Санкт-Петербургский государственный университет

ЗАХАРОВ Александр Андреевич Выпускная квалификационная работа

Интегральная геометрия и инварианты узлов

Образовательная программа бакалавриат «Математика» Направление и код: 01.03.01 «Математика» Шифр ОП: CB.5000.2017

> Научный руководитель: доктор физико-математических наук, профессор СПбГУ Иванов Сергей Владимирович

> Рецензент: доктор физико-математических наук, профессор, ведущий научный сотрудник ПОМИ РАН, Малютин Андрей Валерьевич

Санкт-Петербург 2021 год

1 Введение

В этой работе будет построен инвариант, обобщающий классические инварианты узлов braid index (число нитей) и bridge index (число мостов). Кроме того, этот инвариант окажется целочисленным, несмотря на интегральное определение. Также мы построим альтернативный вид этого инварианта в виде диаграмм Юнга.

Вариация поворота натурально параметризованной регулярной кривой γ это $K(\gamma) = \int |\gamma''(t)| \, dt$ или интеграл кривизны по длине. В 1949 году Джон Милнор показал [Mil50], что если взять инфимум $K(\gamma)$ по гладким натурально параметризованным кривым γ реализующим ручной узел \mathcal{K} , то получится инвариант, отличающийся от числа мостов умножением на 2π :

bridge index
$$\mathcal{K} = \frac{1}{2\pi} \inf_{\gamma \in \mathcal{K}} \int |\gamma''(t)| dt$$

Поскольку узлы так же естественно живут в стандартной трехмерной сфере $S^3 \subset \mathbb{R}^4$, возникает желание изучать инфимум вариации геодезической кривизны $k_g(t)$ кривой $\gamma(t)$, по всем натурально параметризованным кривым, реализующим узел \mathcal{K} на сфере S^3 :

$$\inf_{\gamma \in \mathcal{K}} \int k_{g}(t) \,\mathrm{d}\,t$$

Но этот инфимум оказывается всегда равен нулю. Действительно, любой узел \mathcal{K} может быть реализован косой [II23]. Если вложить такую косу в нормальную ε -окрестность большой окружности $a \subset S^3$, мы получим кривую, реализующую узел \mathcal{K} , у которой сколь угодно малая геодезическая кривизна в каждой точке, а длина при этом не сильно отличается от числа нитей в косе, умноженного на 2π .

Рис. 1: Вложение косы в окрестность большой окружности а.

Инфимум длины кривой, по всем γ , реализующим узел \mathcal{K} также равен нулю, как в \mathbb{R}^3 так и в S^3 . Однако, можно получить нетривиальный инвариант, рас-

смотрев инфимум линейной комбинации интегралов длины и кривизны с положительными коэффициентами *κ*, *λ*:

$$Z_{\kappa,\lambda}(\mathcal{K}) \stackrel{\text{onp.}}{=} \inf_{\gamma \in \mathcal{K}} \int \left[\kappa \cdot k_g(t) + \lambda \cdot 1 \right] \, \mathrm{d} \, t = \inf_{\gamma \in \mathcal{K}} \kappa K_g(\gamma) + \lambda L(\gamma)$$

Назовем такой инвариант инвариантом мостов-нитей. Мы покажем, что он удовлетворяет следующим свойствам:

1. Для любого узла *К* найдется такое число *n*, что для всех *N* ≥ *n* верно следующее:

$$Z_{1,N}(\mathcal{K}) = \text{bridge index } \mathcal{K}$$
(1)

$$Z_{N,1}(\mathcal{K}) = \text{braid index } \mathcal{K}$$
(2)

2. Если коэффициенты
 κ,λ натуральные числа, то значения $Z_{\kappa,\lambda}$
тоже.

2 Предварительные сведения

Определение 1. Единичную окружность на *S*³ будем называть *большой окруж*ностью, а единичную 2-сферу — *большой сферой*.

Множество больших окружностей обозначим Gr = Gr(2, 4). На Gr определена стандартная мера грассманиана μ .

Определение 2. Пусть $a \subset S^3$ — окружность, тогда $a^{\perp} = S^3 \cap \text{span}(a)^{\perp}$, если $a \in \text{Gr}$, то $a^{\perp} \in \text{Gr}$.

Определение 3. Заведем следующие обозначения:

- 1. Длину кривой γ обозначим $L(\gamma)$.
- 2. Интеграл геодезической кривизны кривой γ по натуральному параметру обозначим *K*_g(γ).

Если кривая γ живет в \mathbb{R}^n , то интеграл ее кривизны все равно будет обозначаться $K_g(\gamma)$.

Определение 4. Обозначим за N_a нормальное расслоение большой окружности $a \in$ Gr в сфере S^3 , кроме того, пускай a_r это трубчатая r—окрестность для a. Пусть отображение $T : N_a \to S^3$ это такое отображение, которое на каждом нормальном слое действует экспонентой. Обозначим r—окрестность большой окружности a в нормальном расслоении за a_r^N . Сужение отображения $T_r = T|_{a_r^N}$ это естественный диффеоморфизм

$$T_r: a_r^N \to a_r$$

Утверждение 1. Пусть $a \in \text{Gr}$ и r_n достаточно мало, тогда справедливо следующее:

$$\begin{aligned} \forall \gamma \subset a_r \colon & |L(T_{r_n}^{-1}\gamma) - L(\gamma)| \leq \frac{1}{2^n}L(\gamma) \\ & |K_g(T_{r_n}^{-1}\gamma) - K_g(\gamma)| \leq \frac{1}{2^n}L(\gamma) \end{aligned}$$

Замечание 1. Здесь $K_g(T_r^{-1}(\gamma))$ это геодезическая кривизна посчитанная в N_a .

Доказательство. Нормальное расслоение N_a изометрично произведению $\mathbb{R}^2 \times a$. Значит N_a локально изометрично \mathbb{R}^3 . Тогда сужение T_r на достаточно малые окрестности можно воспринимать как карту для a_r . На $N_a = \mathbb{R}^2 \times a$ можно ввести координаты (x^1, x^2, x^3) соответствующие разбиению на множители следующим образом:

- 1. Координатой базы будет координата *x*¹, как-нибудь параметризующая окружность *a*.
- 2. Выберем большую сферу *S*² ⊂ *S*³ содержащую *a*. В *T_aS*² возьмем единичное ортогональное поле *x*² к касательному полю к *a*. Это будет первое базисное поле для нормальных слоёв.
- 3. Вторым базисным полем возьмем возьмем x^3 единичное поле, ортогональное к x^2 в каждом слое.

В таких координатах метрика на N_a будет стандартной евклидовой. Наша цель понять, что в точке (x^1 , 0, 0) символы Кристоффеля карты T_r обнуляются. Действительно, пусть ∇ это связность Леви-Чивита в S^3 , а X это расспространение касательных векторов γ' до поля, причем такое, что $|X| \leq 1$. Тогда геодезическую кривизну можно расписать так:

$$k_g(\gamma) = |\nabla_X X| = \left| X^i \left(\frac{\partial X^k}{\partial x^i} + \Gamma^k_{i,m} X^m \right) \partial_k \right|$$

Из того, что на *a* символы Кристоффеля обнуляются следует, что можно выбрать достаточно маеленькую трубчатую окрстность *a*_r, в которой они сколь угодно малы. Тогда

$$\begin{aligned} \left| k_g(\gamma) - k_g(T_r^{-1}(\gamma)) \right| &= \left| \left| X^i \left(\frac{\partial X^k}{\partial x^i} + \Gamma_{i,m}^k X^m \right) \partial_k \right| - X^i \frac{\partial X^k}{\partial x^i} \partial_k \right| = \left| \left| X^i \Gamma_{i,m}^k X^m \partial_k \right| = o(1) \\ \left| K_g(\gamma) - K_g(T_r^{-1} \circ \gamma) \right| \leq L(\gamma) o(1) \end{aligned}$$

Осталось понять, что символы Кристоффеля действительно обнуляются. Посчитаем их:

- 1. Параллельный перенос вдоль *а* в S^3 и в нормальном расслоении N_a это одно и то же. Кроме того, параллельный перенос определяет связность Леви-Чивита, поэтому $\Gamma_{1,i} = \nabla_{x^1} x^i = 0$. Из симметричности $\Gamma_{i,1} = 0$.
- 2. Связность Леви-Чивита ∇^N подмногообразия N это проекция связности ∇ многообразия $M = S^3$ на касательное пространство TN. Возьмем в качестве подмногообразия N образ нормального слоя в точке $(p, 0, 0) \in a$ под отображением T. Отображение $T|_N$ это экспоненциальное отображение на сферу T(N). Символы Кристоффеля экспоненты обнуляются в точке из которой определена экспонента поэтому $\nabla^N_{x^i} x^j = 0$ для $i, j \in \{2, 3\}$. Можно оторазить S^3 относительно пространства натянутого на сферу T(N), такое отражение переведет S^3 в себя и сохранит T(N) на месте. Тогда на месте останутся векторные поля x^2 и x^3 , а поле x^1 перейдет в $-x^1$. Это значит, что компонента $\nabla_{x^i} x^j$ при x^1 нулевая, то есть $\nabla_{x^i} x^j = Pr_{TN} \nabla_{x^i} x^j = \nabla^N_{x^i} x^j = 0$.

Определение 5. Пусть $A, B \subset S^3$. Тогда обозначим через [A, B] = [A, B](t) -кратчайшую натурально параметризованную геодезическую с началом в Cl(A) и концом в Cl(B), если такая единственна.

Определение 6. Заведем в \mathbb{R}^3 стандартные координаты (*x*, *y*, *z*). Тогда гомотетией к *Oz* с коэффициентом *s* будем называть следующее отображение:

$$H^s$$
: $\mathbb{R}^3 \to \mathbb{R}^3$

$$(x, y, z) \mapsto (sx, xy, z)$$

Главное выбрать ось z, если про x и y ничего не написано, значит нужно достроить $\{z\}$ до ортонормированного базиса каким-нибудь способом. Отображение H^s не будет зависеть от этого способа.

Пусть мы находимся в \mathbb{R}^3 со стандартными координатами и $\tau : S^2 \subset \mathbb{R}^3$ гладкая кривая, не обязательно регулярная. Пусть $C : \mathbb{R}^3 \setminus \{0\} \to S^2$ это центральная проекция. Заведем отображение $F_s = C \circ H^s$.

Лемма 1. Пусть *т* трансверсально пересекает плоскость *хОу* по конечному числу точек. Тогда

$$\lim_{\delta \to 0} L(F_{\delta}(\tau)) = \pi \ \sharp(\tau \cap xOy) \stackrel{\text{oup.}}{=} \pi k$$

Рис. 2: Отображение *F*_δ.

Доказательство. Выберем ε . Заведем на S^2 сферические координаты $r(\varphi, \theta)$: $[0, 2\pi] \times [0, \pi] \to S^2$, полюсам будут соответствовать точки $(0, 0, \pm 1)$. Ограничем кривую $\tau = (\tau_x, \tau_y, \tau_z) = r(\tau_\varphi, \tau_\theta)$ на интервалы $I_1, ..., I_k$ на которых $|\tau_z| \leq h$, для некоторого числа h. Кривая τ пересекает xOy трансверсально, поэтому можно выбрать h так, что:

- 1. Полярная координата $\tau_{\theta}|_{I_i}$ монотонна.
- 2. Ограничения τ на I_j почти не меняют азимутальную координату: $L(\tau_{\varphi}|_{I_j}) \leq \frac{\varepsilon}{k}$

Пусть *I* это область определения τ . Будем искать δ такое, что:

$$L(F_{\delta} \circ \tau|_{I \setminus \cup I_{i}}) \leqslant \varepsilon \tag{3}$$

$$\left| L(F_{\delta} \circ \tau |_{I_i}) - \pi \right| \leqslant \varepsilon \tag{4}$$

Хотим получить (3). Обратим внимание на то, что любая точка (x, y, z) из образа множества $S^2 \cap \{|z| \ge h\}$ под действием H^{δ} обладает следующими свойствами:

- 1. $x, y \leq \delta$
- 2. $|z| \ge h$

Кроме того, дифференциал dH^{δ} действует на векторе $v \in TS^2$, $|v| \leq 1$ так, что компоненты $(dH^{\delta}v)_x$, $(dH^{\delta}v)_y$ по модулю меньше δ . Этих свойств хватает для того, чтобы длина образа векторов $dH^{\delta}(\tau'|_{I \setminus \cup I_j})$ под дифференциалом dC была мала:

$$dC_{(x,y,z)} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \frac{1}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \begin{pmatrix} y^2 + z^2 & xy & xz \\ xy & x^2 + z^2 & yz \\ xz & yz & x^2 + y^2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} =$$
(5)

Мы подставляем $dH^{\delta}(\tau'|_{I \setminus \cup I_j})$ в качестве (a, b, c), поэтому можно считать, что $|a|, |b| \leq \delta$ и $|c| \leq 1$. Знаменатель дроби в выражении (5) ограничен сверху, поскольку $|z| \geq h$.

$$= O(1) \begin{pmatrix} O(1) & O(\delta) & O(\delta) \\ O(\delta) & O(1) & O(\delta) \\ O(\delta) & O(\delta) & O(\delta) \end{pmatrix} \begin{pmatrix} O(\delta) \\ O(\delta) \\ O(1) \end{pmatrix} \xrightarrow{\delta \to 0} 0$$
(6)

Таким образом вектор $dF_{\delta}(\tau'|_{I\setminus \cup I_j})$ сколь угодно мал, тогда и длина $F_{\delta}(\tau|_{I\setminus \cup I_j})$ сколь угодно мала.

Теперь хотим добиться (4). Расскроем модуль и докажем два неравенства:

1. Под действием F_{δ} все точки с координатой $\theta < \frac{\pi}{2}$ при $\delta \to 0$ сходятся к полюсу (0,0,1), а точки с координатой $\theta > \frac{\pi}{2}$ сходятся к полюсу (0,0,-1). Поэтому для достаточно малого δ кривая $F_{\delta}(\tau|_{I_j})$ проходит на расстоянии хотя бы $\frac{\varepsilon}{2k}$ от каждого из полюсов, тогда

$$L(F_{\delta}(\tau|_{I_j})) \ge \pi - \frac{\varepsilon}{k}.$$

2. В сферических координатах $r^{-1} \circ F_{\delta} = (\varphi, f(\theta))$, где $f(\theta)$ некоторая монотонная функция. Сферические координаты r : $[0, 2\pi] \times [0, \pi] \rightarrow S^2$ не увеличивают длины кривых, поэтому достаточно доказать, что

$$L\left(\left(\tau_{\varphi}, f(\tau_{\theta})\right)|_{I_{j}}\right) \leqslant \pi + \frac{\varepsilon}{k}$$

Кривая $f(\tau_{\theta}|_{I_j})$ монотонна как композиция монотонных функций, поэтому $L(f(\tau_{\theta})|_{I_j}) \leq \pi$. Длина кривой на плоскости меньше суммы длин ее проекций на координатные оси:

$$L\left(\left(\tau_{\varphi}, f(\tau_{\theta})\right)|_{I_{j}}\right) \leq L\left(\tau_{\varphi}|_{I_{j}}\right) + L\left(f(\tau_{\theta})|_{I_{j}}\right) \leq \pi + \frac{\varepsilon}{k}$$

$$\lim_{s \to 0} K_g(H^s \gamma) = \pi \sharp$$
 критических точек γ_z

Доказательство. Если γ натурально параметризованна, то $K_g(\gamma)$ это длина сферического образа τ :

$$K_g(\gamma) = \int |\gamma''| = L(\gamma')$$

Если отождествить касательные пространства во всех точках параллельным переносом, то дифференциал H^s это само H^s . Чтобы получить сферический образ кривой $H^s \circ \gamma$ с точностью до параметризации нужно применить дифференциал – H^s и отнормировать с помощью центральной проекции *C*. Длина не зависит от параметризации, поэтому $K_g(H^s \circ \gamma) = L(C \circ H^s \circ \gamma') = L(F_s \circ \gamma')$ и мы попадаем в условия леммы 1. Трансверсальность γ' гарантирует тот факт, что γ_z функция морса.

2.1 Проекция на экватор

Определение 7. Пусть $b \in$ Gr, тогда определим проекцию на *b* следующим образом:

$$P_{b,:}: \quad (S^3 \setminus b^{\perp}) \times [0,1] \longrightarrow S^3$$
$$P_{b,t}(x) = T_{\frac{\pi}{4}} \circ H^{1-t} \circ T_{\frac{\pi}{4}}^{-1}(x)$$

Замечание 2. Если точка x не лежит на b^{\perp} , то существует кратчайшая геодезическая [x, b]. Отображение $P_{b,t}$ переносит точку x вдоль по геодезической [x, b] так, чтобы расстояние до b сократилось в t раз.

Рис. 3: Действие отображения Р_b,.

Замечание 3. Можно смотреть на $P_{b,1}$ как на функцию высоты со значениями в b.

Утверждение 3. Пусть *ү* — гладкая кривая, тогда

 $\mu \left\{ a \mid P_{a,t}({ullet})$ определена на $\gamma \right\} = \mu \left\{ a \mid a^{\perp} \cap \gamma = \varnothing \right\} = 0.$

Напоминание. Буквой μ мы обозначили меру на грассманиане.

Доказательство. Для каждой $s \in S^3$ можно запараметризовать

$$\{a \in \mathrm{Gr} \mid s \in a\}$$

двумя параметрами. Действительно, любая большая окружность, проходящая через точку *s* определяется единичным касательным вектором. Тогда $\{a \in Gr \mid a \cap \gamma \neq \emptyset\}$ тремя, а Gr(2, 4) это 4-мерное многообразие.

2.2 Длина и геодезическая кривизна проекции

Определение 8. Пусть γ — это некоторая гладкая кривая, $b \in \text{Gr}$ и $\gamma \cap b^{\perp} = \emptyset$. Тогда нет проблемы определить длину проекции $L(P_{b,t}(\gamma))$ для t = 1 как супремум длин вписанных ломанных.

Замечание 4. Это определение написано на всякий случай и для единообразия.

Рис. 4: Прижимание *ү* к большой окружности *b* с помощью проекции.

Определение 9. Пусть γ — это некоторая простая гладкая кривая, $b \in$ Gr и $\gamma \cap b^{\perp} = \emptyset$. Тогда доопределим $K_g(P_{b,t}(\gamma))$ для t = 1 следующим образом:

$$K_g(P_{b,1}(\gamma)) = \pi \sharp$$
критических точек $P_{b,1}|_{\nu}$

Проверка корректности. Для дальнейших целей достаточно проверить, что геодезическая кривизна проекции $K_g(P_{b,1}(\gamma))$ корректно определена для почти всех $b \in$ Gr. Могут случится проблемы двух типов:

- Кривая γ пересекает ортогональную окружность b[⊥] ∈ Gr и в этом случае проекция P_{b,1}(γ) не определена. Согласно утверждению 3 мера таких b нулевая.
- 2. Критических точек для *b* бесконечно много. Наша проекция это функция высоты относительно *b*, а функция высоты почти в любом направлении это функция морса.

Утверждение 4. Пусть γ — гладкая кривая, тогда для почти всех $a \in Gr$

$$\lim_{t \to \pm 0} L(P_{a,1-t}(\gamma)) = L(P_{a,1}(\gamma))$$
(1)

$$\lim_{t \to +0} K_g(P_{a,1-t}(\gamma)) = K_g(P_{a,1}(\gamma))$$
(2)

Доказательство. (1) Для достаточно малого *r* отображение T_r билипшецево с константами $1 - \varepsilon$, $1 + \varepsilon$. Проекция $P_{a,1-t}$ это гомотетия H^t в координатах *T*, для которой равенство (1) выполнено. Тогда достаточно подобрать такое значение *t*, что $P_{a,1-t}(\gamma) \subset a_r$.

(2)

Лемма 2. Если предел существует, то его можно посчитать в нормальном расслоении *N_a*:

$$\lim_{t \to +0} K_g(P_{a,1-t}(\gamma)) = \lim_{t \to +0} K_g(H^t(T_{\pi/2}^{-1}(\gamma)))$$

Замечание 5. Число $\pi/2$ это максимальное *r* такое что T_r обратимо.

Доказательство. Обратим внимание на то, что для любого t образ проекции $P_{a,t}(\gamma)$ лежит в t-окрестности a_t . Тогда

$$T_1(P_{a,1-t}(\gamma)) = T_t(P_{a,1-t}(\gamma))$$

Замечание 6. Это равенство говорит просто об области определения T_r^{-1} . В этом случае a_r это сфера S^3 без окружности a^{\perp}

Пусть $\{r_n\} \to 0$ это такая последовательность чисел, что для любой кривой $\tau \subset a_{r_n}$

$$\left|K_g\left(T_{r_n}^{-1}(\tau)\right) - K_g(\tau)\right| \leq \frac{1}{2^n} L(\tau)$$

Теперь воспользуемся тем, что $H^t T_{\pi/2}^{-1} = T_{\pi/2}^{-1} P_{a,1-t}$ и посчитаем предел

$$\lim_{t \to +0} \left| K_g(P_{a,1-t}(\gamma)) - K_g(H^t(T^{-1}(\gamma))) \right| = \lim_{t \to +0} \left| K_g(P_{a,1-t}(\gamma)) - K_g(T^{-1}(P_{a,1-t}(\gamma))) \right| = \\ = \lim_{n \to \infty} \left| K_g(P_{a,r_n}(\gamma)) - K_g(T_{r_n}^{-1}(P_{a,r_n}(\gamma))) \right| = \lim_{n \to \infty} \frac{1}{2^n} L(P_{a,r_n}(\gamma)) = 0$$

Согласно этой лемме достаточно отправить γ в N_a с помощью $T_{\pi/2}^{-1}$ и доказать там, что:

$$\lim_{t \to +0} K_g \left(H^t(T_{\pi/2}^{-1}(\gamma)) \right) = \pi \, \sharp \, \text{критических точек} \, H^0 T_{\pi/2}^{-1} \big|_{\gamma}$$

Действительно, несложно видеть, что отображения $P_{1,a}|_{\gamma}$ и $H^0T_{\pi/2}^{-1}|_{\gamma}$ просто равны, если отождествлять $a \subset N_a$ и $a \subset S^3$. Почти для всех $a \in$ Gr функция $P_{1,a}|_{\gamma}$ это функция морса, поэтому мы попали в условия утверждения 2.

3 Усреднение проекций

Определение 10. Пусть γ — простая гладкая кривая, тогда определим $EK_g(\gamma)$ и $EL(\gamma)$ следующим образом:

$$EK_{g}(\gamma) = \int_{b \in Gr} K_{g}(P_{b,1}(\gamma)) d\mu$$
$$EL(\gamma) = \int_{b \in Gr} L(P_{b,1}(\gamma)) d\mu$$

То есть, $EL(\gamma)$ это средняя по мере на грассманиане Gr длина проекции кривой γ , а $EK_g(\gamma)$, соответственно, среднее значение кривизны.

Рис. 5: Усреднение длины и кривизны γ по окружностям из Gr.

Для любой регулярной кривой $\gamma \subset S^3$ справедливы следующие формулы:

$$L(\gamma) = EL(\gamma) \tag{7}$$

$$K_g(\gamma) = EK_g(\gamma) \tag{8}$$

Выражение (7) называется формулой Крофтона [San53], а выражение (8) это ее аналог для геодезической кривизны [Teu86].

4 Целочисленность инварианта

Напомним, что

$$Z(\kappa,\lambda,[\gamma]) = Z_{\kappa,\lambda}([\gamma]) = \frac{1}{2\pi} \inf_{\gamma \in [\gamma]} (\kappa K_g(\gamma) + \lambda L(\gamma)),$$

где K_g — интеграл геодезической кривизны, L — длина. Если γ — это кривая, то

$$Z_{\kappa,\lambda}(\gamma) \stackrel{\text{omp}}{=} \frac{1}{2\pi} \big(\kappa K_g(\gamma) + \lambda L(\gamma) \big).$$

Утверждение 5. Зафиксируем κ , λ , $[\gamma]$, тогда $\forall \varepsilon_1, \varepsilon_2 \exists \gamma \in [\gamma]$ такая кривая, что:

- 1. $\gamma \subset a_{\varepsilon_2}$
- 2. $Z_{\kappa,\lambda}(\gamma) \leq Z_{\kappa,\lambda}([\gamma]) + \varepsilon_1$

где a_{ε_2} — это ε_2 -окрестность $a \in \operatorname{Gr}$.

Доказательство. Воспользуемся полученными формулами Крофтона и напишем следующее равенство:

$$Z_{\kappa,\lambda}(\gamma) = \frac{1}{2\pi} \int_{a \in Gr} \left(\kappa K_g(Pr_a(\gamma)) + \lambda L(Pr_a(\gamma)) \right) d\mu$$

Мы взяли такую меру, что $\mu(Gr) = 1$, поэтому $\forall \tau \in [\gamma] \exists a \in Gr$ такая, что справедливо следующее неравенство:

$$\kappa K_g(Pr_a(\tau)) + \lambda L(Pr_a(\tau)) \leq Z_{\kappa,\lambda}(\tau).$$

Кроме того, из утверждения 4 вытекает такая сходимость:

$$Z_{\kappa,\lambda}(Pr_{a,1-\delta}(\tau)) \xrightarrow{\delta \to 0} \kappa K_g(Pr_a(\tau)) + \lambda L(Pr_a(\tau))$$

Следовательно, можно выбрать $\delta \leq \varepsilon_2$, такое, что выполняется следующее неравенство:

$$Z_{\kappa,\lambda}(Pr_{a,1-\delta}(\tau)) \leq Z_{\kappa,\lambda}(\tau) + \frac{\varepsilon_1}{2}$$

Перейдя к инфимуму по $\tau \in [\gamma]$, получаем новое неравенство:

$$\inf_{\tau \in [\gamma]} Z_{\kappa,\lambda} \big(Pr_{a,1-\delta}(\tau) \big) \leq \inf_{\tau \in [\gamma]} Z_{\kappa,\lambda}(\tau) + \frac{\varepsilon_1}{2}$$

Тогда в качестве γ можно взять $Pr_{a,1-\delta}(\varphi)$, для такого φ , что значение $Z_{\kappa,\lambda}(Pr_{a,1-\delta}(\varphi))$ отличается от $\inf_{\tau \in [\gamma]} Z_{\kappa,\lambda}(Pr_{a,1-\delta}(\tau))$ меньше чем на $\frac{\varepsilon_1}{2}$. Теперь соберем вместе получившиеся неравенства:

$$Z_{\kappa,\lambda}(\gamma) = Z_{\kappa,\lambda}(Pr_{a,1-\delta}(\varphi)) \leq \inf_{\tau \in [\gamma]} Z_{\kappa,\lambda}(Pr_{a,1-\delta}(\tau)) + \frac{\varepsilon_1}{2} \leq \inf_{\tau \in [\gamma]} Z_{\kappa,\lambda}(\tau) + \varepsilon_1 = Z_{\kappa,\lambda}([\gamma]) + \varepsilon_1$$

Проекция $Pr_{a,1-\delta}(\varphi)$ содержится в полнотории a_{δ} . Мы заранее выбрали $\delta \leq \varepsilon_2$, поэтому $\gamma = Pr_{a,1-\delta}(\varphi) \subseteq a_{\varepsilon_2}$.

Замечание 7. Мы взяли в качестве γ проекцию $P_{a,1-\delta}(\varphi)$ для достаточно маленького δ . Для $\delta' < \delta$ все также работает, поэтому для $0 < t \leq 1$

$$Z_{\kappa,\lambda}(P_{a,t}(\gamma)) \leq Z_{\kappa,\lambda}([\gamma]) + \varepsilon$$

Следствие 1. Пусть $\kappa, \lambda \in \mathbb{N}$, тогда $\forall [\gamma] Z_{\kappa,\lambda}([\gamma]) \in \mathbb{N}$

Доказательство. Выберем t так, что

1.
$$Z_{\kappa,\lambda}(P_{a,t}(\gamma)) \leq Z_{\kappa,\lambda}([\gamma]) + \varepsilon$$

2. $|K_g(P_{a,t}(\gamma)) - \pi \sharp$ критических точек $P_{a,1}|_{\gamma} \leq \varepsilon$

Число критических точек четно, потому что все критические точки существенны и кривая γ замкнута. Это значит, что кривизна $K_g(P_{a,t}(\gamma))$ сходится к целому числу. Будем преобразовывать $\gamma \subset a_{\varepsilon_2}$ в кривую $\alpha \subset a_{\varepsilon_2}$, у которой такое же число критических точек и почти целая длина:

- Разобьем окружность *a* на равные дуги *a*¹, ..., *aⁿ*, а трубчатую окрестность *a*_{ε2} на соответствующие сегменты *a*_{ε2}¹, ..., *aⁿ*_{ε2}. Кроме того, потребуем, чтобы все критические значения Морсовской функции *P*_{*a*,1}|_γ лежали только во внутренности *a*¹, ..., *aⁿ*, и каждое критическое значение в отдельном сегменте. Объединение сегментов, содержащих критические точки назовем *a^{crit}*.
- Измельчим это разбиение так, чтобы суммарная длина пересечения γ ∩ a^{crit} оказалась меньше ε². Будем считать, что это измельченное разбиение мы и взяли изначально.
- 3. Из сегментов, не содержащих критических точек выберем сегмент $a_{\varepsilon_2}^i$, для которого длина $\gamma \cap a_{\varepsilon_2}^i$ минимальна. Для удобства положим i = 1.

4. Параметризуем a_{ε_2} С помощью карты T_{ε_2} :

$$T_{\varepsilon_2}$$
: $[0, 2\pi) \times D_{\varepsilon_2} \to a_{\varepsilon_2}$

Координаты (x^1, x^2, x^3) построены как в утверждении 1. Это не совсем карта, потому что область определения не открыта, но это ничего не портит.

- 5. Сегмент $a_{\varepsilon_2}^i$ параметризуется множеством $[\frac{i}{n}, \frac{i+1}{n}) \times D_{\varepsilon_2}$. Расстянем сегмент $a_{\varepsilon_2}^1 = [0, \frac{1}{n}) \times D_{\varepsilon_2}$ вдоль координаты x^1 умножением на число $m \delta$, где m это число сегментов без критических точек. Остальные сегменты без критических точек стянем вдоль координаты x^1 домножением на одинаковое число $\frac{\delta}{m-1}$. Сегменты из a^{crit} не будем растягивать. С помощью параллельного переноса полученных сегментов вдоль a соберем кусочно гладкий автогомеоморфизм $f : a_{\varepsilon_2} \to a_{\varepsilon_2}$. Под действием f кривая γ переходит в кусочно-гладкую кривую $\alpha = f(\gamma)$. Возьмем ее прообраз $\tilde{\alpha} = T_{\varepsilon_2}^{-1}(\alpha)$
- Точки α̃, в которых нарушается гладкость можно сгладить, не добавив новых критических точек и почти не изменив длины. Продолжим обозначать сглаженную кривую как α̃.
- 7. Сравним длину α̃ и T_{ε2}⁻¹(γ). Длина той части T_{ε2}⁻¹(γ), которая попала в критические сегменты не изменилась, а длина той части T_{ε2}⁻¹(γ), которая попала в сегменты без критических точек уменьшилась, мы специально так растягивали. Можно выбрать Достаточно маленькое число δ так, чтобы длина α̃ отличалась от длины пересечения α̃ и растянутого a¹_{ε2} отличалась меньше, чем на ε².
- 8. Теперь будем применять H^t , t < 1 к кривой $\tilde{\alpha}$, это будет соответствовать применению $P_{a,t}$ к α . Под действием H^t длина пересечения $\tilde{\alpha}$ с любым растянутм сегментом может только уменьшится. Поэтому длина пересечения $H^t(\tilde{\alpha})$ со всеми растянутыми сегментами, кроме первого меньше ε^2 . Длина пересечения $H^t(\tilde{\alpha})$ с первым растянутым сегментом стремится к числу компонент связности $\gamma \cap a_{\varepsilon_2}^1$ умноженному на 2π , поскольку внутри a^1 нет критических точек, а значит все компоненты связности $\gamma \cap a_{\varepsilon_2}^1$ строго монотонны по x^1 .

Получилось, что длина $H^t(\tilde{\alpha})$ сходится к числу, отличающемуся от 2π -кратного менее чем на $O(\varepsilon)$. При этом длина $H^t(\tilde{\alpha})$ меньше длины $H^t(T^{-1}(\gamma))$ для всех $t \leq 1$. Кривизна как $H^t(T^{-1}(\gamma))$, так и $H^t(\tilde{\gamma})$ сходится к числу критических точек. Согласно утверждению 4 длины и кривизны кривых $P_{a,t}(\gamma)$ и $P_{a,t}(\alpha)$ будут сходится к тем же числам. Значит

$$Z_{\kappa,\lambda}(P_{a,t}(\gamma)) - Z_{\kappa,\lambda}(P_{a,t}(\alpha)) = O(\varepsilon)$$

Кроме того, для любого $t \leq 1$

$$Z_{\kappa,\lambda}(P_{a,t}(\gamma)) - Z_{\kappa,\lambda}([\gamma]) = O(\varepsilon)$$

Вычтем последние два равенства:

$$Z_{\kappa,\lambda}(P_{a,t}(\alpha)) - Z_{\kappa,\lambda}([\gamma]) = O(\varepsilon)$$

Если κ, λ целые, то $Z_{\kappa,\lambda}(P_{a,t}(\alpha))$ сходится к числу, отличающемуся от целого на $O(\varepsilon)$. Тогда $Z_{\kappa,\lambda}([\gamma])$ отличается от целого числа на $O(\varepsilon)$.

Рис. 6: Действие отображения *f*.

Замечание 8. На самом деле мы доказали, что $\frac{L(\gamma)}{2\pi}$ и $\frac{K_g(\gamma)}{2\pi}$ почти целые. Замечание 9. Для узла \mathcal{K} мы научились получать такую его реализацию γ , что

$$Z_{\kappa,\lambda}(\gamma) - Z_{\kappa,\lambda}(\mathcal{K}) = O(\varepsilon)$$

Кроме того, все критические точки γ расположенны близко друг к другу. С помощью изотопии как на рисунке можно привести кривую γ к виду (p, a)— замыкания некоторой косы. Такое (p, a) замыкание будет определено в следующей главе. Такая изотопия практически не меняет длины и кривизны. Черная коробочка с косой внутри на самом деле очень маленькая, но на рисунке достаточно крупная, чтобы было лучше видно, что происходит.

Рис. 7: Изотопия, приводящая к виду (*p*, *a*)–замыкания некоторой косы.

5 Диаграммный вид

Определение 11. Сопоставим узлу [γ] множество $A_{[\gamma]} \subset \mathbb{R}^2_+$ следующим образом:

$$A_{[\gamma]} = \left\{ \left(\frac{L(\gamma)}{2\pi}, \frac{K_g(\gamma)}{2\pi} \right) : \quad \gamma \in [\gamma] \right\}$$

Кроме того, заведем функцию:

$$A_{\gamma} = A(\gamma) = \left(\frac{L(\gamma)}{2\pi}, \frac{K_g(\gamma)}{2\pi}\right)$$

Здесь у может быть как реализацией узла [у], так и просто гладкой кривой.

Определение 12. Сопоставим узлу [γ] множество $Z_{[\gamma]} \subset \mathbb{N}_0^2$ следующим обазом:

$$Z_{[\gamma]} = \operatorname{Cl} A_{[\gamma]} \cap \mathbb{N}_0^2$$

Определение 13. Для косы назовем отрезки, на которых лежат концы нитей верхним и нижним основанием косы. Из косы можно получить узел соединив концы нитей верхнего и нижнего основания. Такой способ получения узла из косы называется Alexander closure, а дуги соединяющие верхнюю грань с нижней будем называть дугами Александера.

Определение 14. Если у косы четное число нитей, то из нее можно получить узел, соединив соседние пары концов нитей на каждом из оснований. Такой способ получения узла из косы называется plat closure, а пары дуг, симметричных относительно средней линии косы будем будем называть парами дуг plat closure.

Рис. 8: Замыкания Александера и plat closure.

Определение 15. Первые несколько концов нитей с оснований косы можно замкнуть парами дуг plat closure, а остальные дугами Александера. Такой способ получения узла из косы будем называть смешаным замыканием. У одной косы может быть несколько смешанных замыканий, они параметризуются парами $(p, a) \in \mathbb{N}^2$, такими, что 2p + a это число нитей в этой косе.

Определение 16. Сопоставим узлу [γ] множество $\mathcal{Z}_{[\gamma]} \subset \mathbb{N}^2$ следующим образом:

 $\mathcal{Z}_{[\gamma]} = \{(p, a): \exists$ коса, (p, a)-замыкание которой это $[\gamma]\}$

Утверждение 6. Для любых $m, n \in \mathbb{N}$

$$(p,a) \in \mathcal{Z}_{[\gamma]} \quad \Rightarrow \quad (p+m,a+n) \in \mathcal{Z}_{[\gamma]}$$

Рис. 9: Замыкание (*p*, *a*). Здесь *p* = 1 и *a* = 2.

Рис. 10: Стабилизация и дестабилизация.

Доказательство. Из (p, a)-реализации узла $[\gamma]$ после применения стабилизации как на рисунке 10 получается (p, a+1)-реализация того же узла. Из (p, a+1)-реализации можно получить (p + 1, a)-реализацию превращением дуги Александера в пару дуг plat closure как на рисунке 12.

Утверждение 7. Дополнение $\mathcal{Z}_{[\gamma]}$ до \mathbb{N}^2 конечно.

Доказательство. Любой узел может быть реализован косой замкнутой по Александеру и plat closure косой, тогда (0, braid index[γ]), (bridge index[γ], 0) $\in \mathcal{Z}_{[\gamma]}$, значит, согласно утверждению 6 первые квадранты с вершинами в этих точках содержатся в $\mathcal{Z}_{[\gamma]}$, тогда $\mathcal{Z}_{[\gamma]}$ коконечно, а дополнение $\mathcal{Z}_{[\gamma]}$ представляет собой диаграмму Юнга на узлах целочисленной решетки, поскольку вместе с каждой точкой в $\mathcal{Z}_{[\gamma]}$ лежит и соответствующий первый квадрант.

Утверждение 8. Для любого узла [γ]: $\mathcal{Z}_{[\gamma]} \subseteq Z_{[\gamma]}$

Доказательство. Достаточно, доказать, что $\mathcal{Z}_{[\gamma]} \subset \operatorname{Cl}A_{[\gamma]}$. Напомним, что T_r это естественный диффеоморфизм r—окрестности a в нормальном расслоении и трубчатой r—окрестности некоторой большой окружности a_r , где $a \in$ Gr. С каждым (p,a)-замыканием реализующим [γ] можно связать реализацию [γ] в a_r , такую что ее прообраз в $D_r^2 \times S_1^1$ это коса реализованная в циллиндре $D_r^2 \times [0, \epsilon]$, пары дуг Plat closure будут реализованы половинками окружностей

слоях $D_r^2 \times [-\epsilon, 0]$ и $D_r^2 \times [\epsilon, 2\epsilon]$, а дуги Александера будут реализованы почти целыми окружностями вида $\{d\} \times [\epsilon, 2\pi]$, для некоторой точки $d \in D_r^2$. Геодезическая кривизна таких реализаций будет стремиться к $2\pi p$, а длина к $2\pi a$ при $r, \epsilon \rightarrow 0$, тогда значения A на таких реализациях $[\gamma]$ будет стремится к (p, a), чего и хотелось.

Определение 17. Заведем функцию r(l, x): $\mathbb{RP}^1 \times \mathbb{R}^2 \to \mathbb{R}$, которая будет считать расстояние от нуля до прямой, параллельной *l* и содержащей *x*. Если вместо *x* стоит множество, то это функция выдаст расстояние до множества.

Рис. 11: Функция *r*, измеряющая расстояние до опорной прямой.

Утверждение 9. Пусть $\kappa, \lambda > 0$, а $l_{\kappa,\lambda} \in \mathbb{RP}^1$ это прямая с тангенсом угла наклона $\frac{-\kappa}{\lambda}$, тогда

$$\frac{Z_{\kappa,\lambda}(\gamma)}{r\left(l_{\kappa,\lambda}, A_{\gamma}\right)} = \sqrt{\kappa^2 + \lambda^2}$$

Доказательство. Заметим, что $r(l_{\kappa,\lambda}, (x, y)) = r(l_{\kappa,\lambda}, (x, 0)) + r(l_{\kappa,\lambda}, (0, y))$, поскольку координатные вектора смотрят по одну сторону, от убывающей прямой. Для улучшения восприятия заведем обозначения:

$$r = r \left(l_{\kappa,\lambda}, A_{\gamma} \right) = r \left(l_{\kappa,\lambda}, \left(\frac{K_g(\gamma)}{2\pi}, \frac{L(\gamma)}{2\pi} \right) \right)$$
$$r_1 = r \left(l_{\kappa,\lambda}, \left(\frac{K_g(\gamma)}{2\pi}, 0 \right) \right)$$
$$r_2 = r \left(l_{\kappa,\lambda}, \left(0, \frac{L(\gamma)}{2\pi} \right) \right)$$

Тогда справедлива следующая цепочка равенств:

$$Z_{\kappa,\lambda}(\gamma) = \kappa \frac{L(\gamma)}{2\pi} + \lambda \frac{K_g(\gamma)}{2\pi} = \kappa \sqrt{r_2^2 + \left(r_2 \frac{\lambda}{\kappa}\right)^2} + \lambda \sqrt{r_1^2 + \left(r_1 \frac{\kappa}{\lambda}\right)^2} = (r_2 + r_1)\sqrt{\kappa^2 + \lambda^2} = r\sqrt{\kappa^2 + \lambda^2}$$

Следствие 2. Зная $A_{[\gamma]}$ можно прямо вычислить $Z_{\kappa,\lambda}([\gamma])$:

$$Z_{\kappa,\lambda}([\gamma]) = \inf_{x \in A_{[\gamma]}} \frac{r(l_{\kappa,\lambda}, x)}{\sqrt{\kappa^2 + \lambda^2}}$$

Лемма 3. Пусть $X_1, X_2 \subseteq \mathbb{R}^2_{\geq 0}$ непустые замкнутые выпуклые множества, которые удовлетворяют следующим условиям:

- 1. *Х_i* содержит первый квадрант с вершиной в некоторой точке.
- 2. $\forall \kappa, \lambda > 0$ $r(l_{\kappa,\lambda}, X_1) = r(l_{\kappa,\lambda}, X_2)$

Тогда $X_1 = X_2$

Доказательство. Выпуклое множество X_i задается набором касательных полуплоскостей \mathcal{P}_i . Полуплоскости разбиваются на четыре типа:

- 1. Те, что лежат над убывающей прямой.
- 2. Те, что лежат под убывающей прямой.
- 3. Те, граница которых возрастающая прямая.
- 4. Те, граница которых параллельна координатной оси.

Обозначим их как H_1 , H_2 , H_3 , H_4 . Пересечение $H_1 \cap \mathcal{P}_i$ содержит ровно по одной полуплоскости для каждого угла наклона граничной прямой, поскольку $X_i \subseteq \mathbb{R}^2_{\geq 0}$. Пересечения $H_2 \cap \mathcal{P}_i$ и $H_3 \cap \mathcal{P}_i$ пусты, так как X_i содержит квадрант с вершиной в некоторой точке. На расстоянии r > 0 от нуля могут проходить две прямые с тангенсом угла наклона $\frac{-\kappa}{\lambda}$, с ними ассоциированы две полуплоскости первого типа, одна из которых отделена от $\mathbb{R}^2_{\geq 0}$, а значит не может лежать в \mathcal{P}_i . Тогда $r(l_{\kappa,\lambda}, X_i)$ однозначно определяет касательную полуплоскость первого типа. Значит $H_1 \cap \mathcal{P}_1 = H_1 \cap \mathcal{P}_2$. Заметим, что $r(Ox, X_i) = r(Oy, X_i)$ по следующей причине:

$$r(Ox, X_i) = \lim_{\kappa \to \infty} r(l_{\kappa,\lambda}, X_i)$$
$$r(Oy, X_i) = \lim_{\lambda \to \infty} r(l_{\kappa,\lambda}, X_i)$$

Тогда, аналогичным образом, $H_4 \cap \mathcal{P}_1 = H_4 \cap \mathcal{P}_2$, тогда справедливы такие равенства:

$$\mathcal{P}_1 = \mathcal{P}_1 \cap (H_1 \cup H_2 \cup H_3 \cup H_4) = \mathcal{P}_2 \cap (H_1 \cup H_2 \cup H_3 \cup H_4) = \mathcal{P}_2$$

Утверждение 10. Пусть Conv X это выпуклая оболочка множества X, тогда

$$\operatorname{Conv} \mathcal{Z}_{[\gamma]} = \operatorname{Conv} Z_{[\gamma]} = \operatorname{Conv} \operatorname{Cl} A_{[\gamma]}$$

Доказательство. Включения $\operatorname{Conv} \mathcal{Z}_{[\gamma]} \subseteq \operatorname{Conv} Z_{[\gamma]} \subseteq \operatorname{Conv} \operatorname{Cl} A_{[\gamma]}$ прямо следуют из включений $\mathcal{Z}_{[\gamma]} \subseteq Z_{[\gamma]} \subseteq \operatorname{Cl} A_{[\gamma]}$, которые появлялись в утверждении 8 и определении 12. Хотим доказать включение $\operatorname{Conv} \operatorname{Cl} A_{[\gamma]} \subseteq \operatorname{Conv} \mathcal{Z}_{[\gamma]}$ с помощью леммы 3. Множества $\operatorname{Conv} \operatorname{Cl} A_{[\gamma]}$ и $\operatorname{Conv} \mathcal{Z}_{[\gamma]}$ удовлетворяют первому условию леммы, согласно утверждению 6 и включению $\operatorname{Conv} \operatorname{Cl} A_{[\gamma]} \subseteq \operatorname{Conv} \mathcal{Z}_{[\gamma]}$. Осталось проверить второе условие:

$$r(l_{\kappa,\lambda}, \operatorname{Conv} \operatorname{Cl} A_{[\gamma]}) = \sqrt{\kappa^2 + \lambda^2} \mathbb{Z}_{\kappa,\lambda}([\gamma]) = \frac{\sqrt{\kappa^2 + \lambda^2}}{2\pi} \inf_{\gamma \in [\gamma]} \kappa L(\gamma) + \lambda K_g(\gamma) =$$

Из замечания 9 следует, что такой инфимум достигается на кривых, реализованных как (p, a)-замыкание некоторой косы. Кривизна (p, a)-замыкания сколь угодно близка к $2\pi p$, а длина к $2\pi a$, поэтому

$$= \frac{\sqrt{\kappa^2 + \lambda^2}}{2\pi} \inf_{(p,a) \in \mathcal{Z}_{[\gamma]}} 2\pi \kappa p + 2\pi \lambda a = \sqrt{\kappa^2 + \lambda^2} \inf_{(p,a) \in \mathcal{Z}_{[\gamma]}} \kappa p + \lambda a = r(l_{\kappa,\lambda}, \mathcal{Z}_{[\gamma]}) = r(l_{\kappa,\lambda}, \operatorname{Conv} \mathcal{Z}_{[\gamma]})$$

6 Дополнения.

6.1 Строгая монотонность диаграмм.

Утверждение 11. Для диаграммы $\mathcal{Z}_{\mathcal{K}}$ узла \mathcal{K} выполняется следующее свойство:

$$(p,a) \in \mathcal{Z}_{\mathcal{K}} \Longrightarrow (p+1,a-1) \in \mathcal{Z}_{\mathcal{K}}$$

Доказательство. Пусть *В* это коса, (p, a)—замыкание которой это это \mathcal{K} . Добавим к *В* тривиальную нить на последнее место и замкнем полученную косу как рисунке 12.

Рис. 12: Строгая монотонность диаграмм.

6.2 Аддитивность.

На число нитей и на число мостов можно смотреть как на способ градуировать узлы по связному суммированию. То есть, для любых узлов \mathcal{K}_1 , \mathcal{K}_2 выполняется аддитивность:

bridge index $(\mathcal{K}_1 \ \sharp \ \mathcal{K}_2) =$ bridge index $(\mathcal{K}_1) +$ bridge index $(\mathcal{K}_2) - 1$

braid index $(\mathcal{K}_1 \ \sharp \ \mathcal{K}_2) =$ braid index $(\mathcal{K}_1) +$ braid index $(\mathcal{K}_2) - 1$

Я не знаю, верна ли аддитивность в каком-нибудь виде для какого-нибудь из инвариантов *Z*, *Z*, *A*. Было бы интересно узнать ответ на этот вопрос.

7 Примеры

7.1 Узлы, у которых число нитей и число мостов совпадают.

Утверждение 12. Пусть у узла Ж совпадают число мостов и число нитей

bridge index \mathcal{K} = braid index \mathcal{K} = n

тогда $\mathcal{Z}_{\mathcal{K}} = \{(a, b) : a + b \ge n\}.$

Доказательство. Применим утверждение 11 к точке $(0, n) \in \mathcal{Z}_{\mathcal{K}}$ несколько раз и получим, что диагональ $\{(a, n - a) | a \leq n\}$ лежит в $(0, n) \in \mathcal{Z}_{\mathcal{K}}$. Тогда, из утверждения 6 следует, что все что над диагональю, то есть $\{(a, b) : a+b \geq n\}$ лежит в $\mathcal{Z}_{\mathcal{K}}$. Осталось понять, что ничего лишнего там не лежит. Пусть для $n - x \geq k \geq 0$ точка (x, n - x - k), которая находится под диагональю, попала в множество $\mathcal{Z}_{\mathcal{K}}$. Тогда, применив к этой точке утверждение 11 несколько раз, получаем, что $(n - k, 0) \in \mathcal{Z}_{\mathcal{K}}$. Это означает, что число мостов узла K не превосходит n - k, а значит k = 0 и точка (x, n - x - k) лежит на диагонали.

Класс узлов *L*, у которых совпадают число мостов и число нитей обладает следующими свойствами:

1. В *L* лежат все торические узлы. Это следует из того, что для торического узла (*p*, *q*)

braid index $(p,q) = \min\{p,q\} = braid index(p,q)$

Эти два равенства написаны в работе [Sch05] и в книге [Cro64] – Предложение 10.5.2 на странице 255.

- 2. Класс *L* замкнут относительно связного суммирования, потому что число нитей [BM90] и число мостов [Sch91] аддитивны. Кроме того, он замкнут относительно каблирования [WIL92], потому что при каблировании торическим узлом *K*′ число мостов умножается на число мостовузла *K*, а число нитей на число нитей [WIL92]. Таким образом операции свзяного суммирования и каблирования подчиняются градуировке числом нитей или числом мостов, которые совпадают.
- 3. Если взять два простых узла из класса *L*, то их связная сумма перестанет быть простой, при этом после каблирования нетривиальным торическим узлом любой узел снова превратится в простой.

Замечание 10. На самом деле всеми этими свойствами обладает и просто класс всех узлов градуированный числом мостов или числом нитей, которые в данном случае не совпадают.

7.2 Двухмостовые узлы.

Любой двухмостовой узел можно представить [Каw90] в виде как на рисунке 13.

Рис. 13: Вид, к которому можно привести двухмостовой узел.

Утверждение 13. Пусть Q(m, n) = {(m + k, n + l)| $k, l \in \mathbb{N}_0$ } для $m, n \in \mathbb{N}$. Тогда диаграмма двухмостового узла $\mathcal{Z}_{\mathcal{K}}$ с числом нитей a выглядит следующим образом:

$$\mathcal{Z}_{\mathcal{K}} = Q(0, a) \cup Q(1, 1) \cup Q(2, 0)$$

Рис. 14: Диаграмма $\mathcal{Z}_{\mathcal{K}}$ обозначена на левой картинке фиолетовыми крестиками. Вместо $\mathcal{Z}_{\mathcal{K}}$ можно рассматривать дополнение $\mathcal{Z}_{\mathcal{K}}$, обозначенное красными крестиками. На правой картинке нарисованы все клетки, у которых в левом нижнем углу стоит красный крестик. Для удобства можно рисовать $\mathcal{Z}_{\mathcal{K}}$ в виде как на правой картинке.

Доказательство. Точки (1, 1) лежит в $\mathcal{Z}_{\mathcal{K}}$, что прямо следует из представления на рисунке 13. Точки (0, *a*) и (2, 0) лежат в $\mathcal{Z}_{\mathcal{K}}$ потому что 2 это число мостов, и *а* это число нитей. Тогда из утверждения 6 следует, что все фиолетовые точки на картинке лежат в $\mathcal{Z}_{\mathcal{K}}$. Осталось понять, что все красные не лежат. Действительно, все красные точки лежат на осях *p* и *a*. Если бы точка на оси *a* оказалась фиолетовой и при этом ниже точки (0, *a*) это бы означало, что *a* не число нитей. Аналогично с красными точками на оси *p*.

Кроме того, для любого *n* > 1 существует двухмостовой узел с числом нитей *n* [MUR91].

Следствие 3. Для любой пары натуральных чисел $2 \le p \le a$ найдется узел \mathcal{K} , такой что

bridge index $\mathcal{K} = p$ braid index $\mathcal{K} = a$

Доказательство. У торического узла число мостов равно числу нитей. Возьмем торический узел \mathcal{T} с числом нитей p - 1 и возьмем его связную сумму с двухмостовым узлом \mathcal{K} с числом нитей a - p + 2. Проверим что их сумма равна тому, чему надо:

bridge index $(\mathcal{F} \sharp \mathcal{K})$ = bridge index \mathcal{F} + bridge index $\mathcal{K} - 1 = (p - 1) + 2 - 1 = p$ braid index $(\mathcal{F} \sharp \mathcal{K})$ = braid index \mathcal{F} + braid index $\mathcal{K} - 1 = (p - 1) + (a - p + 2) - 1 = a$

Замечание 11. Из построенных инвариантов можно восстанавливать число нитей и число мостов. Я не знаю, различают ли эти инварианты больше, чем пара (число мостов, число нитей). Если различают больше, то здорово – получился сильный инвариант. Если нет, то это тоже может быть хорошо, потому что чтобы узнать диаграмму \mathcal{Z}_K узла K достаточно найти торический узел \mathcal{T} и двухмостовой узел \mathcal{K} , такие что число нитей и число мостов у узлов K и \mathcal{K} $\mathcal{I}\mathcal{T}$ совпадали, как в следствии 3, и посчитать диаграмму $\mathcal{Z}_{\mathcal{K}$, что, возможно, проще, потому что торические и двухмостовые узлы достаточно просто описываются.

Список литературы

- [Mil50] John Willard Milnor. "On the Total Curvature of Knots". B: *Annals of Mathematics* (1950).
- [II23] James Waddell Alexander II. "A Lemma on Systems of Knotted Curves". B: *Proc Natl Acad Sci U S A*. (1923).
- [San53] Santalo. Introduction to Integral Geometry. 1953.
- [Teu86] Eberhard Teufel. ON THE TOTAL ABSOLUTE CURVATURE OF CLOSED CURVES IN SPHERES. 1986.
- [Sch05] Jennifer Schultens. *Bridge Numbers of Torus Knots*. 2005.
- [Cro64] Peter R. Cromwell. *Knots and Links*. 1964.
- [BM90] J. S. Birman и W. Menasco. Studying links via closed braids IV: Composite links and split links, Invent. Math. 102 (1990), 115–139. MR1069243 (92g:57010a). 1990.
- [Sch91] Jennifer Schultens. ADDITIVITY OF BRIDGE NUMBERS OF KNOTS. 1991.
- [WIL92] R. F. WILLIAMS. THE BRAID INDEX OF GENERALIZED CABLES, PACIFIC JOURNAL OF MATHEMATICS Vol. 155, No. 2. 1992.
- [Kaw90] Akio Kawauchi. A Survey of Knot Theory. 1990.
- [MUR91] KUNIO MURASUGI. ON THE BRAID INDEX OF ALTERNATING LINKS. 1991.