
Ñàíêò-Ïåòåðáóðãñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò

ÈÑÒÎÌÈÍÀ Àëåêñàíäðà Àíäðååâíà

Âûïóñêíàÿ êâàëèôèêàöèîííàÿ ðàáîòà

Î ìîðôèíãå èçîáðàæåíèé ãðàôîâ â ïëîñêîñòè è
ïðîñòðàíñòâå

Óðîâåíü îáðàçîâàíèÿ: áàêàëàâðèàò

Íàïðàâëåíèå: 01.03.01 ¾Ìàòåìàòèêà¿

Îñíîâíàÿ îáðàçîâàòåëüíàÿ ïðîãðàììà: ÑÂ.5000.2017 ¾Ìàòåìàòèêà¿

Íàó÷íûé ðóêîâîäèòåëü:

Ph. D. in Informatics,

äîöåíò ôàêóëüòåòà ÌÊÍ ÑÏáÃÓ

Àðñåíüåâà Åëåíà Àëåêñàíäðîâíà

Ðåöåíçåíò:

PhD in Applied Mathematics

and Computer Science,

Postdoctoral researcher,

Universite libre de Bruxelles

Pilar Cano

Ñàíêò-Ïåòåðáóðã

2021

Saint-Petersburg State University

ISTOMINA Aleksandra

Graduation quali�cation thesis

On morphing tree drawings in 2D and 3D

Bachelor's program

Specialization and code: 01.03.01 "Mathematics"

Cipher of the EP: ÑÂ.5000.2017 "Mathematics"

Thesis supervisor:

Associate Professor

Ph. D. in Informatics,

Elena Arseneva

Reviewer:

PhD in Applied Mathematics

and Computer Science,

Postdoctoral researcher,

Universite libre de Bruxelles

Pilar Cano

Saint-Petersburg

2021

Contents

1 Preliminaries and Definitions 5

2 Tools for morphing algorithms 9
2.1 Stretching step with a constant S1 . 10
2.2 Mapping and rotation around a pole . 10
2.3 Shrinking lifted subtrees . 12
2.4 Turning in horizontal plane . 14

3 Morphing through lifting paths 14
3.1 Procedure Lift(P) . 17
3.2 Correctness of the algorithm . 29
3.3 Complexity of the algorithm . 30

4 Morphing through lifting edges 30
4.1 Procedure Lift(edges) . 30
4.2 Correctness of the algorithm . 36
4.3 Complexity of the algorithm . 37

5 Trade-off 38

6 Conclusion 39

7 Appendix 41

3

Introduction 1

Given a graph G with n vertices, a morph between two drawings (i.e., embeddings in Rd)
of G is a continuous transformation from one drawing to the other through a family of
intermediate drawings. One is interested in well-behaved morphs, i.e., those that preserve
essential properties of the initial and final drawing at any moment. Usually this preserved
property is that the drawing is crossing-free; such morphs are called crossing-free morphs.
This concept finds applications in multiple domains, such as animation, modeling, and
computer graphics [12–15].

A drawing of a graph G is a straight-line drawing if it maps each vertex of G to a
point in Rd and each edge of G to the line segment whose endpoints correspond to the
endpoints of this edge. In this work, we focus on the case of drawings in the Euclidean
plane (d = 2) and 3D drawings (d = 3); a non-crossing drawing of a graph in the plane is
called planar.

Although the study of crossing-free graph morphing began long time ago, it is cur-
rently an active area of research in computational geometry and graph drawing with
fascinating open problems. In 1944, Cairns [11] gave an existential proof that a planar
morph exists between any two topologically equivalent planar straight-line drawings of a
maximal planar graph. The first algorithmic result was given by Thomassen [21], who
proposed a crossing-free morph between any two topologically equivalent (with respect to
the ordering of edges around vertices) planar straight-line drawings of a planar graph.

Lately there is a line of research studying morphs of straight-line drawings, that are
crossing-free and where the trajectories of vertices are simple. Of particular interest is
linear morph, that transforms one straight-line drawing Γ of a graph G to another such
drawing Γ′ through a sequence 〈Γ = Γ1,Γ2, . . . ,Γk = Γ′〉 of straight-line drawings. The
morph 〈Γi,Γi+1〉 is known as a morphing step. For brevity, we call morphing steps simply
steps in this thesis. In each step of a linear morph all the vertices of G move simultaneously
along a straight-line segment at a constant speed.

A series of results [2–4,7] led up to a seminal paper by Alamdari et al. [1] showing that
for any two topologically equivalent planar drawings of a graph there is a linear 2D morph
that transforms one drawing to the other in Θ(n) steps. This bound is asymptotically
optimal in the worst case even when the graph G is a path.

A natural further question to ask is whether and how the situation changes if the
third dimension is involved. Such question for general graphs seems not to be easy. It
is tightly connected to the famous problem of unknot recognition, that is known to be in
NP∩co-NP [16,18], and finding a polynomial-time algorithm or proving its NP-hardness
is a long-standing open problem. If the given graph is a tree, the worst-case tight bound
of Θ(n) steps holds for 3D crossing-free linear morph [5] (and the lower-bound example
is again a path). Even more remarkably, if both the initial and the final drawing of the
tree are planar, then there is a morph with O(log n) number of morphing steps [5].

The above algorithmic results [1, 5] have one common drawback that is crucial from
the practical point of view. In their intermediate steps, they essentially use infinitesimal
or very small distances, as compared to distances in the initial and the final drawings.
Thus the amount of space that is needed for storing the numbers arising throughout
the algorithm is very large. Having very large and very small distances also affects the
aesthetical aspect, that might be important as well. This raises a demand for morphing
algorithms with restriction that after each step we get a grid drawing, where vertices map
to nodes of a grid, and that the grid is small, i.e., whose size is polynomial in the size of
the graph and parameters on the input drawings.

For a straight-line planar grid drawing Γ of a graph, there are two crucial parameters.
The resolution of Γ is the ratio between the maximum edge length and the minimum
vertex-edge distance. The second parameter is the area required for the drawing. In the
3D case, the resolution and the volume of a drawing are defined similarly. For a 2D
straight-line grid drawing of T , it was shown that if the area of the grid is polynomially
bounded, then the resolution of the drawing is also polynomially bounded [6]. For a 3D

1Introduction and Section 2.3 were written together with Rahul Gangopadhyay as a part of our joint
paper (manuscript in preparation).

4

straight-line grid drawing of T , one can analogously show that if its volume is polynomially
bounded, then its resolution is also polynomially bounded.

Barrera-Cruz et al. [8] gave an algorithm to morph between two straight line planar
Schnyder drawings of the same triangulated graph using O(n2) linear morphing steps.
They also proved that all the intermediate drawings lie in an O(n) × O(n) sized grid.
Very recently, Barrera-Cruz et al. [6] gave an algorithm that linearly morphs a planar
straight-line grid drawing Γ of an n-vertex rooted tree to another planar straight-line grid
drawing Γ′ of the same tree in O(n) morphing steps such that each intermediate drawing is
also a planar straight-line grid drawing. Throughout the morphing process, the grid size
is polynomially bounded. In particular, during the entire morph the maximum length
of the grid is O(D3n · L) and the maximum width of the grid is O(D3n · W), where
L = max{l(Γ), l(Γ′)}, W = max{w(Γ), w(Γ′)}, D = max{L,W} and l(Γ) and w(Γ) are
respectively the length and the width of the drawing Γ. Note that D is Ω(

√
n).

In this thesis we study a possibility to morph one straight-line grid drawing Γ of a
tree to another such drawing Γ′ in sublinear number of steps by employing the third
dimension for intermediate steps. Effectively we ask the same question as in [5], but now
with additional restriction for all the drawings throughout the algorithm to live in a small
grid. We give two algorithms that require O(n) steps and O(

√
n log n) steps, respectively.

All the intermediate drawings require a 3D-grid having O(d3 · log n) length, O(d3 · log n)
width and O(n) height, where d = max(d(Γ), d(Γ′)) is maximum of the diameters of
the given drawings Γ and Γ′. Note that at the expense of using an extra dimension we
significantly decrease the number of morphing steps. Also, at the cost of using linear
amount of height in the third dimension, we use much less area than [6]. To the best of
our knowledge, our algorithm is the first one that morphs a planar grid drawing of a tree
to another such drawing in sublinear number of steps such that intermediate drawings
are 3D grid drawings of polynomial volume.

1 Preliminaries and Definitions

In this section we introduce some definitions and preliminaries which are used later in the
various parts of the thesis. Following definitions and notations are taken from [6,7].

Tree drawings For a tree T , let |T | denote the number of vertices in T and let r(T)
denote the root of T . Let V (T) be the set of vertices of tree T , E(T) be the set of edges
of T .

Let T (v) denote the subtree of T rooted at a vertex v. We say T (v) is a partial subtree
of T rooted at v if it is connected but does not contain all the vertices present in the
subtree rooted at v.

In a straight-line drawing of a tree T , each node u is represented by a point in the
plane and each edge is represented by a straight-line segment connecting its end-points.

In a 3D-grid drawing of T , each vertex is mapped to a point with integer coordinates
in R3 and edges are drawn as line segments connecting its endpoints. A 3D-grid drawing
of T is said to be crossing-free if images of no two edges intersect except, possibly, at
common end-points.

A 2D-grid drawing of T is a special case of 3D-grid drawing when each vertex is
mapped to a point with integer coordinates in a 2-dimensional plane. In this thesis, we
consider all planar drawings lie on X0Y plane. A crossing-free 2D-grid drawing is said to
be a planar grid drawing.

We use Γ to denote both the planar grid drawing and 3D grid drawing of T if it is
clear from the context.

With a slight abuse of notation, let B(Γ(v), r) denote the open disc of radius r in
X0Y plane centered at Γ(v), i.e., the point in the plane representing the vertex v in the
drawing Γ.

Unless stated otherwise, by the projection we mean the vertical projection to X0Y
plane, i.e. projection of point p = (x′, y′, z′) is a point pr(p) = (x′, y′, 0). Projection of an
edge or the whole tree, etc. is defined analogously.

5

Parameters of the 3D crossing free grid drawing Let us define the length of a
3D crossing free grid drawing Γ, denoted by l(Γ), as the maximum absolute difference
between the x-coordinates of a pair of vertices in Γ.

l(Γ) = max
1≤i,j≤n

(|Γ(vi)x − Γ(vj)x|), where vi, vj ∈ V (T).

Let w(Γ) denote the width of a 3D crossing free grid drawing Γ and it is defined as
the maximum absolute difference between the y-coordinates of a pair of vertices in Γ.

w(Γ) = max
1≤i,j≤n

(|Γ(vi)y − Γ(vj)y|), , where vi, vj ∈ V (T).

Similarly, h(Γ) denotes the height of a 3D crossing free grid drawing Γ and it is defined
as the maximum absolute difference between the z-coordinates of a pair of vertices in Γ.

h(Γ) = max
1≤i,j≤n

(|Γ(vi)z − Γ(vj)z|), , where vi, vj ∈ V (T).

Let us define the diameter of a drawing Γ, denoted by d(Γ), as the ceiling of the
maximum euclidean distance between any pair of vertices in Γ.

d(Γ) = d max
1≤i,j≤n

(|Γ(vi)− Γ(vj)|)e, where vi, vj ∈ V (T).

Clearly, the diameter of any drawing Γ is always an integer, i.e., d(Γ) ∈ Z.
Given a vertex v and an edge e of the tree T , distΓ(v, e) denotes the distance between

Γ(v) and the Γ(e) in the drawing Γ of T . Similarly, for a pair of vertices v, u ∈ V (T),
distΓ(v, u) is the distance between the images of the vertices in the drawing Γ of T .

Observation 1. Let us consider a 3D grid drawing Γ of T . Its diameter d(Γ) is at least
max(l(Γ), w(Γ), h(Γ)) and at most

√
3·max(l(Γ), w(Γ), h(Γ)). If Γ is a planar grid drawing

of T , then the diameter d(Γ) is at least max(l(Γ), w(Γ)) and at most
√

2 ·max(l(Γ), w(Γ))
since h(Γ) = 0.

Since Observations 1 holds, in order to estimate the required space, it is enough to
estimate d(Γ).

The following lemma has already been proved in [6]. For completeness of the work,
we give an alternative proof of this result in Appendix.

Lemma 1. Let every vertex of the tree T lie in the lattice points of the grid in the drawing
Γ and let d(Γ) be the diameter of Γ. In Γ, the distance between a vertex v and the line
that contains an edge e of T , such that e is not incident to v, is at least 1

d(Γ)
.

Lemma 2. Let Γ be a planar grid drawing of T . Let Γ(v) = (Γ(v)x,Γ(v)y) denote the
point which is the image of the vertex v in Γ. Let us consider a new grid drawing Γ1. For
each v ∈ V (T), let Γ1(v) be equal to (c · Γ(v)x, c · Γ(v)y) where c is an integral constant.
Then the distance between any two distinct vertices in Γ1 is at least c.

Proof. For any pair of distinct vertices vi, vj, either |Γ(vi)x − Γ(vj)x| or |Γ(vi)y − Γ(vj)y|
is at least 1 since all vertices have integer coordinates in Γ. This implies that, for each
pair of distinct vertices vi, vj, either |Γ1(vi)x − Γ1(vj)x| or |Γ1(vi)y − Γ1(vj)y| is at least c
since each coordinate of each vertex in Γ is multiplied by c to obtain Γ1.

Path decomposition Path decomposition P of a tree T is a decomposition of its edges
into a set of disjoint paths. Below we describe an algorithm for building different path
decompositions by path deletion procedure.

For a fixed tree T , we choose a path P in T based on a certain criteria and store
the path in P . Removal of the path creates disjoint components. We recurse on the
remaining connected components. The base case of the algorithm is that we have a single

6

path and its removal creates an empty graph. At the termination of the algorithm, the
set P contains disjoint paths whose union is T .

Note that the rule of how to choose the path may differ. In particular, P can be the
long-path decomposition or the heavy-path decomposition of T defined below.

The depth of a vertex v in T , denoted by dpt(v), is defined as the length of the path
from r(T) to v. Head of the path P , denotes as head(P), is the vertex x ∈ P with the
minimum depth in tree T . Let internal vertices of the path be all vertices except head(P).
Note, that every edge in tree belongs to exactly one path in a path decomposition.

We define a linear ordering among the paths induced by a fixed path decomposition
of T . We say that the path P ′ succeeds P , i.e., P ′ � P , if and only if P ′ is deleted
before P during the execution of the path decomposition algorithm. Otherwise we say
that P precedes P ′, i.e., P ≺ P ′. Note that the subtree of each internal vertex of a path
P is a subset of the union of the paths that precede P : ∀v ∈ P, v 6= head(P) : T (v) ⊂
∪P ′≺PP ′ ∪ P .

Long-path decomposition [9] The long-path decomposition L = {L1, . . . , Lm} of tree
T into paths is defined as follows: let the depth of a tree be the maximum depth of its
nodes. For each non-leaf node, define a long edge to go from the node to its child with the
deepest subtree (ties are broken arbitrarily). Preferred paths Li, i = 1, . . . ,m are defined
as the maximal paths in the graph containing only long edges. Order the paths of L with
respect to their length. For an example of long-path decomposition see Fig. 2b.

For convenience, we will also consider the short edge immediately above a preferred
path to be a part of the path. Short edges that are incident to leaves are considered as
separate paths.

Let us consider operation of deleting edges of the longest path in T . After every
iteration of deleting the path, we get a set of disjoint trees in which we look for the next
longest path. Note that, if ties are broken in the same way, the set of paths that we get
from path deletion algorithm along with their ordering are equal to L.

Heavy-rooted-pathwidth decomposition [5] The Strahler number or Horton-
Strahler number of a tree is a parameter which was introduced by Horton and
Strahler [17, 19, 20]. The same parameter was recently rediscovered by Biedl [10] with
the name of rooted pathwidth when addressing the problem of computing upward tree
drawings with optimal width.

1 1

12

22

2 2

3

r(T)

1
1

1

(a)

v0

v01=u1

v1

v2

v3

v4 v03=u0

v00=u3
v10=u2

H

H1

H0

H2

H3

H4

(b)

H

H3H0

H4

H2
H1

(c)

Figure 1: [5] The illustration (a) shows, for each vertex v of a tree T , the number
rpw(T (v)). In particular, rpw(T) = 3. The illustration (b) shows with bold lines the
heavy edges of T forming the heavy paths H,H0, . . . , H4. The illustration (c) shows the
path tree of T

The rooted pathwidth of a tree T , which we denote by rpw(T), is defined as follows.
If |T | = 1, then rpw(T) = 1. Otherwise, let k be the maximum rooted pathwidth of any

7

subtree rooted at a child of r(T). Then rpw(T) = k if exactly one subtree rooted at a
child of r(T) has rooted pathwidth equal to k, and rpw(T) = k + 1 if more than one
subtree rooted at a child of r(T) has rooted pathwidth equal to k; see Fig. 1a. Clearly
rpw(T) is an integer number.

The heavy-rooted-pathwidth decomposition of a tree T is defined as follows, see Fig. 1b.
For each non-leaf vertex v of T , let c∗ be the child of v in T such that rpw(T (c∗)) is
maximum (ties are broken arbitrarily). Then (v, c∗) is a heavy edge; further, each child
c 6= c∗ of v is a light child of v, and the edge (v, c) is a light edge. Connected components
of heavy edges form set of paths H(T) = {H,H0, . . . , Hk}, called heavy paths, which may
have many incident light edges. The path tree of T is a tree whose vertices correspond to
heavy paths in T ; see Fig. 1c. The parent of a heavy path P in the path tree is the heavy
path that contains the parent of the vertex with the minimum depth of P . The root of
the path tree is the heavy path containing r(T).

We denote by H the root of the path tree of T ; let v0, . . . , vm−1 be the ordered sequence
of the vertices of H, where v0 = r(T). For i = 0, . . . ,m− 1, we let v0

i , . . . , v
ti
i be the light

children of vi in any order. Let L = u0, u1, . . . , ul−1 be the sequence of the light children
of H ordered so that: (i) any light child of a vertex vj precedes any light child of a

vertex vi, if i < j; and (ii) the light child vj+1
i of a vertex vi precedes the light child vji

of vi. It is known [10] that the height of the path tree of an n-vertex tree T is at most
rpw(T) ∈ O(log n).

For convenience, we will later consider the light edge immediately above a heavy path
to be a part of the path, see Fig. 2a. With this assumption the heavy-path decomposition
can be obtained from path deletion algorithm, when we always choose a heavy path that
contains the root of the tree. When it is clear from the context we will refer to H(T)
simply as H.

Canonical drawing of a tree [5]. Canonical 3D drawing of a tree T , introduced
in [5], is the crossing-free straight-line 3D drawing of T that maps each vertex v of T to
its canonical position C(v) defined as follows; refer to Fig. 2a:

� First, we set C(v0) = (0, 0, 0) for the root v0 of T .

� Second, for each i = 1, . . . , k − 1, we set C(vi) = (0, 0, zi−1 + |T (vi−1)| − |T (vi)|),
where zi−1 is the z-coordinate of C(vi−1).

� Third, for each i = 1, . . . , k − 1 and for each j = 0, . . . , ti, we determine C(vji) as

follows. If j = 0, then we set C(vji) = (1, 0, 1 + zi), where zi is the z-coordinate of

C(vi); otherwise, we set C(vji) = (1, 0, zj−1
i +|T (vj−1

i)|), where zj−1
i is the z-coordinate

of C(vj−1
i).

� Finally, in order to determine the canonical positions of the vertices in T (vji) \ {v
j
i },

for each i = 0, . . . , k−2 and each j = 0, . . . , ti, we recursively construct the canonical
3D drawing C(T (vji)) of T (vji), and translate all the vertices by the same vector so

that vji is sent to C(vji).

Note that max(vx|v ∈ V (T)) = rpw(T) − 1, where vx is the x-coordinate of C(v).
Since tree T never changes throughout our algorithm we refer to rpw(T) as to rpw.

Relative canonical drawing of a subtree. Let us consider a subtree T (v) of T rooted
at v. We define a canonical drawing of T (v) with respect to the canonical 3D drawing of
T . Let us denote it by CTv . Let us map the vertex v to the origin. Then, the vertex vi
which belongs to the subtree T (v) is placed at the point CTv(vi) = (C(vi)x−C(v)x, C(vi)y−
C(v)y, C(vi)z − C(v)z). Note that we denote by CTv all such 3D drawings of T (v) which
are obtained by translating all points of CTv along a constant vector. Also, note that such
a canonical drawing can be defined for any partial subtree rooted at v.

8

z

x

y
(a)

z

x

y
(b)

Figure 2: An example of canonical drawing of a tree. In the illustration (a) heavy paths
are drawn in different colors, paths consisting of one edge are drawn dashed. In the
illustration (b) paths of long-path decomposition are drawn in different colors, paths
consisting of one edge are drawn dashed.

Observation 2. Let us consider CTv . The entire drawing lies inside a bounding box having
height |T (v)| and width rpw(T (v)) in the positive XZ (i.e., both X and Z are positive)
quarter-plane from vertex v.

Proof. The proof follows from the construction of CTv .

Morph Let Γ and Γ′ be two planar straight-line drawings of T . Then a morph M is
a sequence 〈Γ1,Γ2, . . . ,Γk〉 of 3D straight-line drawings of T such that Γ1 = Γ,Γk = Γ′,
and 〈Γi,Γi+1〉 is a linear morph, for each i = 1, . . . , k − 1.

A linear morph 〈Γi,Γi+1〉 is such that each image of the vertex moves along a straight-
line segment at a constant speed; that is, assuming that the morph happens between time
t = 0 and time t = 1, the position of a vertex v at any time t ∈ [0, 1] is (1 − t)Γi(v) +
tΓi+1(v).

The complexity of a morphM is then measured by the number of its morphing steps,
i.e., by the number of linear morphs it consists of. In the following, a morphing step is
sometimes simply called a step.

2 Tools for morphing algorithms

In this section we present four morphing procedures: stretching step with a constant
S1 (2.1), mapping and rotation around a pole (2.2), shrinking lifted subtrees (2.3) and
turning in horizontal plane (2.4), that are building blocks of our algorithms: morphing
through lifting paths (3) and morphing through lifting edges (4).

9

2.1 Stretching step with a constant S1
We assume that the original drawing Γ of the tree is lying in the horizontal plane X0Y.
Stretching morph multiplies coordinates of all vertices by a fixed constant S1 > 1, thereby
”stretching” the vertices apart.

During this linear morph each coordinate of each of each vertex in Γ is multiplied by
a fixed integer constant S1 > 1. That is, every vertex v of T moves from Γ(v) = (vx, vy, 0)
to Γ1(v) = (S1vx,S1vy, 0).

Lemma 3. Stretching morph is crossing-free.

Proof. For each t ∈ [0, 1] the drawing Γt, where the image of any vertex v of T is {tΓ1(v)+
(1− t)Γ(v)} is the same drawing Γ scaled by tS1 + (1− t). Since the original drawing Γ
was crossing-free, so is the drawing Γt.

Lemma 4. For any pair of distinct vertices vi, vj disks B(Γ1(vi),
S1
2

), B(Γ1(vj),
S1
2

) in

X0Y plane are disjoint. In Γ1 disk B(Γ1(vi),
S1

2·d(Γ)
) for a vertex vi does not enclose any

other vertices or any portion of edges non-incident to vi.

Proof. As disk B(Γ(vi), 1) contains no other vertices vj, j 6= i, then B(Γ1(vi),S1) does not
contain other vertices too since S1 > 1. Disk B(Γ1(vi),

S1
2

) — disk with half that radius

— does not intersect with any B(Γ1(vj),
S1
2

) for j 6= i.

Due to Lemma 1 no non-incident edges intersected the disk of radius 1
d(Γ)

around vi in

Γ. That means that in Γ1, where all distances are multiplied by S1 no non-incident edges
intersect the disk of radius S1

d(Γ)
around vi. Other vertices do not lie in B(Γ1(vi),

S1
2·d(Γ)

) as

B(Γ1(vi),
S1

2·d(Γ)
) ⊂ B(Γ1(vi),

S1
2

).

Lemma 5. For every vertex v and every edge e = (v, u) in Γ1 there is a lattice point z
such that z ∈ e and z ∈ B(Γ1(vi), d(Γ)).

Proof. Every edge e = (u, v) from Γ0 has been stretched by S1.
If Γ0(u) = (ux, uy, 0) and Γ0(v) = (vx, vy, 0), then Γ1(u) = (ux · S1, uy · S1, 0) and

Γ1(v) = (vx · S1, vy · S1, 0).
The integral point z ∈ e and z ∈ B(Γ1(v), d(Γ)) is (ux · S1 + vx − ux, uy · S1 + vy −

uy, 0).

2.2 Mapping and rotation around a pole

Let pole be a vertical line in 3D. The pole through (x′, y′) is a vertical line through point
(x′, y′, 0).

Recall from the definition that canonical drawing of T lies on the plane X0Z. To morph
the given drawing Γ to canonical drawing we get canonical drawings of subtrees of vertices
of T starting from leaves. Our goal is to have the non-processed portion of the tree in
X0Y plane while the processed portion of subtrees of vertices lie in vertical half-planes
containing the pole through the corresponding vertex. We use vertical half-planes and
morph the subtrees between them.

Let α, β be half-planes of vertical planes and let l be their vertical line of intersection
(the pole of mapping) going through a point (x′, y′) with integer coordinates. Suppose
∠(α, β) /∈ {0, π} and α, β contain infinitely many points with integer coordinates (and
infinitely many poles through integer points). Suppose we have some drawing Γ in a
half-plane α and we want to move it to a half-plane β (obtaining a drawing Γ′) in one
morphing step.

During this mapping step, vertices move along a horizontal vector from α to β. The
direction of this vector is common for all vertices of Γ and is defined by positions of α
and β in the following way. Let dα, dβ be the minimum non-zero distance from the l to
the integer points lying in the corresponding half-plane, let pα, pβ be points for which

10

dist(l, pα) = dα, dist(l, pβ) = dβ and pαz = pβz . Note that we can choose points pα and
pβ in such way that they have same z-coordinate and lie on the same horizontal plane.

Vector of mapping u is defined as
pβ−pα
|pβ−pα|

and is the direction of movement for every vertex

in Γ. The length of the vector for every point is defined in such a way that after the step
every vertex of Γ lies in half-plane β. See Fig. 3.

Note that the length of the vector of movement of any vertex v in Γ is proportional to
its distance to the pole. Let lv denote the point on the pole l with the same z coordinate as
v, once again for each t ∈ [0, 1] we denote by Γt the drawing, where the image of any vertex
v of T is {tΓ′(v) + (1− t)Γ(v)}. For any two vertices v1, v2 from Γ with the same height
that are being mapped to the half-plane β, from proportionality of distances, we can cay
that at any moment t ∈ [0, 1] for the intermediate drawing Γt we have ∠((Γt(v1), lv1), α) =
∠((Γt(v2), lv1), α) = ∠((Γt(v2), lv2), α). If the angle between the edge (Γt(p), lp) and the
plane α is the same for all points at some height, then it is the same for all vertices in Γt,
because points with the same x, y-coordinates had the same vector of movement. From
that fact we get the following lemma.

Lemma 6. For each t ∈ [0, 1] the drawing Γt = {tΓ′ + (1 − t)Γ} lies in one half-plane.
Moreover, for each t ∈ [0, 1] this half-plane has the vertical borderline l, which is a bor-
derline of half-planes α and β.

(x′, y′)

x

z

y

β
u

6 (α, β)

dα

dβ

1

pα

pβ

α

Figure 3: Half-planes α, β (shown in violet and green respectively) sharing a common pole
through point (x′, y′) and their vector of mapping u (shown in red)

For the next lemma we will need the following result from [1]. A unidirectional morph
is a linear morph in which all the vertices move along parallel lines.

Proposition 1. [1] Let 〈Γ,Γ′〉 be a unidirectional morph between two planar straight-
line drawings Γ and Γ′ of T . Let u be a vertex of T , let vw be an edge of T and, for any
drawing of T , let lvw be the line through the edge vw oriented from v to w. Suppose that
u is to the left of lvw both in Γ and in Γ′. Then v is to the left of lvw throughout 〈Γ,Γ′〉.

Lemma 7. Mapping step is a crossing-free morph.

Proof. z-coordinates of vertices do not change during the rotation, so it can be decom-
posed as union of 2D morphs each of which is a horizontal slice of 3D mapping at a certain
height, where height is some real value. If any crossing happens during mapping it can
be described as crossing in 2D morph at some height. For each real value of height we
have some points of T : vertices or points of edges.

11

For height z′ we fix a morph Mz′ for which graph Tz′ to morph is intersection of T
with horizontal plane z = z′. Morph Mz′ moves Γz′ = Γ∩{z = z′} to Γ′z′ = Γ′ ∩{z = z′}.

Mapping is a unidirectional 3D morph by definition, so Mz′ is a unidirectional 2D
morph. Every two vertices of Γz′ lie in one horizontal line lΓ with the pole-point in z = z′,
and as they move along the parallel lines not parallel to lΓ they can not cross throughout
the movement.

For every edge vw and vertex u if u was closer to the pole than vw in Γ, then it is
closer to the pole in Γ′ as order of vertices from the pole does not change in mapping.
Then Mz′ meets the conditions of Cor. 1 and vw and u do not cross during Mz′ . As no
crossings happen at any height, mapping is a crossing-free morph.

Let rotation be a mapping in case when half-planes α, β are parallel to planes X0Z
and Y 0Z respectively, and thus ∠(α, β) = π

2
, see Fig. 4. Vector of mapping u of rotation

is then lying in the set:

{(
√

2

2
,

√
2

2
, 0), (

√
2

2
,−
√

2

2
, 0), (−

√
2

2
,

√
2

2
, 0), (−

√
2

2
,−
√

2

2
, 0)}

XZ+
v is a half-plane parallel to X0Z with vertical border-line going through vertex v

in X-positive direction from that pole. XZ−v , Y Z
−
v , Y Z

+
v are defined analogously.

v

x

z

y

Y Z−
v

XZ+
v

Y Z+
v

XZ−
v

Figure 4: Possible vectors of rotation between 4 half-planes sharing a common pole
through vertex v

We define a horizontal pole as a line parallel to 0X axis. Horizontal pole through
the point and horizontal rotation are defined analogously. Corresponding set of possible
directions of movement are:

{(0,
√

2

2
,

√
2

2
), (0,

√
2

2
,−
√

2

2
), (0,−

√
2

2
,

√
2

2
), (0,−

√
2

2
,−
√

2

2
)}

2.3 Shrinking lifted subtrees

Let v be a vertex of T and Ch = {v1, . . . , vl} be the set of its children. Let us consider
a 3D grid drawing Γ(T) of T , where the drawing of the subtree T (v) is the canonical
drawing with respect to v. This implies that every T (vi), i = 1, . . . , l lies in a quarter
plane h = XZ+

v .
Let us assume that the members of Ch = {v1, . . . , vl} are ordered according to their

z-coordinates in CTv . Note that for 1 ≤ i ≤ l, each T (vi) lies inside a box of width

12

rpw(T (vi)) and height |T (vi)|. Also, note that T (v) lies inside a box of width rpw(T (v))
and height |T (v)|. Consider a tuple (i1, i2, . . . , ik), where 1 ≤ i1 < i2 < . . . < ik ≤ l and
the set Ch′ = {vi1 , . . . , vik}. Note that the members of Ch′ = {vi1 , . . . , vik} are ordered
according to their z-coordinates in CTv too.

Let us consider the new subtree T ′(v) which is obtained by deleting the vertices in
Ch \ Ch′ and their subtrees.

Consider the canonical drawing of T ′(v) with respect to v. Even if all the children of
v in Ch \ Ch′ along with the subtrees rooted at them are deleted, the worst case height
of the bounding box that contains CT ′v can still remain the same as the height of the
bounding box that contains CTv . Note that in the drawing CT ′v , the subtrees rooted at the
vertices of Ch′ are also in a canonical position with respect to their roots.

For each j satisfying 1 ≤ j ≤ k, T ′(vij) lies inside a box of height |T (vij)| and width
rpw(T (vij)) on the plane h such that the down-left corner of the box coincides with
CT ′v(vij) = CTv(vij).

In the following, we define the shrink subtree procedure on CT ′v . Let us
denote the shrinked subtree by C ′T ′v . We move each vertex vij from CT ′v(vij)
to (CT ′v(vij)x, CT ′v(vij)y, C ′T ′v(vij)z), where C ′T ′v(vi1)z = CTv(v)z + 1 and for j =
2, . . . , l C ′T ′v(vij)z = C ′T ′v(vij−1

)z + |T (vij−1
)| + 1. Each vertex of the subtree rooted at

vij also moves along the same vector. x and y coordinates of the vertices of T ′(v) in CT ′v
and C ′T ′v are the same.

x
y

v

v0

z

v3

T (v3)

v2

v1

T (v0)

T (v1)

T (v2)CTv

x
y

v

z

v3

T (v3)

v1

T (v1)

⇒

x
y

v

z

C ′
T ′
v

v1

T (v1)

v3

T (v3)

CT ′
v

Figure 5: Example of shrinking morph when l = 4.

Observation 3. The height of the shrinked subtree C ′T ′v is equal to the number of vertices
in T ′(v).

Proof. Note that the vertices of partial subtree T ′(v) lie in canonical positions in CT ′v . This
implies that for 1 ≤ j ≤ k the subtree rooted at vij also has a canonical drawing with
respect to vij in CT ′v . Observation 2 implies that each T ′(vij) lies inside a box of height
|T ′(vij)|. Also, note that the z-coordinate of C ′(vij) is equal to CTv(vj)z. From this fact it

follows that in C ′T ′v , T ′(v) lies inside a box of height
∑k

j=1 |T (vij)| + 1 = |T ′(vi)| and the

down-left corner of the box coincide with CTv(v) = C ′Tv(v). Also note that |T ′(v)| ≤ |T (v)|.

Shrinking morph for a subtree T ′(v) is a morph in one unidirectional morphing step
transforming the drawing CT ′v into the drawing C ′T ′v .

Lemma 8. Shrinking morph for a subtree T ′(v) is a crossing-free morph.

13

Proof. Note that the x and y coordinates of each vertex in CT ′v and C ′T ′v are the same and
z-coordinate can only decrease, shrinking is obviously a unidirectional morph in XZ+

v .
Also, note that throughout the morphing process all vertices in T ′(v) maintain the relative
order among themselves since they move along parallel vectors. Also note that shrinking
satisfies the conditions of Proposition 1. This implies that shrinking is a crossing-free
morph.

2.4 Turning in horizontal plane

Let α be a horizontal plane, Γ0(T (v)) be the horizontal canonical drawing of a subtree
T (v) in α, i.e. relative canonical drawing CTv rotated around horizontal pole through v in
any direction. Then Γ0(T (v)) lies in XYv in x-positive, y-positive or y-negative direction.
We discuss the case when Γ0(T (v)) lies in y-positive direction, the other case is similar.

Let Γ1(T (v)),Γ2(T (v)),Γ3(T (v)) be the drawings which are obtained from Γ0(T (v))
by α-plane rotation around the point Γ(v) by the angles π

2
, π, 3π

4
respectively.

Lemma 9. (Pinwheel) [6] Let Γ and Γ′ be two canonical drawings of a rooted ordered tree
T , where r(T) is at the same point in Γ and Γ′. If Γ and Γ′ are (i) upward and leftward,
or (ii) leftward and downward, or (iii) downward and rightward, or (iv) rightward and
upward, respectively, then the morph 〈Γ,Γ′〉 is planar and lies in the interior of the right,
top, left, or bottom half of the 2n-box centered at r(T), respectively.

Lemma 10. The drawing Γi(T (v)) can be obtained from the drawing Γi−1(T (v)) in one
morphing step, i = 0, 1, 2, 3, where by Γ−1(T (v)) we mean Γ3(T (v)).

Proof. Proof of this fact is the same as the proof of the Lemma 9 written in [6].

3 Morphing through lifting paths

Let T be a tree with n vertices and P be a fixed path decomposition of T .
In this section we describe an algorithm that morphs a plane drawing Γ = Γ0 of tree

T to the canonical 3D drawing Γ′ = C(T) of T in O(k) steps, where k is the number
of paths in P . Note that the final positions for the vertices in C(T) are defined through
heavy-rooted-pathwidth decomposition, and do not depend on the chosen decomposition
P .

This is enough to prove that, for any two planar straight-line drawings Γ and Γ′ of T ,
there exists a crossing-free 3D morph from Γ to Γ′ with O(k) steps, since a morph from
C(T) to Γ′ can be obtained by playing the morph from Γ′ to C(T) backwards.

Our algorithm lifts the paths in P one by one starting from the first until the canonical
drawing is obtained. That is, for each path Pi ∈ P we apply a procedure called Lift(). At
all times during the algorithm due to the definition of P the following invariant holds: a
path Pi ∈ P is lifted only after all the descendants of all of the internal vertices of Pi are
already lifted.

Our aim is as follows, during the execution of Lift(Pi), path Pi, since it is a portion
of the subtree of head(Pi), should move to its canonical position with respect to head(Pi).
We say that vertex v, which lies in the subtree of u, is in canonical position with respect
to vertex u in the drawing Γt if Γt(v) = Γt(u) + CTu(v). We consider the given drawing
Γ = Γ0 of the tree T that is lying in X0Y plane. Recall that the parameters of Γ are: the
length l(Γ), the width w(Γ), the height h(Γ), and the diameter d(Γ).

We proceed to a detailed description of our algorithm. We illustrate its steps in
Fig. 10-Fig. 21 for our running example.

Fig. 6 and Fig. 7 give a pseudocode respectively for the entire algorithm and for
procedure Lift().

14

Algorithm 1 Lifting paths algorithm

Input: Drawing Γ(T)
Output: Canonical drawing C(T)

1: Let P1, . . . , Pk be the ordered list of paths from P
2: Stretch Γ(T) with S1 = 2 · (rpw + d(Γ))
3: for i = 1 to k do
4: Lift(Pi)

Figure 6: A pseudocode of morphing through lifting paths algorithm

Algorithm 2 Lift(P)

Input: Drawing Γt (after lifting i− 1 paths), path P = (v0, . . . , vm) = Pi in P
Output: Drawing Γt+14 (after lifting path Pi)

1: Shrink: shrink lifted subtrees of vertices of P around vertical pole.
2: Move others: rotate lifted subtrees of vertices of path P around vertical pole.
3: Go up: move up vertices of P along with their lifted subtrees.
4: Rotate lifted subtrees of internal vertices of P to horizontal planes.
5: Correct the path: move vertices v2, . . . , vm horizontally to their canonical (x, y)-

positions with respect to vertex v1.
6: Go down: move vertices v2, . . . vm to their canonical z-positions with respect to vertex
v1.

7: Turn lifted subtrees of internal vertices of P in horizontal planes.
8: Stretch in y direction: stretch the lifted subtrees.
9: Rotate to canonical positions: rotate subtrees of the internal vertices of P to the
XZ

+/−
vi .

10: Move along: move v1 with its subtree along horizontal vector towards the pole through
v0.

11: if lifted subtree of v0 was not rotated in Move others step then
12: First part of x, y-correcting: move v1 with its subtree to Y Z plane.
13: Go down: move v1 with its subtree down to their canonical height.
14: Second part of x, y-correcting: move v1 with its subtree to their canonical x, y-

positions.
15: else
16: First part of x, y-correcting: rotate lifted subtree of v0 to Y Z+

v0
half-plane.

17: Go down: move v1 with its subtree down to their canonical height.
18: Second part of x, y-correcting: rotate lifted subtree of v0 to their canonical x, y-

positions.

Figure 7: A pseudocode for procedure Lift()

Now we proceed with a detailed description of the algorithm.
Step 0: Preprocessing.

This step is a single stretching morph 〈Γ,Γ1〉 with S1 = 2 ·(rpw+d(Γ)), see Section 2.1
for the details. Due to Lemma 3 this Step is crossing-free.

15

v0

v1

v3

v4

v01

v11
v21

v02

v00

v10

v20

v30

v40

v50

v60

v70

z

x

y

v2

Figure 8: Canonical drawing of the running example

v50

v00

v10

v60

v70

v20

v30

v40

v2

v02

v1

v4

v3

v11

v01

v21

v0

Figure 9: The input of our running example drawing Γ0 in X0Y plane. Path
(v0, v1, v2, v3, v4) is lifted in this iteration (all violet edges are already lifted).
After Step 0 every cell is divided into 2 · (rpw + d(Γ)) × 2 · (rpw + d(Γ)) smaller cells,
which are not shown in pictures below for more clarity.

16

v20

v30

v40

v00

v10

v0x

z

y
v1 v2

v4

v3

Figure 10: Drawing Γt after lifting all paths containing purple edges. All lifted subtrees
lie in XZ+ half-planes and are shown in light purple.

3.1 Procedure Lift(P)

Let P = (v0, v1, . . . , vm) be the first path in P that has not been processed yet. See Fig. 9
for an example (Fig. 11 is the drawing before lifting path P shown in green, Fig. 21 is the
drawing after lifting this path).

Lemma 11. The subtrees of all internal vertices vj in P are already lifted.

Proof. All the paths that precede P in P are exactly the paths that are left after deleting
P from the forest of subtrees of T (see paragraph Path decomposition in Section 1). From
this fact it follows that all internal vertices of P have become roots of some trees after
deleting the edges of P and edges of that trees were processed in Lift(P ′) procedures for
some P ′ ≺ P .

Let Γt be the current drawing of T and we lift path P = Pi, see Fig. 10.
For any vertex v let lifted subtree T ′(v) be the portion of subtree T (v) that has been

lifted after execution of Lift(Pk) where k < i. The following invariants hold throughout
the algorithm after every iteration of Lift() procedure and are proved later by induction.

Conditions:

(I) the drawing of T ′(v) in Γt is the canonical drawing of T ′(vj) with respect to v for
any v ∈ V (T),

(II) vertices of paths Pk, k > i are lying within X0Y plane.

Let processing vertices be the internal vertices of Pi along with the vertices of their
lifted subtrees.

Lemma 12. The maximum height of vertices in the drawing Γt is strictly less than n.

Proof. As all vertices of the processed paths are part of lifted subtrees of their head
vertices, and by (I) have height as in canonical drawing, their height is strictly less than
the number of vertices in a corresponding subtree, which does not exceed number of
vertices in T .

Lemma 13. Let v be any vertex and T ′(v) be its lifted subtree. The maximum horizontal
distance in T ′(v), i.e. the difference between x-coordinates for any pair of vertices in T ′(v)
in Γt, does not exceed rpw.

Proof. Note that the drawing of T ′(v) in Γt is the canonical drawing of T ′(v) with respect
to v. This implies that the maximum horizontal distance between any vertex in T ′(v) and
v in Γt is at most rpw.

17

Step 1: Shrink (see Fig. 11).
For every internal vertex vj of the path P its lifted subtree T ′(vj) morphs into shrinked

lifted subtree. All subtrees are shrinked simultaneously in one morphing step. See Sec-
tion 2.3.

Lemma 14. Step 1 is crossing-free.

Proof. For each lifted subtree this is a shrinking step and by Lemma 8 it is crossing-free.
All lifted subtrees were not overlapping in projection to X0Y plane due to Condition

(I) and Lemmas 4 and 13 in the drawing Γt. As all vectors of movement are vertical,
projections of lifted subtrees can not overlap during this morphing step and can not cross
with each other.

In shrinked drawing every vertex of T ′(vj) except vj has strictly positive z-coordinate
which means that T ′(vj) \ {vj} remains strictly above X0Y plane and can not cross with
the part of T that is still lying in X0Y. Internal vertices of P do not change their positions
during this morph.

v0

v20

v30

v40

v10

v00

v1 v2

v3

v4

Figure 11: Step 1. Lifted subtree of vertex v1 has morphed into shrinked lifted subtree.
All lifted subtrees of other internal vertices of the path are already in shrinked position.

Step 2: Move others (see Fig. 12).
This step consists of two morphs 〈Γt,Γt+1〉, 〈Γt+1,Γt+2〉.

v30

v40

v20

v10

v00

v0

x

z

y

v1 v2

v3

v4

Figure 12: Step 2. Shrinked lifted subtree T ′(v1) overlaps with the edge (v1, v2) in
projection to X0Y plane. T ′(v1) is rotated around the pole through v1 twice.

18

Lifted subtrees T ′(vj) of the vertices vj, 0 ≤ j < m − 1 of P are moved as follows.
Recall the definition of projection pr(T ′(vj)) from Section 1. If projection pr(T ′(vj))
overlaps with pr((vj, vj+1)), 0 ≤ j < m we need to rotate twice the drawing of T ′(vj)
around the pole through Γt(vj), see Section 2.2.

By condition (II) we have: vj, vj+1 ∈ X0Y ⇒ pr((vj, vj+1)) = (vj, vj+1) as vj, vj+1 lie
on unprocessed path P .

By condition (I) every lifted subtree T ′(vj) lies in XZ+
vj

.

If an overlap happens, we rotate T ′(vj) around vertical pole through Γt(vj) twice, so
after Step 2 all lifted subtrees lie in XZ+

vj
or XZ−vj .

Lemma 15. Step 2 is crossing-free.

Proof. Two different lifted subtrees T ′(v), T ′(v′) cannot cross as due to Lemma 13:
pr(T ′(v)) ⊂ B(Γt(v), rpw), pr(T ′(v′)) ⊂ B(Γt(v

′), rpw) and due to Lemma 4 disks around
vertices with radius rpw ≤ S1

2
do not cross with each other.

No edges within rotating lifted subtree can intersect as rotating is a mapping and
mapping is a crossing-free morph (Lemma 7). Due to condition (II), all edges that do not
lie in lifted subtrees are lying in X0Y plane. No lifted subtree T ′(vj) can intersect with
any edges in X0Y by condition (I): Γt(T

′(vj)) is the canonical drawing with respect to vj
and lies strictly above X0Y plane except for the point Γt(vj). Rotation morph does not
change z-coordinate of points during the movement, so throughout the morph drawing of
T ′(vj) lies above X0Y plane, vertex vj does not move during the rotation as it lies on the
pole.

No vertices move in X0Y plane during Step 2 and no crossing can happen within the
plane X0Y.

Step 3: Go up (see Fig. 13).

v20

v30

v40

v10

v00

v0

z

y

x v1

v2

v3

v4

Figure 13: Step 3. All internal vertices of the path — v1, v2, v3, v4 are lifted along with
their lifted subtrees T ′(vi).

This step of our procedure consists of one morphing step 〈Γt+2,Γt+3〉 that moves each
internal vertex vj, j ≥ 1 of the path P vertically to a certain height defined recursively as
follows:

� v1: Γt+3(v1)z = n

� vj, j > 1: Γt+3(vj)z = Γt+3(vj−1)z + hsh(T
′(vj−1)), where hsh(T

′(vj−1)) is the height
of shrinked lifted subtree of vertex vj−1

19

Note that hsh(T
′(vj)) is an integer number for all internal vertices of the path.

Lemma 16. Step 3 is crossing-free.

Proof. Every internal vertex vj in the path P moves with its subtree T ′(vj) along the
vertical vector. In the beginning of this morphing step no intersections existed in pro-
jection to X0Y plane between different subtrees and the path edges. Nothing changes
in projection to X0Y plane during this step, all movements happen strictly above X0Y
plane. That means that there can be no crossings during this step of an algorithm.

Lemma 17. After Step 3:

1. All internal vertices of P along with vertices of their subtrees are horizontally sep-
arated from the rest of the vertices of the tree, i.e. there exists a horizontal plane
that strictly divides these two sets of vertices from each other.

2. The subtrees of internal vertices of P are horizontally separated from each other.

Proof. 1. Due to Lemma 12 z-coordinates of all vertices that do not lie on the path are
strictly below n, also they are integer. By the definition of height in Γt+3 internal
vertices of P and vertices in their lifted subtrees have z-coordinates at leats n.

So the plane (x, y, n− 1
2
), x, y ∈ R is the horizontal plane of separation.

2. For every pair of internal vertices of P — vj, vk, j < k, let us define the plane of
separation as follows. From the definition of the height Γt+3(vk)z the horizontal
plane (x, y,Γt+3(vk)z − 1

2
), x, y ∈ R separates lifted subtree of vertex vj from lifted

subtree of vertex vk.

Step 4: Rotate subtrees to horizontal plane (see Fig. 14).

v40

v30

v20

v10

v00

v0

z

y

x
v1

v2

v3

v4

Figure 14: Step 4. Lifted subtrees of v1, v2 are rotated to horizontal planes.

In this morphing step 〈Γt+3,Γt+4〉 all lifted subtrees T ′(vj) of internal vertices of path
P are rotated around a horizontal pole through the corresponding point Γt+3(vj) to lie in
horizontal plane. The direction of rotation is chosen in such a way that for each 1 ≤ j < m

20

lifted subtree T ′(vj) does not cross with an edge (vj, vj+1) throughout this morph, and
for vm is chosen arbitrarily.

More formally, for T ′(vj), 1 ≤ j < m consider the two open half-spaces induced by the
plane parallel to X0Z and containing T ′(vj). We chose the one of these half-spaces that
does not contain edge (vj, vj+1) in it.

Lemma 18. Step 4 is crossing-free with the above choice of the direction of rotation.

Proof. If the crossing happens it must include one of the moving edges, i.e. edges of lifted
subtrees.

As subtrees T ′(vj) are horizontally separated from each other after Step 3 by
Lemma 17, edges of different lifted subtrees can not cross. Also by Lemma 17, sub-
trees T ′(vj) can not cross with non-processing vertices or edges between them as they also
are horizontally separated in the beginning and in the end of this Step.

If for some j, 1 ≤ j ≤ m the edge (vj, vj+1) lied in the vertical plane through T ′(vj)
there was no crossings in Γt+3. After the beginning of movement T ′(vj) will no longer
lie on that plane and no crossing can happen. If (vj, vj+1) lied strictly within one of
the half-planes defined by T ′(vj), then by the choice of direction of rotation we rotate
through the half-space that does not contain (vj, vj+1) and thus can not cross with this
edge either.

Step 5: Correct the path (see Fig. 15).

z

y

x

v30

v40

v20

v10

v00

v0

v2
v3
v4

v1

Figure 15: Step 5. v2, v3, v4 move horizontally along with their lifted subtrees to get to
the canonical x, y-position with respect to v1.

In morph 〈Γt+4,Γt+5〉 every vertex vj, j ≥ 2 of the path P moves together with its
subtree T ′(vj) along the vector ((v1x−vjx)+C(vj)x−C(v1)x, v1y−vjy , 0), where v1x denotes
the x-coordinate of vertex v1 in drawing Γt+4. At the end of this step x and y coordinates
of vj ∀j ≥ 1 are the same as x and y coordinates of vj in canonical drawing with respect
to v1.

Lemma 19. Step 5 is crossing-free.

Proof. Step is crossing-free because all edges of the path P and all subtrees of different
vertices vj of the path P (that lie in horizontal planes) are horizontally separated from
each other. All moving edges are horizontally separated from already lifted subtrees by
the plane z = n due to Lemma 17.

21

z

y

x

v30

v40

v20

v10

v00

v0
v1

v2

v3
v4

Figure 16: Step 6. Vertices v2, v3, v4 move vertically along with their lifted subtrees to
get to the canonical z-position with respect to v1.

Step 6: Go down (see Fig. 16).
This step consists of a single morph 〈Γt+5,Γt+6〉 and is similar to Step 3. During this

morphing step every iternal vertex vj, j ≥ 2 of the path P moves together with its subtree
T ′(vj) along the same vertical vector (0, 0, (v1z − vjz) + C(vj)z −C(v1)z), where v1z means
z-coordinate of vertex v1 in drawing Γt+5. At the end of this step, the z coordinate of
vj, ∀j > 1, is the same as the z coordinate of vj in the canonical drawing with respect to
v1.

Lemma 20. Step 6 is crossing-free.

Proof. All moving edges are horizontally separated from already lifted subtrees with the
plane z = n. During the morph the vertical order of internal vertices of the path does
not change as P is a portion of a root-to-leaf path. From that it follows that horizontal
separation of T ′(vj) remains for different j.

Step 7: Turn subtrees in horizontal planes (see Fig. 17).

z

y

x

v30

v40

v20

v10

v00

v0v2

v3
v4

v1

v1

Figure 17: Step 7. lifted subtree of v1 is rotated twice in horizontal plane to lie in X+
direction form v1.

22

In this step, consisting of two morphing steps 〈Γt+6,Γt+7〉, 〈Γt+7,Γt+8〉, we turn every
lifted subtree T ′(vj) of internal vertices of the path to lie in positive x-direction with
respect to vertex vj if needed. For every subtree that lies in negative x-direction in the
drawing Γt+6 the result of this step is planar point reflection of T ′(vj) across the point vj
in horizontal plane containing T ′(vj). For turning vertices in horizontal plane we use the
morphing step from Lemma 10.

Lemma 21. Step 7 is crossing-free.

Proof. Note that for every lifted subtree T ′(vj) of internal vertex Step 7 can be performed
by rotating the horizonal quarter plane twice around the root. Lemma 10 implies that
such rotations are crossing-free morphs. Since subtrees rooted at internal vertices are
horizontally separated from each other, they do not form crossing during the morph.
Similarly, no crossing happen with unprocessed part of the tree due to the horizonal
separation.

Step 8: Stretch in y-direction (see Fig. 18).

z

y

x

v30

v40

v20

v10

v00

v0

⇒

v1
v2

v3
v4

Figure 18: Step 8. lifted subtree of v1 is stretched to canonical width in horizontal plane.

This morphing step 〈Γt+8,Γt+9〉 transforms lifted subtrees of internal vertices of P in
horizontal planes from shrinked to canonical size. All vectors of movement are horizontal.

Lemma 22. Step 8 is crossing-free.

Proof. Stretching here is a shrinking morph played backwards and is a crossing-free morph
for every T ′(vj) by Lemma 8.

Note tthat all T ′(vj) are horizontally separated from each other and from unprocessed
part of the tree. Since the morph is horizontal, no crossings can happen between different
T ′(vj). Similarly, due to the horizontal separation, no crossings can happen with the
unprocessed part of the tree.

Step 9: Rotate to canonical positions (see Fig. 19).
In morph 〈Γt+9,Γt+10〉 all lifted subtrees T ′(vj) of the internal vertices of the path ro-

tate around horizontal axes (x, vjy , vjz), x ∈ R to lie in vertical plane in positive direction,
where vjz means z-coordinate of vertex vj in drawing Γt+9.

Lemma 23. Step 9 is crossing-free.

23

z

y

x

v30

v40

v20

v10

v00

v0v1 v2

v3
v4

Figure 19: Step 9. lifted subtrees of v1, v2 are rotated to vertical XZ+ half-planes

Proof. Let H be the vertical plane parallel to X0Z and containing v1, . . . , vm.
Vertices in subtrees T ′(vj) lie from one side of H in parallel planes at any moment

of this morphing step by Lemma 6. The half-planes that contain different T ′(vj) are
parallel because we can look at the rotation of the half-plane α containing T ′(vj) as at the
rotation of the half-plane β containing T ′(vk), j, k ∈ {1, . . . ,m} translated by the vector
Γt+9(vj)z − Γt+9(vk)z. Then at every moment angle ∠(α,XZ) = ∠(β,XZ) which means
that these half-planes are parallel to each other. So the vertices of T ′(vj) do not cross.

T ′(vj) remains in the same half-space from H during all morph for every j = 1, . . . ,m.
This means that subtrees that lie from different sides of H do not cross too.

At the end of this step subtree of vertex v1 of the drawing Γt+10 is at its canonical
positions with respect to to vertex v1 and therefore does not have any crossing within
itself.

Note that after this step the whole T (v1) is in canonical position with respect to vertex
v1.
Step 10: Move along (see Fig. 20).

z

y

x

v30

v40

v20

v10

v00

v0

v1

v3
v4

v2

Figure 20: Step 10. vertex v1 with its subtree moves horizontally towards the pole
through v0

In this morphing step 〈Γt+10,Γt+11〉 every internal vertex vj of the path with its subtree

24

T ′(vj) moves horizontally in same direction - (v0x− v1x , v0y − v1y , 0) - and by vector of the
same length defined by v1.

If in C(T) the edge (v0, v1) is vertical, vertex v1 moves along this vector to get x, y-
coordinates equal to (v0x , v0y).

If in C(T) the edge (v0, v1) is not vertical, i.e. C(v1)x−C(v0)x = 1, vertex v1 moves along
this vector as long as possible to get integer x and y coordinates not equal to (v0x , v0y).
From Lemma 5 there is such a point p = (px, py, 0) in disk B(Γt+10(v0), rpw+d(Γ)). Note
that distΓt+10(p, v0) ≤ d(Γ), all subtrees T ′(vj) (as they are part of T ′(v1)) take no more
than rpw space around the pole (v1x , v1y , z), z ∈ R and therefore in projection to X0Y
plane lie within the disk B(Γt+10(v0), rpw + d(Γ)).

After this step all morphs move processing vertices in projection to X0Y plane only
within disk B(Γt+10(v0), rpw + d(Γ)).

Lemma 24. Step 10 is crossing-free.

Proof. Step is crossing-free because all vertices of the path P are horizontally separated
from other subtrees of other vertices on the plane X0Y (all already lifted subtrees have
height at most n − 1 and all processing vertices have z-coordinates at least n) and the
only not-separated edge (v0, v1) moves along such a vector, that its projection does not
change angle in X0Y plane.

Steps 11-13 depend on whether we turned T ′(v0) during Step 2 or not.
Case 1: if pr(v0, v1) and T ′(v0) did not overlap after Step 1 and T ′(v0) was not rotated

during Step 2. In this case in the drawing Γt+11 lifted subtree of v0 lies in XZ+
v0

. See
Fig. 22.

Case 2: the overlap happened and T ′(v0) was rotated twice during Step 2. Then
T ′(v0) lies in XZ−v0 in Γt+11. See Fig. 23.

Below we describe each of the Steps 11-13 for both cases separately.
Step 11: First part of xy-correcting (see Fig. 22 and Fig. 23).

This step consists of one morphing step 〈Γt+11,Γt+12〉, which depends on the position
of T ′(v0).

Case 1: If during Step 2 T ′(v0) was not rotated, which means that the edge (v0, v1)
was not parallel to 0X, then the movement involves internal vertices of the path. In this
case all internal vertices of P with their subtrees T ′(vj) move along the same horizontal
vector so that after this movement edge (v0, v1) will lie in half-plane parallel to Y0Z
and |v1y − v0y | = |C(v1)x − C(v0)x|. The direction is chosen so that the angle between
pr((v0, v1)) in Γt+11 and pr((v0, v1)) in Γt+12 is minimal.

Case 2: If during Step 2 T ′(v0) was rotated, which means that the edge (v0, v1) was
parallel to 0X, then pr((v0, v1)) is still parallel to 0X, because we have not changed its
direction. By definition of Step 2 we know that T ′(v0) in Γt+11 lies in XZ−v0 . We are
rotating T ′(v0) around the pole through v0 to lie in Y Z+

v0
.

Lemma 25. Step 11 is crossing-free.

Proof. Case 1: All vectors of movement in T (v1) are the same, which means no crossing
can happen in T (v1). Also T (v1) is horizontally separated from the unprocessed part of
T , which is motionless.

As for the edge (v0, v1) its projection pr((v0, v1)) lies within the disk
B(Γt+11(v0), rpw + d(Γ)) throughout this morphing step and therefore can not cross
with lifted subtrees T ′(v) of other non-processing vertices v which projections lie within
B(Γt+11(v), rpw + d(Γ)). Also (v0, v1) can not cross with T ′(v0) because (v0, v1) moves
within one half-space defined by plane XZv0 .

Case 2: Rotation is a crossing-free morph and in projection happens within
B(Γt+11(v0), rpw + d(Γ)). For the same reasons as in Case 1 no crossings happen.

Step 12: Go down (see Fig. 21)
〈Γt+12,Γt+13〉 morphing step is a vertical morph, common for both cases. In Γt+12

drawing z-coordinates of internal vertices of P are wrong with respect to v0, they are

25

z

y

x

v30

v40

v20

v10

v00

v0

v3

v4

v2v1

Figure 21: Step 12. T (v1) moves down to the canonical height.

n more than the canonical ones. In both cases in this step we will move all vertices
v1, . . . , vm with all their subtrees down with vector (0, 0,−n).

Lemma 26. Step 12 is crossing-free.

Proof. Case 1: Step is crossing-free because T ′(v0) and T (v1) lie in distinct parallel
planes and do not intersect in projection in Γt+12. Vertical morph does not change the
projection of the drawing so separation remains. Edge (v0, v1) and T ′(v0) after Step 11
lie in different planes too.

Case 2: During Step 12 (v0, v1) and T (v1) are in XZ+
v0

. T ′(v0) during the same step
is in XZ−v0 . They can not make any crossings because they do not intersect in projection
during all this morph.

Step 13: Second part of xy-correcting (see Fig. 22 and Fig. 23).
This step consists of morphing step 〈Γt+13,Γt+14〉 different in Cases 1 and 2.
Case 1: In this case all processing vertices move along the same horizontal vector so

that after this movement vertex v1 lies in canonical position with respect to v0. As T (v1)
is already in canonical position with respect to v1, after Step 13 it will be in canonical
position with respect to v0.

Case 2: T (v1) and (v0, v1) are in canonical positions with respect to v0 after Step 12:
in Step 10 we got x, y-coordinates equal to (v0x + (C(v1)x−C(v0)x), v0y + (C(v1)y−C(v0)y)
because (v0, v1) was parallel to 0X axis, after Step 12 we have corrected z-coordinates. In
this case we rotate T ′(v0) to XZ+

v0
, i.e. to its canonical position with respect to v0.

In both cases processing vertices and T ′(v0) lie in canonical position with respect to
v0 in Γt+14, they all now form new lifted subtree of vertex v0 that will be used in later
Lift() procedures.

Lemma 27. Step 13 is crossing-free.

Proof. Case 1: During the morph projections of (v0, v1), T (v1), T ′(v0) do not cross. In
the end of the step T (v1) and (v0, v1) lie in canonical positions with respect to v0, T ′(v0)
was already in canonical position with respect to v0 by condition (I), so at the end of the
morph they also do not cross.

Case 2: Rotation is a crossing-free morph and in the end of this step we get
T ′(v0), T (v1) and (v0, v1) to be in canonical positions with respect to v0 and CTv0 does
not contain any crossings.

26

v0v1
v10

Γt
T (v10)

v20

T (v20)

v0
v10

Γt+11
T (v10)

v20

T (v20)

v1

T (v1)

v0v1

v20

v10

Γ0

x
y

v0
v10

v20

v1

T (v10)

T (v1)

T (v20)

z

v0
v10

Γt+12
T (v10)

v20

T (v20)

T (v1)

v1

v0
v10

Γt+13
T (v10)

v20

T (v20)

v1

v0
v10

Γt+14
T (v10)

v20

T (v20)

T (v1)

v1

T (v1)

Figure 22: Step 11-13. Case 1

27

v0
v10

Γt
T (v10)

v20

T (v20)

v0

Γt+11

v20

v20

v10

Γ0

x
y

v0
v10

v20

v1

T (v10)

T (v1)

T (v20)

z

v0
v10

Γt+14
T (v10)

v20

T (v20)

T (v1)

v1

v1v0

v1

T (v1)

v1

T (v10) v10

T (v20)

v0

Γt+12

v20

T (v1)

v1

T (v10)

v10
v0

Γt+13

v20

T (v10)

T (v20)

v10

T (v1)

v1

T (v20)

Figure 23: Step 11-13. Case 2

28

3.2 Correctness of the algorithm

Lemma 28. Conditions (I) and (II) hold after performing Lift(Pi) for each 1 ≤ i ≤ m.

Proof. (I) the drawing of T ′(v) in Γt is the canonical drawing of T ′(v) with respect to
v for any v ∈ V (T)

Base of the induction: i = 1:

Note that after performing the stretching step the whole T lies on the X0Y plane.
Since none of the paths are lifted, condition (I) trivially holds.

The induction step:

By induction hypothesis every T ′(v) for internal vertex v lies in position needed
before Lift(Pi) procedure. After Step 5 all internal vertices have canonical x, y-
coordinates with respect to vertex v1 and after Step 6 — canonical z-coordinates
with respect to v1 also. Steps 7 and 8 guarantee that T ′(vj), j = 1, . . . ,m are
in canonical position with respect to to their roots rotated to horizontal plane in
positive x-direction. Steps 1 and 8 are mutually inverse planar morphs for every
T ′(vj), 1 ≤ j ≤ m which means that canonical coordinates with respect to the roots
will remain the same after Step 8 but in horizontal direction.

Step 9 lifts subtrees of internal vertices into vertical canonical position and T (v1) is
in canonical position with respect to vertex v1. Steps 10-13 move T (v1) along with
v1, so after Lift(P) procedure T (v1) is in canonical position with respect to v1.

Steps 10, 11, 13 place v1 in canonical xy-position with respect to v0 and Step 12
makes it y-canonical. So after Step 13 old T ′(v0) along with new edge (v0, v1) and
subtree T (v1) is in canonical position with respect to v0.

As for the other vertices in X0Y, their lifted subtrees had not moved during Lift(P)
procedure and are in canonical positions with respect to their roots by induction
hypothesis.

(II) vertices of paths Pk, k > i are lying within X0Y plane

Base of the induction: i = 1:

The condition (II) holds since the entire tree T lies in the X0Y plane.

The induction step:

By induction hypothesis before Lift(P) procedure all vertices of non-processed paths
lie in X0Y plane. Internal vertices of the path P can not lie in other non-processed
paths than P by definition of path decomposition. That means that after Lift(P)
in which we move only processed paths, i.e. lifted subtrees, or internal vertices of
the P , all vertices that lie on non-processed paths will still lie in X0Y plane.

Lemma 29. In morph 〈Γ = Γ0, . . . ,Γl = Γ′〉 from morphing through lifting paths algo-
rithm every intermediate drawing Γi, 1 ≤ i ≤ l is a grid drawing.

Proof. Let us prove this by induction on number of lifted paths.
The base case is trivial: after the stretching morph all coordinates of all vertices are

integer because the constant of stretching is integer and in the given drawing Γ all vertices
had integer coordinates.

By induction hypothesis in the beginning of Lift(P) procedure all vertices lie on lattice
points of the grid. During Lift(P) procedure non-processed vertices and vertex v0 do
not change coordinates at all. Rotation and shrinking morphs move points with integer
coordinates to points with integer coordinates. Turning of the subtrees in horizontal
planes in Step 7 is integer by definition (see [6]). In all other steps the lifted subtrees of
internal vertices are moved along with their roots by the integer vector.

As all coordinates at the beginning of Lift(P) were integer and all vectors of movement
of all vertices in every step were integer, in every intermediate drawing during Lift(P)
and after Lift(P) procedure all vertices have integer coordinates.

29

3.3 Complexity of the algorithm

Let us estimate the grid size (we also call it space) required by the algorithm.
Our graph T = (V,E), |V | = n initially has drawing Γ = Γ0 that takes space l(Γ) ×

w(Γ)× 1.
First step of the algorithm multiplies needed space by S1 = 2 · (rpw + d(Γ)). During

our algorithm already lifted subtrees can take space in x, y-directions, but no more than
rpw(T). In z-direction every lifted subtree drawing takes no more then n, during Lift()
procedure we may get vertices at height at most n+ n.

So the required space is:

(x× y× z) : O((l(Γ) · 2 · (d(Γ) + rpw) + 2 · rpw)× (w(Γ) · 2 · (d(Γ) + rpw) + 2 · rpw)×n) =

O(d2(Γ)× d2(Γ)× n)

The estimation rpw(T) = O(log n) is given in [5] and is less than d(Γ) = Ω(
√
n)

asymptotically.

Theorem 1. For every two planar straight-line grid drawings Γ,Γ′ of tree T with n vertices
there exists a crossing-free 3D-morph M = 〈Γ = Γ0, . . . ,Γl = Γ′〉 that takes O(k) steps
and grid of size O(d2 × d2 × n) to perform, where k is number of paths in the given path
decomposition of tree T , d = max(d(Γ), d(Γ′)) is maximum of the diameters of the given
drawings Γ,Γ′. In this morph every intermediate drawing Γi, 1 ≤ i ≤ l is a straight-line
3D grid drawing.

Corollary 1. For every two planar straight-line grid drawings Γ,Γ′ of tree T with n
vertices there exists a crossing-free 3D-morph M = 〈Γ = Γ0, . . . ,Γl = Γ′〉 that takes O(n)
steps and grid of size O(d2×d2×n) to perform, where d = max(d(Γ), d(Γ′)) is maximum
of the diameters of the given drawings Γ,Γ′. In this morph every intermediate drawing
Γi, 1 ≤ i ≤ l is a straight-line 3D grid drawing.

Proof. Bound O(n) to the number of paths in P is obvious.

4 Morphing through lifting edges

In this section we describe another algorithm that morphs a planar drawing Γ of tree
T to the canonical drawing C(T) of T . This time one iteration of our algorithm lifts
simultaneously a set of edges of the same depth.

Once again we consider an input drawing Γ = Γ0 that is lying in X0Y plane.
Step 0: Preprocessing

This step consists of one stretching morph 〈Γ,Γ1〉. We multiply each coordinate of
each of the vertices in Γ by S1 = 2 · rpw · d(Γ) · (4 · d(Γ) + 1).

Step 0 is a crossing-free morph because stretching morph is crossing-free by Lemma 3.

4.1 Procedure Lift(edges)

Let K be the partition of edges of T into sets by depth of their vertices in the tree, sorted
by depth in decreasing order. Let m be the depth of T , then K = {K1, . . . , Km} : ∀i ∀e =
(u, v) ∈ Ki min(dpt(u), dpt(v)) = m− i.

We call start of an edge e — st(e) — the end vertex of this edge with the minimum
depth in T . The end of an edge e — end(e) — is on the other hand the end vertex of e
with maximum depth in T .

Note that for every path in a fixed path decomposition of T every Ki contains at most
one edge from this path.

We lift up sets Ki from K from i = 1 to i = m with procedure Lift(Ki) consisting of
Steps 1-5. Note that this algorithm does not depend on any path decomposition.

Let Ki be the input set, Γt be the drawing of T before lifting set Ki.

30

Similar to the previous section let lifted subtree T ′(vj) be the portion of subtree T (vj)

that has been lifted by the of execution of Lift(Kj) where j < i. Conditions that we
maintain throughout the algorithm are the following:

(I) drawing of T ′(v) in Γt is the canonical drawing of T ′(v) with respect to v for any
v ∈ V (T),

(II) vertices that lie on edges in a set that is not yet processed are lying in X0Y plane.

Analogously we prove by induction that for every i : 1 ≤ i ≤ m after lifting the set Ki

conditions hold.

Lemma 30. For every edge e = (v, u) and its start vertex v in Γ1 there is a lattice point
ze ∈ e such that:

1. B(Γ1(ze), rpw · d(Γ)) ⊂ B(Γ1(v), rpw · d(Γ) · (4 · d(Γ) + 1))

2. for distinct edges e1, e2 ∈ Ki∀i = 1, . . . ,m disks B(Γ1(ze1), rpw) and B(Γ1(ze2), rpw)
are disjoint.

3. for distinct edges e1, e2 ∈ Ki∀i = 1, . . . ,m regions

Fe1 = {x ∈ X0Y : distΓ1(x, (ze1 , u)) ≤ rpw}

and
Fe2 = {x ∈ X0Y : distΓ1(x, (ze2 , u)) ≤ rpw}

are disjoint.

Proof. Let us fix an edge e = (v, u). By Lemma 5, there is a lattice point z lying on e in
B(Γ1(v), d(Γ)). Then let point ze be (vx+(zx−vx)·4·rpw·d(Γ), vy+(zy−vy)·4·rpw·d(Γ), 0).
It satisfies the conditions of the lemma:

v

z1

z2

ze2

dist(z
e
1 , e

2)

ze1

e1

Γ1

Fe2

Fe1

rpw

≥
2 · rpw

≥

12·d(Γ
)

. . .

u1

u2

. . .

e2

Figure 24: Finding points ze1 , ze2 for edges e1, e2 with common start endpoint v. The
border of the regions Fe1 ,Fe2 is colored green.

1. B(Γ1(ze), rpw·d(Γ)) ⊂ B(Γ1(v), rpw·d(Γ)·(4·d(Γ)+1)) holds because distΓ1(ze, v) ≤
d(Γ) · (4 · rpw · d(Γ)).

31

2. For edges e1, e2 ∈ Ki with different start vertices v1, v2 we get disjointedness of the
corresponding disks from the fact that B(Γ1(zej), rpw) ⊂ B(Γ1(vj), rpw · d(Γ) · (4 ·
d(Γ) + 1)) and disks B(Γ1(v), rpw · d(Γ) · (4 · d(Γ) + 1)) do not cross for different v.

For edges e1, e2 ∈ Ki with a common start vertex v we get points z1, z2 from Lemma 5
in Γ1. We have dist(z1, z2) ≥ 1 because z1, z2 are lattice points of the grid. Then
by definition of ze1 , ze2 we have distΓ1(ze1 , ze2) ≥ 2 · rpw and for different edges e in
Ki disks B(Γ1(ze), rpw) do not intersect.

3. For e1 = (v, u1), e2 = (v, u2) by Lemma 1 dist(z1, e2) ≥ 1
2·d(Γ)

, because z1, (v, z2) can

be interpreted as drawing within B(Γ1(v), d(Γ)) with the diameter at most 2 · d(Γ).
Then dist(ze1 , e2) ≥ (4 · rpw · d(Γ)) · 1

2·d(Γ)
= 2 · rpw.

Minimum distance between (ze1 , u1), (ze2 , u2) is realized at one of the endpoints of
the segments, for zej , j = 1, 2 it is at least 2 · rpw as we know from above. For
vertices uj, j = 1, 2 by Lemma 5 disk B(Γt(uj), 2 · rpw) does not intersect with any
edges non-incident to uj or contain any other vertices than uj. That means that all
segment (ze1 , u1) is at distance at least 2 · rpw from segment (ze2 , u2) and Fe1 ,Fe2
do not intersect.

For edges e1, e2 with different start vertices we have that e1, e2 do not have common
endpoints by the definition of Ki. Then e1 = (v1, v2), e2 = (v3, v4) and for the same
reasons as above the corresponding regions are disjoint.

z

y

x

Figure 25: Drawing Γt in the beginning of the procedure Lift(Ki), lifted subtrees are
violet. Ki consists of green edges.

Step 1: Shrink (see Fig. 26).

z

y

x

Figure 26: Step 1.

In the morphing step 〈Γt,Γt+1〉 for every edge e ∈ Ki we move vertex end(e) along
with its lifted subtree towards st(e) until end vertex reaches point ze of the corresponding

32

edge e, all vectors of movement are horizontal. Point ze for vertex st(e) and the edge e
are defined as in Lemma 30.

Lemma 31. Step 1 is crossing-free.

Proof. Vertices that lie in the X0Y plane do not move or move along their incident edges,
so no intersections can happen in X0Y.

For the moving subtrees we know from Lemma 30 that they do not intersect because
each lifted subtree in projection lies in the corresponding region Fe throughout the whole
morph and these regions do not intersect for different e ∈ Ki.

From Conditions (I) and (II) it follows that no intersections happen during this mor-
phing step.

Step 2: Go up (see Fig. 27).

z

y

x

Figure 27: Step 2.

In morphing step 〈Γt+1,Γt+2〉 we move all end vertices end(e) in the set Ki along the
vector (0, 0, C(end(e))z − C(st(e))z). Each T ′(end(e)) moves along the same vector as
end(e).

Lemma 32. Step 2 is crossing-free.

Proof. For every vertex v let End(v) be a set of edges, for which v is a start vertex. All
edges of End(v) are contained in one set Ki because their depth is defined by dpt(v).
That means that if we are lifting some edges with start vertex v, then v does not have
any lifted subtree in the beginning of Lift(Ki) procedure. In projection to X0Y plane in
Γt+1 lifted subtrees of the same or different vertices do not intersect.

During this morphing step we do not change projection and move every lifted subtree
by the same vertical vector, so no intersections can happen between the subtrees and
between the edges of the same subtree. Vertices of unprocessed sets are lying still in X0Y
plane and can not make any intersections too.

Step 3: Mapping (see Fig. 28).
Morphing step 〈Γt+2,Γt+3〉 is a mapping morph, see Section 2.2. For every lifted

subtree T ′(vj), where vj = end(e), e ∈ Ki, we define the half-planes of the mapping
morph as follows: half-plane α is XZ+

vj
by Condition (I), half-plane β is part of the

vertical plane containing the edge e in such direction that e /∈ β, the common vertical
pole of α and β is a pole through vj.

All mapping steps are done simultaneously for all subtrees of end vertices of the edges
of Ki.

Lemma 33. Step 3 is crossing-free.

33

z

y

x

Figure 28: Step 3.

Proof. By Lemma. 7 mapping is a crossing-free morph and no intersections happen in
every T ′(vj).

Movement of every T ′(vj) for vj = end(e) happens in projection to X0Y plane in the
region Fe defined for e and st(e): distance from vertices of T ′(vj) to e decreases and e has
at least rpw + 1 integer points on it so in Γt+1 and Γt+2 projections of vertices of T ′(vj)
lie in Fe.

Different lifted subtrees do not intersect as they do not intersect in projection to X0Y
during this step. Other vertices do not move and also make no intersections.

Step 4: Shrink more (see Fig. 29).

z

y

x

Figure 29: Step 4.

The morphing step 〈Γt+3,Γt+4〉 is a horizontal morph. For each vj = end(e), e ∈ Ki we
define a horizontal vector of movement as following. If e is a vertical edges in canonical
drawing then this vector is (Γt+3(st(e))x−Γt+3(end(e))x,Γt+3(st(e))y −Γt+3(end(e))y, 0),
in this case subtree T ′(end(e)) is moving towards vertical pole through st(e) until the
image of the edge e becomes vertical. As in canonical drawing only one edge is vertical
at every vertex, we get at most one edge vertical at every vertex st(e), e ∈ Ki.

If e is not a vertical edge in canonical drawing, then C(end(e))x −
C(st(e))x = 1 and we move the whole subtree T ′(end(e)) towards the pole
through Γt+3(st(e)) until end(e) reaches the last point with integer coordinates before
(Γt+3(st(e))x,Γt+3(st(e))y,Γt+3(end(e))z).

Lemma 34. Step 4 is crossing-free.

34

Proof. Every lifted subtree moves inside its half-plane. That means that different subtrees
T ′(end(ej)) with the same st(ej) do not intersect in projection to X0Y plane and though
do not intersect with each other.

Subtrees with different st(ej) in projection lie in non-crossing disks B(Γ1(v), rpw ·d(Γ)·
(4 · d(Γ) + 1)) by Lemma 30 and also can not intersect during this morph.

Step 5: Collide planes (see Fig. 30).

z

y

x

Figure 30: Step 5.

During the following steps 〈Γt+4,Γt+5〉, . . . , 〈Γt+5+log k,Γt+5+log k+1〉 we iteratively di-
vide half-planes that contain T ′(end(e)), e ∈ Ki around each vertex st(e), e ∈ Ki in pairs,
pairs are formed of neighboring half-planes in clockwise order around the pole through
the corresponding st(e). If in some iteration there are odd number of planes around some
pole, the plane without pair does not move in this iteration.

In every iteration we map the drawing of one plane in the pair to another simulta-
neously in all pairs. As around each vertex we can have at most k = ∆(T) number of
half-planes, we need at most log k + 1 + 1 number of mapping steps to collide all planes
in one and to rotate the resulting image to XZ+

st(e)

Lemma 35. Step 5 is crossing-free.

Proof. Mapping is a crossing-free morph, no intersection happen in every lifted subtree
in every iteration.

After every step every T ′(end(e)), e ∈ Ki is in canonical position with respect to st(e)
but mapped from XZ+

st(e) to some other half-plane. This is true in Γt+4 and remains true

through all these morphing steps as we do not change set of half-planes. In every mapping
of one plane to another by the definition of mapping we keep the invariant that the closest
to the pole integer point goes to the closest to the pole integer point, other integer points
are mapped proportionally.

That means that after mapping plane α containing one subtree to plane β containing
another we will have in plane β two subtrees drawing which can be obtained by mapping
from X0Z+

st(e) their canonical drawing with respect to st(e). So during each morphing

step and at the end of every morphing step no intersections can happen.
Every mapping step for every st(e) is happening in projection to X0Y in its disk

B(Γ1(v), rpw · d(Γ) · (4 · d(Γ) + 1)) so mappings for different st(e) can not intersect too.
All other, non-processed, vertices are lying on the plane and can not make any inter-

sections.

35

z

y

x

Figure 31: Drawing Γt+6 after colliding all the planes.

4.2 Correctness of the algorithm

Lemma 36. Conditions (I) and (II) hold after performing Lift(Ki) for each 1 ≤ i ≤ m.

Proof. (I) the drawing of T ′(v) in Γt is the canonical drawing of T ′(v) with respect to
v for any v ∈ V (T)

Base of the induction: i = 1:

Note that after performing the stretching step the whole T lies on the X0Y plane.
Since none of the paths are lifted, condition (I) trivially holds.

The induction step:

By induction hypothesis every T ′(v) for end vertex of any edge in Ki lies in position
needed before Lift(Ki) procedure. After Step 2 all end vertices of the edges of Ki

have canonical z-coordinates with respect to the start vertices of their edges. Then
Step 4 for any edge e in Ki makes distances from the vertex end(e) and vertices of its
subtree to the pole through st(e) proportional to their canonical y-coordinate. After
Step 5 all end(e), e ∈ Ki vertices and their lifted subtrees lie in the corresponding
XZ+

st(e) and have canonical x, y, z-coordinates with respect to the start vertices of

their edges.

Note that start vertices of edges in Ki did not have lifted subtree in the beginning
of the procedure Lift(Ki) and after this procedure their lifted subtree consists of
the end vertices of the edges in Ki and their lifted subtrees.

As for the other vertices in X0Y, their lifted subtrees had not moved during Lift(Ki)
procedure and are in canonical positions with respect to their roots by induction
hypothesis.

(II) vertices that lie on edges in a set that is not yet processed are lying within X0Y
plane

Base of the induction: i = 1:

The condition (II) holds since the entire tree T lies in the X0Y plane.

The induction step:

By induction hypothesis before Lift(Ki) procedure all vertices that lie on edges in
a set that is not yet processed lie in X0Y plane. End vertices of the edges in Ki can
not lie in Kj, j > i by definition of the partition K. That means that after Lift(Ki)
in which we move only end vertices of the edges in Ki and their lifted subtrees, all
vertices that lie on edges of sets Kj, j > i will still lie in X0Y plane.

36

Lemma 37. In morph 〈Γ = Γ0, . . . ,Γl = Γ′〉 from morphing through lifting edges algo-
rithm every intermediate drawing Γi, 1 ≤ i ≤ l is a grid drawing.

Proof. Let us prove this by induction on number of lifted sets Ki.
The base case is trivial. After the stretching morph all coordinates of all vertices are

integer because the constant of stretching is integer and in the given drawing Γ all vertices
had integer coordinates.

By induction hypothesis in the beginning of Lift(Ki) procedure all vertices lie on
lattice points of the grid. During Lift(Ki) procedure vertices that are not ends of the
edges of Ki do not change coordinates at all. Mapping morphs move points with integer
coordinates to points with integer coordinates. In all other steps the lifted subtrees of
end vertices of the edges are moved along with their roots by the integer vector.

As all coordinates at the beginning of Lift(Ki) were integer and all vectors of move-
ment of all vertices in every step were integer, in every intermediate drawing during
Lift(Ki) and after Lift(Ki) procedure all vertices still have integer coordinates.

4.3 Complexity of the algorithm

The estimation on the grid size required by the algorithm is similar to the one in previous
section.

In the beginning of the algorithm the given drawing Γ = Γ0 of graph T = (V,E),
|V | = n takes space l(Γ)× w(Γ)× 1.

First step of the algorithm multiplies needed space by S1 = 2 ·rpw ·d(Γ) · (4 ·d(Γ)+1).
During our algorithm the height of lifted subtrees does not exceed their height in relative
canonical drawing with respect to their roots, i.e. does not exceed n. Lifted subtrees take
no more than rpw space in x, y-directions from their root after each iteration of Lift()
procedure and during Steps 1-2 of it. Note that in Step 1 maximum x, y-coordinates of
vertices in lifted subtree can not exceed maximum x, y-coordinates of vertices that are
the start and the end of the edge along which this lifted subtree is moving. During Steps
3-5 of Lift() procedure lifted subtrees lie in disks B(Γ1(v), rpw · d(Γ) · (4 · d(Γ) + 1)) for
some v that is the start of edge in Ki.

So the space algorithm requires during all steps is at most:

(x× y × z) : O((l(Γ) · 2 · rpw · d(Γ) · (4 · d(Γ) + 1) + 2 · rpw · d(Γ) · (4 · d(Γ) + 1))×

×(w(Γ) · 2 · rpw · d(Γ) · (4 · d(Γ) + 1) + 2 · rpw · d(Γ) · (4 · d(Γ) + 1))× n) =

O(d3(Γ) · log n× d3(Γ) · log n× n)

There are l number of sets Ki, where l is the depth of T . For every procedure Lift(Ki)
we need at most 6+log k number of morphing steps, where k = ∆(T) — maximum degree
of a vertex in T .

So the total number of steps in the algorithm is:

O(dpt(T) · log ∆(T))

Theorem 2. For every two planar straight-line grid drawings Γ,Γ′ of tree T with n
vertices there exists a crossing-free 3D-morph M = 〈Γ = Γ0, . . . ,Γk = Γ′〉 that takes
O(dpt(T) · log ∆(T)) steps and grid of size O(d3 · log n× d3 · log n× n) to perform, where
dpt(T) is the depth of tree T , d = max(d(Γ), d(Γ′)) is maximum of the diameters of the
given drawings Γ,Γ′, ∆(T) is maximum degree of a vertex in T . In this morph every
intermediate drawing Γi, 0 ≤ i ≤ k is a straight-line 3D grid drawing.

37

5 Trade-off

Recall that L(T) is the ordered set of paths induced by the long-path decomposition, see
Section 1. Let Long(T) be the set of paths from L(T), consisting of the paths which
length is at least

√
n, ordered as in L(T). We denote by Short(T) the set of trees that

are left after deleting from T edges of Long(T). See Fig. 32 for an example of partition
of a tree into Long(T), Short(T).

Lemma 38. 1. |Long(T)| ≤
√
n

2. For every tree Ti in Short(T) the depth of Ti is at most b
√
nc.

Proof. 1. Every edge in the tree lies in exactly one path of long-path decomposition.
In a tree T with n nodes there are n− 1 edge.

n− 1 ≥ |E(T)| = | ∪ Long(T)| ≥ |Long(T)| ·
√
n

⇒ |Long(T)| ≤
√
n

2. If there exists a tree Ti which depth is at least
√
n, then long edges from its root

create a path that lies in long-path decomposition and has length at least
√
n. That

means that this path from the root of Ti should lie in Long(T) and does not exist
in Ti. We arrive to a contradiction.

Let us divide edges in Short(T) into sets Sh1, . . . Shb√nc by the following rule: edge
(vi, vj) in tree Tk lies in the set Shl if and only if max(dpt(vi), dpt(vj)) = b

√
nc − l + 1,

where dpt(v) is the depth of vertex v in the corresponding tree Tk, see Fig. 32. Note that
as depth of all trees Tk are at most

√
n, Sh1, . . . Shb√nc will contain all the edges of these

subtrees.

z

x

y

T

Short(T)
n = 16

|L2| = 4|L1| = 5

Long(T)

Sh3

Sh4

Sh1 Sh2

Figure 32: Example of partition of the edges into set of paths Long(T) and sets of edges
Shi, i ∈ {1, . . . ,

√
n = 4}. Sets Sh1, Sh2 are empty, as trees in Short(T) have depth at

most 2.

The trade-off algorithm works as follows:

38

In the beginning we perform a stretching step with S1 = 2 · rpw · d(Γ) · (4 · d(Γ) + 1),
the same as in Section 4. This stretching constant is big enough to perform Lift() and
Lift() procedures crossing-free.

After that, we lift edges from sets Sh1 to Shb√nc by Lift(Shi) procedure (see Sec-
tion 4). Due to our choice of constant S1 different subtrees are separated from each other
and this is a valid operation. This part of our algorithm takes O(

√
n · log ∆(T)) steps in

total by Theorem 2.
Then, we lift paths in Long(T) in reverse order by Lift() procedure (see Section 3).

As |Long(T)| ≤
√
n and each Lift() procedure consists of a constant number of morphing

steps, this part of the algorithm takes O(
√
n) steps in total.

Theorem 3. For every two planar straight-line grid drawings Γ,Γ′ of tree T with n
vertices there exists a crossing-free 3D-morph M = 〈Γ = Γ0, . . . ,Γl = Γ′〉 that takes
O(
√
n · log ∆(T)) steps and grid of size O(d3 · log n × d3 · log n × n) to perform, where

d = max(d(Γ), d(Γ′)) is maximum of the diameters of the given drawings Γ,Γ′, ∆(T) is
maximum degree of a vertex in T . In this morph every intermediate drawing Γi, 1 ≤ i ≤ l
is a straight-line 3D grid drawing.

As ∆(T) ≤ n we immediately get the following corollary:

Corollary 2. For every two planar straight-line grid drawings Γ,Γ′ of tree T with n
vertices there exists a crossing-free 3D-morph M = 〈Γ = Γ0, . . . ,Γl = Γ′〉 that takes
O(
√
n · log n) steps and grid of size O(d3 · log n × d3 · log n × n) to perform, where d =

max(d(Γ), d(Γ′)) is maximum of the diameters of the given drawings Γ,Γ′. In this morph
every intermediate drawing Γi, 1 ≤ i ≤ l is a straight-line 3D grid drawing.

6 Conclusion

In this thesis, we have studied algorithms for crossing-free 3D-morphs between two planar
straight-line grid drawings of an n-vertex tree T where each intermediate morphing step
produces a 3D straight-line grid drawing of T . We have got the algorithm such that it
takes O(

√
n log n) morphing steps and grid of a size O(d3 · log n×d3 · log n×n) to perform,

where d = max(d(Γ), d(Γ′)) is maximum of the diameters of the given drawings Γ,Γ′. Our
algorithm is better in number of steps and in the (horizontal) size of the grid than the
best known algorithm operating in the plane [6].

We suppose that our result may not be optimal in number of steps and grid size since
we do not have a matching lower bound. However, our algorithm shows that the third
dimension can help to reduce the number of steps in morphing grid drawings and gives
rise to an interesting open problem: to what extent one can further reduce the required
number of steps and grid size for morphing 3D grid drawings of trees?

References

[1] Soroush Alamdari, Patrizio Angelini, Fidel Barrera-Cruz, Timothy M Chan, Gior-
dano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Penny Haxell, Anna Lubiw,
Maurizio Patrignani, Vincenzo Roselli, Sahil Singla, and Bryan T Wilkinson. How to
morph planar graph drawings. SIAM Journal on Computing, 46(2):824–852, 2017.
doi:10.113716M1069171.

[2] Soroush Alamdari, Patrizio Angelini, Timothy M Chan, Giuseppe Di Battista, Fab-
rizio Frati, Anna Lubiw, Maurizio Patrignani, Vincenzo Roselli, Sahil Singla, and
Bryan T Wilkinson. Morphing planar graph drawings with a polynomial num-
ber of steps. In S. Khanna, editor, 24th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA ’13), pages 1656–1667. SIAM, 2013. doi:10.1137/1.
9781611973105.119.

39

https://doi.org/10.113716M1069171
https://doi.org/10.1137/1.9781611973105.119
https://doi.org/10.1137/1.9781611973105.119

[3] P. Angelini, G. Da Lozzo, G. Di Battista, F. Frati, M. Patrignani, and V. Roselli.
Morphing planar graph drawings optimally. In J. Esparza, P. Fraigniaud, T. Husfeldt,
and E. Koutsoupias, editors, 41st International Colloquium on Automata, Languages
and Programming (ICALP ’14), volume 8572 of LNCS, pages 126–137. Springer,
2014. doi:10.1007/978-3-662-43948-7_11.

[4] Patrizio Angelini, Fabrizio Frati, Maurizio Patrignani, and Vincenzo Roselli. Mor-
phing planar graph drawings efficiently. In S. Wismath and A. Wolff, editors, 21st
International Symposium on Graph Drawing (GD ’13), volume 8242 of LNCS, pages
49–60. Springer, 2013. doi:10.1007/978-3-319-03841-4_5.

[5] Elena Arseneva, Prosenjit Bose, Pilar Cano, Anthony D’Angelo, Vida Dujmovic,
Fabrizio Frati, Stefan Langerman, and Alessandra Tappini. Pole dancing: 3d morphs
for tree drawings. J. Graph Algorithms Appl., 23(3):579–602, 2019.

[6] Fidel Barrera-Cruz, Manuel Borrazzo, Giordano Da Lozzo, Giuseppe Di Battista,
Fabrizio Frati, Maurizio Patrignani, and Vincenzo Roselli. How to morph a tree on a
small grid. In Workshop on Algorithms and Data Structures, pages 57–70. Springer,
2019.

[7] Fidel Barrera-Cruz, Penny Haxell, and Anna Lubiw. Morphing planar graph
drawings with unidirectional moves. In Mexican Conference on Discrete Mathe-
matics and Computational Geometry, pages 57–65, 2013. also available at http:
//arxiv.org/abs/1411.6185.

[8] Fidel Barrera-Cruz, Penny Haxell, and Anna Lubiw. Morphing schnyder drawings
of planar triangulations. Discrete & Computational Geometry, 61(1):161–184, 2019.

[9] Michael Bender and Martin Farach-Colton. The level ancestor problem simplified.
volume 321, pages 190–201, 03 2002. doi:10.1007/3-540-45995-2_44.

[10] Therese Biedl. Optimum-width upward drawings of trees. arXiv preprint
arXiv:1506.02096, 2015.

[11] S.S. Cairns. Deformations of plane rectilinear complexes. The American Mathemat-
ical Monthly, 51(5):247–252, 1944. doi:10.1080/00029890.1944.11999082.

[12] Michael S. Floater and Craig Gotsman. How to morph tilings injectively. Journal
of Computational and Applied Mathematics, 101(1-2):117–129, 1999. doi:10.1016/
S0377-0427(98)00202-7.

[13] Craig Gotsman and Vitaly Surazhsky. Controllable morphing of compatible planar
triangulations. ACM Transactions on Graphics (TOG), 20(4):203–231, 2001.

[14] Craig Gotsman and Vitaly Surazhsky. Guaranteed intersection-free polygon mor-
phing. Computers & Graphics, 25(1):67–75, 2001. doi:10.1016/S0097-8493(00)
00108-4.

[15] Craig Gotsman and Vitaly Surazhsky. Intrinsic morphing of compatible triangula-
tions. International Journal of Shape Modeling, 9(02):191–201, 2003.

[16] Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger. The computational com-
plexity of knot and link problems. Journal of the ACM, 46(2):185–211, 1999.
doi:10.1145/301970.301971.

[17] Robert E. Horton. Erosional development of streams and their drainage
basins: hydro-physical approach to quantitative morphology. Geological Soci-
ety of America Bulletin, 56(3):275–370, 1945. doi:http://dx.doi.org/10.1130/
0016-7606(1945)56[275:EDOSAT]2.0.CO;2.

40

https://doi.org/10.1007/978-3-662-43948-7_11
https://doi.org/10.1007/978-3-319-03841-4_5
http://arxiv.org/abs/1411.6185
http://arxiv.org/abs/1411.6185
https://doi.org/10.1007/3-540-45995-2_44
https://doi.org/10.1080/00029890.1944.11999082
https://doi.org/10.1016/S0377-0427(98)00202-7
https://doi.org/10.1016/S0377-0427(98)00202-7
https://doi.org/10.1016/S0097-8493(00)00108-4
https://doi.org/10.1016/S0097-8493(00)00108-4
https://doi.org/10.1145/301970.301971
https://doi.org/http://dx.doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
https://doi.org/http://dx.doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2

[18] Marc Lackenby. The efficient certification of knottedness and Thurston norm. CoRR,
abs/1604.00290, 2016. URL: http://arxiv.org/abs/1604.00290.

[19] Arthur N. Strahler. Hypsometric (area-altitude) analysis of erosional topology. Ge-
ological Society of America Bulletin, 63(11):1117–1142, 1952. doi:http://dx.doi.
org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.

[20] Arthur N. Strahler. Quantitative analysis of watershed geomorphology. Transactions
of the American Geophysical Union, 38(6):913–920, 1957. doi:http://dx.doi.org/
10.1029/tr038i006p00913.

[21] Carsten Thomassen. Deformations of plane graphs. Journal of Combinatorial Theory,
Series B, 34(3):244–257, 1983. doi:10.1016/0095-8956(83)90038-2.

7 Appendix

In the following, we mention the proofs of the lemmas that are omitted from the main
paper.

Proof of Lemma 1:

Proof. Let fix vertex v ∈ V and e = (u,w) ∈ E, v 6= u,w. Denote by h the height in the
triangle (v, u, w) from the vertex v, h is the distance from v to the line that contains the
edge (u,w) by its definition. Let S be the area of triangle (u, v, w).

The S = 1
2
· h · distΓ(u,w) ≤ d(Γ)

2
· h.

On the other hand from the Pick’s theorem we know, that the area of the triangle
with vertices lying in the lattice points of the grid is at least 1

2
.

Then 1
2
≤ S ≤ d(Γ)

2
· h⇒ h ≥ 1

d(Γ)
.

41

http://arxiv.org/abs/1604.00290
https://doi.org/http://dx.doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
https://doi.org/http://dx.doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
https://doi.org/http://dx.doi.org/10.1029/tr038i006p00913
https://doi.org/http://dx.doi.org/10.1029/tr038i006p00913
https://doi.org/10.1016/0095-8956(83)90038-2

	Preliminaries and Definitions
	Tools for morphing algorithms
	Stretching step with a constant S1
	Mapping and rotation around a pole
	Shrinking lifted subtrees
	Turning in horizontal plane

	Morphing through lifting paths
	Procedure Lift(P)
	Correctness of the algorithm
	Complexity of the algorithm

	Morphing through lifting edges
	Procedure Lift(edges)
	Correctness of the algorithm
	Complexity of the algorithm

	Trade-off
	Conclusion
	Appendix

