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1 Introduction

A graph-walking automaton moves over a labelled graph using a finite set of states and leaving
no marks on the graph. This is a model of a robot finding its way in a maze. There is a classical
result by Budach [3] that for every automaton there is a graph in which it cannot visit all nodes,
see a modern proof by Fraigniaud et al. [6]. This work has influenced the current research on
algorithms for graph traversal using various small-memory models. For example, Disser et al. [5]
in their famous paper proved that if a graph-walking automaton is additionally equipped with
O(log log n) memory and O(log log n) pebbles, then it can traverse every graph with n nodes,
and this amount of resources is optimal.

Graph-walking automata (GWA) naturally generalize such important models as tree-walking
automata (TWA) and two-way finite automata (2DFA). Two-way finite automata are a standard
model in automata theory, and the complexity of their determinization remains a major open
problem, notable for its connection to the L vs. NL problem in the complexity theory [9].
Tree-walking automata (TWA) have received particular attention in the last two decades, with
important results on their expressive power established by Bojańczyk and Colcombet [1, 2].

It is known that GWA can be transformed to several important subclasses: to automata that
halt on every input graph; to automata that return to the initial node in order to accept; to
reversible automata. Such transformations have earlier been established for various automaton
models, using a general method discovered by Sipser [19], who constructed a halting 2DFA that
traverses the tree of computations of a given 2DFA leading to an accepting configuration, in
search of an initial configuration. Later, Kondacs and Watrous [10] ensured the reversibility
and optimized this construction for the number of states, motivated by the study of quantum
automata. Sipser’s idea has been adapted to proving that reversible space equals deterministic
space [14], to making tree-walking automata halt [18], to complementing 2DFA [7], to making
multi-head automata reversible [17], etc. Each transformation leads to a certain blow-up in the
number of states, usually between linear and quadratic. No lower bounds on the transformation
to halting have been established yet. For the transformation to reversible, a lower bound exists
for the case of 2DFA [11], but it is quite far from the known upper bound.

For the general case of GWA, constructions of halting, returning and reversible automata
were given by Kunc and Okhotin [12], who showed that an n-state GWA operating on graphs
with k edge endpoint labels can be transformed to a returning GWA with 3nk states and to a
reversible GWA with 6nk+ 1 states, which is always halting. Applied to special cases of GWA,
such as TWA or multi-head automata, these generic constructions produce fewer states than
the earlier specialized constructions.

The main result of this thesis are lower bounds on the complexity of these transformations.
To begin with, the constructions by Kunc and Okhotin [12] are revisited in Section 3, and it turns
out that the elements they are built of can be recombined more efficiently, resulting in improved
upper bounds based on the existing methods. This way, the transformation to a returning GWA
is improved to use 2nk + n states, the transformation to halting can use 2nk + 1 states, and
constructing a reversible GWA (which is both returning and halting) requires at most 4nk + 1
states. With these improvements, each of these constructions is turn out to be asymptotically
optimal.

The lower bounds are proved according to the following plan. For each n and k, one should
construct an n-state automaton operating on graphs with k direction labels, so that any return-
ing, halting or reversible automaton recognizing the same language would require many states.
The n-state automaton follows a particular path in an input graph in search for a special node.
The node is always on that path, so that the automaton naturally encounters it if it exists. On
the other hand, the graph is constructed, so that getting back is more challenging.

The graph is made of elements called diodes, which are easy to traverse in one direction and
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hard to traverse backwards. Diodes are defined in Section 4, where it is shown that a GWA
needs to employ extra states to traverse a diode backwards.

The graph used in all lower bound arguments, constructed in Section 5, has a main path
made of diodes leading to a special node, which makes returning more complicated, so that a
returning automaton needs at least 2(n− 1)(k − 3) states. A variant of this graph containing a
cycle made of diodes, presented in Section 6, poses a challenge to a halting automaton, which
needs at least 2(n − 1)(k − 3) states. Section 7 combines the two arguments to establish a
lower bound of 4(n− 1)(k − 3) on the number of states of an automaton that is returning and
halting at the same time. This bound is adapted to reversible automata in Section 8: at least
4(n− 1)(k − 3)− 1 states are required.

Overall, each transformation requires ca. C · nk states in the worst case, for a constant C.
Each transformation has its own constant C, and these constants are determined precisely.

The second part of this thesis is about another type of transformations on GWA: operations
of sets of graphs. For each graph operation, the first question is whether the family of sets of
graphs recognized by graph-walking automata is closed under that operation, and if it is, then
the second question is, how many states are needed for that? Not many operations on graphs are
known. In this thesis, node-replacement homomorphisms, which replace nodes with subgraphs,
are studied, as well as inverse homomorphisms. In the case of strings, a homomorphism is
defined by the identity h(uv) = h(u)h(v), and the class of regular languages is closed under all
homomorphisms, as well as under their inverses, defined by h−1(L) = {w | h(w) ∈ L }. For
the 2DFA model, the complexity of inverse homomorphisms is known: as shown by Jirásková
and Okhotin [8], it is exactly 2n in the worst case, where n is the number of states in the
original automaton. However, this proof is based on the transformations between one-way and
two-way finite automata, which is a property unique for the string case. The state complexity
of homomorphisms for 2DFA is known to lie between exponential and double exponential [8].
For tree-walking and graph-walking automata, no such questions were investigated before, and
they are addressed in this thesis.

The closure of graph-walking automata under every inverse homomorphism is easy: in Sec-
tion 9 it is shown that, for an n-state GWA, there is a GWA with nk + 1 states for its inverse
homomorphic image, where k is the number of labels of edge end-points. If the label of the
initial node is unique, then nk states are enough. This transformation is proved to be optimal
by establishing a lower bound of nk states. The proof of the lower bound makes use of a graph,
constructed in Section 5, that is easy to pass in one direction and hard to pass in reverse.

The other result, presented in Section 10, is about inverse homomorphisms. It is claimed that
the family of tree languages recognized by tree-walking automata is not closed under injective
homomorpisms, thus settling this question for graph-walking automata as well. The result is
proved by first establishing a characterization of regular tree languages by a combination of
an injective homomorphism and an inverse homomorphism. This characterization generalizes a
known result by Latteux and Leguy [15], see also an earlier result by Čuĺık et al. [4]. In light of
this characterization, a closure under injective homomorphisms would imply that every regular
tree language is recognized by a tree-walking automaton, which would contradict the famous
result by Bojańczyk and Colcombet [2].

The results of Sections 3–8 were presented at STACS 2021 conference [16]. The results of
Sections 9–10 have been submitted for publication.

2 Graph-walking automata and their subclasses

The definition of graph-walking automata (GWA) is an intuitive extension of two-way finite
automata (2DFA) and tree-walking automata (TWA). However, formalizing it requires extensive
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notation. First, there is a notion of a signature, which is a generalization of an alphabet to the
case of graphs.

Definition 1 (Kunc and Okhotin [12]). A signature S consists of

� A finite set D of directions, that is, labels attached to edge end-points;

� A bijection − : D → D providing an opposite direction, with −(−d) = d for all d ∈ D;

� A finite set Σ of node labels;

� A non-empty subset Σ0 ⊆ Σ of possible labels of the initial node;

� A set of directions Da ⊆ D for every label a ∈ Σ. Every node labelled with a must be of
degree |Da|, with the incident edges corresponding to the elements of Da.

Graphs are defined over a signature, like strings over an alphabet.

Definition 2. A graph over a signature S = (D,−,Σ,Σ0, (Da)a∈Σ) is a quadruple (V, v0,+, λ),
where

� V is a finite set of nodes;

� v0 ∈ V is the initial node;

� +: V ×D → V is a partial function, such that if v + d is defined, then (v + d) + (−d) is
defined and equals v;

� a total mapping λ : V → Σ, such that v+d is defined if and only if d ∈ Dλ(v), and λ(v) ∈ Σ0

if and only if v = v0.

In this thesis, all graphs are finite and connected.
Once graphs are formally defined, a graph-walking automaton is defined similarly to a 2DFA.

Definition 3. A (deterministic) graph-walking automaton (GWA) over a signature S =
(D,−,Σ,Σ0, (Da)a∈Σ) is a quadruple A = (Q, q0, F, δ), where

� Q is a finite set of states;

� q0 ∈ Q is the initial state;

� F ⊆ Q× Σ is a set of acceptance conditions;

� δ : (Q × Σ) \ F → Q ×D is a partial transition function, with δ(q, a) ∈ Q ×Da for all a
and q where δ is defined.

A computation of a GWA on a graph (V, v0,+, λ) is a uniquely defined sequence of configurations
(q, v), with q ∈ Q and v ∈ V . It begins with (q0, v0) and proceeds from (q, v) to (q′, v+d), where
δ(q, λ(v)) = (q′, d). The automaton accepts by reaching (q, v) with (q, λ(v)) ∈ F .

On each input graph, a GWA can accept, reject or loop. There is a natural subclass of GWA
that never loop.

The language of GWA A is a set of graphs, which A accepts. It is denoted by L(A).

Definition 4. A graph-walking automaton is said to be halting, if its computation on every
input graph is finite.
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Another property is getting back to the initial node before acceptance: if a GWA is regarded
as a robot, it returns to its hangar, and for a generic model of computation, this property means
cleaning up the memory.

Definition 5. A graph-walking automaton A = (Q, q0, F, δ) over a signature S =
(D,−,Σ,Σ0, (Da)a∈Σ) is called returning, if F ⊆ Q × Σ0, which means that it can accept
only in the initial node.

A returning automaton is free to reject in any node, and it may also loop, that is, it need
not be halting.

The next, more sophisticated property is reversibility, meaning that, for every configuration,
the configuration at the previous step can be uniquely reconstructed. This property is essential
in quantum computing, whereas irreversibility in classical computers causes energy dissipation,
which is known as Landauer’s principle [13].

The definition of reversibility begins with the property that every state is reachable from
only one direction.

Definition 6. A graph-walking automaton A = (Q, q0, F, δ) over a signature S =
(D,−,Σ,Σ0, (Da)a∈Σ) is called direction-determinate, if there is a function d : Q → D, such
that, for all p ∈ Q and a ∈ Σ, if δ(p, a) is defined, then δ(p, a) = (q, d(q)) for some q ∈ Q.

Definition 7. A graph-walking automaton A = (Q, q0, F, δ) over a signature S =
(D,−,Σ,Σ0, (Da)a∈Σ) is called reversible, if

� A is direction-determinate;

� for all a ∈ Σ and q ∈ Q, there is at most one state p, such that δ(p, a) = (q, d(q)); in other
words, knowing a state and a previous label, one can determine the previous state;

� The automaton is returning, and for each a0 ∈ Σ0 there exists at most one such state q,
that (q, a0) ∈ F .

In theory, a reversible automaton may loop, but only through the initial configuration. In
this case, it can be made halting by introducing an extra initial state.

Every GWA can be transformed to each of the above subclasses [12]. In the next section,
the known transformations will be explained and slightly improved.

3 Upper bounds revisited

Before establishing the lower bounds on all transformations, the existing constructions of Kunc
and Okhotin [12] will be somewhat improved by using fewer states. This is achieved by recom-
bining the elements of the original construction, and, with these improvements, the constructions
shall be proved asymptotically optimal.

The basic element for constructing reversible automata is a lemma by Kunc and Okhotin [12]
(Lemma 1 below), which implements Sipser’s idea of backtracking the tree of computations
coming to an accepting configuration in the general case of graph-walking automata. The lemma
assumes that the automaton is already direction-determinate, and it makes a further technical
assumption that whenever the automaton has any behaviour defined on a pair (q, a)—transition
or acceptance—the label a must support incoming transitions in the direction d(q).

Definition 8 (Kunc and Okhotin [12, Defn. 6]). A direction-determinate automaton A =
(Q, q0, δ, F ) is without inaccessible transitions, if, for all pairs (q, a) ∈ (Q × Σ) with (q, a) /∈
{q0} × Σ0, if δa(q) is defined or (q, a) ∈ F , then −d(q) ∈ Da.
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If there are any such transitions, they can be removed without affecting any computations.

Lemma 1 (Kunc and Okhotin [12, Lemma 6]). For every direction-determinate automaton

A = (Q, q0, δ, F ) without inaccessible transitions, there exists a reversible automaton B = (
−→
Q ∪

[Q], δ′, F ′) without an initial state, and with states
−→
Q = {−→q | q ∈ Q } and [Q] = { [q] | q ∈ Q },

which simulates A as follows. Each state q ∈ Q has two corresponding states in B: a forward
state −→q accessible in the same direction d′(−→q ) = d(q), and a backward state [q] accessible in the
opposite direction d′([q]) = −d(q). The acceptance conditions of B are F ′ =

{
([δa0(q0)], a0)

∣∣ a0 ∈
Σ0, δa0(q0) is defined

}
. For every finite graph (V, v0, λ,+), its node v̂ ∈ V and a state q̂ ∈ Q

of the original automaton, for which (q̂, λ(v̂)) ∈ F and −d(q̂) ∈ Dλ(v̂), the computation of B
beginning in the configuration ([q̂], v̂ − d(q̂)) has one of the following two outcomes.

� If A accepts this graph in the configuration (q̂, v̂), and if (q̂, v̂) 6= (q0, v0), then B accepts
in the configuration ([δλ(v0)(q0)], v0).

� Otherwise, B rejects in (
−→
q̂ , v̂).

In particular, A in configuration (q, v) is simulated by B forward in the configuration (−→q , v)
and backward in the configuration ([q], v − d(q)). Note that the latter configuration is shifted
by one node along the computation.

Note that the computation of A starting from the initial configuration can reach at most
one accepting configuration (q, v), whereas for any other accepting configuration (q, v), the
automaton B will not find the initial configuration and will reject as stated in the lemma.

To transform a given n-state GWA Â over a signature with k directions to a returning
automaton, Kunc and Okhotin [12] first transform it to a direction-determinate automaton
A with nk states; let B be the 2nk-state automaton obtained from A by Lemma 1. Then
they construct an automaton that first operates as A, and then, after reaching an accepting
configuration, works as B to return to the initial node. This results in a returning direction-
determinate automaton with 3nk states.

If the goal is just to return, and remembering the direction is not necessary, then 2nk + n
states are actually enough.

Theorem 1. For every n-state GWA over a signature with k directions, there exists a returning
automaton with 2nk + n states recognizing the same set of graphs.

Indeed, the original automaton Â can be first simulated as it is, and once it reaches an
accepting configuration, one can use the same automaton B as in the original construction to
return to the initial node. There is a small complication in the transition from Â to B, because
in the accepting configuration, the direction last used is unknown. This is handled by cycling
through all possible previous configurations of A at this last step, and executing B from each
of them. If the direction is guessed correctly, then B finds the initial configuration and accepts.
Otherwise, if the direction is wrongly chosen, B returns back, and then, instead of rejecting, it
is executed again starting from the next direction. One of these directions leads it back to the
initial node.

Proof of Theorem 1. Let Â = (Q, q0, δ, F ) be the given automaton. Let A be a direction-
determinate automaton with the set of states Q×D that recognizes the same set of graphs [12,
Lemma 1]. Assume that all inaccessible transitions are removed from A.

Let B be the automaton obtained from A by Lemma 1: this is a reversible automaton

without initial state, and it uses the set of states
−→
Q ∪ [Q], where

−→
Q = {

−−−→
(q, d) | q ∈ Q, d ∈ D }

and [Q] = { [(q, d)] | q ∈ Q, d ∈ D }. Its transition function is denoted by δ′. There are 2nk
states in B.
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Assume any linear order on D.

A new automaton C is constructed with the set of states Q ∪
−→
Q ∪ [Q] containing n + 2nk

states, and with a transition function δ′′, to be defined below. If the initial configuration of C
is an accepting configuration of Â, then C immediately accepts as well. Otherwise, C begins by
simulating Â in the states Q.

δ′′(q, a) = δ(q, a), for q ∈ Q and a ∈ Σ, if δ(q, a) is defined

If the simulated Â reaches an accepting configuration (q̃, v̂), this means that A, operating on the
same graph, would reach an accepting configuration of the form ((q̃, d̂), v̂), for some direction
d̂ ∈ −Da. However, C does not know this direction d̂, so it tries moving in all directions in Da,
beginning with the least one.

δ′′(q̃, a) = ([(q̃,−minDa)],minDa) for all (q̃, a) ∈ F \ ({q0} × Σ0)

Let d = −minDa. In the notation of Lemma 1, q̂ = (q̃, d̂) and d(q̂) = d̂ and −d̂ ∈ Da. According
to the lemma, if the direction was correctly guessed as d = d̂, then B, having started in the
configuration ([q̂], v̂ − d), accepts at the initial node. The automaton C simulates B to do the
same.

δ′′([(q, d)], a) = δ′([(q, d)], a), for all a ∈ Σ and [(q, d)] ∈ [Q]

δ′′(
−−−→
(q, d), a) = δ′(

−−−→
(q, d), a), for all a ∈ Σ and

−−−→
(q, d) ∈

−→
Q

If the direction was wrongly guessed as d 6= d̂, then (q̃, d) is still a valid state of A, so, by the

lemma, B returns to the configuration (
−−−→
(q̃, d), v̂), in which it would reject. The automaton C,

instead of rejecting, tries the next available direction from Da.

δ′′(
−−−→
(q̃, d), a) = ([(q̃, d′)],−d′) for all (q̃, a) ∈ F \ ({q0} × Σ0), d′ = −next−d(Da)

Here next−d(Da) denotes the least element of Da greater than −d. The above transition is
defined, assuming that −d is not the greatest element of Da. Since one of the directions in Da is
the true −d̂, it is eventually found, and the case of all directions failing need not be considered.

The acceptance conditions of C are the same as in B, and so C is returning. As argued
above, C recognizes the same set of graphs as Â.

Kunc and Okhotin [12] did not consider halting automata separately. Instead, they first
transform an n-state GWA to a 3nk-state returning direction-determinate automaton, then use
Lemma 1 to obtain a 6nk-state reversible automaton, and add an extra initial state to start it.
The resulting (6nk + 1)-state automaton is always halting.

If only the halting property is needed, then the number of states can be reduced.

Theorem 2. For every n-state direction-determinate automaton, there exists a (2n + 1)-state
halting and direction-determinate automaton that recognizes the same set of graphs.

First, an n-state automaton Â is transformed to a direction-determinate nk-state automaton
A, and Lemma 1 is used to construct a 2nk-state automaton B. Then, the automaton B is
reversed by the method of Kunc and Okhotin [12], resulting in an automaton BR with 2nk +
1 states that carries out the computation of B backwards. The automaton BR is a halting
automaton that recognizes the same set of graphs as Â: it starts in the initial configuration, and
if B accepts from an accepting configuration of A, then BR finds this configuration and accepts;
otherwise, BR halts and rejects.
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Proof of Theorem 2. Let A be the original automaton, let Q be its set of states. Assume that all
inaccessible transitions have already been removed from A. Lemma 1 is used to construct a 2n-
state reversible automaton B without an initial state. The latter automaton B is then subjected
to another transformation: by the method of Kunc and Okhotin [12], B is transformed to a
reversed automaton BR, which carries out the computation of B backwards, starting from the
accepting configuration of B, and using a state [q] to simulate B in a state q; in the simulation,
the configurations are shifted by one node relative to B, so that B in (q, v) corresponds to BR in
(q, v − d(q)). Since B has no initial configuration defined, the acceptance conditions of BR are
not defined either, and shall be supplemented in the following. The automaton BR has 2n + 1
states.

By Lemma 1, the set of states of B is Q′ = [Q] ∪
−→
Q . Then, BR has the set of states

Q′′ = [[Q]]∪ [
−→
Q ]∪ {q′′0}, where [[Q]] = { [[q]] | q ∈ Q } and [

−→
Q ] = { [−→q ] | q ∈ Q }, where q′′0 is the

new initial state. The directions of states in B are d′([q]) = −d(q) and d′(−→q ) = d(q), and BR

uses the opposite directions: d′′([[q]]) = d(q) and d′′([−→q ]) = −d(q), for all q ∈ Q.
Let δ be the transition function of A, let the transition function of B be δ′, and let BR use

δ′′.
The transitions of BR are defined by joining two constructions by Kunc and Okhotin [12],

and are listed below. Transitions in the initial state q′′0 correspond to accepting conditions of B.

δ′′a0(q′′0) =

{
[[δa0(q0)]], if δa0(q0) is defined in A

undefined, otherwise

The rest of the transitions carry out the computation backwards; each of them is uniquely
defined, because B is reversible.

δ′′a([q]) =

{
[p], if δ′a(p) = q

undefined, otherwise

The acceptance conditions of BR are defined, so that it accepts a graph if so does A.

F ′′ =
{

([[q]], a)
∣∣ (q, a) ∈ F

}
∪
{

(q′′0 , a0)
∣∣ (q0, a0) ∈ F

}
Overall, after being shifted by one node twice, the state [[q]] corresponds to the state q of A,
and BR in a configuration ([[q]], v) corresponds to A in (q, v).

It is claimed that the automaton BR is a halting automaton that recognizes the same set of
graphs as A.

Its transitions are reversible by construction, and therefore it can loop only through the
initial configuration. But since its initial state is not reenterable, it cannot loop at all, and is
therefore halting.

To see that BR recognizes the same graphs as A, first assume that A accepts some graph in
a configuration (q̂, v̂). Then, B backtracks from ([q̂], v̂−d(q̂)) to the configuration ([δa0(q0)], v0).
The automaton BR in turn moves from the configuration (q′′0 , v0) to ([[q̂]], v̂) and accepts there.

Conversely, if BR accepts a graph, then it does so in a configuration ([[q̂]], v̂). The corre-
sponding computation of B proceeds from ([q̂], v̂−d(q̂)) to ([δa0(q0)], v0), and then, by Lemma 1,
A accepts this graph in the configuration (q̂, v̂).

The construction of a reversible automaton with 6nk+1 states can be improved to 4nk+1 by
merging the automata B and BR. The new automaton first works as BR to find the accepting
configuration of A. If it finds it, then it continues as B to return to the initial node. In addition,
this automaton halts on every input.
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Theorem 3. For every n-state direction-determinate automaton there exists a (4n + 1)-state
reversible and halting automaton recognizing the same set of graphs.

Proof. Let A be a given direction-determinate automaton with n states. Assume that it is
without inaccessible transitions.

First, as in the proof of Theorem 2, let B be the reversible automaton without an initial state
constructed by Lemma 1, and then let BR be another automaton with reversible transitions that
simulates B backwards.

The goal is to combine BR with B to obtain a new reversible and halting automaton C.
The automaton C first operates as BR, which is also known to be halting. Then, if A rejects
or loops, then BR halts and rejects, and C rejects accordingly. If A accepts immediately in its
initial configuration, then so do BR and C.

Assume that A accepts in a non-initial configuration (q̂, v̂). Then, BR arrives at a config-
uration ([[q̂]], v̂) and accepts. The automaton C needs to return to the initial node, so it does
not accept immediately, as does BR, and instead enters the configuration ([q̂], v̂−d(q̂)) and con-
tinues as B. By definition, B, having started from this configuration, reaches the configuration
([δa0(q0)], v0) and accepts there; C does the same.

The set of states of C is the union of the sets of states of B and of BR. There are 4n + 1
states in total, and they are enterable in the same directions as in B and in BR. The initial
state of C is q′′0 from BR. Its transitions are all the transitions of B and BR, as well as the
following transitions that transfer control from BR to B. These transitions are defined for every
accepting pair ([[q̂]], a) of BR, unless it is initial.

δ′′′a ([[q̂]]) = [q̂] ((q̂, a) ∈ F \ {q0} × Σ0)

The acceptance conditions of C are the same as in B.
By the construction, the automaton C accepts the same set of graphs as A. It has 4n + 1

states. It should be proved that it is reversible.
For every initial label, C has at most one acceptance condition involving this label, since

this is the case for B. The automaton C is returning. It remains to prove that, for every label
a and for every state q of C, there is at most one state p with δ′′′a (p) = q.

The automata B and BR had this property by construction. The only new transitions
are transitions of the form δ′′′a ([[q̂]]) = [q̂], for non-initial acceptance conditions (q̂, a) of the
automaton A. It is enough to show that B does not have any other way of reaching a state [q̂]
from the label a.

Some details of the construction of B need to be examined [12, Lemma 6]. There are two
kinds of states in B: [p] and −→p . By the construction of B, the state [q̂] can potentially be
reached by the following two transitions.

First, this could be a transition of the form δ′a([p]) = [q̂] [12, Eq. (1)]. However, by the
definition of B, this transition is defined only if A has a transition δa(q̂) = p. This is impossible,
since (q̂, a) is an accepting pair for A.

The other possible transition is δ′a(
−→p ) = [q̂] [12, Eq. (3)]. For this transition to be defined,

A must have a transition δa(q̂) = δa(p), and δa(p) must accordingly be defined. Again, this
cannot be the case, because the pair (q̂, a) is accepting in A.

The definition of B includes one further type of transitions leading to a state [q̂] [12, Eq. (5)].
Those transitions are actually never used and can be omitted; they were defined in the original
paper for the sole reason of making the transition function bijective.

This confirms that the transfer of control from BR to B is done reversibly, and so C is
reversible.

With the upper bounds improved and some new upper bounds established, it is time to prove
asymptotically matching lower bounds.
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Figure 1: Element Ei. Filled circles are nodes labelled with m, each with r−1 loops in directions
±bs, with s 6= i.

4 Construction of a “diode”

Lower bounds on the size of GWA obtained in this thesis rely on quite involved constructions
of graphs that are easy to traverse from the initial node to the moment of acceptance, whereas
traversing the same path backwards is hard. An essential element of this construction is a
subgraph called a diode; graphs in the lower bound proofs are made of such elements.

A diode is designed to replace an (a,−a)-edge. An automaton can traverse it in the direction
a without changing its state. However, traversing it in the direction−a requires at least 2(|D|−3)
states, where D is the set of directions in the diode’s signature.

If an automaton never moves in the direction −a, then it can be transformed to an automaton
with the same number of states, operating on graphs in which every (a,−a)-edge is replaced
with a diode.

Lower bound proofs for automata with n states over a signature with k directions use a diode
designed for these particular values of n and k. This diode is denoted by ∆n,k.

For n > 2 and k > 4, let M = (4nk)!, and let r = bk−2
2 c. A diode ∆n,k is defined over a

signature Sk that does not depend on n.

Definition 9. A signature Sk = (D,−,Σ,Σ0, (Da)a∈Σ) consists of:

� the set of directions D = {a,−a} ∪ {b1, b−1, . . . , br, b−r};

� opposite directions −(a) = (−a), −bi = b−i, for 1 6 i 6 r;

� the set of node labels Σ = {m1, . . . ,mr} ∪ {m−1, . . . ,m−r} ∪ {m,me,ma}, with no initial
labels defined (Σ0 = ∅) since the diode is inserted into graphs;

� sets of directions allowed at labels: Dm = D, Dmi = Dm−i = {−a, bi,−bi}, for i = 1, . . . , r,
Dme = {b1, a,−a}, Dma = {−b1, a}.

A diode is comprised of 2r elements Ei, E−i, for i ∈ {1, . . . , r}. Each element Ei and E−i is
a graph over the signature Sk, with two external edges, one with label a, the other with −a. By
these edges, the elements are connected in a chain.

The form of an element Ei is illustrated in Figure 1. Its main part is a cycle of length 8M
in directions a,−a; these are nodes u0, . . . , u8M−1, where the arithmetic in the node numbers is

11



a–a

E+1

±b1
±b1a a–a

E–1

∓b1
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Figure 2: Diode ∆n,k: a chain of elements E1, E−1, E2, E−2, . . . , Er, E−r.

modulo 8M , e.g., u−1 = u8M−1. The node numbers are incremented in direction a. Besides the
main cycle, there are two extra nodes: the entry point uin and the exit uout, as well as a small
circle of length M in directions a,−a with the nodes u′0, . . . , u

′
M−1. All nodes are labelled with

m, except three: uin with label mi matching the index of the element, uout with label ma, and
u0 has label me.

An element Ei has specially defined edges in directions bi and −bi. Each node uj with
j 6≡ 0 (mod M) has a (bi,−bi)-loop. The nodes uj with j ∈ {M, 2M, 3M, 5M, 6M, 7M} are
interconnected with edges, as shown in Figure 1; these edges serve as traps for an automaton
traversing the element backwards. The node u4M has a different kind of trap in the form of a
cycle u′0, . . . , u′M−1. For all s 6= i, each node labelled with m has a (bs,−bs)-loop.

The element E−i is the same as Ei, with the directions bi and −bi swapped.

Definition 10. A diode element Ei, with i ∈ {±1, . . . ,±r}, is formally defined as follows.

� The set of nodes is V = {u0, . . . , u8M−1} ∪ {u′0, . . . , u′M−1} ∪ {uin, uout}.
Node numbers are defined modulo 8M . For instance, u−1 is a valid notation for u8M−1.

� No initial node is defined, since a diode is a subgraph substituted into graphs, and not a
valid graph on its own.

� The nodes have the following labels.

λ(uin) = mi

λ(uout) = ma

λ(u0) = me

The rest of the nodes have label m.
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� The edges are defined as follows.

uin + (−a) = outside (point of entrance by a)

uin + bi = u4M

u4M + bi = u′0

u′0 + bi = uin

u′j + a = u′j+1

u′j − a = u′j−1

u′j ± bs = u′j , where s ∈ {1, . . . , r}, (u′j , bs) 6= (u′0,±bi)
uout + a = outside (point of exit by a)

uout − b1 = u0

u0 + b1 = uout

uj + a = uj+1

uj − a = uj−1

uj ± bs = uj , where s ∈ {1, . . . , r} \ {i,−i}, j 6= 0

uj ± bi = uj , where j /∈ {0,M, 2M, 3M, 4M, 5M, 6M, 7M}
uM ± bi = u−M

u2M + bi = u3M

u3M + bi = u−2M

u−2M + bi = u−3M

u−3M + bi = u2M

The diode ∆n,k is a chain of such elements.

Definition 11. The diode ∆n,k, defined over a signature Sk, is a chain of elements Ei, joined
sequentially as shown in Figure 2. The order of elements is: E1, E−1, E2, E−2, . . . , Er, E−r. For
every element in the chain, there is an a-edge from its node uout to the node uin in the next
element. The entry point to the diode by a is by the −a-edge of the first element E1, and the
exit point is the a-edge of the last element E−r.

Each element can be traversed from the entrance to the exit without changing the state: at
first, the automaton sees the label mi, and accordingly moves in the direction bi; then, on labels
m, it proceeds in the direction a until it reaches u0, labelled with me. Then the automaton
leaves the element by following directions b1 and a.

The diode is hard to traverse backwards, because the node u4M is not specifically labelled,
and in order to locate it, the automaton needs to move in directions ±bi from many nodes, and
is accordingly prone to falling into traps.

The diode is used as a subgraph connecting two nodes of a graph as if an (a,−a)-edge.

Definition 12. For a graph G over some signature S̃, let G′ be a graph obtained by replacing
every (a,−a)-edge in G with the diode ∆n,k. Denote this graph operation by hn,k : G 7→ G′.

The following lemma states that if an automaton never traverses an (a,−a)-edge backwards,
then its computations can be replicated on graphs with these edges substituted by diodes, with
no extra states needed.

Lemma 2. Let S̃ be any signature containing directions a, −a, which has no node labels from
the signature Sk. Let A = (Q, q0, F, δ) be a GWA over the signature S̃, which never moves in
the direction −a.
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Then, there exists a GWA A′ = (Q, q0, F, δ
′) over a joint signature S̃ ∪Sk, so that A accepts

a graph G if and only if A′ accepts the graph G′ = hn,k(G).

Proof. The automaton A′ uses the same states as A, but the transition function is augmented
with transitions by labels from the diode’s signature. Since none of the labels exists in the
signature S̃, the new transitions would not contradict the existing ones.

For each state q ∈ Q, the following transitions are added to δ′.

δ′(q,mi) = (q, bi), for i ∈ {±1, . . . ,±r}
δ′(q,m) = (q, a)

δ′(q,me) = (q, b1)

δ′(q,ma) = (q, a)

Let G be any graph over the signature S̃, and let G′ = hn,k(G) be the graph constructed by
replacing every (a,−a)-edge in G with a diode. Let V be the set of nodes of G. Then the set of
nodes of G′, denoted by V ′, contains V as a subset, and has extra nodes used by the substituted
diodes.

Consider the computation of A on the graph G. It corresponds to the computation of A′ on
G′ as follows. Let t1, t2, . . . be the sequence of moments in the computation of A′ on G′, at which
the automaton visits any nodes from V . It is claimed that each i-th step of the computation of
A corresponds to the step ti of the computation of A′, as follows.

Claim 1. The automaton A, at the i-th step of its computation on G, is in a node v in a state
q in and only if A′, at the step ti on G′ is in the same node v of G′, in the same state q.

The claim is proved by induction on i. The base case is step i = 0, when both A and A′ are
in their initial configurations. Each configuration is of the form (q0, v0).

Induction step. Assume that both A and A′ visit the same node v in the same state q at
the moments i and ti, respectively. The claim is that next, at the moments i+ 1 and ti+1, both
automata are again in the same node and in the same state. Let f be the label of v. There are
the following cases.

� If this is an accepting pair (q, f) ∈ F , then, since F = F ′, both automata accept.

� If the transition δ(q, f) is undefined, then, since v ∈ V , its label is not from the diode’s
signature, and A′ has no new transitions at the label λ(v). Then, the transition δ′(q, f) is
undefined too, and both automata reject their graphs.

� If the next transition is not in the directions ±a, then δ(q, f) = δ′(q, f) = (p, d), and both
automata proceed to the next configuration (p, v + d), where v + d ∈ V .

� Let the next transition be in the direction a, so that δ(q, f) = (p, a). At the next step,
the automaton A comes to the configuration (p, u), where u denotes the node v+ a in the
graph G.

For A′, the moment ti+1 is the next visit to any of the nodes from V after ti. At the next
step after ti, the automaton A′ enters the diode connecting the nodes v and u in the graph
G′, and changes its state to p, because δ′(q, f) = δ(q, f) = (p, a). The transitions at the
labels from the diode’s signature are defined so that the automaton A′ traverses the entire
diode in the state p, and leaves the diode for the node u. This u is the next node from V
visited by A′ after ti, and A′ visits it in the state p, the same as the state of A.

� The transition δ(q, f) cannot be in the direction −a, because, by the assumption, A never
moves in this direction.
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Figure 3: The graph Tf in the proof of Lemma 3.

Thus, the correspondence between i and ti has been established, and then the automaton A
accepts the graph G if and only if A′ accepts G′.

Lemma 2 shows that, under some conditions, a substitution of diodes can be implemented on
GWA without increasing the number of states. The next lemma presents an inverse substitution
of diodes: the set of pre-images under hn,k of graphs accepted by a GWA can be recognized by
another GWA with the same number of states.

Lemma 3. Let k > 4 and n > 2, denote h(G) = hn,k(G) for brevity. Let S̃ be a signa-
ture containing the directions a,−a and no node labels from the diode’s signature Sk. Let
B = (Q, q0, H, σ) be a GWA over the signature S̃ ∪ Sk. Then there exists an automaton
C = (Q, q0, F, δ) over the signature S̃, with the following properties.

� For every graph G over S̃, the automaton C accepts G if and only if B accepts h(G).

� If C can enter a state q by a transition in the direction −a, then B can enter the state q
after traversing the diode backwards.

� if C can enter a state q by a transition in the direction a, then B can enter the state q
after traversing the diode forward.

� If B is returning, then so is C.

� If B is halting, then C is halting as well.

The automaton C is constructed by simulating B on small graphs, and using the outcomes
of these computations to define the transition function and the set of acceptance conditions of
C. Note that the signatures S̃ and Sk may contain any further common directions besides a,−a:
this does not cause any problems with the proof, because the node labels are disjoint, and thus
B always knows whether it is inside or outside a diode.

Proof of Lemma 3. The automaton C = (Q, q0, F, δ) is constructed by simulating B =
(Q, q0, H, σ) on small graphs and using the outcomes of these computations to define the tran-
sition function δ and the set of acceptance conditions F .

For every state q ∈ Q and label f from S̃, the transition δ(q, f) is defined by simulating the
computation of B on a graph denoted by Tf and constructed as follows, see Figure 3. Let v be
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a node with label f , with attached edges in all directions in Df , leading outside of Tf . Edges
in directions a and −a are replaced with diodes. The automaton B begins its computation at
the node v of Tf in the state q. If it eventually leaves Tf by one of the edges leading outside,
in some direction d and in a state q′, then the transition is defined as δ(q, f) = (q′, d). If the
automaton B accepts without leaving Tf , then the pair (q, f) is accepting in C. If B loops or
encounters an undefined transition, then the transition δ(q, f) is undefined.

Claim 2. For every graph G over the signature S̃, the automaton C accepts G if and only if B
accepts h(G). Furthermore, if B is returning, then C is returning, and if B is halting, then C
is halting.

Proof. Let V be the set of nodes of G. Then, h(G) has the set of nodes V ∪ V∆, where V∆ is
the set of all internal nodes in all diodes in h(G).

Let RC = { (qi, vi) | i = 0, . . . , NC } be the computation of C on G, and let RB = { (pj , uj) |
j = 0, . . . , NB } be the computation of B on h(G). The length of either computation, NC or
NB, can be infinite.

Each step of C either repeats the corresponding step of B, or contracts several moves of
B on Tf into a single transition. Let m : {0, . . . , NC} → {0, . . . , NB} be the function that
maps the number i of a configuration in the computation RC to the number j = m(i), so that
(qi, vi) = (pj , uj) and m(i+ 1) > m(i). Note that configurations of two automata may be equal,
because B and C share the same set of states, and every node of G is a node of h(G).

The function m is constructed inductively on i.

� Basis: i = 0. The configuration (q0, v0) is initial in both computations, and m(0) = 0.

� Induction step. Let (qi, vi) = (pm(i), um(i)), and assume that it is not the last configuration
in RC . The goal is to find a number m(i + 1), such that m(i) < m(i + 1) 6 NB and
(qi+1, vi+1) = (pm(i+1), um(i+1)).

Let f be the label of vi. Then, Tf is a subgraph of h(G) centered around vi. Since
δ(qi, vi) = (qi+1, di+1), where di+1 is the direction from vi to vi+1 in the graph G, the
automaton B, having arrived to the node vi of h(G) in the state qi, eventually leaves Tf
in the direction di+1 in the state qi+1. The direction di+1 from Tf leads to the node vi+1.
Thus, some time after the configuration (qi, vi), the automaton B reaches the configuration
(qi+1, vi+1). Let m(i+ 1) be this moment in the computation RB.

Now it will be shown that if C accepts G, then B accepts h(G), and if C does not accept G,
then B does not accept h(G).

Let C accept the graph G. Consider the last configuration (q, v) in the computation RC .
It is accepting for C. The automaton B reaches the same configuration in its computation on
h(G). Let f be the label of v. Consider the subgraph Tf of h(G) around the node v. Since
(q, v) is an accepting configuration of C, the automaton B must accept h(G) starting from the
configuration (q, v), without leaving Tf . So, B accepts h(G). Note that if B is returning, then
it can accept only in the initial node, that is, f = a0, and then C can accept only in the initial
node as well.

Assume that C does not accept G. If C loops, then NC =∞, and in this case, since m is an
injection, then NB = ∞, and B loops as well. This, in particular, implies that if B is halting,
then C is halting too.

The other case is when C reaches a configuration (q, v), the label of v is f , and δ(q, f) is
undefined, while (q, f) is not an accepting pair. Then the automaton B, having started on Tf
at the node v in the state q, reaches an undefined transition without leaving Tf , or loops inside
Tf . In both cases B does not accept h(G). This confirms that if C does not accept G, then B
does not accept h(G).
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Claim 3. If C can come to a state q by a transition in the direction −a, then B can come to q
after traversing a diode backwards.

Proof. Let this transition in C be δ(p, f) = (q,−a). By the construction of C, this means that
if B runs on Tf beginning in v in the state p, then it leaves Tf in the direction −a in the state
q. Then, this transition is made after traversing the diode backwards.

Analoguosly, if C come to a state q by a transition in the direction a, then B can come to q
after traversing a diode forward.

The next lemma formally establishes that it is hard to traverse a diode backwards.

Lemma 4. Let A = (Q, q0, F, δ) be a GWA over a signature that includes diode’s signature Sk,
with |Q| 6 4nk. Assume that A, after traversing the diode ∆n,k backwards, can leave the diode
in any of h distinct states. Then A has at least 2h(k − 3) distinct states.

While moving through an element Ei backwards, the automaton sees labels m most of the
time, and soon begins repeating some sequence of states periodically. Without loss of generality,
assume that this periodic sequence contains more transitions in the direction a than in −a.
Then the automaton reaches the node uM , and at this point it may teleport between uM and
u−M several times. Let w ∈ {bi,−bi}∗ be the sequence of these teleportation moves, and let
x be the corresponding sequence of states. Depending on the sequence w, the automaton may
eventually exit the cycle to the node uin, or fall into one of the traps and get back to u0. It is
proved that for the automaton to reach uin, the string w must be non-empty and of even length;
furthermore, if |w| = 2, then w = (−bi)bi.

Now consider the h backward traversals of the diode ending in some states p1, . . . , ph. When
the traversal ending in pj proceeds through the element Ei, the strings wi,j ∈ {bi,−bi}∗ and
xi,j are defined as above. Then, as the last step of the argument, it is proved that whenever
|wi,j | = 2, the states in xi,j cannot occur in any other string xi′,j′ . For wi,j of length 4 or more,
the states in xi,j can repeat in other strings xi′,j′ , but only once. It follows that there are at
least 2h(k − 3) distinct states in these strings.

Proof of Lemma 4. Assume that A moves through the element Ei from the node uout to the
node uin. In this computation, there is the moment when A visits u0 for the last time before
leaving the element Ei. Let t0 denote this moment, as the number of a computation step. At
this moment, the automaton makes a transition that puts it either on the segment from u0 to
uM , or on the segment from u0 to u−M . Since, by assumption, the automaton shall never return
to u0 and shall eventually reach uin, it must traverse this segment and reach the corresponding
node u±M . Let t1 be the moment of the first visit to any of the nodes u±M after t0.

Since the moment t0 and until the subsequent first visit to uin, the automaton shall move
over nodes labelled with m. Therefore, already after |Q| steps or earlier—and much before the
moment t1, since M � |Q|—the automaton loops, that is, begins repeating some sequence of
states q1, . . . , qp, and some sequence of directions d1, . . . , dp, where p is the minimal period, and
the enumeration of states in the period is chosen so that at the moment t1 the automaton is in
the state q1.

In the sequence d1, . . . , dp, one of the directions a,−a must occur more often than the other,
since otherwise the automaton never reaches the node u±M . Assume that the direction a is the
one that occurs more often (the case of −a is symmetric), and the automaton accordingly moves
from u0 to uM . On the way, the automaton actually moves only in directions ±a, while all
its transitions in directions ±bj follow the loops and do not move the automaton. However, as
the automaton moves through the node uM , the transitions in directions ±bi are executed, and
the automaton, without noticing that, teleports to the node with an opposite number. While
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following the sequence of directions d1, . . . , dp, the automaton may move away from the nodes
u±M by several edges in directions a and −a, then get back, get teleported to the other part of
the graph in the directions ±bi, then again move away, etc. But since a occurs in the periodic
part more often than −a, eventually the automaton passes through the pair of nodes u±M and
moves on.

Let w ∈ {bi,−bi}∗ be the string of directions, in which the automaton, having arrived to the
node uM in the state q1, teleports between the nodes uM and u−M , until the general flow of its
motion in the direction a moves it away from this pair of nodes. Let x be the corresponding
string of states, in which the automaton makes the transitions in the string w.

If the automaton teleports between the nodes uM and u−M an even number of times, that is,
if |w| is even, then it proceeds further to the segment from uM to u2M . If the length of w is odd,
then the automaton is teleported to the node u−M and sets foot on the path in the direction of
u0: and then, moving in the general direction a, it reaches the node u0, which contradicts the
assumption. Thus, it has been proved that the number of teleportations is even.

Claim 4. The length of w is even, and the automaton, having arrived to the node uM in the
state q1, continues in the direction of the node u2M .

Let s be the difference between the number of occurrences of a and −a in the sequence
d1, . . . , dp. Since s 6 p 6 |Q|, the number M is divisible by s, and thus, from the moment t1
of the first visit to uM and until the moment of the first visit to u2M , the automaton makes a
whole number of periods M

s , and accordingly comes to u2M in the state q1.
If the string w is empty, then the automaton moves directly through u2M , without teleporting

anywhere in the directions ±bi, and then passes by uiM , for i = 3, 4, 5, 6, 7, in the same way,
getting to each of these nodes in the state q1. Eventually, contrary to the assumption, it comes
to the node u0. Therefore, this case is impossible.

Claim 5. The string w is non-empty.

Thus, having reached the node u2M , the automaton, following directions from a non-empty
string w of even length, teleports several times between the nodes u2M , u3M , u5M and u6M . In
the following, it will be proved that if w is of length 2, then it is uniquely defined.

Claim 6. If |w| = 2, then w = (−bi)bi.

Indeed, if w = bibi or w = (−bi)(−bi), then the automaton, while passing through the node
u2M , teleports to the node u6M , and then, gradually moving in the general direction a, reaches
the node u0. This is a contradiction.

If w = bi(−bi), then the automaton passes through the nodes uiM for i = 3, 4, 5, 6, 7, first
getting into each of these nodes in the state q1, and finally comes to the node u0. It should be
mentioned that, while passing through the node u4M , the automaton teleports to the node u′0,
but since its vicinity in the directions ±a is indistinguishable from long segments of the large
cycle, the automaton does not see any difference and eventually teleports back to u4M , without
ever paying a visit in the direction bi and without seeing the node uin.

Therefore, there is only one possibility left, that w = (−bi)bi, or otherwise w must be of
length at least 4.

In the case when −a occurs in the period more often than a, Claims 4–6 on the properties
of the string w hold as stated and can be proved analogously.

By the assumption, there are h backward traversals of the diode ending in h distinct
states: p1, . . . , ph. Each of these traversals includes passing through each element Ei, for
i ∈ {±1, . . . ,±r}. For the computation that eventually leaves the diode in the state pj , one can
define the string wi,j ∈ {bi,−bi}∗ of directions in which the automaton “teleports”, as w was
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defined above. Let xi,j be the corresponding string of states. All properties of these strings hold
as stated.

It will be proved that in the sequences of states xi,j , for i = ±1, . . . ,±r and j = 1, . . . , h,
there are in total at least 4rh distinct states, which will prove the lemma.

First, consider that in the states from xi,j , the automaton moves in the directions listed in
wi,j , while wi,j contains only directions bi,−bi. Then, as long as i1 6= i2 and i1 6= −i2, the sets
of states used in xi1,j and xi2,j are disjoint. Then, it is sufficient to prove that, for each i, the
strings xi,j , x−i,j , for all j = 1, . . . , h, together contain at least 4h distinct states.

It is claimed that, for each i ∈ {±1, . . . ,±r}, all states in the strings xi,1, . . . , xi,h are pairwise
distinct. Indeed, suppose that some state q occurs twice in these strings. Within a single string
xi,j , all states are known to be distinct. Then, there exist different j and j′, such that q occurs
both in xi,j and in xi,j′ . By definition, if the state q is in the string xi,j , this means that the
computation through Ei passes through one of the nodes uM and u−M in the state q. This
computation does not return to u0 anymore, and eventually leads the automaton out of the
diode in the state pj ; and if the automaton is put in the same state q into the other of the two
nodes uM and u−M , then it returns to the node u0 of the element Ei. Since q also occurs in the
string xi,j′ , then, by the same reasoning, the computation starting in one of the nodes uM and
u−M proceeds out of the diode in the state pj′ . This is a contradiction, which establishes the
following claim.

Claim 7. All states in the strings xi,1, . . . , xi,h are distinct, and all states in the strings
x−i,1, . . . , x−i,h are distinct as well.

Note that the strings xi,j and wi,j can be uniquely reconstructed from each state q from xi,j .
Indeed, a state q occurs in the sequence of states repeated periodically on the labels m. Then
the automaton A can be put in the state q into one of the nodes uM , u−M—the one from which
it will not return to the node u0 of Ei. Then, the cycle can be unrolled forward and backward,
and the periodic part of the computation is thus reconstructed. And then, the strings of states
and directions xi,j and wi,j are extracted from this periodic part.

The strings wi,j can be of two kinds: either wi,j = (−bi)bi, or |wi,j | > 4. If a string wi,j
is of length 2, then it cannot coincide with any of the strings w−i,j′ , because wi,j = (−bi)bi,
whereas w−i,j′ is either equal to bi(−bi), or is of length at least 4. Since the strings x and w are
reconstructed from a single state, if a string xi,j is of length 2, then its states do not occur in
any other strings xi′,j′ .

Now it can be proved, for each i, that there are at least 4h distinct states in the strings xi,j ,
x−i,j , for j = 1, . . . , h. All states in the strings xi,1, . . . , xi,h are pairwise distinct; so are the
states in the strings x−i,1, . . . , x−i,h. Therefore, every state can occur at most twice: once in
one of the strings xi,1, . . . , xi,h, and the other time in one of the strings x−i,1, . . . , x−i,h. Let c
be the number of strings of length 2 among the 2h strings x±i,j , with j = 1, . . . , h. Then, there
are 2h− c strings of length at least 4. All states occurring in the strings of length 2 are unique;
states in the rest of the strings can coincide, but only in pairs. Overall, there are no fewer than
2c+ 4(2h−c)

2 = 4h distinct states, as desired.

5 Lower bound on the size of returning automata

By the construction of Kunc and Okhotin [12], as improved in Section 3, an n-state GWA over
a signature with k directions can be transformed to a returning GWA with 2nk + n states. A
closely matching lower bound will now be proved by constructing an automaton with n states
over a signature with k directions, such that every returning automaton that recognizes the
same set of graphs must have at least 2(n− 1)(k − 3) states.
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Figure 4: The graph Gacceptn,k .

The first step is a construction of a simple automaton over a signature S̃ with four directions
a,−a, b,−b and two graphs over this signature, so that the automaton accepts one of them and
rejects the other. The automaton will have n states, it will never move in the direction −a, and
every returning automaton recognizing the same set of graphs can enter n−1 distinct states after
transitions in the direction −a. Then, Lemma 4 shall assert that every returning automaton
recognizing the same graphs with diodes substituted must have the claimed number of states.

Definition 13. The signature S̃ = (D,−,Σ,Σ0, (Da)a∈Σ) uses the set of directions D =
{a,−a, b,−b}, with −(a) = (−a), −(b) = (−b). The set of node labels is Σ = {c0, c, cl, cr, cacc},
with initial labels Σ0 = {c0}. The allowed directions are Dc = D, Dc0 = Dcl = {a}, and
Dcr = Dcacc = {−a}.

For n > 2 and k > 4, let M = (4nk)! be as in the definition of the diode ∆n,k. Let Gacceptn,k and

Grejectn,k be two graphs over the signature S̃, defined as follows. The graph Gacceptn,k is illustrated

in Figure 4; the other graph Grejectn,k is almost identical, but the node that determines acceptance
is differently labelled.

Both graphs consist of two horizontal chains of nodes, connected by bridges at two places.
Nodes are pairs (x, y), where y ∈ {−1, 1} is the number of the chain, and x is the horizontal
coordinate, with −(n−1) 6 x 6M+8nk for the lower chain (y = −1) and −8nk 6 x 6M+8nk
for the upper chain (y = 1).

All nodes except the ends of chains have labels c. The node (−(n − 1),−1) is the initial
node, with label c0. The other left end (−8nk, 1) is labelled with cl. The node (M + 8nk,−1)
has label cr. The node (M + 8nk, 1) is labelled with cacc in Gacceptn,k and with cr in Grejectn,k ; this
is the only difference between the two graphs.

The horizontal chains are formed of (a,−a)-edges, with a incrementing x and −a decrement-
ing it. Edges with labels (b,−b) are loops at all nodes except for (0, 1), (0,−1), (M, 1) and
(M,−1). The latter four nodes form two pairs connected with bridges in directions (b,−b).

Definition 14. The graphs Gacceptn,k and Grejectn,k over the signature S̃ are defined as follows.

� The set of nodes is V =
{

(x,−1)
∣∣ x ∈ {−(n − 1), . . . ,M + 8nk}

}
∪
{

(x, 1)
∣∣ x ∈

{−8nk, . . . ,M + 8nk}
}

.

� The initial node is v0 = (−(n− 1),−1).
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� The labels of the nodes are as follows.

λ((x, y)) = c, except for (x, y) ∈ {(−(n− 1),−1),

(M + 8nk,−1), (−8nk, 1), (M + 8nk, 1)}.
λ((−(n− 1),−1)) = c0

λ((M + 8nk,−1)) = cr

λ((−8nk, 1)) = cl

λ((M + 8nk, 1)) =

{
cacc, for Gacceptn,k

cr, for Grejectn,k

� The following edges are defined.

(x, y) + a = (x+ 1, y), if (x, y) 6= (M + 8nk,−1), (x, y) 6= (M + 8nk, 1)

(x, y) + (−a) = (x− 1, y), if (x, y) 6= (−(n− 1),−1), (x, y) 6= (−8nk, 1)

(x, y) + b = (x, y), if (x, y) /∈ {(M + 8nk,±1), (−8nk, 1), (−(n− 1),−1)},
x 6= 0, x 6= M

(x, y) + (−b) = (x, y), if (x, y) /∈ {(M + 8nk,±1), (−8nk, 1), (−(n− 1),−1)},
x 6= 0, x 6= M

(0, y) + b = (0,−y)

(0, y) + (−b) = (0,−y)

(M,y) + b = (M,−y)

(M,y) + (−b) = (M,−y)

An n-state automaton A, that accepts the graph Gacceptn,k , does not accept any graphs without
labels cacc and never moves in the direction −a, is defined as follows. In the beginning, it moves
in the direction a in the same state q0, then makes n − 2 further steps in the direction a,
incrementing the number of state. Next, it crosses the bridge in the direction b and enters the
last, n-th state, in which it moves in the direction a until it sees the label cacc.

Definition 15. The graph-walking automaton A = (Q, q0, δ, F ) over the signature S̃ consists
of:

� the set of states Q = {q0, . . . , qn−1};

� the initial state q0;

� the transition function δ, defined by

δ(q0, c0) = (q0, a)

δ(qi, c) = (qi+1, a), if i ∈ {0, . . . , n− 3}
δ(qn−2, c) = (qn−1, b)

δ(qn−1, c) = (qn−1, a)

� the set of acceptance conditions F = {(qn−1, cacc)}.

Lemma 5. Every returning automaton A′ that accepts the same set of graphs as A, and has at
most 4nk states, can enter at least n− 1 distinct states after transitions in the direction −a.

The proof of Lemma 5 is inferred from the following lemma.
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Lemma 6. Let n > 2 and k > 4. Let an automaton with at most 4nk states operate on a
graph Gacceptn,k . Assume that it begins its computation at one of the ends of the upper chain,
(−8nk, 1) or (M + 8nk, 1), and assume that it arrives at one of the ends of the lower chain,
(−(n−1),−1) = v0 or (M +8nk,−1), without visiting either end of the upper chain on the way.
Then it must be v0 that the automaton arrives to, and in the minimal sequence of states which
it ultimately repeats periodically, it makes at least n − 1 moves in the direction a and at least
n− 1 moves in the direction −a.

Proof. All nodes visited by the automaton during this computation are labelled with c, and
early in the computation it begins repeating the same sequence of states periodically. Let p be
the minimal length of this period, with p 6 4nk, and let d1 . . . dp be the corresponding sequence
of directions.

The proof is slightly different for computations beginning at the node (−8nk, 1) and at the
node (M + 8nk, 1).

Case 1: the automaton begins at the node (M + 8nk, 1). Since the automaton
eventually arrives at a coordinate x 6 M , the sequence d1 . . . dp has more occurences of −a
than of a. Hence, it is sufficient to show that the number of occurences of a is at least n − 1.
The proof is by contradiction. Suppose that there are at most n− 2 occurrences of a. Let s be
the difference between the number of occurrences of −a and a. It is claimed that the automaton
visits the node (−8nk, 1), which would contradict the assumption that it never returns to either
end of the upper chain.

Moving periodically, the automaton moves in directions a and −a, shifting by s edges to the
left at each period, while also applying transitions in directions b and −b, which at first follows
the loops. When the automaton reaches the point x = M along the x axis, the same transitions
may change its y-coordinate. As the automaton continues shifting horizontally, it will eventually
reach (M − (n− 1), 1) in the upper chain or (M − (n− 1),−1) in the lower chain. It is claimed
that, by this moment, it will have moved far enough from x = M , so that it would not return to
that position on its way from right to left, and continue moving along the current chain. Indeed,
since, by the assumption, the sequence d1 . . . dp has at most n−2 moves in the direction a, there
is no way the automaton could get back.

Assume that the automaton remains on the upper chain, that is, passes through the node
(M − (n−1), 1), and does not visit (M − (n−1),−1). Since the number M = (4nk)! is divisible
by s, the automaton reaches the coordinate x = 0 in the same state in which it has earlier
arrived to the coordinate x = M . This means that it repeats the same transitions as before and
again stays on the upper chain, that is, comes to the node (−(n− 1), 1), without paying a visit
to the node (−(n − 1),−1) = v0. Therefore, it continues its periodic motion until it comes to
the node (−8nk, 1). A contradiction has been obtained.

The other possibility is that the automaton passes through the node (M − (n − 1),−1)
without visiting the node (M − (n− 1), 1), and thus moves to the lower chain. The automaton
arrives to the coordinate x = 0 in the same state as it arrived to x = M . It repeats the same
transitions and again moves to the other chain, this time back to the upper chain. Then, as in
the previous case, it arrives to the node (−(n− 1), 1) without visiting (−(n− 1),−1) = v0.

Case 2: the automaton begins at the node (−8nk, 1). The automaton soon begins
periodically repeating a sequence of states of length p, with p 6 4nk, moving in the corresponding
sequence of directions d1 . . . dp. This time, moves in the direction a are more frequent than moves
in the direction −a. Let s be their difference. This time it is enough to prove that moves in the
direction −a occur in the sequence at least n− 1 times.
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The proof is by contradiction. Suppose that the sequence has fewer than n− 1 occurrences
of −a. Then, gradually shifting from left to right the automaton cannot reach the node (−(n−
1),−1) = v0.

While passing through the node (0, 1), the automaton may continue on the upper chain or
move to the lower chain. In both cases it arrives to a node with coordinate x = M in the same
state in which it came to the coordinate x = 0. If it moved to the lower chain at the first time,
it returns to the upper chain at the second time; and if it stayed on the upper chain at the first
time, it stays on it at the second time. Thus, the automaton continues on the upper chain and
arrives to the node (M + 8nk, 1). This contradicts the assumption that the automaton never
returns to any end of the upper chain.

Proof of Lemma 5. Consider the computation of A′ on the graph Gacceptn,k . The automaton A′

must visit the node (M+8nk, 1), since its label is the only difference between the graphs Gacceptn,k

and Grejectn,k . Denote by t0 the moment of the last visit to any of the nodes (M + 8nk, 1) and
(−8nk, 1). At some point after t0, the automaton starts behaving periodically, and, by Lemma 6,
in the minimal repeated sequence of states, the automaton makes at least n − 1 moves in the
direction −a. Since all states in this minimal period are pairwise distinct, the automaton A′

enters at least n− 1 distinct states after transitions in the direction −a.

It remains to combine this lemma with the properties of the diode to obtain the desired
theorem.

Theorem 4. For every k > 4, there exists a signature with k directions, such that, for every n >
2, there is an n-state graph-walking automaton, such that every returning automaton recognizing
the same set of graphs must have at least 2(n− 1)(k − 3) states.

Proof. The proof uses the automaton A defined above. By Lemma 2, the n-state automaton A
over the signature S̃, is transformed to n-state automaton A′ over the signature S̃ ∪ Sk. The
directions ±a are the same for S̃ and Sk, and ±b in S̃ are merged with ±b1 in Sk, so there are
k directions in total.

For every graph G, the automaton A′ accepts a graph hn,k(G) with (a,−a)-edges replaced by
diodes, if and only if A accepts G. The automaton A′ is the desired example: it is claimed that
every returning automaton B recognizing the same set of graphs as A′ has at least 2(n−1)(k−3)
states.

Let B be any returning automaton with at most 4nk states recognizing these graphs. By
Lemma 3, there is an automaton C over the signature S̃ and with the same number of states,
which accepts a graph G if and only if B accepts h(G). This is equivalent to A accepting G, and
so C and A accept the same set of graphs. Since B is returning, by Lemma 3, C is returning
too. Then, Lemma 5 asserts that the automaton C may enter n− 1 distinct states after moving
in the direction −a.

Then, according to Lemma 3, the automaton B enters at least n − 1 distinct states after
traversing the diode backwards. Therefore, by Lemma 4, this automaton should have at least
2(k − 3)(n− 1) states.

6 Lower bound on the size of halting automata

Every n-state GWA with k directions can be transformed to a halting GWA with 2nk + 1
states, as shown in Section 3. In this section, the following lower bound for this construction is
established.
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Figure 5: The graph G in the proof of Lemma 7.

Theorem 5. For every k > 4, there is a signature with k directions, such that for every n > 2
there is an n-state GWA, such that every halting automaton accepting the same set of graphs
has at least 2(n− 1)(k − 3) states.

The argument shares some ideas with the earlier proof for the case of returning automata:
the signature S̃, the graphs Gacceptn,k and Grejectn,k , and the automaton A are the same as constructed
in Section 5. The proof of Theorem 5 uses the following lemma, stated similarly to Lemma 5
for returning automata.

Lemma 7. Every halting automaton A′, accepting the same set of graphs as A and using at
most 4nk states, must enter at least n− 1 distinct states after transitions in the direction −a.

Proof. Consider the computation of A′ on the graph G, defined by modifying Grejectn,k as follows:
the nodes (M + 8nk, 1) and (−8nk, 1) are merged into a single node vjoint, with label c, and
with a loop by ±b.

The automaton A′ must visit the node vjoint = (M + 8nk, 1) = (−8nk, 1), because this node
is the only difference between G and Gacceptn,k . By the time the automaton reaches this node, it
already executes a periodic sequence of states and directions. Since A′ should halt at some time
after visiting vjoint, it needs to stop its periodic behaviour, which requires visiting any label
other than c. Hence, the automaton should reach one of the ends of the lower chain.

The argument in the proof of Lemma 6 is applicable to the segment of the computation from
the last visit to vjoint until arriving to one the ends of the lower chain. Then, the periodically
repeated sequence of states on this segment should contain at least n− 1 occurrences of states
reached after a transition in the direction −a.

Proof of Theorem 5. The proof is analogous to the proof of Theorem 4. Lemma 7 is used
instead of Lemma 5; and the application of Lemma 3 now uses the preservation of the halting
property.

7 Lower bound on the size of returning and halting automata

An n-state GWA over a signature with k directions can be transformed to an automaton that
both halts on every input and accepts only in the initial node: a reversible automaton with
4nk + 1 states, described in Section 3, will do.

This section establishes a close lower bound on this transformation. The witness n-state au-
tomaton is the same as in Sections 5–6, for which Theorem 4 asserts that a returning automaton
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needs at least 2(n− 1)(k− 3) states, whereas Theorem 5 proves that a halting automaton needs
at least 2(n−1)(k−3) states. The goal is to prove that these two sets of states must be disjoint,
leading to the following lower bound.

Theorem 6. For every k > 4, there exists a signature with k directions, such that for every
n > 2, there is an n-state graph-walking automaton, such that every returning and halting
automaton recognizing the same set of graphs must have at least 4(n− 1)(k − 3) states.

As before, the automaton is obtained from A by Lemma 2. For the argument to proceed,
the following property needs to be established.

Lemma 8 (cf. Lemma 5). Every returning and halting automaton that recognizes the same set of
graphs as A, and has at most 4nk states, enters at least 2(n− 1) distinct states after transitions
in the direction −a.

Consider any such returning and halting automaton. Since it is returning, as shown in
Lemma 5, on the graph Gacceptn,k , the automaton uses a periodic sequence of states to return from
(M + 8nk, 1) to v0. Since it is at the same time halting, Lemma 7 asserts that on the graph G
it uses another periodic sequence of states to escape the cycle after visiting vjoint. Each of these
two sequences makes transitions in the direction −a in at least n− 1 distinct states. It remains
to prove that these sequences are disjoint.

Suppose the sequences have a common element, then they coincide up to a cyclic shift.
Then it is possible to modify G so that the computation coming to vjoint later continued as the
computation on Gacceptn,k , and led to acceptance.

Proof of Lemma 8. Let A′ be any such returning and halting automaton. Since it is returning,
on the graph Gacceptn,k , it must come to the node (M + 8nk, 1) in order to see the label cacc, and
then find its way back to v0. Consider the case when the automaton’s last visit to any of the
ends of the upper chain is to (M + 8nk, 1) (the other case is proved similarly).

On the way from (M + 8nk, 1) to v0, the automaton sees only labels c. At some point not
far from (M + 8nk, 1), it starts behaving periodically, repeating a certain sequence of states
q1, . . . , qp, with a minimal period p 6 4nk, and moving in a sequence of directions d1, . . . , dp.
The sequence d1, . . . , dp should move the automaton to the left, so it contains more occurrences
of −a than of a. Let vdeparture be the node at which the periodic behaviour starts, visited in the
state q1. Lemma 6 asserts that the direction −a occurs in the sequence d1, . . . , dp at least n− 1
times.

Since A′ is halting, the arguments in Lemma 7 also apply. The lemma used a graph G with
a node vjoint that merges (M + 8nk, 1) and (−8nk, 1). The automaton A′ must visit vjoint in
order to tell G from Gacceptn,k . Because the node vjoint is far from any nodes labelled not with c,
when the automaton first comes to vjoint, it already behaves periodically, with some minimal
period t, with t 6 4nk. Let q′1, . . . , q

′
t and d′1, . . . , d

′
t be the sequences of states and directions

which it repeats periodically. Since this periodic behaviour must eventually stop, this sequence
must lead A′ from vjoint to one of the ends of the lower chain. Then, by Lemma 6, there are at
least n− 1 occurrences of −a in the sequence d′1, . . . , d

′
t.

It remains to prove that none of the states q1, . . . qp may coincide with any of the states
q′1, . . . , q

′
t. Suppose the contrary, that the periodic sequences are not disjoint. Then both cycles

consist of the same states, cyclically shifted, and p = t. The goal is to construct a graph without
any labels cacc, which, however, would be accepted by A′, leading to a contradiction.

For each x ∈ {0, . . . , 4nk}, consider a graph Gx, which is obtained from the graph G by
prolonging the upper cycle with x extra nodes, all labelled with c. Then the graph G from
Lemma 7 is the graph G0.
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The automaton is known to accept the graph Gacceptn,k starting from the node vdeparture in
the state q1, without visiting either end of the upper chain. In each graph Gx, let vdeparture be
the node located at the same distance from the nearest bridge to the lower chain. If, on the
graph Gx, the automaton can be “lured” into this node in the state q1, then this graph will be
accepted.

Since the sequences of directions d1, . . . , dp and d′1, . . . , d
′
t coincide up to cyclic shift, the

direction −a occurs more often than a in d′1, . . . , d
′
t. Then, when the automaton working on G

visits the node vjoint for the first time, it is moving in the direction −a, and accordingly visits
the node vdeparture after visiting vjoint.

Then it is possible to choose the length x of a sequence of edges inserted after vjoint, so that
the automaton comes to the node vdeparture in the state q1. Then the automaton A′ accepts the
graph Gx, and this is impossible.

A contradiction has thus been obtained, and hence the sequences of states q1, . . . , qp and
q′1, . . . , q

′
t are disjoint. Together, they contain at least 2(n−1) distinct states that the automaton

enters after transitions in the direction −a.

The proof of the theorem is inferred from Lemmata 2, 3, 4 and 8, as in the earlier arguments.

8 Lower bound on the size of reversible automata

For the transformation of a GWA with n states and k directions to a reversible automaton,
4nk + 1 states are sufficient. A close lower bound shall now be established.

Theorem 7. For every k > 4, there exists a signature with k directions, such that for every
n > 2, there is an n-state GWA, such that every reversible GWA recognizing the same set of
graphs has at least 4(n− 1)(k − 3)− 1 states.

Proof. By Theorem 6, there is such an n-state automaton A′ that every returning and halting
automaton recognizing the same set of graphs has at least 4(n − 1)(k − 3) states. Suppose
that there is a reversible automaton with fewer than 4(n − 1)(k − 3) − 1 states that accepts
the same graphs as A′. Let m be the number of states in it. Then, by the construction of
reversing a reversible automaton given by Kunc and Okhotin [12], there is a returning and
halting automaton with m + 1 states, that is, with fewer than 4(n − 1)(k − 3) states. This
contradicts Theorem 6.

9 Inverse homomorphisms: upper and lower bounds

An operation on graphs hn,k which replaces every (a,−a)-edge in the graph with diode ∆n,k was
defined in Section 4: this is an edge-replacement homomorphism.

Operations investigated in this section are node-replacement homomorphisms (or just homo-
morphisms) which replace every node with a subgraph depending on the label of this node.

Definition 16 (Graph homomorphism). Let S and Ŝ be two signatures, with the set of di-
rections of S contained in the set of directions of Ŝ. A mapping h : L(S) → L(Ŝ) is a (node-
replacement) homomorphism, if, for every graph G over S, the graph h(G) is constructed out of
G as follows. For every node label a in S, there is a connected subgraph h(a) over the signature
Ŝ, which has an edge leading outside for every direction in Da; these edges are called external.
Then, h(G) is obtained out of G by replacing every node v with a subgraph h(v) = h(a), where
a is the label of v, so that the edges that come out of v in G become the external edges of this
copy of h(a).

The subgraph h(a) must contain at least one node. It contains an initial node if and only if
the label a is initial.
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Given a graph-walking automaton A and a homomorphism h, the inverse homomorphic
image h−1(L(A)) can be recognized by another automaton that, on a graph G, simulates the
operation of A on the image h(G). A construction of such an automaton is presented in the
following theorem.

Theorem 8. Let S be a signature with k > 1 directions, and let Ŝ be a signature containing all
directions from S. Let h : L(S)→ L(Ŝ) be a graph homomorphism between these signatures. Let
A be a graph-walking automaton with n states that operates on graphs over Ŝ. Then there exists
a graph-walking automaton B with nk + 1 states, operating on graphs over S, which accepts a
graph G if and only if A accepts its image h(G). If S contains a unique initial label, then it is
sufficient to use nk states.

In order to carry out the simulation of A on h(G) while working on G, it is sufficient for B
to remember the current state of A and the direction in which A has entered the image in h(G)
of the current node of B.

Proof. Let the first signature be S = (D,−,Σ,Σ0, (Da)a∈Σ). Let A = (Q, q0, F, δ). The new
automaton is defined as B = (P, p0, E, σ).

When B operates on a graph G, it simulates the computation of A on h(G). The set of
states of B is P = (Q × D) ∪ {p0}, where p0 is a non-reenterable initial state; if there is only
one initial label in S, then the state p0 is omitted. All other states in B are of the form (q, d),
where q is a state of A, and d is a direction in G. When B is at a node v in a state (q, d), it
simulates A having entered the subgraph h(v) from the direction d in the state q.

The transition function σ and the set of accepting states E of B are defined by simulating
A on subgraphs. For a state of the form (q, d), and for every label a ∈ Σ, with −d ∈ Da, the
goal is to decide whether ((q, d), a) is an accepting pair, and if not, then what is the transition
σ((q, d), a). To this end, the automaton A is executed on the subgraph h(a), entering this sub-
graph in the direction d in the state q. If A accepts without leaving h(a), then the pair ((q, d), a)
is defined as accepting in B. Otherwise, if A rejects or loops inside h(a), then σ((q, d), a) is left
undefined. If A leaves h(a) by an external edge in the direction d′ in a state q′, then B has a
transition σ((q, d), a) = ((q′, d′), d′).

If S has a unique initial label, Σ0 = {a0}, then the automaton A always starts in the subgraph
h(a0), and its initial state can be defined by the same method as above, by considering the
computation of A on this subgraph starting in the initial state at the initial node. If A accepts,
rejects or loops without leaving the subgraph h(a0), then it is sufficient to have B with a single
state, in which it gives an immediate answer. If A leaves the subgraph in the direction d,
changing from q to a state q′, then the state (q,−d) can be taken as the initial state of B; then
B starts simulating the computation of A from this point.

If there are multiple initial labels in Σ0, then the automaton B uses a separate initial state
p0. The transitions in p0 and its accepting status are defined only on initial labels, as follows. Let
a0 ∈ Σ0 be an initial label, and consider the computation of A on the subgraph h(a0), starting at
the initial node therein, in the initial state. If A accepts inside h(a0), then (p0, a0) is an accepting
pair. Otherwise, if A rejects or loops without leaving h(a0), then σ(p0, a0) is not defined. If A
leaves h(a0) in the direction d′ in the state q′, then the transition is σ(p0, a0) = ((q′, d′), d′).

The automaton B has nk or nk+ 1 states, and it operates over S. The following correctness
claim for this construction can be proved by induction on the number of steps made by B on G.

Claim 8. Assume that the automaton B, after t > 1 steps of its computation on G, is in a state
(q′, d′) at a node v. Then, in the computation of A on h(G) there is a moment t̂ > t, at which A
enters the subgraph h(v) in the direction d′ in the state q′ (the only exception is the initial state
of B in the case p0 is not used).
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It follows that the automaton B thus defined indeed accepts a graph G if and only if A
accepts h(G).

It turns out that this expected construction is actually optimal, as long as the initial label
is unique: the matching lower bound of nk states is proved below.

Theorem 9. For every k > 9, there is a signature S with k directions and a homomorphism
h : L(S) → L(S), such that for every n > 4, there exists an n-state automaton A over the
signature S, such that every automaton B, which accepts G if and only if A accepts h(G), has
at least nk states.

Proving lower bounds on the size of graph-walking automata is generally not easy. Informally,
it has to be proved that the automaton must remember a lot; however, in theory, it can always
return to the initial node and recover all the information is has forgotten. In order to eliminate
this possibility, the initial node shall be placed in a special subgraph Hstart, from which the
automaton can easily get out, but if it ever needs to reenter this subgraph, finding the initial
node would require too many states. This subgraph is constructed in the following lemma;
besides Hstart, there is another subgraph Hdead end, which is identical to Hstart except for not
having an initial label; then, it would be hard for an automaton to distinguish between these
two subgraphs from the outside, and it would not identify the one in which it has started.

Lemma 9. For every k > 4 there is a signature Sstart with k directions, with two pairs of
opposite directions a, −a and b, −b, such that for every n > 2 there are two graphs Hstart and
Hdead end over this signature, with the following properties.

I. The subgraph Hstart contains an initial node, whereas Hdead end does not; both have one
external edge in the direction a.

II. There is an n-state automaton, which begins its computation on Hstart in the initial node,
and leaves this subgraph by the external edge.

III. Every automaton with fewer than 2(k−3)(n−1) states, having entered Hstart and Hdead end

by the external edge in the same state, either leaves both graphs in the same state, or accepts
both, or rejects both, or loops on both.

The proof reuses a graph constructed in Section 5. Originally, it was used to show that
there is an n-state graph-walking automaton, such that every automaton that accepts the same
graphs and returns to the initial node after acceptance must have at least 2(k−3)(n−1) states.
A summary of the proof is included for completeness, as well as adapted to match the statement
of the lemma.

Summary of a proof. The graph is constructed in two stages. First, there is a graph G presented
in Figure 6, with two long chains of nodes in the direction ±a connected by two bridges in the
direction ±b, which are locally indistinguishable from loops by ±b at other nodes. In order to
get from the initial node v0 to the node vexit, an n-state automaton counts up to n− 1 to locate
the left bridge, then crosses the bridge and continues moving to the right. The journey back
from vexit to v0 requires moving in the direction −a in at least n−1 distinct states by Lemma 5.

In order to get a factor of 2(k−3), another construction is used on top of this. Every (a,−a)-
edge in the horizontal chains is replaced with a certain subgraph called a diode, with 9(4nk)!+2
nodes. This subgraph is easy to traverse in the direction a: an automaton can traverse it in
a single state, guided by labels inside the diode, so that the graph G in Figure 6, with diodes
substituted, can be traversed from v0 to vexit using n states. However, as its name implies,
the diode is hard to traverse backwards: for every state, in which the automaton finishes the
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traversal in the direction −a, it must contain 2(k − 3)− 1 extra states by lemma 4. Combined
with the fact that there need to be at least n− 1 states after moving by −a for the automaton
to get from vexit to v0, this shows that 2(k − 3)(n− 1) states are necessary to get from vexit to
v0 after the substitution of diodes.

Let Gdiodes be the graph in Figure 6, with diodes substituted. It is defined over a signature
with k directions, and among them the directions ±a and ±b. This signature is taken as Sstart

in Lemma 9.
The graph Hstart is defined by removing the node vexit from Gdiodes, and the edge it was

connected by becomes an external edge in the direction a. The other graph Hdead end is obtained
by relabelling the initial node v0, so that it is no longer initial. An n-state automaton that gets
out of Hstart has been described above.

Every automaton that enters Hstart or Hdead end from the outside needs at least 2(k−3)(n−1)
states to get to v0, because returning from vexit to v0 on Gdiodes requires this many states. Then,
an automaton with fewer states never reaches v0, and thus never encounters any difference
between these subgraphs. Thus, it carries out the same computation on both subgraphs Hstart

and Hdead end, with the same result.

Now, using the subgraphs Hstart and Hdead end as building blocks, the next goal is to construct
a subgraph which encodes a number from 0 to n − 1, so that this number is easy to calculate
along with getting out of this subgraph for the first time, but if it is ever forgotten, then it
cannot be recovered without using too many states. For each number i ∈ {0, . . . , n− 1} and for
each direction d ∈ D, this is a graph Fi,d that contains the initial label and encodes the number
i, and a graph Fd with no initial label that encodes no number at all.

Lemma 10. For every k > 4 there is a signature SF obtained from Sstart by adding several new
node labels, such that, for every n > 2 there are subgraphs Fi,d and Fd, for all i ∈ {0, . . . , n− 1}
and d ∈ D, with the following properties.

I. Each subgraph Fi,d and Fd has one external edge in the direction d. Subgraphs of the form
Fi,d have an initial node, and subgraphs Fd do not have one.

II. There is an automaton with states {q0, . . . , qn−1}, which, having started on every subgraph
Fi,d in the initial node, eventually gets out in the state qi.

III. Every automaton with fewer than 2(k − 3)(n− 1) states, having entered Fi,d and Fd with
the same d by the external edge in the same state, either leaves both subgraphs in the same
state, or accepts both, or rejects both, or loops on both.

Each subgraph Fi,d is a chain of n nodes, with the subgraph Hstart attached at the i-th
position, and with n−1 copies of Hdead end attached at the remaining positions, as illustrated in
Figure 7. The automaton in Part II gets out of Hstart and then moves along the chain to the left,
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Figure 7: The subgraph Fi,d, with d 6= −a; for d = −a the subgraph has un−1 labelled with go′b,
and a (b,−b)-edge to ugo.

counting the number of steps, so that it gets out of the final node ugo in the state qi. The proof
of Part III relies on Lemma 9 (part III): if an automaton enters Fi,d and Fd from the outside,
it ends up walking over the chain and every time it enters any of the attached subgraphs Hstart

and Hdead end, it cannot distinguish between them and continues in the same way on all Fi,d and
Fd.

Proof. The new signature SF has the following new non-initial node labels: {cst, c′, go′a, go′b} ∪
{ god | d ∈ D }. The labels have the following sets of directions: Dcst = {−a, b}, Dc′ =
{−a,−b, b}, Dgo′a = {−a,−b, a}, Dgo′b

= {−a,−b, b}, Dgod = {−a, d} with d 6= −a, and Dgo−a =
{−b,−a}.

For n > 2, the subgraphs Fi,d and Fd are constructed as follows, using the subgraphs Hstart

and Hdead end given in Lemma 9.
The subgraph Fi,d, illustrated in Figure 7, is a chain of nodes u0, . . . , un−1, ugo; the first

n− 1 nodes are linked with (b,−b)-edges. The node un−1 is linked to ugo by an edge (a,−a) if
d 6= −a, and by an edge (b,−b) for d = −a. The label of u0 is cst, the nodes u1, . . . , un−2 all
have label c′, and un−1 is labelled with go′a, if d 6= −a, or with go′b, if d = −a. The node ugo has
label god, and has an external edge in the direction d.

Each node u0, . . . , un−1 has a subgraph Hstart or Hdead end attached in the direction −a. This
is Hstart for ui, and Hdead end for the rest of these nodes.

The subgraph Fd is the same as Fi,d, except for having Hdead end attached to all nodes
u0, . . . , un−1.

It is left to prove that the subgraphs Fi,d and Fd thus constructed satisfy the conditions in
the lemma.

Part II of this lemma asserts that there is an n-state automaton that gets out of Fi,d in
the state qi, for all i and d. Having started in the initial node inside a subgraph Hstart, the
automaton operates as the n-state automaton given in Lemma 9(part II) which leaves Hstart in
some state q. Denote this state by qn−1, and let {q0, . . . , qn−2} be the remaining states (it does
not matter which of these states is initial). Then the automaton follows the chain of nodes to
the right, decrementing the number of the state at each node labelled with cst or c′. At the
nodes labelled with go′a, go

′
b or god, the automaton continues to the right without changing its

state. Thus, for each subgraph Fi,d, the automaton gets out in the state qi, as desired.
Turning to the proof of Part III, consider an automaton with fewer than 2(k − 3)(n − 1)
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Figure 8: The graph Gi,j,d, with d 6= −a; for d = −a the graph has wgo,1 labelled with goa,b and
wgo,2 labelled with go−b,a, linked with a (b,−b)-edge.

states and let d ∈ D be any direction. The subgraphs Fi,d for various i, as well as the subgraph
Fd, differ only in the placement of the subgraph Hstart among the subgraphs Hdead end, or in its
absense. On each of the subgraphs Fi,d or Fd, the automaton first moves over the chain of nodes
u0, . . . , un−1, ugo, which is the same in all subgraphs. Whenever, at some node uj , it enters the
j-th attached subgraph, whether it is Hstart or Hdead end, according to Lemma 9, it is not able
to distinguish between them, and the computation has the same outcome: it either emerges out
of each of the attached subgraphs in the same state, or accepts on either of them, etc. If the
computation continues, it continues from the same state and the same node in all Fi,d and Fd,
and thus the computations on all these subgraphs proceed in the same way and share the same
outcome.

Proof of Theorem 9. The signature S is SF from Lemma 10, with a few extra node labels. Let
the directions be cyclically ordered, so that next(d) is the next direction after d and prev(d) is
the previous direction. The order is chosen so that, for each direction d, its opposite direction
is neither next(d) nor next(next(d)).

The new node labels, all non-initial, are: { go−d,a | d ∈ D \ {−a} } ∪ {goa,b, c−, q0?} ∪
{ d? | d ∈ D } ∪ { accd, rejd | d ∈ D }. These labels have the following sets of directions:
Dgod1,d2

= {d1, d2}; Dc− = {−a, a}; Dq0? = {−a}; Dd? = D for all d ∈ D; Daccd = Drejd =
{−d,−next(d), next(next(d))} for all d ∈ D, where the directions −d,−next(d), next(next(d))
are pairwise distinct by assumption.

The homomorphism h affects only new labels of the form d?, with d ∈ D, whereas the rest
of the labels are unaffected. Each label d?, for d ∈ D, has Dd? = D, and is replaced with a
circular subgraph h(d?) as illustrated in Figure 9. Its nodes are ve, for all e ∈ D. The node vd
has label accd, and every node ve, with e 6= d, is labelled with reje. Each node ve, with e ∈ D,
is connected to the next node vnext(e) by an edge in the direction next(next(e)); also it has an
external edge in the direction −e. Overall, the subgraph h(d?) has an external edge in each
direction, as it should have, since Dd? = D. When the automaton enters this subgraph in the
image, it knows the direction it came from, whereas in the original graph, it has to remember
this direction in its state.

The graph Gi,j,d is defined by taking Fi,d from Lemma 10 and attaching to it a chain of j+ 3
nodes, as shown in Figure 8. The new nodes are denoted by wgo,1, wgo,2, w1, . . . , wj , wend, where
the external edge of Fi,d is linked to wgo,1 in the direction d. If d 6= −a, then the nodes wgo,1
and wgo,2 have labels go−d,a and go−a,a, and are connected with an (a,−a)-edge; and if d = −a,
then the labels are goa,b and go−b,a, and the edge is (b,−b). The nodes w1, . . . , wj are labelled
with c−, the label of wend is q0?, and all of them are connected with (a,−a)-edges.

The graph Gi,d,d′ is presented in Figure 9 for the case d = d′. It has a subgraph Fi,d with the
initial node, and k− 1 subgraphs Fe, with e ∈ D \ {d}. The external edges of these k subgraphs
are all linked to a new node v labelled with d′?.

Claim 9. There exists an n-state automaton A, which accepts h(Gi,j,d) if and only if i = j, and
which accepts h(Gi,d,d′) if and only if d = d′.
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Figure 9: The graph Gi,d,d and its image h(Gi,d,d).

Proof. The automaton is based on the one defined in Lemma 10 (part II). It works over the
signature SF and has n states {q0, . . . , qn−1}. Having started on a graph Fi,d, it eventually gets
out in the state qi. It remains to define the right transitions by the new labels in the signature
S. At each label god1,d2 , the automaton moves in the direction d2 in the same state. At a label
c− the automaton decrements the number of its current state and moves in the direction a. If
it ever comes to a label c− in the state q0, it rejects. At the label q0?, the automaton accepts
if its current state is q0, and rejects in all other states. Turning to the labels introduced by the
homomorphism, for all d ∈ D, the automaton immediately accepts at accd and rejects at rejd,
regardless of its current state.

To see that the automaton A operates as claimed, first consider its computation on the graph
h(Gi,j,d) = Gi,j,d. It starts at the initial node in Fi,d, then leaves Fi,d in the state qi, passes
through the nodes wgo,1 and wgo,2 without changing its state, and then decrements the number
of the state at the nodes w1, . . . , wj . If i = j, then the automaton A makes j decrementations,
and arrives to the node with the label q0? in the state q0, and accordingly accepts. If i > j, then
it comes to q0? in the state qi−j 6= q0 and rejects. If i < j, then A enters the state q0 at one of
the labels c−, and rejects there. Thus, A works correctly on graphs of the form h(Gi,j,d).

In the graph h(Gi,d,d′), the homomorphism has replaced the node v from Gi,d,d′ with a ring
of nodes with labels accd′ and reje, with e 6= d′. The automaton A starts in the subgraph Fi,d
and leaves it in the direction d, thus entering the ring at the node vd. Then, if d = d′, it sees the
label accd′ and accepts, and otherwise it sees the label rejd and rejects. The automaton does
not move along the circle.

Claim 10. Let an automaton B accept a graph G if and only if A accepts h(G). Then B has
at least nk states.

Proof. The proof is by contradiction. Suppose that B has fewer than nk states. Since nk 6
2· 23k ·

3
4n 6 2(k−3)(n−1), Lemma 10 (part III) applies, and the automaton B cannot distinguish

between the subgraphs Fi,d and Fd if it enters them from the outside.
On the graph Gi,j,d, the automaton must check that i is equal to j, where the latter is the

number of labels c− after the exit from Fi,d. In order to check this, B must exit this subgraph.
Denote by qi,d the state, in which the automaton B leaves the subgraph Fi,d for the first time.
There are nk such states { qi,d | i = 0, . . . , n − 1; d ∈ D }, and since B has fewer states, some
of these states must coincide. Let qi,d = qj,d′ , where d 6= d′ or i 6= j. There are two cases to
consider.

� Case 1: d 6= d′. The automaton B must accept Gi,d,d and reject Gj,d′,d. On either graph, it
first arrives to the corresponding node v in the same state qi,d = qj,d′ , without remembering
the last direction taken. Then, in order to tell these graphs apart, the automaton must
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carry out some further checks. However, every time B leaves the node v in any direction
e ∈ D, it enters a subgraph, which is either the same in Gi,d,d and Gj,d′,d (if e 6= d, d′), or
it is a subgraph that is different in the two graphs, but, according to Lemma 10 (part III),
no automaton of this size can distinguish between these subgraphs. Therefore, B either
accepts both graphs, or rejects both graphs, or loops on both, which is a contradiction.

� Case 2: d = d′ and i 6= j. In this case, consider the computations of B on the graphs Gi,j,d
and Gj,j,d: the former must be rejected, the latter accepted. However, by the assumption,
the automaton leaves Fi,d and Fj,d in the same state qi,d = qj,d. From this point on,
the states of B in the two computations are the same while it walks outside of Fi,d and
Fj,d, and each time it reenters these subgraphs, by Lemma 10 (part III), it either accepts
both, or rejects both, or loops on both, or leaves both in the same state. Thus, the whole
computations have the same outcome, which is a contradiction.

The contradiction obtained shows that B has at least nk states.

10 A characterization of regular tree languages

The next question investigated in this thesis is whether the family of graph languages recognized
by graph-walking automata is closed under homomorphisms. In this section, non-closure is
established already for tree-walking automata and for injective homomorphisms.

The proof is based on a seemingly unrelated result. Consider the following known represen-
tation of regular string languages.

Theorem A (Latteux and Leguy [15]). For every regular language L ⊆ Σ∗ there exist alphabets
Ω and Γ, a special symbol #, and homomorhisms f : Ω∗ → #∗, g : Ω∗ → Γ∗ and h : Σ∗ → Γ∗,
such that L = h−1(g(f−1(#)).

A similar representation shall now be established for regular tree languages, that is, those
recognized by deterministic bottom-up tree automata.

For uniformity of notation, tree and tree-walking automata shall be represented in the nota-
tion of graph-walking automata, as in Section 2, which is somewhat different from the notation
used in the tree automata literature. This is only notation, and the trees and the automata are
mathematically the same.

Definition 17. A signature S = (D,−,Σ,Σ0, (Da)a∈Σ) is a tree signature, if it is of the fol-
lowing form. The set of directions is D = {+1,−1, . . . ,+k,−k}, for some k > 1, where di-
rections +i and −i are opposite to each other. For every label a ∈ Σ, the number of its
children is denoted by rank a, with 0 6 rank a 6 k. Every initial label a0 ∈ Σ0 has direc-
tions Da0 = {+1, . . . ,+ rank a0}. Every non-initial label a ∈ Σ \ Σ0 has the set of directions
Da = {−d,+1, . . . ,+ rank a}, for some d ∈ {1, . . . , k}.

A tree is a connected graph over a tree signature.

This definition implements the classical notion of a tree as follows. The initial node is the
root of a tree. In a node v with label a, the directions {+1, . . . ,+ rank a} lead to its children.
The child in the direction +i accordingly has direction −i to its parent. This direction to the
parent is absent in the root node. Labels a with rank a = 0 are used in the leaves.

Definition 18. A (deterministic bottom-up) tree automaton over a tree signature S =
(D,−,Σ,Σ0, (Da)a∈Σ) is a triple A = (Q, qacc, (δa)a∈Σ), where
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� Q is a finite set of states;

� qacc ∈ Q is the accepting state, effective in the root node;

� δa : Qrank a → Q, for each a ∈ Σ, is a function computed at the label a. If rank a = 0, then
δa is a constant that sets the state in a leaf.

Given a tree T over a signature S, a tree automaton A computes the state in each node,
bottom-up. The state in each leaf v labelled with a is set to be the constant δa(). Once a node v
labelled with a has the states in all its children computed as q1, . . . , qrank a, the state in the node
v is computed as δa(q1, . . . , qrank a). This continues until the value in the root is computed. If it
is qacc, then the tree is accepted, and otherwise it is rejected. The tree language recognized by
A is the set of all trees over S that A accepts. A tree language is called regular if it is recognized
by some tree automaton.

The generalization of Theorem A to the case of trees actually uses only two homomorphisms,
not three. The inverse homomorphism f−1 in Theorem A is used to generate the set of all
strings with a marked first symbol out of a single symbol. Trees cannot be generated this way.
The characterization given below starts from the set of all trees over a certain signature, in
which the root is already marked by definition; this achieves the same effect as f−1

(
{#}

)
in

Theorem A. The remaining two homomorphisms do basically the same as in the original result,
only generalized to trees.

Theorem 10. Let L be a regular tree language over some tree signature Sreg. Then there
exist tree signatures Scomp and Smid, and injective homomorphisms g : L(Scomp)→ L(Smid) and
h : L(Sreg)→ L(Smid), such that L = h−1(g(L(Scomp))).

Proof. The signature Smid extends Sreg with a few new non-initial node labels; the set of direc-
tions is preserved. The new labels are k labels for internal nodes, e1, . . . , ek, with rank ei = k
and Dei = {−i,+1, . . . ,+k}, and k more labels for leaves, end1, . . . , endk, with rank endi = 0
and Dendi = {−i}. These labels are used to construct a fishbone subgraph: a fishbone subgraph
of length ` in the direction i is a chain of ` internal nodes, all labelled with ei, which begins
and ends with external edges in the directions −i and +i; all directions except ±i lead to leaves
labelled with endj .

An injective homomorphism h : L(Sreg) → L(Smid) is defined to effectively replace each
(+i,−i)-edge with a fishbone subgraph of length n in the direction i, as illustrated in Figure 10,
without affecting the original nodes and their labels. Formally, h replaces each non-initial node
labelled with a ∈ Σ \ Σ0 as follows. Let Da = {−d,+1, . . . ,+ rank a} be its set of directions.
Then, h(a) is the following subgraph: it consists of a node with the same label a, a fishbone
subgraph of length n attached in the direction −d, and rank a external edges in the directions
+1, . . . ,+ rank a. The initial node is mapped to itself.

The main idea of the construction is to take a tree accepted by A and annotate node labels
with the states in the accepting computation of A on this tree. Another homomorphism g
maps such annotated trees to trees over the signature Smid, with fishbones therein. Annotated
trees that correctly encode a valid computation are mapped to trees with all fishbones of length
exactly n; then, h−1 decodes the original tree out of this encoding. On the other hand, any
mistakes in the annotation are mapped by g to a tree with some fishbones of length other than
n, and these trees have no pre-images under h.

Trees with annotated computations are defined over the signature Scomp. This signature uses
the same set of directions as in Sreg. For every non-initial label a ∈ Σ\Σ0 in Sreg, the signature
Scomp has |Q|rank a different labels corresponding to all possible vectors of states in its children.
Thus, for every q = (q1, . . . , qrank a) ∈ Qrank a, there is a non-initial label (a, q) in Scomp, with
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Figure 10: Homomorphisms h and g mapping the original tree T (left) and the corresponding
valid annotated tree Tcomp (right) to the same tree with fishbones.

rank(a, q) = rank a and D(a,q) = Da. For every initial label a0 ∈ Σ0 in Sreg, the signature Scomp
contains only those initial labels (a0, q), for which the vector q ∈ Qrank a0 of states in the children
leads to acceptance, that is, δa0(q) = qacc. The rank and the set of directions are also inherited:
rank(a0, q) = rank a0 and D(a0,q) = Da0 . There is at least one initial label in Scomp, because

L 6= ∅. If rank a = 0, then the set Qrank a contains a unique vector q of length 0. Such a label
has only one copy (a, q) in the signature Scomp, or none at all, if a = a0 ∈ Σ0 and δa(q) 6= qacc.

For every tree T over Sreg that is accepted by A, the accepting computation of A on T is
represented by a tree Tcomp over the signature Scomp, in which every label is annotated with
the vector of states in the children of this node. Annotated trees that do not encode a valid
computation have a mismatch in at least one node v, that is, the state in some i-th component
of the vector in the label does not match the state computed in the i-th child. It remains to
separate valid annotated trees from invalid ones.

The homomorphism g : L(Scomp) → L(Smid) is formally defined as follows. Let (a, q) be a
non-root label with q = (q1, . . . , qrank a) ∈ Qrank a and Da = {−d,+1, . . . ,+ rank a}. Then, g
maps (a, q) to a subgraph g((a, q)), which is comprised of a central node vcenter labelled with a,
with fishbone subgraphs attached in all directions. The direction −d is attached to the bottom
of a fishbone graph in the direction d of length δa(q). The subgraph attached in each direction
+i is a fishbone of length n− qi in the direction i. The external edges of the subgraph g((a, q))
come out of these fishbones. If n − qi = 0, then the fishbone of length 0 is an external edge in
the direction +i. The image of a root label (a0, q) under g is defined in the same way, except
for not having a direction −d and the corresponding fishbone.

Images of trees under the homomorhism g are of the following form.

Claim 11. Let T̃ be an annotated tree over the signature Scomp, with the nodes v1, . . . , vm

labelled with (a1, q1), . . . , (am, qm). Then the tree g(T̃ ) is obtained from T̃ as follows: every
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label (at, qt) is replaced with at, and every edge (+i,−i) linking a parent vs to a child vt in T̃ is
replaced with a fishbone of length n− qsi + δat(q

t) in the direction i.

The image of all valid annotated trees under g is exactly h(L).

Claim 12. Let T be a tree accepted by A, and let Tcomp be an annotated tree that encodes the
computation of A on T . Then, the homomorphism g maps Tcomp to h(T ).

Indeed, if an annotated tree represents a valid computation, then, in Claim 11, qsi = δat(q
t)

holds for every pair of a parent vs and its i-th child vt, and thus all fishbones are of length n, as
in h(T ). For the same reason, g maps invalid annotated trees to trees without pre-images under
h. Therefore, h−1(g(L(Scomp))) = L.

The homomorphism h is injective, because it does not affect the node labels and only attaches
fixed subgraphs to them. On the other hand, g erases the second components of labels, and its
injectivity requires an argument.

Claim 13. The homomorphism g is injective.

Proof. Let T and T ′ be trees over Scomp that are mapped to the same tree g(T ) = g(T ′). It is
claimed that T = T ′. By Claim 11, both trees T and T ′ have the same set of nodes and the
same edges between these nodes, as well as the same first components of their labels.

It remains to show that the second components of labels at the corresponding nodes of T
and T ′ also coincide. This is proved by induction, from leaves up to the root. For a leaf, the
second component is an empty vector in both trees. For every internal node vs in these trees,
let (as, qs) be its label in T and let (as, rs) be its label in T ′. Consider its i-th child vt; by
the induction hypothesis it has the same label (at, qt) in both trees. Claim 11 asserts that the
fishbone between vs and vt in g(T ) is of length n− qsi + δat(q

t), and the length of the fishbone
between vs and vt in g(T ′) is n − rsi + δat(q

t). Since this is actually the same fishbone, this
implies that qsi = rsi , and the labels of vs in both trees are equal. This completes the induction
step and proves that T = T ′.

Thus, the homomorphisms h and g are as desired.

Theorem 11. The class of tree languages recognized by tree-walking automata is not closed
under injective homomorphisms.

Proof. Suppose it is closed. It is claimed that then every regular tree language is recognized
by a tree-walking automaton. Let L be a regular tree language over some tree signature Sreg.
Then, by Theorem 10, there exist tree signatures Scomp and Smid, and injective homomorphisms
g : L(Scomp) → L(Smid) and h : L(Sreg) → L(Smid), such that L = h−1(g(L(Scomp))). The
language L(Scomp) is trivially recognized by a tree-walking automaton that accepts every tree
right away. Then, by the assumption on the closure under g, the language g(L(Scomp)) is
recognized by another tree-walking automaton. By Theorem 8, its inverse homomorphic image
L is recognized by a tree-walking automaton as well. This contradicts the result by Bojańczyk
and Colcombet [2] on the existence of regular tree languages not recognized by any tree-walking
automata.
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11 Conclusion

The new bounds on the complexity of transforming graph-walking automata to automata with
returning, halting and reversibility properties are fairly tight. However, for their important
special cases, such as two-way finite automata (2DFA) and tree-walking automata (TWA), the
gaps between lower bounds and upper bounds are still substantial.

For an n-state 2DFA, the upper bound for making it halting is 4n + const states [7]. No
lower bound is known, and any lower bound would be interesting to obtain. A 2DFA can be
made reversible using 4n + 3 states [12], with a lower bound of 2n − 2 states [11]; it would be
interesting to improve these bounds.

The same question applies to tree-walking automata: they can be made halting [18], and,
for k-ary trees, it is sufficient to use 4kn+ 2k + 1 states to obtain a reversible automaton [12].
No lower bounds are known, and this subject is suggested for further research.

The lower bound on the complexity of inverse homomorphisms is obtained using graphs with
cycles. So it does not apply to the important case of tree-walking automata. On the other hand,
in the even more restricted case of two-way finite automata, the state complexity of inverse
homomorphisms is known to be 2n [8], which is in line of the kn bound in this thesis, as 2DFA
have k = 2. It would be interesting to fill in the missing case of TWA.
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