ 2

𝜈𝑘
4(𝑘+1)2 ∆𝑟.

For the rest of the proof we can assume that on any path 𝑟 of the form described above
there are no repetitions.

4.3 Unreachable Leaves

Let us summarize what we have from the previous section. We created a pair of triples:
(𝑝, 𝑈𝑝, 𝜎𝑝) and (𝑞, 𝑈𝑞, 𝜎𝑞) such that:

• (𝑝, 𝑞) forms (𝑘0 + 1)-garland:

– 𝑝 = 𝑣0𝑝1𝑣1𝑝2𝑣2𝑝3 …𝑝𝑘0+1𝑣𝑘0+1;

– 𝑞 = 𝑣0𝑞1𝑣1𝑞2𝑣2𝑞3 …𝑞𝑘0+1𝑣𝑘0+1;

• (𝑝, 𝑈𝑝, 𝜎𝑝) and (𝑞, 𝑈𝑞, 𝜎𝑞) are 𝛽′-good;

• there are no repetitions on any path in the garland (𝑝, 𝑞).

We use Lemma 4.5 for (𝑝, 𝑈𝑝, 𝜎𝑝) and (𝑞, 𝑈𝑞, 𝜎𝑞) and get an assignment 𝜅. Let us fix an
assignment 𝛾 that is an instance of 𝜎𝑝 ⊍ 𝜎𝑞 consistent with:

• 𝜏𝑝;

• values in 𝜎𝑞 that do not contradict 𝜏𝑝

20

and denote 𝜁 ≔ 𝛾 ∪ 𝜅. Note that, by construction:

• |𝜁| ≤ 𝜈𝑘−1Δ𝑟;

• |𝜁| is (𝑟, 0.6, 𝛽′)-locally consistent.

In this section we describe a set of clauses that should be unreachable from the vertex
𝑣𝑘0+1. Note that on each segment of a garland (𝑣𝑖𝑝𝑖𝑣𝑖+1, 𝑣𝑖𝑞𝑖𝑣𝑖+1) we query at least one
variable in both assignments 𝜏𝑝 and 𝜏𝑞 and get the different values. Denote any variable that
satisfies this property by 𝑥𝑖.

We remind that 𝜑 ≔ Flow𝜂𝑘0+1

𝐺 . Let 𝔇,ℭ be the subsets of clauses:

𝔇 ≔ {𝐷 ∈ Flow𝐺 ∣ for every 𝑒 that corresponds to some 𝑥𝑖 : 𝑒 ∈ 𝜂𝑘0+1(𝐷)}.

and
ℭ ≔ {𝐶 ∈ 𝜑 ∣ 𝐶 is obtained from some 𝐷 ∈ 𝔇 by the amplification trick}.

For the sake of contradiction suppose that there is a path 𝑠 from 𝑣𝑘0+1 such that:

• 𝑠 is a consistent path and 𝜏𝑠 is consistent with 𝜁 and hence 𝑝𝑠 is also consistent;

• 𝑠 ends in a clause 𝐶 ∈ ℭ.

Consider a family of paths 𝑟𝑖 ≔ 𝑣0𝑝1𝑣1𝑝2𝑣2𝑝3 …𝑝𝑖−1𝑣𝑖−1𝑞𝑖𝑣𝑖𝑝𝑖+1𝑞𝑖+1𝑝𝑖+2 …𝑝𝑘0+1𝑣𝑘0+1,
where 𝑖 ∈ [𝑘0 + 1]. All paths 𝑟𝑖 are consistent since there are no repetitions in the garland
(𝑝, 𝑞). Hence if 𝑟𝑖 is inconsistent with 𝑠 then on 𝑠 we requery some variable 𝑥′

𝑖 from the
segment 𝑣𝑖−1𝑞𝑖𝑣𝑖 and get an inconsistent value.

By construction, 𝜏𝑠 is consistent with 𝜁, and 𝜁 ≔ 𝛾 ∪𝜅, where 𝛾 is an instance of 𝜎𝑝 ⊍𝜎𝑞.
If 𝑥′

𝑖 appeared in 𝑣𝑖−1𝑞𝑖𝑣𝑖, but not in 𝑣𝑖−1𝑝𝑖𝑣𝑖 (note that it cannot appear in any other segment
of the garland, since there are no repetitions on the garland), then (𝜎𝑝⊍𝜎𝑞)(𝑥′

𝑖) ∈ {𝜎𝑞(𝑥′
𝑖), ?}

and 𝜏𝑝(𝑥′
𝑖) = ∗ thus 𝛾(𝑥′

𝑖) = 𝜎𝑞(𝑥′
𝑖) by the choice of 𝛾. It follows that 𝜁(𝑥′

𝑖) = 𝜎𝑞(𝑥′
𝑖) as

well, and since 𝜏𝑠 is consistent with 𝜁, we cannot obtain an inconsistent with 𝜏𝑞𝑖 value for
𝑥′
𝑖 while requerying it. Hence 𝑥′

𝑖 had appeared in 𝑣𝑖−1𝑝𝑖𝑣𝑖 as well, and on 𝑠 we requeried a
variable from 𝑣𝑖−1𝑝𝑖𝑣𝑖 in consistent way. Moreover if all paths from some set {𝑟𝑖}𝑖∈𝐿 where
𝐿 ⊆ [𝑘0 + 1] are inconsistent with 𝑠 we requery at least |𝐿| variables from the path 𝑝 on the
path 𝑠. Hence at least one of the paths 𝑟𝑖0 is consistent with 𝑠, where 𝑖0 ∈ [𝑘0 + 1] (or on the
path 𝑝𝑠 we requery at least 𝑘0 + 1 variables).

Remark 4.7
This is the only place there we use the property that there are no repetitions on the
garland.

Consider two paths 𝑝𝑠 and 𝑟𝑖0𝑠:

21

• these paths are consistent;

• 𝜏𝑝𝑠(𝑥𝑖0) ≠ 𝜏𝑟𝑖0𝑠(𝑥𝑖0).

These properties imply that clause 𝐶 is not a legal answer for at least one these paths, and we
have a contradiction with the assumption that there is a consistent path from 𝑣𝑘0+1 to this
clause. That gives us the desired description of leaves that should be unreachable for 𝑣𝑘0+1.

To conclude the proof it remains to show that there should be a path from 𝑣𝑘0+1 to at least
one leaf marked by a clause 𝐶 ∈ ℭ. We do it in the next section.

4.4 Directing the Flow

Let us remind that we deal with 𝜑 ≔ Flow𝜂𝑘0+1

𝐺 . To show that there is a path consistent
with 𝜁 from 𝑣𝑘0+1 to a leaf with a label 𝐶 ∈ ℭ we show that (𝜑 ⧵ ℭ)|𝜁 is satisfiable and hence
there should be an extension of 𝜁 that violates only clauses from ℭ.

Remark 4.8
If we do not care about assignment 𝜁, the statement is trivial, since 𝜑 is so-called mini-
mally unsatisfiable formula (that becomes satisfiable after removing any clause). But 𝜁
transforms our formula to “heavily unsatisfiable” formula, since 𝜁 0.6-satisfies a lot of
vertices (that was the crucial property that we used to create a garland).

Note that by construction of 𝜂𝑘0+1 for each 𝑣 ∈ 𝑉 there exists a clause 𝐷 ∈ 𝔇 that had
originated from the constraint for 𝑣. For each 𝑣, we pick any such clause and denote it by𝐷𝑣.
We divide the rest of the proof into two parts.

1. “Local part”. We find a carefully chosen large enough set of vertices 𝑈 ∈ 𝑉 and an
assignment 𝜏 ⊇ 𝜁 such that there is a set 𝑉𝜏 ⊇ (𝑈 ∪ 𝑉𝜁):

• (𝑉 ⧵ 𝑉𝜏 , 𝐸 ⧵ supp(𝜏)) satisfies (𝑟, 𝛽′)-expansion property;

• for all 𝑣 ∈ 𝑈 the assignment 𝜏 violates 𝐷𝑣 and hence 𝜏 assigns all edges incident
to 𝑣;

• for all 𝑣 ∈ 𝑉𝜏 ⧵ 𝑈 the assignment 𝜏 satisfies constraint for 𝑣.

For this part we use the simplified version of technique used for the garland creation.

2. “Global part”. By using Max-Flow Min-Cut Theorem we show that 𝜏 can be extended
to total assignment that satisfies constraints for vertices whose constraints are neither
satisfied nor falsified by 𝜏 yet.

22

Since we satisfy all the constraints of (Flow𝐺 ⧵𝔇)𝜁 this assignment also satisfies all con-
straints in (𝜑 ⧵ ℭ)|𝜁 by the construction of the formula 𝜑 (clauses of 𝜑 are the weakened
versions of the clauses Flow𝐺).

Before we proceed with the proof let us define the “overflow”.
Definition 4.9

The overflow introduced by a locally consistent assignment 𝜎 is:

of𝜎 ≔ 1 + ∑
𝑣∈𝑉𝜎

⎛⎜
⎝

∑
𝑒∈𝐸:st(𝑒)=𝑣

𝑥𝑒 − ∑
𝑒∈𝐸:en(𝑒)=𝑣

𝑥𝑒 − 𝑐(𝑣)⎞⎟
⎠

.

Note that of𝜁 ≤ |𝜁| + 1 ≤ 𝜈𝑘−1Δ𝑟 + 1.

Local part. We start with the local part of the proof. In the beginning of our construction
𝑈0 ≔ ∅, 𝜏0 ≔ 𝜁, 𝑉𝜏0 ≔ 𝑉𝜁 and 𝑖 ≔ 0.

We repeat the following process while of𝜏𝑖 > 0.

1. Choose a vertex 𝑢𝑖 that is untouched by 𝜏𝑖.

2. Let 𝜌𝑢𝑖
be an assignment to edges that are incident to 𝑢𝑖 such that𝐷𝑢𝑖

is unsatisfied by
𝜌𝑢𝑖

.

3. 𝜏 ′ ≔ 𝜏𝑖 ∪ 𝜌𝑢𝑖
. Since 𝑢𝑖 is untouched by 𝜏𝑖 there is no intersection between 𝜌𝑢𝑖

and 𝜏𝑖.

4. Let 𝐻𝑖 ⊆ 𝑉 ⧵ 𝑉𝜏𝑖 be the maximal set of vertices that satisfies:

• |𝐻𝑖| ≤ 𝑟;
• |𝐸(𝐻𝑖, 𝐻𝑖 ⧵ {𝑢𝑖}) ⧵ supp(𝜏𝑖)| ≤ 𝛽′Δ|𝐻𝑖|.

Let 𝜅𝑖 be an assignment on variables that correspond to edges in the set𝐸(𝐻)⧵supp(𝜏 ′)
such that for all 𝑣 ∈ 𝐻𝑖:

∑
𝑒∈𝐸:st(𝑒)=𝑣

(𝜏 ′ ∪ 𝜅𝑖)(𝑥𝑒) − ∑
𝑒∈𝐸:en(𝑒)=𝑣

(𝜏 ′ ∪ 𝜅𝑖)(𝑥𝑒) = 𝑐(𝑣).

5. 𝑈𝑖+1 ≔ 𝑈𝑖 ∪ {𝑢𝑖}, 𝜏𝑖+1 ≔ 𝜏 ′ ∪ 𝜅𝑖 and 𝑉𝜏𝑖+1
≔ 𝑉𝜏𝑖 ∪𝐻𝑖 ∪ {𝑢𝑖}.

6. 𝑖 ≔ 𝑖 + 1.

Let ℓ be a number of iterations in this process. Let 𝑈 ≔ 𝑈ℓ and 𝜏 ≔ 𝜏ℓ.
At first we give an upper bound on ℓ. Since for all 𝑖 an assignment 𝜅𝑖 exactly satisfies

vertices in 𝐻 , inclusion of 𝐻 into 𝑉𝜏 does not change the overflow. Assignment 𝜌𝑢𝑖
violates

23

𝐷𝑢𝑖
∈ 𝔇 and by definition of 𝜂𝑘0+1:

−Δ
4 − 1 ≤ ∑

𝑒∈𝐸:st(𝑒)=𝑢𝑖

𝜌𝑢𝑖
(𝑥𝑒) − ∑

𝑒∈𝐸:en(𝑒)=𝑢𝑖

𝜌𝑢𝑖
(𝑥𝑒) ≤ −Δ

4 .

Hence on each iteration of𝜏𝑖+1
≤ of𝜏𝑖 −

∆
4 and |𝑈| ≤ 4|𝜁|

∆ and −∆
4 − 1 ≤ of𝜏 ≤ 0.

Lemma 4.10
For all 𝑖 ≤ ℓ:

• 𝜅𝑖 exists;

• |𝑉𝜏𝑖| ≤
1

(𝛽−𝛽′)∆(supp(𝜁) + Δ|𝑈𝑖|) and hence |𝜏𝑖| ≤ 2
(𝛽−𝛽′)(| supp(𝜁)| + Δ|𝑈𝑖|);

• (𝑉 ⧵ 𝑉𝜏𝑖, 𝐸 ⧵ supp(𝜏𝑖)) satisfies (𝑟, 𝛽′)-expansion property.

Proof. This Lemma may be considered as simplified version of Lemma 4.5. For the proof see
Appendix A.

To conclude the construction note that 𝜏𝑖 ≤ 10
4 𝜈𝑘−2Δ𝑟 ≤ ∆

4 𝑟 for all 𝑖 ≤ ℓ and we always
can find the vertex untouched by 𝜏𝑖.

Remark 4.11
This is the only place where we use that 𝑟 ≤ 𝑛

∆ .

Global part. Let 𝐵 ≔ 𝑉𝜏 ⧵ 𝑉𝜁. For the vertex 𝑣 ∈ 𝑉 the overflow of 𝑣 is defined in the
following way:

of(𝑣) ≔ − ∑
𝑒∈supp(𝜏)
st(𝑒)=𝑢

𝜏(𝑥𝑒) + ∑
𝑒∈supp(𝜏)
en(𝑒)=𝑢

𝜏(𝑥𝑒) + 𝑐(𝑣).

We want to create an auxiliary graph. Let 𝐹+ ≔ {𝑣 ∈ 𝑉 ⧵ 𝑉𝜏 ∣ of(𝑣) > 0} and 𝐹− ≔
{𝑣 ∈ 𝑉 ⧵ 𝑉𝜏 ∣ of(𝑣) < 0}. See fig. 2.

𝑉𝜁

𝐹+

𝐹−

𝐵
𝐹−

𝐹+

Figure 2: Set after assignment

𝐹+ 𝐹−alg.
expansion

source

sink
comb. expansion

𝑉𝜁

𝐵

Figure 3: Graph 𝐺′ with cuts

24

We define a graph 𝐺′ ≔ (𝑉 ′, 𝐸′) on vertices 𝑉 ′ ≔ (𝑉 ⧵ 𝑉𝜏) ∪ {𝑠} ∪ {𝑡}, where 𝑠 is a
source and 𝑡 is a sink. Edges 𝐸′ include four groups:

• 𝐸 ⧵ supp(𝜏);

• we connect 𝑠 with all 𝑣 ∈ 𝐹+ by of(𝑣) number of edges;

• we connect 𝑡 with all 𝑣 ∈ 𝐹− by −of(𝑣) number of edges;

• if of𝜏 < 0 we choose an arbitrary set of vertices 𝑆 ∈ 𝑉 ⧵ 𝑉𝜏 of size |of𝜏 | and connect
all 𝑣 ∈ 𝑆 with 𝑠 by one more edge.

See fig. 3.
Remark 4.12

1. deg(𝑠) = deg(𝑡);

2. If 𝐴 ⊆ 𝑉 ′ then 𝐸({𝑠},𝐴) ≤ ∆
4 + 1 + ∑

𝑣∈𝐴
of(𝑣) and 𝐸({𝑡},𝐴) = − ∑

𝑣∈𝐴
of(𝑣).

Proof. The first property follows from the construction of 𝜏 and the second one follows from
definition of 𝐺′.

Let 𝑓 ≔ deg(𝑠). To conclude the proof we want to show that there is an 𝑠-𝑡 flow in 𝐺′ of
size 𝑓 (assuming that capacity of each edge is 1) and that if this flow exists, then we have an
extension of 𝜏 that satisfies Flow𝐺 ⧵𝔇. As we mention above together these facts imply that
(Flow𝐺 ⧵𝔇)|𝜏 is satisfiable hence (Flow𝐺 ⧵𝔇)|𝜁 is satisfiable and (𝜑 ⧵ ℭ)|𝜁 is also satisfiable
hence there is a path from 𝑣𝑘0+1 to a leaf marked by some 𝐶 ∈ ℭ which is a contradiction
with an existence of a garland and an assumption about size of the branching program.

We start with the second part. Suppose that we have a flow of size 𝑓 . Fix the flow that
achieves this value. We define a total proper assignment 𝜎 ⊇ 𝜏 in the natural way. Consider
an edge 𝑒 ∈ 𝐸′ ∪ 𝐸 and 𝑎 = (𝑢, 𝑣), 𝑎′ = (𝑣, 𝑢) its directed copies. If there is a flow on the
edge 𝑒:

• from 𝑢 to 𝑣 then 𝑥𝑎 = 1 and 𝑥𝑎′ = 0;

• from 𝑣 to 𝑢 then 𝑥𝑎 = 0 and 𝑥𝑎′ = 1.
otherwise we set 𝑥𝑎 = 0 and 𝑥𝑎′ = 0.

Note that 𝑓 = deg(𝑠) hence we use all edges that connect 𝑠 with other vertices to push
the flow. That implies for all 𝑣 ∈ 𝑉 ⧵ 𝑉𝜏 :

∑
𝑒∈supp(𝜎)⧵supp(𝜏)

st(𝑒)=𝑣

𝜎(𝑥𝑒) + ∑
𝑒∈supp(𝜎)⧵supp(𝜏)

en(𝑒)=𝑣

𝜎(𝑥𝑒) = |𝐸(𝑠, 𝑣)| = of(𝑣)

25

and hence
∑

𝑒∈𝐸:st(𝑒)=𝑣
𝜎(𝑥𝑒) + ∑

𝑒∈𝐸:en(𝑒)=𝑣
𝜎(𝑥𝑒) = 𝑐(𝑣).

and constraints for all vertices in 𝑉 ⧵ 𝑉𝜏 are satisfied, but 𝜏 itself satisfied all constraints in
Flow𝐺 ⧵𝔇 that correspond to vertices in 𝑉𝜏 . Altogether it says that 𝜎 satisfies all constraints
in Flow𝐺 ⧵𝔇 as desired.

It remains to show that we have an 𝑠-𝑡 flow of size 𝑓 in 𝐺′. To do it we use the Max-Flow
Min-CutTheorem and show that minimal 𝑠-𝑡 cut has size 𝑓 . Consider such a cut (𝑆, 𝑇), where
𝑆, 𝑇 are disjoint subsets of 𝑉 ′ such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 . We consider two cases:

• either 𝑆 or 𝑇 is small enough, then we use the (𝑟, 𝛽′)-expansion property that we have
after removing supp(𝜏) and 𝑉𝜏 from 𝐺;

• 𝑆 and 𝑇 are large enough, then we use the Mixing Lemma to show that even removing
supp(𝜏) from 𝐺 cannot destroy balanced cuts.

see fig. 3.

𝐹+ 𝐹−
source sink

𝐽

𝐾

Figure 4: Graph 𝑠-𝑡 cut

Consider an arbitrary 𝑠-𝑡 cut 𝑆 ∪ 𝑇 . Let 𝐽 ≔ 𝑆 ⧵ {𝑠} and 𝐾 ≔ 𝑇 ⧵ {𝑡} (see fig. 4).
Consider the following cases.

1. If 𝐽 = ∅ or 𝐾 = ∅ then size of (𝑆, 𝑇) cut equals deg(𝑠) or deg(𝑡) respectively and we
are done.

2. 0 < |𝐽| ≤ 𝑟 or 0 < |𝐾| ≤ 𝑟. Wlog assume that |𝐽 | ≤ 𝑟. Note that:

𝐸𝐺′(𝑆, 𝑇) = 𝐸𝐺′({𝑠},𝐾) + 𝐸𝐺′({𝑡}, 𝐽) + 𝐸𝐺′(𝐽,𝐾).

𝐸𝐺′({𝑠},𝐾) = ∑
𝑣∈𝐹+∩𝐾

of(𝑣), so by Remark 4.12 to give a lower bound on the size of cut

it is enough to show that𝐸𝐺′(𝐽,𝐾) ≥ ∆
4 +1+ ∑

𝑣∈𝐹+∩𝐽
of(𝑣). But (𝑉 ⧵𝑉𝜏 , 𝐸 ⧵ supp(𝜏))

satisfies (𝑟, 𝛽′)-expansion property. Hence

• for all 𝑣 ∈ 𝑉 ⧵ 𝑉𝜏 : |of(𝑣)| ≤ 0.1 ⋅ Δ;

26

• |𝐸𝐺′(𝐽,𝐾)| ≥ 0.9 ⋅ Δ|𝐽|,

that implies that |𝐸𝐺′(𝐽,𝐾)| − ∆
4 − 1 ≥ 2 ∑

𝑣∈𝐹+∩𝐽
of(𝑣).

3. |𝐽 | > 𝑟, |𝐾| > 𝑟. Wlog assume that |𝐽 | ≤ |𝐾|. By Mixing Lemma:

|𝐸𝐺(𝐽, 𝐽)| = Δ|𝐽|−𝐸𝐺(𝐽, 𝐽) ≥ Δ|𝐽|−Δ
𝑛 |𝐽|2−𝛼Δ|𝐽| ≥ Δ|𝐽|−|𝐽|−𝛼Δ|𝐽| ≥ 0.9⋅Δ𝑟,

and
|𝐸𝐺′(𝐽,𝐾)| ≥ |𝐸𝐺(𝐽, 𝐽)| − | supp(𝜏)| ≥ 0.6 ⋅ Δ𝑟.

On the other hand:

𝑓 = ∑
𝑣∈𝐹+

of(𝑣) =

∑
𝑣∈𝐹+

⎛⎜⎜⎜⎜
⎝
− ∑

𝑒∈supp(𝜏)
st(𝑒)=𝑢

𝜏(𝑥𝑒) + ∑
𝑒∈supp(𝜏)
en(𝑒)=𝑢

𝜏(𝑥𝑒) + 𝑐(𝑣)
⎞⎟⎟⎟⎟
⎠

≤

| supp(𝜏)| ≤ Δ
4 𝑟.

Hence in all cases (𝑆, 𝑇) has size at least 𝑓 which by Max-Flow Min-Cut Theorem implies
the existence of flow in 𝐺′ of size at least 𝑓 . That as mentioned above implies the desired
lower bound on the size of branching program.

27

5 Conclusion

In this work, we proved the first exponential lower bound for the proof systems based on
(1,+𝑘)-BP (Theorem 1.4).

In conclusion we want to mention some open problems. We start with the obvious ones.

1. Find a formula that is hard for (1,+𝑘)-BP where 𝑘 ≔ 𝑛𝜀.

2. Find a formula that is hard for read-twice branching programs (programs that on any
path may read each variable at most twice).

Another problems are more technical, but in our opinion the solution of these problems
may lead to new techniques for proving lower bounds.

3. Find a “natural” formula that is hard for (1,+𝑘)-BP for any 𝑘 > 0. The main problem
with the current bound is that we amplify our formula by an 𝜂 function. This is an
artificial trick that prevents generalization of our main Theorem.

4. More difficult question: can we prove a lower bound on randomΔ-CNF formulas? This
is a canonical example of the hard formulas. Typically, only the “local” structure is used
for proving lower bounds on these formulas, which is one of the important barriers for
proving lower bounds on these formulas in AC0-Frege proof system.

28

References

[AC88] Noga Alon and Fan R. K. Chung. “Explicit construction of linear sized tolerant net-
works”. In: Discret. Math. 72.1-3 (1988), pp. 15–19. doi: 10.1016/0012-365X(88)
90189-6. url: https://doi.org/10.1016/0012-365X(88)90189-6.

[Ale+04] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigder-
son. “Pseudorandom Generators in Propositional Proof Complexity”. In: SIAM J.
Comput. 34.1 (2004), pp. 67–88. doi: 10.1137/S0097539701389944. url: https:
//doi.org/10.1137/S0097539701389944.

[Ale+07] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. “An
Exponential Separation between Regular andGeneral Resolution”. In:Theory Com-
put. 3.1 (2007), pp. 81–102. doi: 10.4086/toc.2007.v003a005. url: https:
//doi.org/10.4086/toc.2007.v003a005.

[AR03] Michael Alekhnovich and Alexander A. Razborov. “Lower Bounds for Polynomial
Calculus: Non-Binomial Case”. In: Proceedings of the Steklov Institute of Mathemat-
ics 242 (2003). Available at http://people.cs.uchicago.edu/~razborov/
files/misha.pdf. Preliminary version in FOCS ’01., pp. 18–35.

[Bus+97] Samuel R. Buss, Russell Impagliazzo, Jan Krajıćek, Pavel Pudlák, Alexander A.
Razborov, and Jirı ́ Sgall. “Proof Complexity in Algebraic Systems and Bounded
Depth Frege Systems with Modular Counting”. In: Comput. Complex. 6.3 (1997),
pp. 256–298. doi: 10.1007/BF01294258. url: https://doi.org/10.1007/
BF01294258.

[BW01] Eli Ben-Sasson and Avi Wigderson. “Short proofs are narrow – resolution made
simple”. In: J. ACM 48.2 (2001), pp. 149–169. doi: 10.1145/375827.375835. url:
https://doi.org/10.1145/375827.375835.

[CEI96] Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. “Using the Groebner Basis
Algorithm to Find Proofs of Unsatisfiability”. In: Proceedings of the Twenty-Eighth
Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania,
USA, May 22-24, 1996. Ed. by Gary L. Miller. ACM, 1996, pp. 174–183. doi: 10.
1145/237814.237860. url: https://doi.org/10.1145/237814.237860.

[CR79] StephenCook and Robert Reckhow. “TheRelative Efficiency of Propositional Proof
Systems”. In: Journal of Symbolic Logic 44.1 (Mar. 1979), pp. 36–50. url: https:
//projecteuclid.org:443/euclid.jsl/1183740343.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. “A machine program for
theorem proving”. In: Communications of the ACM 5.7 (1962), pp. 394–397.

29

https://doi.org/10.1016/0012-365X(88)90189-6
https://doi.org/10.1016/0012-365X(88)90189-6
https://doi.org/10.1016/0012-365X(88)90189-6
https://doi.org/10.1137/S0097539701389944
https://doi.org/10.1137/S0097539701389944
https://doi.org/10.1137/S0097539701389944
https://doi.org/10.4086/toc.2007.v003a005
https://doi.org/10.4086/toc.2007.v003a005
https://doi.org/10.4086/toc.2007.v003a005
http://people.cs.uchicago.edu/~razborov/files/misha.pdf
http://people.cs.uchicago.edu/~razborov/files/misha.pdf
https://doi.org/10.1007/BF01294258
https://doi.org/10.1007/BF01294258
https://doi.org/10.1007/BF01294258
https://doi.org/10.1145/375827.375835
https://doi.org/10.1145/375827.375835
https://doi.org/10.1145/237814.237860
https://doi.org/10.1145/237814.237860
https://doi.org/10.1145/237814.237860
https://projecteuclid.org:443/euclid.jsl/1183740343
https://projecteuclid.org:443/euclid.jsl/1183740343

[FF56] L. R. Ford and D. R. Fulkerson. “Maximal Flow Through a Network”. In: Canadian
Journal of Mathematics 8 (1956), pp. 399–404. doi: 10.4153/CJM-1956-045-5.

[GMT09] Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. “Optimal Sherali-
Adams Gaps from Pairwise Independence”. In:Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques. Ed. by Irit Dinur, Klaus
Jansen, Joseph Naor, and José Rolim. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2009, pp. 125–139. isbn: 978-3-642-03685-9.

[Gol79] Allen Goldberg. “Average Case Complexity of the Satisfiability Problem”. In: 4th
Workshop on Automated Deduction. Austin Texas, 1979, pp. 1–6.

[Gom58] Ralph E. Gomory. “Outline of an algorithm for integer solutions to linear pro-
grams”. In: Bulletin of the American Mathematical Society 64.5 (1958), pp. 275–278.
doi: bams/1183522679.

[Gom60] Ralph E. Gomory. “Solving linear programming problems in integers”. In: Combi-
natorial Analysis 10 (1960). Proceedings of Symposia in Applied Mathematics.

[Gom63] Ralph E. Gomory. “An algorithm for integer solutions to linear programs”. In: Re-
cent Advances in Mathematical Programming 64 (1963), pp. 260–302.

[JR98] Stasys Jukna and Alexander A. Razborov. “Neither Reading Few Bits Twice Nor
Reading Illegally Helps Much”. In: Discret. Appl. Math. 85.3 (1998), pp. 223–238.
doi: 10.1016/S0166-218X(98)00042-0. url: https://doi.org/10.1016/
S0166-218X(98)00042-0.

[Juk08] Stasys Jukna. “Expanders and time-restricted branching programs”. In: Theor.
Comput. Sci. 409.3 (2008), pp. 471–476. doi: 10.1016/j.tcs.2008.09.012.
url: https://doi.org/10.1016/j.tcs.2008.09.012.

[Juk12] Stasys Jukna. Boolean Function Complexity —Advances and Frontiers. Vol. 27. Algo-
rithms and combinatorics. Springer, 2012. isbn: 978-3-642-24507-7. doi: 10.1007/
978-3-642-24508-4. url: https://doi.org/10.1007/978-3-642-24508-
4.

[Kno17] Alexander Knop. “IPS-like Proof Systems Based on Binary Decision Diagrams”.
In: Electron. Colloquium Comput. Complex. 24 (2017), p. 179. url: https://eccc.
weizmann.ac.il/report/2017/179.

[Lov+95] László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. “Search Problems
in the Decision Tree Model”. In: SIAM J. Discret. Math. 8.1 (1995), pp. 119–132.
doi: 10 . 1137 / S0895480192233867. url: https : / / doi . org / 10 . 1137 /
S0895480192233867.

30

https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/bams/1183522679
https://doi.org/10.1016/S0166-218X(98)00042-0
https://doi.org/10.1016/S0166-218X(98)00042-0
https://doi.org/10.1016/S0166-218X(98)00042-0
https://doi.org/10.1016/j.tcs.2008.09.012
https://doi.org/10.1016/j.tcs.2008.09.012
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1007/978-3-642-24508-4
https://eccc.weizmann.ac.il/report/2017/179
https://eccc.weizmann.ac.il/report/2017/179
https://doi.org/10.1137/S0895480192233867
https://doi.org/10.1137/S0895480192233867
https://doi.org/10.1137/S0895480192233867

[Sav98] Petr Savický. “A probabilistic nonequivalence test for syntactic (1,+k)-branching
programs”. In: Electron. Colloquium Comput. Complex. 5.51 (1998). url: http://
eccc.hpi-web.de/eccc-reports/1998/TR98-051/index.html.

[Sie96] Detlef Sieling. “New Lower Bounds and Hierarchy Results for Restricted Branch-
ing Programs”. In: J. Comput. Syst. Sci. 53.1 (1996), pp. 79–87. doi: 10.1006/jcss.
1996.0050. url: https://doi.org/10.1006/jcss.1996.0050.

[Sok20] Dmitry Sokolov. “(Semi)Algebraic proofs over ±1 variables”. In: Proccedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, Chicago, IL, USA, June 22-26, 2020. Ed. by Konstantin Makarychev, Yury
Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy. ACM, 2020,
pp. 78–90. doi: 10.1145/3357713.3384288. url: https://doi.org/10.
1145/3357713.3384288.

[SW94] Detlef Sieling and Ingo Wegener. “New Lower Bounds and Hierarchy Results for
Restricted Branching Programs”. In:Graph-Theoretic Concepts in Computer Science,
20th International Workshop, WG ’94, Herrsching, Germany, June 16-18, 1994, Pro-
ceedings. Ed. by Ernst W. Mayr, Gunther Schmidt, and Gottfried Tinhofer. Vol. 903.
Lecture Notes in Computer Science. Springer, 1994, pp. 359–370. doi: 10.1007/3-
540- 59071- 4_61. url: https://doi.org/10.1007/3- 540- 59071-
4%5C_61.

[SŽ97] Petr Savický and Stanislav Žák. “A Lower Bound on Branching Programs Reading
Some Bits Twice”. In: Theor. Comput. Sci. 172.1-2 (1997), pp. 293–301. doi: 10.
1016/S0304-3975(96)00183-1. url: https://doi.org/10.1016/S0304-
3975(96)00183-1.

[Weg00] Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.
isbn: 0-89871-458-3. url: http : / / ls2 - www . cs . uni - dortmund . de /
monographs/bdd/.

[Weg88] Ingo Wegener. “On the complexity of branching programs and decision trees for
clique functions”. In: J. ACM 35.2 (1988), pp. 461–471. doi: 10.1145/42282.
46161. url: https://doi.org/10.1145/42282.46161.

[Žák86] Stanislav Žák. “An exponential lower bound for real-time branching programs”.
In: Information and Control 71.1 (1986), pp. 87–94. issn: 0019-9958. doi: https:
/ / doi . org / 10 . 1016 / S0019 - 9958(86) 80018 - 3. url: http : / / www .
sciencedirect.com/science/article/pii/S0019995886800183.

31

http://eccc.hpi-web.de/eccc-reports/1998/TR98-051/index.html
http://eccc.hpi-web.de/eccc-reports/1998/TR98-051/index.html
https://doi.org/10.1006/jcss.1996.0050
https://doi.org/10.1006/jcss.1996.0050
https://doi.org/10.1006/jcss.1996.0050
https://doi.org/10.1145/3357713.3384288
https://doi.org/10.1145/3357713.3384288
https://doi.org/10.1145/3357713.3384288
https://doi.org/10.1007/3-540-59071-4_61
https://doi.org/10.1007/3-540-59071-4_61
https://doi.org/10.1007/3-540-59071-4%5C_61
https://doi.org/10.1007/3-540-59071-4%5C_61
https://doi.org/10.1016/S0304-3975(96)00183-1
https://doi.org/10.1016/S0304-3975(96)00183-1
https://doi.org/10.1016/S0304-3975(96)00183-1
https://doi.org/10.1016/S0304-3975(96)00183-1
http://ls2-www.cs.uni-dortmund.de/monographs/bdd/
http://ls2-www.cs.uni-dortmund.de/monographs/bdd/
https://doi.org/10.1145/42282.46161
https://doi.org/10.1145/42282.46161
https://doi.org/10.1145/42282.46161
https://doi.org/https://doi.org/10.1016/S0019-9958(86)80018-3
https://doi.org/https://doi.org/10.1016/S0019-9958(86)80018-3
http://www.sciencedirect.com/science/article/pii/S0019995886800183
http://www.sciencedirect.com/science/article/pii/S0019995886800183

A Missed Lemmas

A.1 Lemma 4.5

At first we prove two auxiliary Lemmas.
Lemma A.1

If 𝐺 ≔ (𝑉 ,𝐸) satisfies (𝑟, 𝑎)-expansion property, 𝑀 ⊆ 𝐸, and 𝑆 ⊆ 𝑉 of size at most
𝑟, such that |𝐸(𝑆, 𝑆) ⧵𝑀| ≤ 𝑏Δ|𝑆| then |𝑆| ≤ |𝑀|

(𝑎−𝑏)∆ .

Proof. The size of 𝑆 is at most 𝑟, hence:

𝑏Δ|𝑆| ≥ |𝐸(𝑆, 𝑆) ⧵𝑀| ≥ 𝑎Δ|𝑆| − |𝑀|.

Thus |𝑆| ≤ |𝑀|
(𝑎−𝑏)∆ .

Lemma 4.5
Let (𝑝, 𝑈𝑝, 𝜎𝑝) and (𝑞, 𝑈𝑞, 𝜎𝑞) be 0.9-good triples. Then there is an assignment 𝜅 such
that:

• for any 𝛾 that is an instance of 𝜎𝑝 ⊍ 𝜎𝑞 an assignment 𝛾 ∪ 𝜅 is a 𝛽′-mlce on
supp(𝜎𝑝) ∪ supp(𝜎𝑞);

• | supp(𝛾 ∪ 𝜅)| ≤ 𝜈𝑘−1Δ𝑟.

Moreover if 𝑝 = 𝑞 then triple (𝑝, 𝑈𝑝, 𝜎𝑝 ∪ 𝜅) is 𝛽′-good.

Proof. Let 𝑆 ≔ 𝑉𝜎𝑝
∪ 𝑉𝜎𝑞

, 𝐸𝜎 ≔ supp(𝜎𝑝) ∪ supp(𝜎𝑞) and 𝐵 ⊆ 𝑉 ⧵ 𝑆 be the maximal set of
vertices that satisfies:

• |𝐵| ≤ 𝑟;

• |𝐸(𝐵,𝐵) ⧵ 𝐸𝜎| ≤ 𝛽′Δ|𝐵|.

At first we give an upper bound on the size of set 𝐵.
Partial assignment 𝜎𝑝 is 0.9-mlce on 𝑀 ∪𝑈𝑝. 𝛽′Δ|𝑉𝜎𝑝

| ≥ |𝐸(𝑉𝜎𝑝
, 𝑉 𝜎𝑝

) ⧵ (𝑀 ∪𝑈𝑝)| and
by Lemma A.1

|𝑉𝜎𝑝
| ≤ |𝑀 ∪ 𝑈𝑝|

(𝛽 − 𝛽′)Δ ≤ 2 𝜈𝑘
(𝛽 − 𝛽′)𝑟 ≤ 1

2𝜈𝑘−1𝑟.

By analogy the same holds for 𝑉𝜎𝑞
.

32

The equality𝐸(𝐵,𝐵)∩𝐸𝜎 = 𝐸(𝐵, 𝑆)∪(𝐸(𝐵)∩|𝑀∪𝑈𝑝∪𝑈𝑞|) together with |𝐸(𝐵,𝐵)⧵
𝐸𝜎| ≤ 𝛽′Δ|𝐵| implies:

(1 − 𝛽′)Δ|𝐵| − |𝑀 ∪ 𝑈𝑝 ∪ 𝑈𝑞| ≤ |𝐸(𝐵, 𝑆)|

By Mixing Lemma:
|𝐸(𝐵, 𝑆)| ≤ Δ

𝑛 |𝐵||𝑆| + 𝛼Δ√|𝑆||𝐵|.

For the sake of contradiction assume that |𝐵| ≥ |𝑆| thus:

|𝐸(𝐵, 𝑆)| ≤ Δ
𝑛 |𝐵||𝑆| + 𝛼Δ|𝐵|.

Altogether:

(1 − 𝛽′)Δ|𝐵| ≤ Δ𝑟
𝑛 𝜈𝑘−1|𝐵| + 𝛼Δ|𝐵| + 3𝜈𝑘Δ𝑟 ≤ 2𝛼Δ|𝐵|,

that contradicts the choice of 𝛼 and 𝛽′, hence |𝐵| ≤ |𝑆| ≤ 𝜈𝑘−1𝑟.
At first we show that (𝑉 ⧵ (𝑆 ∪𝐵),𝐸 ⧵ (𝐸𝜎∪𝐸(𝐵))) satisfies (𝑟, 𝛽′)-expansion property.

By contradiction, suppose that there is a set 𝐵′ ⊆ 𝑉 ⧵ (𝑆 ∪ 𝐵) of size at most 𝑟 such that
|𝐸(𝐵′, 𝐵′) ⧵ (𝐸𝜎 ∪ 𝐸(𝐵))| < 𝛽′Δ|𝐵′|.

Again by Lemma A.1 we conclude that:

|𝐵′| ≤ |𝑀 ∪ 𝑈𝑝 ∪ 𝑈𝑞| + Δ|𝑆 ∪ 𝐵|
(𝛽 − 𝛽′)Δ ≤ 𝜈𝑘−1𝑟 +

1
2𝑟 ≤ 3

4𝑟.

But it implies that |𝐵 ∪ 𝐵′| ≤ 𝑟, moreover:

|𝐸(𝐵 ∪ 𝐵′, 𝐵 ∪ 𝐵′) ⧵ 𝐸𝜎| ≤
𝛽′Δ|𝐵| + 𝛽′Δ|𝐵′| =

𝛽′Δ|𝐵 ∪ 𝐵′|. 𝐵 and 𝐵′ are disjoint

That contradicts the choice of 𝐵.
Now we find a proper assignment 𝜅 on the 𝐸(𝐵) ⧵ 𝐸𝜎 such that for all 𝑣 ∈ 𝐵:

∑
𝑒∈𝐸:st(𝑒)=𝑣

𝑥𝑒 ≥ 0.8 ⋅ Δ.

Since 𝜎𝑝 is an (𝑟, 0.6, 0.9)-locally consistent assignment, then (𝑉 ⧵𝑉𝜎𝑝
, 𝐸 ⧵supp(𝜎𝑝)) sat-

isfies (𝑟, 0.9)-expansion property. By analogy we have the same property for 𝜎𝑞 that implies:
(𝑉 ⧵𝑆,𝐸 ⧵𝐸𝜎) satisfies (𝑟, 0.8)-expansion property. Indeed, consider a set 𝐶 ⊆ 𝑉 ⧵𝑆 of size

33

at most 𝑟:

|𝐸(𝐶,𝐶) ⧵ 𝐸𝜎| = |𝐸(𝐶,𝐶)| − |𝐸(𝐶,𝐶) ∩ 𝐸𝜎|
≥ |𝐸(𝐶,𝐶)| − |𝐸(𝐶,𝐶) ∩ supp(𝜎𝑝)| − |𝐸(𝐶,𝐶) ∩ supp(𝜎𝑞)|
= |𝐸(𝐶,𝐶) ⧵ supp(𝜎𝑝)| − 0.1 ⋅ Δ|𝐶|
≥ 0.8 ⋅ Δ|𝐶|.

By Proposition 3.4 there is an enumeration of vertices in 𝐵: 𝑣1, 𝑣2,… , 𝑣|𝐵| ∈ 𝐵 and a
sequence 𝑅1,… ,𝑅|𝐵| ⊆ (𝐸(𝐵) ⧵ 𝐸𝜎) such that:

• 𝑅𝑖 = 𝐸({𝑣𝑖}, 𝑉 ⧵ {𝑣1, 𝑣2,… , 𝑣𝑖}) ⧵ 𝐸𝜎;

• |𝑅𝑖| ≥ 0.8Δ.

We define 𝜅 in the following way:

• for an 𝑒 ∈ 𝑅𝑖 we assign corresponding variables to direct the flow outside of the vertex
𝑣𝑖 (i.e. if 𝑒′ is a directed copy of 𝑒 that goes outside of 𝑣𝑖 we set 𝑥𝑒′ to 1 and set the dual
edge to 0);

• for all loops inside the set 𝐵 we assign corresponding variables to 0.

Let 𝛾 be an instance of 𝜎𝑝 ⊍ 𝜎𝑞, 𝜁 ≔ 𝛾 ∪ 𝜅 and 𝑉𝜁 ≔ 𝑆 ∪𝐵. We have already shown that
the graph (𝑉 ⧵ 𝑉𝜁, 𝐸 ⧵ supp(𝜁)) satisfies (𝑟, 𝛽′)-expansion property. We want to show that
vertices in 𝑉𝜁 are 0.6-satisfied by 𝜁. Consider three cases.

1. 𝑣 ∈ 𝑉𝜌. Both assignments 𝜎𝑝 and 𝜎𝑞 extend an assignment 𝜌 hence 𝛾 agreed with both
assignments on edges incident to 𝑉𝜌. Thus 𝛾 0.6-satisfies 𝑣.

2. 𝑣 ∈ 𝑉𝜎𝑝
⧵ 𝑉𝜌. Let 𝐸𝑣 be a set of edges that are incident to 𝑣. At least 0.8 ⋅ Δ of those

edges carry outgoing flow from 𝑣 in 𝜎𝑝. Denote those edges as 𝐸𝜎𝑝
.

If 𝑣 ∉ 𝑉𝜎𝑞
then 𝜎𝑞 may assign at most 0.1 ⋅Δ edges in 𝐸𝑣. That means that in 𝛾 at least

0.7 ⋅ Δ edges from 𝐸𝜎𝑝
still carry outgoing flow from 𝑣.

If 𝑣 ∈ 𝑉𝜎𝑞
then 𝜎𝑝 and 𝜎𝑞 both 0.8-satisfy 𝑣. Let 𝐸𝜎𝑞

⊆ 𝐸𝑣 be the set of edges that
carry outgoing flow from 𝑣 in 𝜎𝑞. Then 𝐸𝜎𝑝

∩𝐸𝜎𝑞
≥ 0.6 ⋅ Δ, and all those edges carry

outgoing flow from 𝑣 in 𝛾.
Note that if 𝜎𝑝 = 𝜎𝑞, then we 0.8-satisfy 𝑣.

3. 𝑣 ∈ 𝑉𝜎𝑝
⧵ 𝑉𝜌. By analogy with the previous case.

4. 𝑣 ∈ 𝐵. We direct the flow on at least 0.8 ⋅ Δ edges from 𝐸𝑣 outside of 𝑣 hence 𝜅
0.8-satisfies 𝑣.

34

By construction 𝑉𝜁 ≔ 𝑉𝜎𝑝
∪𝑉𝜎𝑞

∪𝐵 hence |𝑉𝜁| ≤ 𝜈𝑘−1𝑟 and | supp(𝜁)| ≤ 𝜈𝑘−1𝑟. In order
to check that 𝜁 is 𝛽′-mlce note that:

|𝐸(𝐵,𝐵) ⧵ 𝐸𝜎| ≤ 𝛽′Δ|𝐵| ≤ 𝛽′Δ|𝑉𝜁|,

but
|𝐸(𝐵,𝐵) ⧵ 𝐸𝜎| = |𝐸(𝑉𝜁, 𝑉𝜁) ⧵ 𝐸𝜎|

since 𝜎𝑝 and 𝜎𝑞 together assign all edges that are incident to 𝑉𝜎𝑝
∪ 𝑉𝜎𝑞

. Thus:

|𝐸(𝑉𝜁, 𝑉𝜁) ⧵ 𝐸𝜎| ≤ 𝛽′Δ|𝑉𝜁|

that concludes the proof.
In case of (𝑝, 𝑈𝑝, 𝜎𝑝) = (𝑞, 𝑈𝑞, 𝜎𝑞) it remains to show that 𝜁 is 𝛽′-mlce on𝑀 ∪𝑈𝑝. Again

we note that:
|𝐸(𝐵,𝐵) ⧵ 𝐸𝜎| ≤ 𝛽′Δ|𝐵|,

and also
|𝐸(𝑉𝜎𝑝

, 𝑉 𝜎𝑝
) ⧵ 𝐸𝜎| ≤ 𝛽′Δ|𝑉𝜎𝑝

|,

hence
|𝐸(𝑉𝜎𝑝

∪ 𝐵, 𝑉𝜎𝑝
∪ 𝐵) ⧵ 𝐸𝜎| ≤ 𝛽′Δ(|𝑉𝜎𝑝

| + |𝐵|) ≤ 𝛽′Δ|𝑉𝜎𝑝
∪ 𝐵|,

where the last inequality holds since 𝐵 and 𝑉𝜎𝑝
are disjoint, that concludes the proof.

A.2 Lemma 4.10
Lemma 4.10

For all 𝑖 ≤ ℓ:
• 𝜅𝑖 exists;

• |𝑉𝜏𝑖| ≤
1

(𝛽−𝛽′)∆(supp(𝜁) + Δ|𝑈𝑖|) and hence |𝜏𝑖| ≤ 2
(𝛽−𝛽′)(| supp(𝜁)| + Δ|𝑈𝑖|);

• (𝑉 ⧵ 𝑉𝜏𝑖, 𝐸 ⧵ supp(𝜏𝑖)) satisfies (𝑟, 𝛽′)-expansion property.

Proof. We show by induction on 𝑖 that:

• (𝑉 ⧵ 𝑉𝜏𝑖, 𝐸 ⧵ supp(𝜏𝑖)) satisfies (𝑟, 𝛽′)-expansion property;

• |𝐸(𝑉𝜏𝑖, 𝑉 𝜏𝑖) ⧵ (supp(𝜁) ∪ 𝐸(𝑈𝑖))| < 𝛽′Δ|𝑉𝜏𝑖|;

• |𝑉𝜏𝑖| ≤
1

(𝛽−𝛽′)∆(supp(𝜁) + Δ|𝑈𝑖|) and hence |𝜏𝑖| ≤ 2
(𝛽−𝛽′)(| supp(𝜁)| + Δ|𝑈𝑖|).

35

Assignment 𝜏0 is 𝜁 and 𝜁 is (𝑟, 0.6, 𝛽′)-locally consistent, in particular, (𝑉 ⧵𝑉𝜁, 𝐸⧵supp(𝜁))
satisfies (𝑟, 𝛽′)-expansion property and 𝐸(𝑉𝜁, 𝑉 𝜁) ⧵ supp(𝜁)) = ∅.

By definition of 𝐻𝑖:

𝛽′Δ|𝐻𝑖| > |𝐸(𝐻𝑖, 𝐻𝑖 ⧵ {𝑢𝑖}) ⧵ supp(𝜏𝑖)| ≥ |𝐸(𝐻𝑖, 𝐻𝑖) ⧵ (supp(𝜏𝑖) ∪ 𝐸(𝐻𝑖, {𝑢𝑖}))|

and by Lemma A.1

|𝐻𝑖| ≤
| supp(𝜏𝑖) ∪ 𝐸(𝐻𝑖, 𝑢𝑖)|

(𝛽 − 𝛽′)Δ ≤ | supp(𝜏𝑖) ∪ 𝐸(𝐻𝑖, 𝑢𝑖)|
(𝛽 − 𝛽′)Δ ≤ 1

2𝜈𝑘−2(𝑟 + 1).

Hence |𝐻𝑖 ∪ 𝑉𝜏𝑖 ∪ {𝑢𝑖}| ≤ 𝑟 that together with:

|𝐸(𝐻𝑖 ∪ 𝑉𝜏𝑖 ∪ {𝑢𝑖},𝐻𝑖 ∪ 𝑉𝜏𝑖 ∪ {𝑢𝑖}) ⧵ (supp(𝜁) ∪ 𝐸(𝑈𝑖+1))| ≤
|𝐸(𝑉𝜏𝑖, 𝐻𝑖 ∪ 𝑉𝜏𝑖) ⧵ (supp(𝜁) ∪ 𝐸(𝑈𝑖+1))| + |𝐸(𝐻𝑖, 𝐻𝑖) ⧵ (supp(𝜁) ∪ 𝐸(𝑈𝑖+1) ∪ 𝐸(𝑉𝜏𝑖)| ≤

𝛽′Δ|𝑉𝜏𝑖| + 𝛽′Δ|𝐻𝑖| ≤
𝛽′Δ|𝐻𝑖 ∪ 𝑉𝜏𝑖| ≤

𝛽′Δ|𝐻𝑖 ∪ 𝑉𝜏𝑖 ∪ {𝑢𝑖}|

implies |𝑉𝜏𝑖+1
| = |𝐻𝑖 ∪ 𝑉𝜏𝑖 ∪ {𝑢𝑖}| ≤ 1

(𝛽−𝛽′)∆(| supp(𝜁)| + Δ|𝑈𝑖+1|) by Lemma A.1.
Also |𝜏𝑖+1| ≤ 2

(𝛽−𝛽′)(| supp(𝜁)| + Δ|𝑈𝑖+1|) since by construction 𝜏𝑖+1 assigns only edges in
supp(𝜁) ∪ 𝐸(𝑈𝑖 ∪ 𝑉𝜏𝑖+1

).
Nowwe show that a graph (𝑉 ⧵𝑉𝜏𝑖+1

, 𝐸 ⧵supp(𝜏𝑖+1)) satisfies (𝑟, 𝛽′)-expansion property.
For the sake of contradiction assume that there is a set 𝑆 ⊆ 𝑉 ⧵ 𝑉𝜏𝑖+1

of size at most 𝑟 such
that: 𝐸(𝑆, 𝑆) ⧵ supp(𝜏𝑖+1) ≤ 𝛽′Δ|𝐵|.

By Lemma A.1 |𝑆| ≤ | supp(𝜏𝑖+1)|
(𝛽−𝛽′)∆ ≤ 1

2𝜈𝑘−2(𝑟 + 1). Hence |𝐻𝑖 ∪ 𝑆| ≤ 𝑟 that together with:

𝐸(𝐻𝑖 ∪ 𝑆,𝐻𝑖 ∪ 𝑆 ⧵ {𝑢𝑖}) ⧵ supp(𝜏𝑖)| ≤
𝐸(𝐻𝑖, 𝐻𝑖 ∪ 𝑆 ⧵ {𝑢𝑖}) ⧵ supp(𝜏𝑖)| + 𝐸(𝑆,𝐻𝑖 ∪ 𝑆 ⧵ {𝑢𝑖}) ⧵ supp(𝜏𝑖)| ≤

𝛽′Δ|𝐻𝑖| + 𝛽′Δ|𝑆| =
𝛽′Δ|𝐻𝑖 ∪ 𝑆|

contradicts the choice of 𝐻𝑖.
To conclude the proof we have to show the existence of 𝜅𝑖. Note that (𝑉 ⧵𝑉𝜏𝑖, 𝐸⧵supp(𝜏𝑖))

satisfies (𝑟, 𝛽′)-expansion property. Consider an arbitrary set 𝐵 ⊆ 𝑉 ⧵ (𝑉𝜏𝑖 ∪{𝑢𝑖}) of size at
most 𝑟:

|𝐸(𝐵,𝐵) ⧵ (supp(𝜏𝑖) ∪ 𝐸({𝑢𝑖}))| ≥ 𝛽′Δ|𝐵| − 𝐸(𝐵, {𝑢}).

36

By Mixing Lemma:

|𝐸(𝐵, {𝑢})| ≤ Δ
𝑛 |𝐵| + 𝛼Δ

√
𝐵 ≤ 0.05 ⋅ Δ|𝐵|,

and hence
|𝐸(𝐵,𝐵) ⧵ (supp(𝜏𝑖) ∪ 𝐸({𝑢𝑖}))| ≥ 0.9 ⋅ Δ|𝐵|

and graph (𝑉 ⧵ 𝑉𝜏𝑖 ⧵ {𝑢𝑖},𝐸 ⧵ supp(𝜏𝑖)) satisfies (𝑟, 0.9)-expansion property.
By Proposition 3.4 there is an enumeration of vertices in 𝐻𝑖: 𝑣1, 𝑣2,… , 𝑣|𝐻𝑖| ∈ 𝐻𝑖 and a

sequence 𝑅1,… ,𝑅|𝐻𝑖| ⊆ 𝐸(𝐻𝑖) ⧵ (supp(𝜏𝑖) ∪ 𝐸({𝑢𝑖})) such that:

• 𝑅𝑘 = 𝐸({𝑣𝑘}, 𝑉 ⧵ {𝑣1, 𝑣2,… , 𝑣𝑘}) ⧵ (supp(𝜏𝑖) ∪ 𝐸({𝑢𝑖}));

• |𝑅𝑖| ≥ 0.9 ⋅ Δ.

We define 𝜅𝑖 for vertices 𝑣1,… , 𝑣𝐻𝑖
step by step, such that 𝜅𝑖 on𝐸(𝑣𝑘) satisfies the constraint:

∑
𝑒∈𝐸:st(𝑒)=𝑣𝑘

(𝜏 ′ ∪ 𝜅𝑖)(𝑥𝑒) − ∑
𝑒∈𝐸:en(𝑒)=𝑣𝑘

(𝜏 ′ ∪ 𝜅𝑖)(𝑥𝑒) = 𝑐(𝑣𝑘).

Since we have an access to the 0.9 ⋅ Δ edges and others are already assigned, we can always
choose the right values (loops are always assigned to zero).

37

B Garland in the Paths
Lemma 4.6

There are (𝑝, 𝑈𝑝, 𝜎𝑝), (𝑞, 𝑈𝑞, 𝜎𝑞) ∈ 𝒮 such that (𝑝, 𝑞) forms a (𝑘 + 1)-garland.

Proof. Note that we can describe elements in 𝒫 by a sequence of bits of size 𝑠 ≔ 𝜈𝑘Δ𝑟.
Each bit of this sequence describes an assignment for an edge 𝑒 that we choose on “branching
step”. From the construction it follows that different sequences generate different paths in the
branching program and hence different elements of 𝒫.

Let 𝑠𝑘 ≔ ⌊ 𝑠
𝑘+1⌋. We construct our garland by the iterative algorithm. After 𝑖-th iteration

we have a set 𝑆𝑖 of sequences of size 𝑖𝑠𝑘 such that any two of the corresponding paths form
𝑖-garland and all paths end in the same node. The size of 𝑆𝑖 will be at least exp [𝑠𝑘 − 𝑖

2𝑘𝑠𝑘]
for all 1 ≤ 𝑖 ≤ 𝑘 + 1.

1. For 𝑖 = 1 consider all possible strings of length 𝑠𝑘 and paths that correspond to them.
The branching program has size at most 2𝑠𝑘

2𝑘 , hence there exists a node such that at least
2𝑠𝑘(2𝑘−1)

2𝑘 paths end there. The set 𝑆1 consists of all corresponding sequences.

2. For the step 𝑖, 2 ≤ 𝑖 ≤ 𝑘+1, we consider all sequences in 𝑆𝑖−1. Let 𝑣 be the end node of
all paths corresponding to sequences in the set. To each sequence 𝑠 ∈ 𝑆𝑖−1 we append
a string 𝑢𝑠 of 𝑠𝑘 bits in such a way that for any pair 𝑟, 𝑟′ ∈ 𝑆𝑖−1 paths that corresponds
to 𝑟𝑢𝑟 and 𝑟′𝑢𝑟′ differ at some node after 𝑣. Since 2𝑠𝑘 ≥ |𝑆𝑖−1|, it is possible to do this.

For the resulting sequences, we consider the set of the corresponding paths. The set
of paths has size at least 2𝑠𝑘(2𝑘−𝑖+1)

2𝑘 , and the size of the program is at most 2𝑠𝑘
2𝑘 . Hence

there exists a node such that 2𝑠𝑘(2𝑘−𝑖)
2𝑘 paths end there. Let 𝑆𝑖 be the set of sequences

corresponding to those paths.

After 𝑘 + 1 steps we have a set 𝑆𝑘+1, |𝑆𝑘+1| ≥ 2, such that any two sequences in it
correspond to a (𝑘 + 1)-garland.

38

	Introduction
	Our results
	Technique

	Preliminaries
	Branching programs

	Expanders
	Lower bounds for [k]
	Hard Formulas
	Locally Consistent Assignments

	Proof of Theorem 1.4
	Construction of the Garland

	Unreachable Leaves
	Directing the Flow

	Conclusion
	References
	Missed Lemmas
	Lemma 4.5
	Lemma 4.10

	Garland in the Paths

