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1. Introduction

In this paper, we will restrict our attention to connected compact 3-manifolds M with
non-empty boundary. An ideal triangulation of M is minimal if it uses the smallest number
of tetrahedra in an ideal triangulation of M . The number of ideal tetrahedra in a minimal
ideal triangulation of M is denoted c∆(M) and termed the triangulation complexity of M .

The triangulation complexity c∆(M) of M is the minimal number of tetrahedra in any
ideal triangulation of M . There are remarkably few examples of exact computations of
triangulation complexity of manifolds. The following lower bound

(1) c∆(M) ≥ β0(∂M ;Z2)− χ(M)

on complexity is known through work of Frigerio, Martelli and Petronio [1], where it is
shown that the bound is attained by infinite families of manifolds Mg,k with a totally
geodesic boundary component of genus g ≥ 2 and k cusps. In particular, a minimal ideal
triangulation of Mg,0 has only a single edge [2]. An equivalent approach to complexity is via
Matveev’s theory of special spines. From this point of view, it is proved [3] that any ideal
triangulation T with exactly two edges such that no 3-2 Pachner moves can be applied to T
is minimal. Infinite families of such manifolds were described in [4, 5, 6]. Further research
in [7] shows that poor ideal three-edge triangulations are minimal. Moreover, a census of
connected compact 3-manifolds with non-empty boundary decomposed into at most 4 ideal
tetrahedra was given in [8, 9].

In this paper, we present a new lower bound for the triangulation complexity of connected
compact 3-manifolds M with non-empty boundary via Z2-homology (Theorem 3.1). It is
shown (Theorem 3.3) that this bound is stronger than those given by (1). We use Z2-
homology to study the combinatorics of minimal ideal triangulations of M for which our
lower bound is achieved (Theorem 4.1). The class of such manifolds is denoted by Mh.

Our next task is to distinguish manifolds in Mh. We characterise edges of minimal
triangulations that yields a natural partition of the set of minimal triangulations into four
classes. A natural question to ask does a manifold inMh admits minimal triangulations of
different classes. We prove (Theorem 6.1) that the answer is negative.

Finally we prove that each manifold inMh, with a few exceptions, is a hyperbolic mani-
fold with totally geodesic boundary components and some cusps (Theorem 7.2). The hyper-
bolicity of manifolds in Mh provides several results concerning the Matveev‘s complexity
and the hyperbolic volume of these manifolds (Theorem 7.8 and Theorem 7.9).

2. Triangulations and special spines

In this paper, we will translate freely back and forth between an ideal triangulation and
its dual special spine. We begin by recalling some definitions.

2.1. Ideal triangulations. Let T̂ be a cell complex made out of a pairwise disjoint col-
lection of 3-simplices by gluing all of their 2-dimensional faces in pairs via simplicial maps.
The simplices prior to identification, and their vertices, edges, and faces, are called model

cells. Denote by T̂ (i) the i-skeleton of T̂ .

Note that T̂ may actually not be a 3-manifold, because the link of a vertex could be any
surface, and the link of the midpoint of an edge could be a projective plane. Throughout

this paper we assume that T̂ has no singularities at the midpoints of its edges. Under this

assumption, T̂ with small open stars of its vertices removed is a compact manifold with non-

empty boundary, denoted M . Then T̂ \ T̂ (0) is denoted T and termed an ideal triangulation
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of M . We call T̂ the cell complex corresponding to T . This means in particular that the

edges of T are in one-to-one correspondence with the edges of T̂ .

We fix the following notation. Let v be a vertex and e be an edge of T̂ . Denote by V(v)
(resp., E(e)) the union of model vertices (resp., edges) that are identified to form v (resp.,
e). The elements of V(v) (resp., E(e)) are called pre-images of v (resp., e). Denote by d(T )
the number of edges in T . In the sequel we always refer to d itself as the number of edges
tacitly implying that T is fixed.

2.2. Partially truncated triangulation. Let ∆̃ be a model tetrahedron and J be a

subset of ∆̃(0), which is called the set of ideal model vertices. A partially truncated model

tetrahedron ∆̃J corresponding to a pair (∆̃, J) is obtained from ∆̃ by removing the ideal
model vertices and small open stars of non-ideal ones. We call lateral model hexagon and

truncation model triangle the intersection of ∆̃J respectively with a face of ∆̃ and with the

link in ∆̃ of a non-ideal vertex. The model edges of the triangulation model triangles, which
also belongs to the lateral model hexagons, are called boundary model edges, and the other

edges of ∆̃J are called internal model edges. Note that, if J 6= ∅, a lateral model hexagon of

∆̃J may not quite be a hexagon, because some of its (closed) boundary model edges may
be missing.

Let T be an ideal triangulation of a compact 3-manifold M with non-empty boundary,

and let T̂ be the corresponding cell complex. Let I be a subset of T̂ (0), the elements of I
are called ideal vertices. Define

V(I) =
⋃
v∈I
V(v).

For each model tetrahedron ∆̃ define a set of ideal model vertices J = ∆̃(0) ∩ V(I), and

let ∆̃J be a partially truncated model tetrahedron corresponding to a pair (∆̃, J). Define a

partially truncated triangulation T̂ I corresponding to a pair (T̂ , I) as a gluing of some ∆̃J ‘s

along the lateral model hexagons induced by a simplicial pairing of the model faces of ∆̃‘s.

Remark 2.1. We will use the following facts down in the sequel.

• The internal edges of T̂ I are in one-to-one correspondence with the with the edges
of T .
• The vertices of T̂ are in one-to-one correspondence with the components of ∂M .

• |T̂ I | is homeomorphic to M with non-empty boundary components corresponding

to ideal vertices of T̂ removed.

Note, that if I = T̂ 0, then T̂ I coincides with ideal triangulation T . If I = ∅, then T̂ I is
actually a truncated triangulation of M , which we denote by T ?.

2.3. Special spines. A spine of a compact 3-manifold M with non-empty boundary is a
compact polyhedron P ⊂ M such that M \ P is homeomorphic to ∂M × [0, 1). A spine
P carries much information about M . In particular, P is homotopy equivalent to M and
hence determines the homotopy type of M .

We will restrict our class of spines to those called special (or, standard) spines. A compact
two-dimensional polyhedron P is said to be simple if the link of every point x in P is
homeomorphic either to a circle (such a point x is called nonsingular), to a graph consisting
of two vertices and three edges joining them (such a point x is called a triple point), or to
the complete graph K4 with four vertices (such a point x is called a true vertex ). Connected
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components of the set of all nonsingular points are called 2-components of P , while connected
components of the set of all triple points are called triple lines of P . The set of singular
points of P (that is, the union of all triple lines and all true vertices) is called a singular
graph of P . A simple polyhedron is special if each of its triple line is an open 1-cell, and
each of its 2-component is an open 2-cell. A singular graph of a special polyhedron has at
least one true vertex and is a 4-regular graph. Therefore, it is natural to call the triple lines
of a special polyhedron edges.

For each 2-component ξ of a special polyhedron P , there is a characteristic map f : D2 →
P , which carries the interior of the disc D2 onto ξ homeomorphically and which restricts
to a local embedding on S1 = ∂D2. We will call the curve f |∂D2 : ∂D2 → P (and its image
f |∂D2(∂D2)) the boundary curve ∂ξ of ξ.

2.4. Duality between ideal triangulations and special spines. An ideal triangulation
T of a compact 3-manifold M with non-empty boundary determines in a natural way a dual
special polyhedron, which is in fact a spine of M . For each model tetrahedron ∆i of T , let Ri
denote the union of the links of all four vertices of ∆i in the first barycentric subdivision.
Since the face-pairings are simplicial, gluing ∆i’s induces gluing the corresponding Ri’s
together. We get a special spine P of M . In fact, the assignment T → P induces a bijection
between ideal triangulations (considered up to equivalence) and special spines (considered
up to homeomorphisms) [10].

3. Lower bounds for complexity of manifolds with boundary

3.1. Lower bounds via Z2-homology.

Theorem 3.1. Let M be a connected compact 3-manifold with non-empty boundary. Then

c∆(M) ≥ β1(M,Z2).

By d(P ) and v(P ) denote the number of 2-components and the number of true vertices
of a special polyhedron P , respectively.

Lemma 3.2. Let P be a special spine of a connected compact 3-manifoldM with non-empty
boundary. Then we have:

(i) d(P )− (β2(M,Z2) + 1) = v(P )− β1(M,Z2);
(ii) d(P ) ≥ β2(M,Z2) + 1.

Proof. Since the singular graph of a special spine is 4-regular, χ(P ) = d(P )−v(P ). Since M
is connected, we have β0(M,Z2) = 1 and χ(M) = 1−β1(M,Z2)+β2(M,Z2). The homotopy
equivalence of P and M implies that χ(M) = χ(P ). Thus (i) holds.

In order to prove (ii) we consider a part of the chain complex of P with Z2-coefficients:

C2
∂−→ C1.

Recall that B1 = ∂C2 is the group of 1-dimensional boundaries. Notice, that

(2) ∂(α0 + . . .+ αd(P )−1) = γ0 + . . .+ γ2v(P )−1,

where α0, . . . , αd(P )−1 are the 2-components and γ0, . . . , γ2v(P )−1 are the edges of P . Hence
dimB1 > 1. Since P is 2-dimensional polyhedron, we obtain d(P ) = dimC2 and dim(Ker ∂) =
β2(P,Z2). Again, from homotopy equivalence of P and M we have β2(P,Z2) = β2(M,Z2).
The following computation provides (ii):

(3) d(P ) = dimC2 = dim(Ker ∂) + dim(Im ∂) = β2(P,Z2) + dimB1 ≥ β2(M,Z2) + 1.
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�

Proof of Theorem 3.1. Let T be a minimal ideal triangulation of M . Consider the special
polyhedron P that is dual to T . It is clear that the number of tetrahedra in T is equal to
v(P ) due to the duality of P and T . Hence c∆(M) = v(P ). Applying Lemma 3.2 to P we
obtain v(P ) > β1(M,Z2). Hence c∆(M) > β1(M,Z2). �

3.2. Comparing two lower bounds. Now we prove that the lower bound for c∆(M) in
Theorem 3.1 is stronger than the Frigerio–Martelli–Petronio one (1).

Theorem 3.3. Let M be a connected compact 3-manifold with non-empty boundary. Then

β1(M,Z2) > β0(∂M ;Z2)− χ(M).

The desired inequality is derived from the following lemma.

Lemma 3.4. Let M be a connected compact 3-manifold with non-empty boundary. Then

β2(M ;Z2) + 1 ≥ β0(∂M ;Z2).

Proof. Consider a part of the long exact sequence for the pair (M,∂M) with Z2-coefficients:

H1(M,∂M ;Z2)
ϕ−→ H0(∂M ;Z2)

ψ−→ H0(M ;Z2).

Since Kerψ = Imϕ and M is connected, we have

β0(∂M ;Z2) = dim(Imψ) + dim(Imϕ) ≤
≤ dim(H0(M ;Z2)) + dim(H1(M,∂M ;Z2)) =

= 1 + β1(M,∂M ;Z2).

Lefschetz duality gives a natural isomorphism H1(M,∂M ;Z2) ∼= H2(M ;Z2). Since the
homology group H2(M ;Z2) is finitely generated, then the vector spaces H2(M ;Z2) and
H2(M ;Z2) are finite-dimensional and mutually dual. In particular, they have the same
dimension. Hence, β2(M ;Z2) = β1(M,∂M ;Z2). �

Proof of Theorem 3.3. Applying Lemma 3.4 we have:

β1(M,Z2) = β2(M ;Z2) + 1− χ(M) > β0(∂M ;Z2)− χ(M)

�

4. 3-manifolds for which the lower bound in Theorem 3.1 is achieved and
their minimal triangulations

Let Mh denote the set of connected compact 3-manifolds M with non-empty boundary,
which have an ideal triangulation T with β1(M,Z2) ideal tetrahedra. By theorem 3.1, T is
a minimal ideal triangulation of M .

We introduce two infinite sets To and Te of ideal triangulations. Let T be an ideal
triangulation, and let e be its edge. We say that e is even (resp., odd) if each model face
contains even (resp., odd) number of pre-images of e. The set Te consists of all the ideal
triangulations with at least two edges, one of which is odd, and the others are even. The set
To consists of all the ideal triangulations with odd edges only. By definition, To ∩Te = ∅.

Theorem 4.1. Let T be an ideal triangulation of a connected compact 3-manifold M with
non-empty boundary. Then the following are equivalent:

• T is in the union To ∪Te.
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• M is inMh and T is minimal.

To prove Theorem 4.1 we will need the following lemma.

Lemma 4.2. Let T be an ideal triangulation having only odd and even edges. Then T is
connected and belongs to the union To ∪ Te. Moreover, if T ∈ To then it has exactly one
or exactly three edges.

Proof. Since each model face contains exactly three model edges, T has at least one odd
edge. By definition, an odd edge has pre-images in every ideal model tetrahedron of T .
Thus T is connected. Further arguments are obvious. �

Proof of Theorem 4.1. Let P be a special spine of M that is dual to T . Recall that d(P ) and
v(P ) denote the number of 2-components and the number of true vertices of P , respectively.
Let α0, . . . , αd(P )−1 be the 2-components and γ0, . . . , γ2v(P )−1 be the edges of P . Consider
a part of the chain complex of P with Z2-coefficients:

C2
∂−→ C1.

Recall that B1 = ∂C2 is the group of 1-dimensional boundaries. We claim that the following
are equivalent:

(a) T is in the union To ∪Te.
(b) T has only odd and even edges.
(c) ∂αi = 0 or ∂αi = γ0 + . . .+ γ2v(P )−1 for every i ∈ {0, . . . , d(P )− 1}.
(d) dimB1 = 1.
(e) d(P ) = β2(M,Z2) + 1.
(f) v(P ) = β1(M,Z2).
(g) T consists of β1(M,Z2) tetrahedra.
(h) M is in Mh and T is minimal.

Indeed, the implication (b)⇒(a) is the statement of Lemma 4.2. The reverse implication
(a)⇒(b) is clear by definition. The equivalences (b)⇔(c) and (f)⇔(g) come from the duality
between P and T . The implication (c)⇒(d) is evident, while the equality (2) implies the
implication (d)⇒(c). The equivalence (d)⇔(e) is clear by (3), and (e)⇔(f) is a direct
corollary of Lemma 3.2. And the final equivalence (g)⇔(h) is obtained by Theorem 3.1 and
by the definition of Mh. This completes the proof of the theorem. �

5. Boundary of manifolds in Mh

Now we want to describe the boundary components of manifolds in Mh through the
combinatorics of their minimal ideal triangulations. Let Mo (resp., Me) denote the set of
all connected compact 3-manifolds with boundary, which admit an ideal triangulation in
To (resp., Te). Theorem 4.1 provides that sets Mo and Me cover Mh.

Throughout this section, let T be an ideal triangulation of a connected compact 3-

manifold M with non-empty boundary and let T̂ be the corresponding cell complex. Addi-
tional hypotheses will be stated.

Note, that the vertices of T̂ are in one-to-one correspondence with the components of

∂M . Let v be a vertex of T̂ . By ∂vM denote the component of ∂M corresponding to v,

and by deg(v) denote the degree of v considered as a vertex of a graph T̂ (1).
Firstly, we give an abstract lemma (Lemma 5.1), that provide an explicit formula for an

Euler characteristics of ∂vM corresponding to a vertex v of T̂ . After that in sections 5.1
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and 5.2 we define an edge-labeling, types of model tetrahedra, and a combinatorial data

for ideal triangulations in Te, that allows us to describe T̂ (1) in the case when T ∈ Te. In

particular, we obtain a full description of the vertices of T̂ . Then in section 5.3 we apply
Lemma 5.1 to each vertex of T under an assumption that T ∈ Te. Finally, in section 5.4
we apply Lemma 5.1 to each vertex of T under an assumption that T ∈ To.

Lemma 5.1. Let v be a vertex of T̂ . Then

(4) χ(∂vM) = deg(v)− #V(v)

2
.

Proof. Consider truncated triangulation T ? of M , that obtained from T̂ by removing the
small open stars of its vertices. Note, that external model triangles of T ? are glued to
form the triangulation of ∂M . Denote by s0, s1, and s2 the number of vertices, edges and
triangles in the triangulation of ∂vM . Then χ(∂vM) = s0−s1 +s2. It is clear that 2s1 = 3s2

and the external model triangles are in one-to-one correspondence to the model vertices.

Thus s2 − s1 = −#V(v)
2 .

It remains to check that s0 = deg(v). To prove this we claim that each internal edge of
T ? has distinct endpoints. On the contrary, suppose that the endpoints of some internal

edge of T ? coincides. Then T̂ has a singularity in the midpoint of the corresponding edge.

This contradicts the fact that T̂ \ T̂ (0) is an ideal triangulation of M . Thus the vertices
of T ? are in one-to-one correspondence with the endpoints of internal edges of T ? and
s0 = deg(v). �

5.1. Edge-labelling and types of model tetrahedra. In this section we describe the
combinatorics of T ∈ Te. Define an edge-labelling of T to be the numeration of its edges
from 0 to d− 1 such that the single odd edge of T is denoted by e0 and the even edges of
T are denoted by e1, . . . , ed−1. We reserve a parameter i taking values in {1, . . . , d− 1} to
indicate the labels of edges of T .

It follows that each model face σ̃ falls into one of the following categories that are deter-
mined by the model edges contained in σ̃.

Type A The model edges of σ̃ are the pre-images of e0.
Type Bi Two model edges of σ̃ are the pre-images of ei and the third model edge is the

pre-image of e0, where i ∈ {1, . . . , d− 1}.
A basic combinatorial argument provides each model tetrahedron ∆̃ to fall into one of

the following categories determined by the types of model faces contained in it. We say

that ∆̃ is of type Bi for some i ∈ {1, . . . , d− 1} (resp., A) if it contains model faces of type

Bi (resp., A) only. We also say that ∆̃ is of type ABi for i ∈ {1, . . . , d − 1} if it contains
three model faces of type Bi and one model face of type A (see Figure 1).

5.2. Combinatorial data. The set-up and notation of the previous subsection are contin-
ued. Denote by a (resp., bi or mi for each i ∈ {1, . . . , d−1}) the number of model tetrahedra
of type A (resp., Bi or ABi). For an ideal triangulation T , we define the combinatorial
data D(T ) to be a vector

(a,m1, b1, . . . ,md−1, bd−1)

considered up to relabelling of the even edges of T . Using D(T ), define

w(T ) := #{i ∈ N, such that i < d and bi > 0}.
Clearly, w(T ) is preserved under the relabelling of edges of T .
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Figure 1. Model tetrahedra of types A, ABi, and Bi respectively, where
bold black edges are the pre-images of ei (for some i ∈ {1, . . . , d − 1}) and
the others are the preimages of e0.

Lemma 5.2. Assume that T is in Te. Then for each i < d(T ) the following hold:

(i) mi + bi > 0;
(ii) mi is an even number;
(iii) if d(T ) > 2 then mi > 2;

Proof. Note that for each i ∈ {1, . . . , d − 1} E(ei) is contained in the union of all model
tetrahedra of types Bi and ABi, thus (i) holds.

It is clear, that the model tetrahedra could be glued only by the model faces of the same
type. Hence for each i ∈ {1, . . . , d − 1} a model tetrahedron of type Bi could be glued to
the model tetrahedra of types Bi and ABi only. Note that a model tetrahedron of type Bi

(resp., ABi) has even (resp., odd) number of model faces of type Bi (resp., ABi), thus (ii)
holds. Finally (iii) follows from the connectivity of T (see Lemma 4.2). �

5.3. Boundary of M ∈ Me. Define Gx,y to be a connected graph with x + y edges and
y+ 1 vertices such that one vertex of Gx,y has multiple adjacenties, while the others are the
degree-one vertices. It is clear that Gx,y contains precisely x loops.

Assume that M is in Me. By definition, there exists a minimal ideal triangulation T of
M in Te. Fix an edge-labelling of T .

Lemma 5.3. Assume that T is in Te. Then T̂ (1) is isomorphic to Gx,y with x = w(T ) + 1

and y = d(T ) − w(T ) − 1. Moreover, the loops of T̂ (1) are e0 and the edges ei for i ∈
{1, . . . , d(T )− 1} such that bi > 0.

Proof. To establish the conclusion we first prove three claims, each showing that, under cer-
tain conditions, some model vertices of a model tetrahedron (or a model face) are identified

to the same vertex of T̂ .

Claim 1 If the three model edges incident to a model face σ̃ are identified to form the same

edge of T̂ , then the three model vertices incident to σ̃ are identified to form the

same vertex of T̂ .
Claim 2 If each pair of opposite model edges incident to a model tetrahedron ∆̃ are identified

to form the same edge of T̂ , then all the model vertices incident to ∆̃ are identified

to form the same vertex of T̂ .
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Claim 3 Each model tetrahedron of type A or Bi (for some i ∈ {1, . . . , d− 1}) in T̂ has its

model vertices identified to form the same vertex of T̂ .

Indeed, let the three model edges incident to a model face σ̃ be identified to form an edge

e of T̂ . Suppose that e has distinct endpoints that are denoted by u and v. It follows that
each model edge incident to σ̃ has endpoints on the pre-images of u and v, a contradiction.
This proves Claim 1.

Let us prove Claim 2. On the contrary, suppose that there is an edge e of T̂ with distinct

endpoints, say u and v, that has pre-images in ∆̃. By hypothesis, there is a pair of opposite

model edges in ∆̃ that are identified to form e. It follows that the model vertices of ∆̃ are
pre-images of u and v. This contradicts our hypothesis and completes the proof of Claim 2.

Finally, Claim 3 follows directly from Claim 1 and Claim 2.
Now let T be in Te. Recall, that an edge-labelling of T is fixed. Moreover, each model

tetrahedron is of type A, Bi, or ABi for some i ∈ {1, . . . , d−1}. Since all model tetrahedra
of types A, Bi, and ABi (for each i ∈ {1, . . . , d− 1}) has pre-images e0, applying Claim 1
(to a model tetrahedron of type ABi) or Claim 3 (to a model tetrahedron of type A or Bi)

we obtain that the ends of e0 coincide; denote this vertex by v0. It will be a vertex of T̂ (1)

with multiple adjacenties.

Fix i ∈ {1, . . . , d− 1}. If bi > 0, then T̂ contains at least one model tetrahedron of type
Bi, which has pre-images of ei. Hence, by Claim 3, ends of ei coincide with v0. But if
bi = 0, then ei has one endpoint in v0 and the other is a degree-one vertex. This completes
the proof. �

Corollary 5.4. Assume that T is in Te. Then ∂M has exactly d(T ) − w(T ) connected
components.

Now we apply Lemma 5.1 to M .

Lemma 5.5. Assume that T is in Te. Let v0 be a vertex of T̂ (1) with multiple adjacenties,

and let ej (for some j ∈ {1, . . . , d(T )− 1}) be an even edge of T̂ . If cj = 0 then ej has one
end in v0 and the other in a degree-one vertex, say v. We have:

(5) χ(∂vM) = 1− mj

2
;

(6) χ(∂v0M) = (d + 1 + w(T ))− 1

2

[
4a+ 4

d−1∑
i=1

(mi + bi)1bi>0 + 3

d−1∑
i=1

mi(1− 1bi>0)

]
,

where

1bi>0 =

{
1 if bi > 0

0 otherwise

stands for the characteristic function.

Proof. Due to Corollary 5.4, T̂ (1) has w(T )+1 loops that are incident to v0 and d−w(T )−1
edges with one end in v0. Thus deg(v0) = d + 1 + w(T ).

To finish the proof we need to describe full pre-images of v and v0. We refer to the proof
of 5.3 with Claims 1,2, and 3 to obtain the following. A model vertex ṽ belongs to V(v) if
and only if ṽ is a vertex of a model tetrahedron of type ABj opposite to the model face of
type A, while V(v0) consists of:

• all model vertices of model tetrahedra of type A;
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• all model vertices of model tetrahedra of types Bi and ABi for each i ∈ {1, . . . , d−1}
such that bi > 0;
• and model vertices of model tetrahedra of type ABi that are contained in model

face of type A for each i ∈ {1, . . . , d− 1} such that bi = 0.

Using the combinatorial data D(T ) and the description of V(v) and V(v0) we obtain (5)
and (6). �

Lemma 5.5 provides the criteria for a component of ∂M to be of zero Euler characteristic,
which we will use later in section 7.

Corollary 5.6. Assume that T is in Te. Let v0 be a vertex of T̂ (1) with multiple adjacenties,

and let ej (for some j ∈ {1, . . . , d(T )− 1}) be an even edge of T̂ . If cj = 0 then ej has one
end in v0 and the other in a degree-one vertex, say v. We have:

(i) χ(∂vM) 6 0, moreover χ(∂vM) = 0 if and only if mj = 2 ;
(ii) χ(∂v0M) < 0 if c∆(M) > 3.

Proof. Item (i) follows directly from Lemma 5.5.
To prove (ii) we apply (6) from Lemma 5.5 that could be rewritten as follows:

χ(∂v0M) = (2− 2a) + 2
d−1∑
i=1

(1−mi − bi)1bi>0 +
d−1∑
i=1

(1− 3mi

2
)(1− 1bi>0).

We will check all possible values of combinatorial data D(T ) which satisfy lemma 5.2. Item
(i) of lemma 5.2 provides that terms 1 −mi − bi and 1 − 3mi

2 are negative or equals zero
for each i ∈ {1, . . . , d− 1}. The first term 2− 2a is also negative or equals zero then a > 1.
Otherwise a = 0 and the following situations are possible.

• d > 2 and cj > 0 for some j ∈ {1, . . . , d − 1}. Then by item (iii) in lemma 5.2 we
have χ(∂v0M) < 2 + 2(1− cj −mj) < 0
• d > 2 and bi = 0 for all i ∈ {1, . . . , d− 1}. Then by item (iii) in lemma 5.2 we have
χ(∂v0M) 6 2 + (1− 3m1

2 ) + (1− 3m2
2 ) < 0

• d = 2, m1 = 0 and c1 > 3, then χ(∂v0M) = 2 + 2(1− c1) < 0

Thus (ii) is proved. �

5.4. Boundary of M ∈Mo.

Lemma 5.7. Assume that M is inMo and T is in To. Then ∂M is connected and

χ(∂M) = 2d(T )− 2c∆(M).

Proof. Let us show that ∂M is connected. Since the vertices of T̂ are in one-to-one cor-

respondence with the components of ∂M , it is sufficient to show that T̂ has exactly one
vertex. Since T belongs to To it has exactly one or exactly three edges, that are odd, thus
the two situations possible.

Suppose d(T ) = 3, then T̂ has exactly three edge, say e1, e2, and e3. Then each model
tetrahedron has three pairs of its opposite model edges identified to form edges e1, e2, and
e3. Due to Claim 2 form the proof of Lemma 5.3 each model tetrahedron has its model

vertices identified to form one vertex of T̂ . Thus T̂ has exactly one vertex.

Now suppose d(T ) = 1, then T̂ has exactly one edge, say e0. Then each model tetrahedron
has its model edges identified to form e0. Applying Claim 2 form the proof of Lemma 5.3

we obtain that T̂ has exactly one vertex.
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Theorem 4.1 provides that T is a minimal ideal triangulation of M . Thus T̂ has exactly

c∆(M) model tetrahedra. Let v0 be the single vertex of T̂ , then deg(v0) equals twice the

number of edges of T̂ and #V(v0) equals to the number of model vertices, that equals to
4c∆(M). This finishes the proof. �

6. Exact cover of Mh with four subclasses

By Lemma 4.2, the set To can be divided into two pairwise disjoint subsets. One of
them consists of one-edged ideal triangulations and is denoted by T 1

o . The other consists
of ideal triangulations with exactly three edges and is denoted by T 2

o . The set Te can also
be divided into two pairwise disjoint subsets. We say that an ideal triangulation T ∈ Te is
in T 1

e if w(T ) = 0. Otherwise T is in T 2
e .

The partition of To∪Te induces a cover ofMh with four subsetsM1
o,M2

o,M1
e andM2

e,
where M1

o (resp., M2
o, M1

e, M2
e) denote the set of connected compact 3-manifolds with

boundary admitting an ideal triangulation in T 1
o (resp., T 2

o , T 1
e , T 2

e ). Now we show that
this cover is exact.

Theorem 6.1. The setsM1
o,M2

o,M1
e, andM2

e are pairwise disjoint and coverMh.

Proof. Let T 1
o , T 2

o , T 1
e , and T 2

e be ideal triangulations in T 1
o , T 2

o , T 1
e , and T 2

e , respectively.
We need to prove that the corresponding manifolds M1

o , M2
o , M1

e , and M2
e are pairwise

non-homeomorphic. Since these ideal triangulations are minimal (Theorem 4.1), we may
assume they consist of the same number, say n, of tetrahedra; otherwise the manifolds are
non-homeomorphic.

Recall if we are given an ideal triangulation T of a connected compact 3-manifold M
with non-empty boundary, we obtain the dual special spine P of M . As we noticed above
in the proof of Lemma 3.2, χ(M) = χ(P ) = d(P )−v(P ). Since the true vertices, edges and
2-components of P are in one-to-one correspondence with the tetrahedra, faces and edges
of T , respectively, we have χ(M) = d(T )− t(T ). Then we apply the last equality to show
that M1

o is different from M2
o , M1

e , and M2
e . In fact, χ(M1

o ) = 1− n, while χ(M2
o ) = 3− n,

χ(M1
e ) = d(T 1

e )−n, and χ(M2
e ) = d(T 2

e )−n, where by definition d(T 1
e ) ≥ 2 and d(T 2

e ) ≥ 2.
Hence, M1

o ∩M2
o = ∅, M1

o ∩M1
e = ∅, and M1

o ∩M2
2 = ∅.

Now there are three cases to consider, depending on the equality between the Euler
characteristic.

First, if χ(M2
o ) = χ(M1

e ), then d(T 1
e ) = 3. By Lemma 5.4, ∂M1

e has three boundary
components, while ∂M2

o has only one. Hence, M2
o ∩M1

e = ∅.
Second, if χ(M1

e ) = χ(M2
e ), then d(T 1

e ) = d(T 2
e ). By Lemma 5.4, ∂M1

e has more bound-
ary components than ∂M2

e . Hence, M1
e ∩M2

e = ∅.
Consider the last case assuming χ(M2

o ) = χ(M2
e ). It follows that d(T 2

e ) = 3. Now we
switch from the ideal triangulations T 2

o and T 2
e to its dual special spines, denoted P and

Q, respectively.
To prove that the manifolds M2

o ,M
2
e are non-homeomorphic, we use the ε-invariant of

Matveev – Ovchinnikov – Sokolov (see [10, Chapter 8.1.3]), which is the homologically
trivial part of the order 5 Turaev–Viro invariant. We give the definition of the ε-invariant
following [10]. Let R be a special spine of a connected compact 3-manifold M with non-
empty boundary. Denote by F(R) the set of all simple subpolyhedra of R including R and
the empty set. Set ε = (1 +

√
5)/2, a solution of the equation ε2 = ε + 1. With each
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K ∈ F(R) we associate its ε-weight by the formula

wε(K) = (−1)v(K)εχ(K)−v(K),

where v(K) is the number of true vertices of K and χ(K) is its Euler characteristic. Set

t(M) =
∑

K∈F(R)

wε(K).

As shown in [10], t(M) is an invariant of M .
To complete the proof of the theorem we show that t(M2

o ) 6= t(M2
e ). Let us calculate

t(M2
o ) by its special spine P . By the compactness of a simple subpolyhedron if it contains

a point of a 2-component, then it contains the whole of it. Thus, to describe a simple
subpolyhedron of P it is enough to indicate which 2-components of P it includes (its triple
points and true vertices then will be determined uniquely). Since T 2

o has exactly three
edges, and each of these edges is odd, P has exactly three 2-components, denoted ξ1, ξ2,
ξ3, and each boundary curve ∂ξi passes exactly once along each edge of P. Hence, F(P ) =
{∅, P, P1, P2, P3}, where Pi = P \ξi. It is easy to see that v(P ) = n, χ(P ) = 3−n, v(Pi) = 0,
and χ(Pi) = 2− n, 1 ≤ i ≤ 3. Summing up the ε-weights wε(∅) = 1, wε(P ) = (−1)nε3−2n,
and wε(Pi) = ε2−n, we get

t(M2
o ) = 1 + (−1)nε3−2n + 3ε2−n.

Now we calculate t(M2
e ) by the special spine Q. Since T 2

e has exactly one odd edge
and two even edges, Q has exactly three 2-components, denoted ξ0, ξ1, and ξ2. Let ξ0

corresponds to the odd edge, while ξ1 and ξ2 correspond to the even ones. We claim Q has
exactly three proper simple subpolyhedra. Indeed, two of these polyhedra are connected
closed surfaces, denoted Q1, Q2 such that each Qi, i = 1 or 2, contains ξi and do not contain
the other 2-components of Q. Therefore, Q1 ∩Q2 = ∅. The third polyhedron, denoted Q3,
is the union Q1 ∪Q2 (i.e. a closed surface too).

So we have F(Q) = {∅, Q,Q1, Q2, Q3}, v(Q) = n, χ(Q) = 3−n, and v(Qi) = 0, 1 ≤ i ≤ 3.
Summing up the ε-weights we get

t(M2
e ) = 1 + (−1)nε3−2n +

3∑
i=1

εχ(Qi).

For each i, 1 ≤ i ≤ 3, we claim χ(Qi) > 2 − n. Indeed, let v+
i , e+

i , and d+
i denote the

number of true vertices, edges, and 2-components of P , respectively, belonging to Qi. By
construction, d+

1 = d+
2 = 1 and d+

3 = 2. We set v−i = v(Q)− v+
i and e−i = e(Q)− e+

i , where
e(Q) is the number of edges of Q. Since e(Q) = 2v(Q), we have

χ(Qi) = v+
i − e

+
i + d+

i = (2− v) + (e−i − v
−
i ) + (d+

i − 2).

The inequality e−i − v−i > 1 can be easily proved by induction on v−i by using the fact
that the surface Qi does not contain all the edges of the special spine Q. It follows that
χ(Qi) > 2 − n. Hence, 3ε2−n <

∑3
i=1 ε

χ(Qi), and we have t(M2
o ) 6= t(M2

e ). This then
completes the proof. �

Let Mb denote the set of connected compact 3-manifolds M with non-empty boundary,
which have an ideal triangulation T with β0(∂M ;Z2)− χ(M) ideal tetrahedra. Due to the
lower bound (1), T is a minimal ideal triangulation of M .

Due to Theorem 3.3,Mb is contained inMh. The partition ofMh into four subsetsM1
o,

M2
o, M1

e and M2
e provides the following.
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Theorem 6.2. The setMb is the disjoint union ofM1
o andM1

e.

Proof. We already know, thatMb is contained inMh, thus it is covered with four setsM1
o,

M2
o,M1

e, andM2
e which are disjointed. Our goal is to show, that for manifolds inM2

o and
M2

e the lower bound (1) is strict.
Let M be in M2

o ∪M2
e. Let T be a minimal ideal triangulation of M and P be a spine

of P dual to T . Since M belongs to Mh, the lower bound from Theorem 3.1 is achieved.
Thus we are left to show that inequality in Theorem 3.3 is strict:

(7) β2(M ;Z2) + 1 > β0(∂M ;Z2).

Let d be the number of 2-components of P . From duality between P and T we have
d(T ) = d. Since P is a spine of M we have β2(M ;Z2) = β2(P ;Z2). Now we refer to the
proof of Theorem 4.1, where we stated and proved that items (e) and (g) are equivalent.
Thus β2(M ;Z2) = d− 1

Suppose M belongs to M2
o. Hence T belongs to T 2

o and d = d(T ) = 3. From Corollary
5.4 ∂M is connected. Thus β0(∂M ;Z2) = 1 and inequality (7) holds.

Suppose M belongs to M2
e. Hence T belongs to T 2

e and w(T ) > 0. From Corollary 5.4
∂M has exactly d(T )− w(T ) components. Thus β0(∂M ;Z2) = d− w(T ) and inequality (7)
holds.

Finally it is easy to see, that for manifolds inM1
o∪M1

e the lower bound (1) is achieved. �

7. Hyperbolicity of manifolds in Mh

Let M be a compact 3-manifold with non-empty boundary. Define M to be M with
boundary components of zero Euler characteristic removed. We say M is hyperbolic if M is
a complete riemannian manifold of constant sectional curvature −1 with finite volume and
totally geodesic boundary.

Remark 7.1. It was proven in [2, 14] that if M ∈ M1
o and c∆(M) > 2 or M ∈ M2

o and
c∆(M) > 4, then M is a hyperbolic manifold with totally geodesic boundary.

Theorem 7.2. If M ∈ Me and c∆(M) > 3, then M is a hyperbolic manifold with totally
geodesic boundary components and some cusps.

Throughout this section, let M be inMe and c∆(M) > 3, T ∈ Te be an ideal triangula-

tion of M , and let T̂ be the corresponding cell complex. We also fix an edge-labelling of T
described in subsection 5.1 and define I to be a subset of T̂ (0) such that a vertex v is in I
if and only if χ(∂vM) = 0. Let T̂ I be a partially truncated triangulation corresponding to

a pair (T̂ , I) (see section 2.2 for exact definition). Additional hypotheses will be stated.

Now we introduce the strategy of the proof. Recall, that T̂ I is glued from partially

truncated model tetrahedra ∆̃J ‘s. Each ∆̃J corresponds to a pair (∆̃, J), where ∆̃ is a

model tetrahedron and J = ∆̃(0) ∩ V(I). In section 7.1 we give several properties of T̂ I
and ∆̃J ‘s. In order to give M a hyperbolic structure with totally geodesic boundary we

realize ∆̃J ‘s as a special geometric blocks in H3 (section 7.2) and require that the structures
match under the gluings (section 7.3). In section 7.4 we show the completeness of hyperbolic
structure constructed above.

In addition, in section 7.5 we apply Theorem 7.2 to obtain the Matveev‘s complexity for
manifolds in Me and to show that two hyperbolic manifolds in Me have equal volumes if
they admit minimal ideal triangulation with the same combinatorial data.
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7.1. Properties of T̂ I .
Lemma 7.3. Let ∆̃ be a model tetrahedron, and let J = ∆̃(0) ∩ V(I) be the set of ideal

model vertices of ∆̃. Then the following holds.

(i) If ∆̃ is of type A or Bi for some i ∈ {1, . . . , d− 1}, then J = ∅ (see Figures 2a and
2c respectively).

(ii) If ∆̃ is of type ABi for some i ∈ {1, . . . , d − 1} such that mi > 2 or bi > 0, then
J = ∅ (see Figure 2d).

(iii) If ∆̃ is of type ABi for some i ∈ {1, . . . , d − 1} such that mi = 2 and bi = 0, then

J consists of one model vertex of ∆̃ that is opposite to a model face of type A in ∆̃
(see Figure 2b).

Proof. By Lemma 5.3, T̂ has one vertex with multiple adjacenties, say v0, while the other

vertices of T̂ (if there are any) are of degree one. Under assumption of Theorem 7.2 we
have c∆(M) > 3, thus by Corollary 5.6 we have χ(∂v0M) < 0.

Suppose T has an odd edge ej for some j ∈ {1, . . . , d − 1} such that cj = 0. Then ej
has one end in v0 while the other in a degree-one vertex, say v. By Corollary 5.6 we have
χ(∂vM) 6 0 and χ(∂vM) = 0 if and only if mj = 2. Suppose mj = 2. Let us describe V(v).

Recall, that for each i ∈ {1, . . . , d − 1} E(ej) is contained in the union of all model
tetrahedra of types Bi and ABi. Since we have cj = 0 and mj = 2 then E(ej) is contained
in the two model tetrahedra of type ABj. Since v is a degree-one vertex, then V(v) is
contained in E(ej). Further arguments are obvious. �

Remark 7.4. The partially truncated triangulation T̂ I satisfies the following.

• T̂ I is homeomorphic to M .

• The truncation model triangles of the ∆̃J ‘s give a triangulation of components of
∂M with negative Euler characteristic.

• The links of the ideal model vertices of ∆̃J ‘s give a triangulation of components of
∂M with zero Euler characteristic.

Since the internal edges of T̂ I are in one-to-one correspondence with the edges of T ,

the edge-labelling of T induces the labelling of internal edges of T̂ I , which we denote by
eI0, . . . , e

I
d−1. Further, types of model faces, types of model tetrahedra, and the combinato-

rial data of T̂ induce types of lateral model hexagons, types of partially truncated model

tetrahedra, and the combinatorial data of T̂ I respectively.

Remark 7.5. The internal model edges of a given partially truncated model tetrahedron

∆̃J can be described as the pre-images of the internal edges of T̂ I depending on the type

of ∆̃J .

• If ∆̃J is of type A then all its internal model edges are the pre-images of eI0 (see
Figure 2a.

• If ∆̃J is of type Bi (for some i ∈ {1, . . . , d − 1}) then two of its opposite internal
model edges are the pre-images of eI0, and the others are the pre-images of eIi (see
Figure 2c).

• If ∆̃J is of type ABi (for some i ∈ {1, . . . , d−1}) then the three internal model edges

of ∆̃J that are incident to the lateral model hexagon of type A are the pre-images
of eI0, and the others are the pre-images of eIi (see Figure 2d or Figure 2b if mi = 2
and bi = 0).
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β β

β β

β

β

(a) Type A

αi

αi

αi

π/3
π/3π/3

(b) Type ABi if bi = 0 and mi = 2

θi

φi

φi

θi

θi

θi

(c) Type Bi

γi

αi

γi

γi

αi

αi

(d) Type ABi

Figure 2. Model tetrahedra of types A, Bi, and ABi for some i ∈
{1, . . . , d − 1}, where the bold black internal edges are the pre-images of
eIi and the others are the pre-images of eI0.

7.2. Geometric model tetrahedra. A geometric realization of a partially truncated

model tetrahedron ∆̃J is an embedding of ∆̃J into H3 such that the truncation model
triangles are geodesic triangles, the lateral model hexagons are geodesic polygons with ideal
model vertices corresponding to missing edges, and the truncation model triangles and
the lateral model hexagons lie at right angles to each other. A geometric realization of a
partially truncated model tetrahedron is called a geometric model tetrahedron.

M. Fujii proved in [8] that a geometric realization of a truncated model tetrahedron
(without ideal model vertices) is parameterized up to isometry by the set of dihedral angles
along its internal model edges, which satisfy natural restrictions. R. Frigerio and C. Petronio
generalize the result of Fujii to geometric realizations of partially truncated tetrahedra.
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Now we give the geometric realization of partially truncated model tetrahedra ∆̃J ‘s, that
is determined by their types.

• If ∆̃J is of type A then we realize it in H3 with dihedral angle β along pre-images
of eI0, where β ∈ R with 0 < β < π/3 (see Figure 2a).

• If ∆̃J is of type Bi (for some i ∈ {1, . . . , d−1}) then we realize it in H3 with dihedral
angles φi and θi along pre-images of eI0 and eIi respectively, where φi, θi ∈ R with
0 < φi 6 π/3 and 0 < θi < π/3 (see Figure 2c).

• If ∆̃J is of type ABi (for some i ∈ {1, . . . , d− 1}) and either mi > 2 or bi > 0 then

we realize ∆̃J in H3 with dihedral angles αi and γi along pre-images of eI0 and eIi
respectively, where αi, γi ∈ R with 0 < αi, γi < π/3 (see Figure 2d).

• If ∆̃J is of type ABi (for some i ∈ {1, . . . , d− 1}), mi = 2, and ai = 0 then ∆̃J has
an ideal vertex and we realize it in H3 with dihedral angles αi and γi = π/3 along
pre-images of eI0 and eIi respectively, where αi ∈ R with 0 < αi < π/3 (see Figure
2b).

Remark 7.6. Since a geometric realization of each partially truncated model tetrahedron

is determined by its type we will identify partially truncated model tetrahedra ∆̃J ‘s with
their geometric realizations.

7.3. Consistency. In order to construct a hyperbolic structure on M we give geometric

realization of the partially truncated model tetrahedra ∆̃J ‘s, described in section 7.2, and
require the structures to match under the gluings. Firstly, we should glue partially truncated
model tetrahedra by the isometries of their lateral model hexagons such that the internal
(resp., external) model edges match to the internal (resp., external) ones. An isometry
between two lateral model hexagons exists if and only if the corresponding external model
edges have equal lengths; we will call it by length condition. The gluing of the partially
truncated model tetrahedra by the isometries of their lateral model hexagons allows us to

extend the hyperbolic structure to M with the internal edges of T̂ I removed. To be able
to extend the hyperbolic structure to the whole of M , we should require the total dihedral

angle around each internal edge of T̂ I to equal 2π; we will call it by cone angle condition.
It was shown in [12] that the hyperbolic structure given on the partially truncated model

tetrahedra of T̂ I extends to the whole of M if and only if both length condition and cone
angle condition hold.

7.3.1. Length condition. Let us remind, that partially truncated model tetrahedra can be
glued only by lateral model hexagons of the same type. Thus all possible gluings are given
in table 1.

Type of a lateral model hexagon Types of two partially truncated model tetrahedra

A A&A, A&ABi, ABi&ABi, ABi&ABi

Bi Bi&Bi, ABi&ABi, ABi&Bi

Table 1. Possible gluings of partially truncated model tetrahedra of T̂ I .
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In this section we describe the length condition for each possible gluing, and in section

7.3.3 we show which gluings appear in T̂ I . Since geometric realization of the partially

truncated model tetrahedra of T̂ I depends only on their types, gluings of two partially
truncated model tetrahedra with the same type produce trivial length conditions. It is
worth noting, that the gluing of two partially truncated model tetrahedra along lateral
model hexagons with ideal model vertices produces trivial length conditions due to the
argument above. Thus it remains to consider gluings along lateral model hexagons without
ideal model vertices. To compute the lengths of external model edges through the dihedral
angles of a partially truncated model tetrahedron we use explicit formulas from [8].

Firstly we consider a gluing of two partially truncated model tetrahedra of types ABi

and Bi along a pair of their lateral model hexagons of type Bi, where i ∈ {1, . . . , d − 1}.
Note, that each lateral model hexagon of type Bi has two external model edges with equal
lengths, thus the length condition translates into equations:

(8)
cos2 γi + cos γi

sin2 γi
=

cos2 θi + cosφi

sin2 θi

(9)
cosαi cos γi + cosαi

sinαi sin γi
=

cos θi cosφi + cos θi
sin θi sinφi

Now consider gluings of partially truncated model tetrahedra along lateral model hexagons
of type A. Note, that each lateral model hexagons of type A has external model edges with
equal lengths, thus each gluing will produce only one equation. More precisely, the length
condition for a gluing of two partially truncated model tetrahedra of types A and ABi (resp.,
ABi and ABj) translates into an equation (10) (resp., (11)), where i, j ∈ {1, . . . , d − 1}
with i 6= j.

(10)
cos2 β + cosβ

sin2 β
=

cos2 αi + cos γi

sin2 αi

(11)
cos2 αi + cos γi

sin2 αi
=

cos2 αj + cos γj

sin2 αj

7.3.2. Cone angle condition. Let us describe the cone angle condition for the internal edges

of T̂ I , which are denoted by eI0, eI1, . . . , e
I
d−1.

Firstly we consider an internal edge eIi for some i ∈ {1, . . . , d− 1}. If mi > 0 and bi > 0
then E(eIi ) is contained in partially truncated model tetrahedra of types ABi and Bi (see
remark 7.5). More precisely, each partially truncated model tetrahedron of type ABi (resp.,
Bi) has a dihedral angle γi (resp., θi) along all three (resp., four) pre-images of eIi . Hence
the cone angle condition for eIi provides an equation:

(12) 3miγi + 4biθi = 2π.

By Lemma 5.2 we have mi + bi > 0. If mi = 0 or bi = 0 then the corresponding term of
equation (12) vanishes. Note, that if mi = 2 and bi = 0 for some i ∈ {1, . . . , d − 1} then
E(eIi ) is contained in exactly two partially truncated model tetrahedra of type ABi which
have ideal model vertices. By definition, the dihedral angles along the pre-images of eIi
equal γi = π/3. Thus the cone angle condition for eIi holds: 3miγi = 6(π/3) = 2π.

Now, we consider the cone angle condition for eI0. This time each partially truncated

model tetrahedron of T̂ I contains pre-images of eI0 (see remark 7.5). If all components of
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D(T ) are greater than 0, then the cone angle condition for eI0 provides an equation:

(13)
d−1∑
i=1

(3miαi + 2biφi) + 6aβ = 2π.

If some components of D(T ) equal to 0, then the corresponding terms in equation (13)
vanish.

7.3.3. Algebraic criteria for hyperbolicity. It is time to combine all equations together. Note

that all consistency conditions depends only on the combinatorics of T̂ I , so it is convenient
to consider six cases (see table 2). Define m(T ) := m1 + . . .+md−1, where {mi}d−1

i=1 are the
components of D(T ). Recall, that a is a component of D(T ) that equals to the number of
model tetrahedra of type A.

Cases a m(T ) w(T ) d(T )
1 0 0 > 0 2
2 0 > 0 0 2
3 0 > 0 0 > 2
4 > 0 > 0 0 > 2
5 0 > 0 > 0 > 2
6 > 0 > 0 > 0 > 2

Table 2. Possible anatomies of T .

In cases 1 and 2 we have d = 2 and all partially truncated model tetrahedra are of the
same type (B1 or AB1). Thus the length condition is trivial.

In case 1 cone angle condition translates into system of equations:{
4c1θ1 = 2π

2c1φ1 = 2π

Clearly (θ1;φ1) = ( π
2c1

; πc1 ) is the unique solution of this system. Moreover, θ1 < π/3 and

φ1 6 π/3 since c∆(M) > 3, thus M is actually hyperbolic without singularities.
In case 2 cone angle condition translates into system of equations:{

3m1γ1 = 2π

3m1α1 = 2π

Clearly (γ1;α1) = ( 2π
3m1

; 2π
3m1

) is the unique solution of this system. Moreover, γ1 = α1 < π/3

since c∆(M) > 3, thus M is actually hyperbolic without singularities.
For the rest of this section we will consider case 6 while cases 3-5 could be considered in

the same way. Note that in case 6 we have a > 0 and mi > 0 for all i ∈ {1, . . . , d−1} due to
Lemma 5.2. For the aim of simplicity we denote w = w(T ) tacitly implying that T is fixed.
Using an edge relabelling if needed we suppose that bi > 0 if and only if i ∈ {1, . . . , w}.
Hence equations (8) and (9) occur only for i ∈ {1, . . . , w}.

The connectivity of T̂ I provides that the system of equations corresponding to the gluings
of partially truncated model tetrahedra along lateral model hexagons of type A is equivalent
to:

(14)
cos2 β + cosβ

sin2 β
=

cos2 α1 + cos γ1

sin2 α1
= . . . =

cos2 αd−1 + cos γd−1

sin2 αd−1
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Geometrically this means that all external model edges of lateral model hexagons of type
A has equal lengths and this hexagons are, actually, isometric to each other. We combine
all equations together and obtain the following system:

(15a)

(15b)

(15c)

(15d)

(15e)

(15f)



cos2 γi + cos γi

sin2 γi
=

cos2 θi + cosφi

sin2 θi
for i 6 w

cosαi cos γi + cosαi
sinαi sin γi

=
cos θi cosφi + cos θi

sin θi sinφi
for i 6 w

cos2 β + cosβ

sin2 β
=

cos2 α1 + cos γ1

sin2 α1
= . . . =

cos2 αd−1 + cos γd−1

sin2 αd−1

3miγi + 4biθi = 2π, for i 6 w

3miγi = 2π, for w < i < d∑
i<d

(3miαi) +
∑
i6w

(2biφi) + 6aβ = 2π

Recall, that i is a natural parameter. We call the solution of system (15) admissible if it
satisfies: {αi}i<d, {θi}i6w, β ∈ (0, π/3) and {γi}i<d, {φi}i6w ∈ (0, π/3]

Theorem 7.7. System (15) has an admissible solution.

Note, that property of the solution to be admissible guarantees the existence of geometric
model tetrahedra we use. Hence this solution determines a hyperbolic structure on M .

7.4. Completeness. To check completeness of the hyperbolic structure just described we
have to determine the similarity structure it induces on the boundary tori and Klein bot-
tles. By construction, each torus (Klein bottle) in ∂M is tiled by two equilateral Euclidean
triangles. This shows us that the structure on the boundary tori (Klein bottles) are indeed
Euclidean, so the hyperbolic structure constructed in the previous paragraph is complete,
and corresponds by Mostow‘s rigidity theorem to the unique complete finite-volume hyper-
bolic structure with geodesic boundary on the topological manifold M with the boundary
tori and Klein bottles removed.

7.5. Applications of hyperbolicity.

7.5.1. Matveev‘s complexity. For any compact 3-manifold M , an N-valued invariant c(M)
was defined by Matveev in [10] and called the complexity of M . Matveev also proved that,
when M is hyperbolic, c(M) equals to the c∆(M). Thus the following theorem holds.

Theorem 7.8. Let M be a hyperbolic 3-manifold inMh. Then c(M) = β1(M,Z2).

7.5.2. Manifolds with same combinatorial data. Note, that different 3-manifolds in Me

might have minimal ideal triangulation with the same combinatorial data. Due to The-
orem 7.2 all 3-manifolds in Me, except finite number of 3-manifolds of small complexity,
are hyperbolic with finite volume. Then the following Proposition holds.

Theorem 7.9. Let M1 and M2 be two hyperbolic 3-manifolds inMe, which have minimal
ideal triangulations with the same combinatorial data. ThenM1 andM2 have equal volumes.

Proof. Recall that hyperbolic structure on M1 and M2 are constructed using the partially
truncated triangulations. Clearly, this partially truncated triangulations are glued from
equal number of partially truncated model tetrahedra of each type. Note, that the geometric
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realisations of partially truncated model tetrahedra and the consistency conditions depend
on the combinatorial data only. Due to the Mostow rigidity theorem consistency conditions
has a unique solutions. Thus the hyperbolic manifolds M1 and M2 are glued from equal
sets of geometric tetrahedra. This finishes the proof. �

8. Proof of Theorem 7.7

In this section we work with system (15), so we recall that {αi, γi}i<d, {θi, φi}i6w and β
are the variables of the system (15) and a, {mi, bi}i<d are positive integers, which depends
on the 3-manifold we are working with. Clearly γi = 2π

3mi
is a unique solution of equation

(15f) for each w < i < d. We consider a one-parameter system with parameter K > 0:

(16a)

(16b)

(16c)

(16d)

(16e)

(16f)



sin2 γi
1 + cos γi

=
sin2 θi

1 + cosφi
for i 6 w

cosαi cos γi + cosαi
sinαi sin γi

=
cos θi cosφi + cos θi

sin θi sinφi
for i 6 w

sin2 αi
1 + cos γi

= K for i 6 w

3miγi + 4biθi = 2π, for i 6 w

sin2 αi

1 + cos 2π
3mi

= K for w < i < d

sin2 β

1 + cosβ
= K

We study how solution of system (16) depends on the parameter K.

Definition 8.1. We call the solution of system (16) almost admissible if it satisfies: {αi}i<d,
{θi, φi, γi}i6w and β ∈ (0, π/3].

Proposition 8.2. There exists a unique K̃ > 0 (which we will call a critical value of
parameter K) such that:

(1) ∀ K ∈ [0, K̃] system (16) has a unique almost admissible solution, that depends on
K continuously. Denote these functions as {αi(K)}i<d, {θi(K), φi(K), γi(K)}i6w
and β(K).

(2) {θi(K), γi(K)}i6w take values in (0, π/4] for all K ∈ [0, K̃].
(3) {αi(K)}i<d, {φi(K)}i6w and β(K) are strictly increasing functions with respect to

K which equal zero at K = 0.

(4) Functions {αi(K)}i<d, {φi(K)}i6w and β(K) take values in (0, π/3) for all K < K̃.

Moreover at least one of these functions reaches the value of π/3 at K = K̃.

Let K̃ be as in Proposition 8.2. Fix K̄ < K̃. Then {αi(K̄)}i<d, {θi(K̄), φi(K̄), γi(K̄)}i6w
and {γi = 2π

3mi
}w<i<d appear to be an admissible solution of system (15) if and only if the

equation (15f) holds. Define a function of K with domain [0, K̃]:

F (K) =
∑
i<d

3miαi(K) +
∑
i6w

2biφi(K) + 6aβ(K).

Clearly F (K) is continuous and equation (15f) translates into equality F (K̄) = 2π.
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Proposition 8.3. Let K̃ be as in Proposition 8.2. Then there exists a unique K̄ < K̃ such
that F (K̄) = 2π.

Hence an admissible solution of system (15) exists. Summing up, Propositions 8.2 and
8.3 together give a proof of Theorem 7.7.

8.1. Proof of Proposition 8.2. Our goal is to evaluate each variable of system 16 as

a function of parameter K and find the value of K̃ explicitly. We will use the following
variation of the inverse function theorem several times.

Lemma 8.4 (Theorem 3.10 in [13]). Assume G is strictly increasing and continuous on an
interval [p, q]. Let r = G(p) and s = G(q) and let H be the inverse of G. That is, for each
y in [r, s], let H(y) be that x in [p, q] such that y = G(x). Then

• H is strictly increasing on [r, s];
• H is continuous on [r, s].

Note, that system (16) breaks into independent sub-systems consisting of:

• a single equation (16f);
• a single equation (16e) for some i ∈ N such that w < i < d;
• equations (16a), (16b), (16c), and (16d) for some i ∈ N such that i 6 w.

To each sub-system we match it‘s own critical value of parameter K such that all the
statements of Proposition 8.2 corresponding to the solution of a given sub-system hold.

Then we define K̃ as the minimal critical value among critical values of sub-systems of

system (16). Clearly, Proposition 8.2 holds for such K̃.

Firstly we consider equation (16f). Applying Lemma 8.4 to function G0(β) := sin2 β
1+cosβ

defined on an interval [0, π/3] we obtain that there exists a continuous and strictly increasing

function β(K) defined on an interval [0, K̃0], where K̃0 := G0(π/3) is a critical value for
given sub-system.

Now we fix i ∈ N such that w < i < d and consider equation (16e) for given i. Applying

Lemma 8.4 to function Gi(αi) := sin2 αi
1+cos ((2π)/(3mi))

defined on an interval [0, π/3] we obtain

that there exists a continuous and strictly increasing function αi(K) defined on an interval

[0, K̃i], there K̃i := Gi(π/3) is a critical value for given sub-system.
Now we fix i ∈ N such that i 6 w and consider equations (16a), (16b), (16c) and (16d)

for given i. We try to evaluate αi, γi, θi, and φi as continuous functions of K as follows.

(1) From equations (16a) and (16d) we evaluate θi and γi as continuous functions of an

argument φi. Denote this functions θ̂i(φi) and γ̂i(φi).
(2) From equation (16b) with θi and γi considered as a continuous functions on φi we

evaluate αi as a continuous function of an argument φi. We denote this function
α̂i(K) and show that it is strictly increasing with respect to φi.

(3) Consider equation (16c) with γi and αi considered as a continuous functions of an
argument φi, and use Lemma 8.4 to obtain function φi(K).

(4) Finally, define functions αi(K) := α̂i(φi(K)), θi(K) := θ̂i(φi(K)), γi(K) := γ̂i(φi(K))

and the critical value K̃i.

We begin by considering equations (16a) and (16d) with φi considered as a parameter
which takes values in [0, π/3].

Lemma 8.5. For each φi ∈ [0, π/3] there exist unique θi and γi in (0, π/4] such that
equations (16a) and (16d) hold.
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Proof. Fix φi ∈ [0, π/3]. All functions appearing in the proof depend on φi but we will omit
this dependence since φi supposed to be fixed. Define:

(17) Ni :=
sin2 γi

1 + cos γi
=

sin2 θi
1 + cosφi

We apply Lemma 8.4 to functions fi(θi) = sin2 θi
1+cosφi

and gi(γi) = sin2 γi
1+cos γi

defined on an interval

[0, π/4] and obtain continuous strictly increasing functions θ?i (Ni) and γ?i (Ni). Note that
domain of these functions depends on φi, but they always contain an interval [0, 0.25].

Define:

(18) Si(Ni) := 3miθ
?
i (Ni) + 4biγ

?
i (Ni)

Clearly Si(Ni) is continuous and strictly increasing function with respect to Ni as a linear
combination of continuous and strictly increasing functions θ?i (Ni) and γ?i (Ni) with positive
coefficients. Moreover Si(0) = 0. We claim, that there exists N̄i ∈ [0, 0.25] such that
Si(N̄i) = 2π. Thus equations (16a) and (16d) hold for θi = θ?i (N̄i) and γi = γ?i (N̄i).

To prove the claim we apply the Bolzano‘s theorem of an intermediate value to the
function Si(Ni) defined on an interval [0, 0.25]. It remains to check that Si(0.25) > 2π.
Direct computations provides that:

• γ?i (0.25) = arccos 0.75 ∈ (0.23π, 0.25π),

• θ?i (0.25) = arcsin
√

0.25(1 + cosφi) ∈ (0.209π, 0.25π) for any φi ∈ [0, π/3].

From lemma 5.2 we have mi > 2 and bi > 1 since i 6 w. Thus Si(0.25) > 2π. Finally θi
and γi are unique for given φi ∈ [0, π/3] since function Si(Ni) is monotone. �

Lemma 8.5 allows us to define functions θ̂i(φi) and γ̂i(φi) with domain [0, π/3] that turn
equations (16a) and (16d) into tautology.

Lemma 8.6. Function γ̂i(φi) (resp., θ̂i(φi)) is is continuous and strictly increasing (resp.,
decreasing) with respect to φi.

Proof. Function γ̂i(φi) and θ̂i(φi) are analytic on the interval (0, π/3) by the analytic implicit
function theorem, thus they are continuous.

Let us show that for arbitrary 0 6 a < b 6 π/3 we have γ̂i(a) < γ̂i(b). On the contrary,

suppose γ̂i(a) > γ̂i(b). Recall, that functions θ̂i(φi) and γ̂i(φi) turn equations (16a) and

(16d) into tautology. Thus θ̂i(a) 6 θ̂i(b) and we have:

sin2 γ̂i(a)

1 + cos γ̂i(a)
=

sin2 θ̂i(a)

1 + cos a
<

sin2 θ̂i(b)

1 + cos b
=

sin2 γ̂i(b)

1 + cos γ̂i(b)

But from the assumption we have sin2 γ̂i(a)
1+cos γ̂i(a) >

sin2 γ̂i(b)
1+cos γ̂i(b)

. Contradiction. Thus γ̂i(φi) is

strictly increasing with respect to φi. And equation (16d) provides that θ̂i(φi) is strictly
decreasing with respect to φi. �

We rewrite equation (16b) as follows:

cot (αi)
1 + cos γi

sin γi
=

cos θi
sin θi

1 + cosφi
sinφi
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Using equation (16a) and substituting functions γ̂i(φi) θ̂i(φi) we evaluate αi as a continuous
function of φi defined on an interval [0, π/3]:

(19) α̂i(φi) = cot−1

(
sin 2θ̂i(φi)

2 sinφi sin γ̂i(φi)

)
Lemma 8.7. α̂i(φi) is a strictly increasing function with respect to φi, and α̂i(0) = 0.

Proof. By Lemma 8.6, γ̂i(φi) is strictly increasing and θ̂i(φi) is strictly decreasing with

respect to φi. Moreover, they take values in (0, π/4]. Thus sin γ̂i(φi) (resp., sin 2θ̂i(φi)) is a
strictly increasing (resp., decreasing) with respect to φi. This finishes the proof. �

Consider equation (16c) with αi and γi considered as functions of φi:

Gi(φi) :=
sin2 α̂i(φi)

1 + cos γ̂i(φi)
= K

Due to Lemmas 8.6 and 8.7 function Gi(φi) is continuous and strictly increasing with
respect to φi. Again applying Lemma 8.4 to function Gi(φi) defined on an interval [0, π/3]

we obtain continuous and strictly increasing function φi(K) defined on an interval [0, K̃
(1)
i ],

where K̃
(1)
i = Gi(π/3). Define:

αi(K) := α̂i(φi(K)), θi(K) := θ̂i(φi(K)), and γi(K) := γ̂i(φi(K)).

Clearly these are continuous functions of K defined on an interval [0, K̃
(1)
i ]. Moreover,

αi(K) is a strictly increasing with respect to K and αi(0) = 0 due to Lemma 8.7. Note,

that K̃
(1)
i may not satisfy all the properties of the critical value from Proposition 8.2 for

sub-system of equations (16a), (16b), (16c), and (16d) for given i. Lemma 8.5 provides
that θi(K) and γi(K) take values in (0, π/4], while αi(K) may take values greater than

π/3. If αi(K̃
(1)
i ) > π/3 then there exists K̃i such that αi(K) 6 π/3 for all K ∈ [0, K̃i] and

αi(K̃i) = π/3. Otherwise define the critical value K̃i := K̃
(1)
i .

Finally we define critical value K̃ as follows:

K̃ := min
06i6d−1

K̃i

It is not hard to check, that Proposition 8.2 holds for such K̃.

8.2. Proof of Proposition 8.3. Note, that F (K) is a strictly increasing function with
respect toK as a linear combination of strictly increasing functions with positive coefficients.
Moreover F (0) = 0.

To prove the proposition we apply the Bolzano‘s theorem of an intermediate value to the

function F (K) defined on an interval [0, K̃]. It remains to check that F (K̃) > 2π. We finish
the proof with two following lemmas.

Lemma 8.8. If φi(K̃) = π/3 for some i ∈ {1, . . . , w}, then αi(K̃) > π/4.

Proof. From equation (16a) with φi = π/3 we obtain:

sin(θi) =

√
3

2
(1− cos γi) and cos(θi) =

√
3

2
cos γi −

1

2
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Hence the equation (19) with φi = π/3 could be replaced with:

α̂i(φi) = cot−1(

√
(1− cos γi)(3 cos γi − 1)

sin γi
)

By direct computations we have: αi > π/4 for all γi ∈ [0, π/3]. �

Lemma 8.9. F (K̃) > 2π.

Proof. We would strongly rely on the fourth item of Proposition 8.2 in the proof. We know,
that at least one of functions {αi(K)}i<d, {φi(K)}i6w or β(K) reaches the value of π/3 at

K = K̃. So we consider all the possible cases. Note that by assumption we have a > 0,
mi > 2 for each i ∈ {1, . . . , d− 1} and bi > 0 if and only if 1 6 i 6 w, where w, d ∈ N with
1 6 w 6 d.

• If β(K̃) = π/3, then:

F (K̃) > 3m1α1(K̃) + 6aβ(K̃) > 6α1(K̃) + 6π/3 > 2π

• If αi(K̃) = π/3 for some i ∈ {1, . . . , d− 1}, then:

F (K̃) > 3miαi(K̃) + 6aβ(K̃) > 6π/3 + 6β(K̃) > 2π

• Otherwise φi(K̃) = π/3 for some i ∈ {1, . . . , w}. Then by Lemma 8.8 we have:

F (K̃) > 3miαi(K̃) + 2biφi(K̃) > 6π/4 + 2π/3 > 2π

So we have F (K̃) > 2π and Lemma 8.9 is proved. �

Remark 8.10. In the proof of Lemma 8.9 we use some restrictions on the combinatorial
data: a > 0, mi > 2 for each i ∈ {1, . . . , d − 1} and bi > 0 if and only if 1 6 i 6 w. This

restrictions do not hold in general case. However one can prove that F (K̃) > 2π without
this restrictions only using Lemma 5.2.

9. Examples

Due to Theorem 7.2 and Remark 7.1, almost all manifolds inMh, except finite number of
manifolds of small complexity, are hyperbolic. In this section we give a full list of manifolds
inMh, which do not satisfy the conditions of Theorem 7.2 and Remark 7.1 (Table 3). Some
manifolds in the list are actually cusped hyperbolic manifolds, which were tabulated in [15],
the others are included in computer programs ”SnapPy” [16] and ”3-Manifold Recognizer”
[17].

M c∆(M) Class χ(M) H1(M,Z) Spine

m000 1 M1
o 0 Z Figure 3a

L(4, 1) \B3 1 M2
e 1 Z4 Figure 3b

Seifert (S2, (2,1), (2,1), (2,1), (1,-1)) 2 M2
o 1 Z2 + Z2 Figure 3c

m002 2 M1
e 0 Z2 + Z Figure 3d

m001 2 M2
e 0 Z2 + Z Figure 3e

m025 3 M2
o 0 Z2 + Z2 + Z Figure 3f

Table 3. List of exceptions.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Special spines of non-hyperbolic manifolds in Mh.
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