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1 Introduction

Computational geometry studies computations on discrete geometric objects such as arrange-
ments, diagrams, foldings and drawings. In particular one of its main interests is to design algorithms
to construct such objects and data structures that store them efficiently.

The most crucial and defining concept applied in all those constructions is distance: whatever
is studied, there is always some underlying metric that describes the object in question and defines
its properties. It can be just the Euclidean metric, or some polyhedral metric, or any other metric
that corresponds to a surface or a folding of a polygon.

In this thesis, we consider two different types of a distance metric. The Euclidean metric in R2

gives rise to the ordinary Voronoi diagrams, and we develop an algorithm that allows for fast update
of a Voronoi diagram that is stored explicitly. We also consider polyhedral metrics of the spaces
induced by gluing 𝑛 congruent squares edge to edge, and we propose a way to classify all such spaces
in time polynomial in 𝑛.

Even though there are many well-known algorithms that construct the Voronoi diagram for
a given family of sites [9], the problem of making a Voronoi diagram dynamic, i. e. implementing
changes to it when a new point site is inserted, has only drawn attention in the implicit case:
maintaining implicit Voronoi diagram can be done in very little time [11, 12, 20]. Maintaining a
Voronoi diagram explicitly has not yet been considered.

The worst one can expect is that when a new site is inserted, the number of updates in a
Voronoi diagram (i. e. vertices and edges that change) is linear. This can happen for every insertion
if we consider an embedded diagram and store the coordinates of all the vertices.

The situation improves if we consider the graph of the Voronoi diagram that is subject to com-
binatorial changes: no coordinates matter, it is just deletion or addition of edges that is performed.
In Allen et al. [2] it was proved that when a new site is inserted to a Voronoi diagram, only 𝑂(

√
𝑛)

combinatorial changes happen to the graph of the diagram. This opened a possibility to find a
sublinear algorithm that finds and implements combinatorial changes in an explicitly stored graph
of the Voronoi diagram.

In this thesis we present the first algorithm sublinear in 𝑛 (which is the number of sites) that
does exactly that. The algorithm has running time of �̃�(𝑛3/4), which still does not achieve the
𝑂(

√
𝑛) bound on the number of changes, that is why the quest for a better algorithm is still open.

One can try to employ the well-known «divide and conquer» strategy to find such an algorithm:
divide all the sites into two halves by a line and update only the half of the diagram that receives the
new site. We show that adding a line as a site to the diagram still allows for a 𝑂(

√
𝑛) upper bound

on the number of combinatorial changes per insertion. This means that, theoretically, «divide and
conquer» is a desirable approach.

Another type of metrics and distances that can be often seen in computational geometry is
polyhedral metrics and geodesic distances. A question concerning them that has been standing for
a long time already is the Alexandrov’s problem of finding a convex polyhedron corresponding to a
given polyhedral metric. There is almost no hope of solving this problem exactly for an arbitrary
polyhedral metric, that is why several special cases are considered in literature [6, 8, 15, 16, 17].

A result we achieved in this thesis is a significant advance for an important special case: we
present a polynomial-time algorithm to classify all the edge-to-edge gluing of at most 𝑛 squares. It
is a development of my bachelor’s thesis making use of its results and an answer to a natural open
question.
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Our results open new directions for subsequent studies: it rises new questions that can be
asked — like finding more efficient algorithms or enumerating gluings of other polygons, and suggests
new possible methods that can be used to answer them.

This thesis is based in part on published articles and given talks: the part concerning sublinear
explicit incremental planar Voronoi diagrams has been presented at JCDCG3 [4] and published in
Journal for Information Processing [5], and the part concerning gluings of squares has been accepted
for SoCG Young Researchers Forum 2021 [22]. The latter is a development of the bachelor’s thesis
of the same author [26].

The rest of this section contains the main definitions and results that will be necessary for the
main body of this thesis.

1.1 Voronoi diagrams

We begin with standard definitions related to Voronoi diagrams and their basic properties.
A detailed treatment of Voronoi diagrams and their applications can be found in [10]. Let 𝑆 :=

{𝑠1, 𝑠2, . . . , 𝑠𝑁} be a set of 𝑁 distinct points in R2; these points are called sites. Let dist(·, ·) denote
the Euclidean distance between two points in R2. We assume that the sites in 𝑆 are in general
position, that is, no four sites lie on a common circle.

Definition 1. The Voronoi diagram of 𝑆 is the subdivision of R2 into 𝑁 cells, called Voronoi cells,
one cell for each site in 𝑆, such that a point 𝑞 lies in the Voronoi cell of a site 𝑠𝑖 if and only if
dist(𝑞, 𝑠𝑖) < dist(𝑞, 𝑠𝑗) for each 𝑠𝑗 ∈ 𝑆 with 𝑗 ̸= 𝑖.

Let 𝑓𝑖 denote the Voronoi cell of a site 𝑠𝑖. Edges of the Voronoi diagram, called Voronoi edges,
are portions of bisectors between two sites which are the common boundary of the corresponding
Voronoi cells. Voronoi vertices are points where at least three Voronoi cells meet. The Voronoi
circle of a Voronoi vertex 𝑣 is the circle passing through the sites whose cells are incident to 𝑣, see
Figure 1a. Vertex 𝑣 is the center of its Voronoi circle.

v

(a)

b

v

(b)

Figure 1: A Voronoi diagram and (a) a Voronoi circle of vertex 𝑣 and (b) paw 𝑣 of Voronoi cell 𝑓 .

Since the sites are in the general position, each Voronoi vertex has degree three. Each Voronoi
edge is either a segment or a ray and the graph of the Voronoi diagram formed by its edges and
vertices is planar and connected.

1.1.1 Combinatorial Changes to the Voronoi Diagram and the Flarb Operation

We now overview the definitions and results from Allen et al. [2] that we need to present our
approach. In order to prove the Θ(𝑁

1
2 ) bound on the number of combinatorial changes caused by
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insertion of a site, a graph operation called flarb is introduced.

Let 𝐺 be a planar 3-regular graph embedded in R2 without edge crossings (edges are not
necessarily straight-line). Let 𝒞 be a simple closed Jordan curve in R2.

Definition 2. Curve 𝒞 is called flarbable for 𝐺 if:

• the graph induced by vertices inside the interior of 𝒞 is connected,
• 𝒞 intersects each edge of 𝐺 either at a single point or not at all,
• 𝒞 passes through no vertex of 𝐺, and
• the intersection of 𝒞 with each face of 𝐺 is path-connected.

For example, curve 𝒞 in Figure 2a is not flarbable since the intersection between its interior
(shaded green) and the highlighted face (red) consists of two disconnected parts. In Figure 2b curve
𝒞′ is flarbable.

f

C

(a)

f

g

C'

(b) (c)

Figure 2: Examples of (a) not flarbable curve (b) flarbable curve; (c) result of applying the flarb
operation for curve 𝒞′.

Given a graph 𝐺 and a curve 𝒞 flarbable for 𝐺, the flarb operation is, informally, removing part
of 𝐺 that is inside 𝒞 and replacing it with 𝒞. Formally, the flarb operation for 𝐺 and 𝒞 is defined as
follows (see Figure 2b, Figure 2c):

• For each edge 𝑒𝑖 ∈ 𝐺 that intersects 𝒞 let 𝑢𝑖 be its vertex lying inside 𝒞 and 𝑣𝑖 its vertex
outside 𝒞. Create a new vertex 𝑤𝑖 = 𝒞 ∩ 𝑒𝑖 and connect it to 𝑣𝑖 along 𝑒𝑖.

• Connect consecutive vertices 𝑤𝑖 along 𝒞.
• Delete all the vertices and edges inside 𝒞.

Let 𝒢(𝐺, 𝒞) denote the graph obtained by applying the flarb operation to graph 𝐺 and curve 𝒞.

Lemma 1. The following holds for graph 𝒢(𝐺, 𝒞):

(a) 𝒢(𝐺, 𝒞) has at most two more vertices than 𝐺 does;
(b) 𝒢(𝐺, 𝒞) is a 3-regular planar graph;
(c) 𝒢(𝐺, 𝒞) has at most one more face than 𝐺 does.

Proof. Items (a) and (b) are proved in [2], Lemma 2.2. To prove (c) note that there is one new
face bounded by the cycle added along 𝒞 while performing the flarb. All the other faces of 𝐺 are
either deleted, left intact, or cropped by 𝒞; these operations obviously do not increase the number
of faces.

Theorem 2 ([2]). Let 𝐺 be a graph of the Voronoi diagram of a set of 𝑁 − 1 sites 𝑠1 . . . 𝑠𝑁−1. For
any new site 𝑠𝑁 there exists a flarbable curve 𝒞 such that the graph of the Voronoi diagram of sites
𝑠1 . . . 𝑠𝑁 is 𝒢(𝐺, 𝒞).
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Figure 3: Edges 𝑛*
1 and 𝑛*

2 can be obtained without any links or cuts.

1.1.2 Cost of the Flarb

We want to analyze the number of structural changes that a graph undergoes when we apply
the flarb operation to it. There are two basic combinatorial operations on graphs:

• Link is the addition of an edge between two non-adjacent vertices.
• Cut is the removal of an existing edge.

Other combinatorial operations, for example insertion of vertex of degree 2, are assumed to
have no cost.

Definition 3. cost(𝐺, 𝒞) is the minimum number of links and cuts needed to transform 𝐺 into
𝒢(𝐺, 𝒞).

Note that sometimes there are less combinatorial changes needed than the number of edges
intersected by 𝒞. Consider edges 𝑒1, 𝑒2 of 𝐺 crossed consecutively by 𝒞 and edge 𝑛 adjacent to them
that reappears in 𝒢(𝐺, 𝒞) as a part 𝑛* of 𝒞. Then 𝑛* can be obtained without any links or cuts by
lifting 𝑛 along 𝑒1 and 𝑒2 until it coincides with 𝑛* or (which is the same) shrinking 𝑒1 and 𝑒2 until
their endpoints coincide with their intersections with 𝒞 (see Figure 3). We will call it preserving
operation.

Theorem 3 ([2]). For a flarbable curve 𝒞, it holds that

cost(𝐺, 𝒞) ≤ 12|𝒮(𝐺, 𝒞)| + 3|ℬ(𝐺, 𝒞)| + 𝑂(1).

Where

• |ℬ(𝐺, 𝒞)| is the number of faces of 𝐺 wholly contained inside 𝒞 (𝑔 is such a face on Figure 2b).
• |𝒮(𝐺, 𝒞)| is the number of shrinking faces — i.e., the faces whose number of edges decreases

when flarb operation is applied (face 𝑓 is shrinking on Figure 2b–2c).

The following upper bound can be used to evaluate the number of combinatorial changes needed
to update the graph of a Voronoi diagram when a new site is inserted.

Theorem 4 ([2]). Consider one insertion of a new site to a Voronoi diagram 𝑉.

• The number of cells of 𝑉 undergoing combinatorial changes is 𝑂(𝑁
1
2 ) amortized in a sequence

of insertions;
• There are a constant number of combinatorial changes per cell;
• The cells of 𝑉 with combinatorial changes form a connected region.

Further in this thesis by a change in cell we always mean a combinatorial change, that is a link
or a cut.
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1.2 The coin problem

A detailed introduction into amortized analysis, including the definition of potential function
and examples of estimates of it is given in [14]. Here we focus on one classical result concerning
amortized analysis. It is rather folklore and is given as an exercise in several university courses; we
show it here to establish its formal proof, because it is crucial for understanding of what we prove
further.

Given 𝑛 coins stored in 𝑛 piles (some piles may be empty). A series of operations is executed
on these piles. One operation consists of selecting a pile and distributing all its coins equally among
other piles, one coin per pile. Piles that receive a coin and piles that do not can be chosen freely.
An example of such operations can be seen in Figure 4. We assume the number of piles is equal to
the number of coins so that these operations can be executed on any configuration of coins.

Figure 4: Two consecutive operations executed on the piles of coins: first, the coins of the leftmost
(red) pile are distributed, afterwards the coins of the central (green) pile are distributed

Clearly during one operation at most 𝑛 coins are distributed. However, during 𝑘 consecutive
operations the average number of coins disrtibuted per operation is 𝑜(𝑛). Informally, each operation
makes the heights of the piles more uniform, making it impossible to have a large pile to distribute
after each of the operations. This observation is formalized by the following theorem:

Theorem 5. For 𝑘 ≥
√
𝑛, if 𝑘 consecutive operations are executed, then the average number of coins

distributed per operation is at most 3
√
𝑛.

Proof. Denote piles by 𝑝1, . . . , 𝑝𝑛. We introduce a potential function that describes the configuration
of piles and helps estimate the number of coins distributed during an operation executed on a pile:

Φ =
𝑛∑︁

𝑗=1

min
{︀
size(𝑝𝑗),

√
𝑛
}︀
.

Note that Φ is always at most 𝑛, since 𝑛 is the sum of actual sizes of all the piles. Denote by
𝑇𝑖 the number of coins distributed during the 𝑖-th operation, and by Φ𝑖 the value of the potential
after the 𝑖-th operation. Therefore, Φ0 and Φ𝑘 are the values of the potential before and after the
execution of all the operations respectively.

We will now estimate 𝑇𝑖 + Φ𝑖−1 − Φ𝑖. To do so, note that the pile that is being distributed
(without loss of generality, 𝑝1) decreases in size to zero, and several other piles increase in size by
1. Distributing 𝑝1 makes Φ decrease by at most

√
𝑛, regardless of size(𝑝1) being greater or less

than
√
𝑛, by definition of Φ. Figure 5 illustrates it: a change in size of a pile does not affect the

potential if the size of the pile is greater than
√
𝑛.
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√
𝑛

Figure 5: A removal or an addition of a coin only affects a pile if it has less than
√
𝑛 coins

Several other piles receive one coin, the number of such piles is equal to 𝑇𝑖. However, some
of these piles may not contribute to the change in the potential, again because their size is greater
than

√
𝑛. Note that the number of such large piles is at most

√
𝑛. Thus, when the coins are being

put into piles, there is at least 𝑇𝑖 −
√
𝑛 increase in potential. Combining these observations,

𝑇𝑖 + Φ𝑖−1 − Φ𝑖 ≤ 𝑇𝑖 +
√
𝑛−

(︀
𝑇𝑖 −

√
𝑛
)︀

= 2
√
𝑛.

We can now sum up 𝑇𝑖 + Φ𝑖−1 − Φ𝑖 for each of the consecutive operations. Note that Φ0 − Φ𝑘

is between −𝑛 and 𝑛.

𝑘∑︁
𝑖=1

(𝑇𝑖 + Φ𝑖−1 − Φ𝑖) =
𝑘∑︁

𝑖=1

𝑇𝑖 + Φ0 − Φ𝑘 ≤ 2
√
𝑛 · 𝑘 + 𝑛.

This means average 𝑇𝑖 per operation is at most 2
√
𝑛 + 𝑛

𝑘 = 3
√
𝑛.

Informally, this theorem means that if during an operation one pile loses many coins, and many
distinct piles get at most one coin each, there can only be so much of such operations. We will rely
on this observation further on.

1.3 Gluings of squares

Given a collection of 2D polygons, a gluing describes a closed surface by specifying how to glue
each edge of these polygons onto another edge. We consider only proper gluings, where only segments
of equal lengths can be glued together. The following theorem is crucial in that it establishes the
connection between gluings and convex polyhedra:

Theorem 6 (Alexandrov, 1950, [1]). If a gluing is homeomorphic to a sphere and the sum of angles
at each of its vertices is at most 360∘ then there is a single convex polyhedron 𝑃 that can be glued
from this net.

Note that the polygons of the gluing may be folded in order to glue the polyhedron.

There is no known exact algorithm for reconstructing the 3D polyhedron. It is known that
the problem of reconstructing the polyhedron can be reduced to a system of partial differential
equations [19]. Still this method does not produce the exact answer, and there is no known algorithm
for it that works faster than pseudopolynomial in 𝑛, 𝑛 being the number of vertices. Sometimes the
coordinates of the polyhedron, even if its general shape is known, can not be expressed as closed
formulas [18].

Enumerating all possible valid gluings is also not an easy task. Demaine et al. [15] showed that
for any even 𝑛 there is a polygon with 𝑛 vertices that has 2Ω(𝑛) gluings: that is a star with two
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additional vertices on midpoints of edges half perimeter from one another. This is why it is also
important to estimate the number of gluings of the collection of polygons under consideration.

Complete enumerations of gluings and the resulting polyhedra are only known for very specific
cases such as the Latin cross [16], a single regular convex polygon [17], and a collection of regular
pentagons [7, 8] glued edge-to-edge.

The case when the polygons to be glued together are all congruent regular 𝑘-gons, and the
gluing is edge-to-edge, was studied recently for 𝑘 ≥ 6 [6]. The aim of Section 4 is to study the case
of 𝑘 = 4: namely, to enumerate all valid gluings of squares and classify them up to isomorphism.

1.3.1 Chen—Han algorithm for gluings of squares

It is shown [17] that polyhedra are isomorphic if the lengths of shortest geodesic paths between
their vertices of nonzero curvature coincide. Thus, the problem of finding out if two gluings are
isomorphic can be reduced to calculating the pairwise geodesic distances between vertices of a gluing.
Algorithm we are using for this in Section 4.1 is the Chen—Han algorithm [13].

The idea of the algorithm is to project a cone of all possible paths from the source onto the
polygons of the gluing. For 𝑛 faces, this algorithm runs in 𝑂(𝑛2) time. To apply it for arbitrary
edge-to-edge gluings of squares, it has to be proven that the running time is preserved. We make
use of a Lemma that was proved in the Bachelor’s thesis.

Lemma 7 ([22, 26]). If 𝑇 is a square of the gluing and 𝜋 is a geodesic shortest path between two
vertices of the gluing then the intersection between 𝜋 and 𝑇 is of at most 5 segments.

This lemma implies the following theorem.

Theorem 8. The isomorphism between two edge-to-edge gluings of at most 𝑛 squares can be tested
in 𝑂(𝑛2) time.

1.4 Main results

In this thesis we:

1) Present a sublinear algorithm that handles insertion of a new point site to an explicitly stored
graph of the Voronoi diagram: Theorem 11;

2) Prove the 𝑂(
√
𝑛) bound on the number of combinatorial changes in the boundary of the cell

of a single straight line in a Voronoi diagram: Theorem 15;

3) Prove upper (Theorem 22) and lower (Theorems 23, 24) bounds on the number of edge-to-edge
gluings of at most 𝑛 congruent squares.

2 Sublinear algorithm for incremental Voronoi diagrams

In this section we present our algorithm that handles insertion of a new site to the Voronoi
diagram of several point sites. We start by describing the data structure in which the diagram is
stored, and then proceed to implementing the changes in this data structure.

We will need three more definitions specific to our data structure.

Definition 4. The size of a Voronoi cell is the number of Voronoi edges constituting its boundary.
We denote the size of cell 𝑓 by |𝑓 |.

9



Figure 6: 𝑏 is a big cell; each of data structures 𝑆1 . . . 𝑆4 is associated with a consecutive range of
its paws and stores Voronoi circles of the relevant ones.

Definition 5. A Voronoi cell of a Voronoi diagram with 𝑁 sites is called a big cell if it has size
more than 𝑁

1
4 . Otherwise it is called small.

Definition 6. The paws of Voronoi cell 𝑓 are the Voronoi vertices that are connected to the boundary
of 𝑓 by an edge and are not themselves on the boundary of 𝑓 , see Figure 1b. A paw is called relevant
if it is not incident to a big cell.

2.1 Description of Data Structure

Our data structure consists of the following parts.

• The graph 𝐺𝑁 of the Voronoi diagram represented by its adjacency list: for each Voronoi vertex
𝑣 we store the list of all Voronoi vertices connected to 𝑣. Since the sites are in the general
position, each list has length 3, therefore we can find and replace its elements in constant time.
Thus any link or cut can be performed in constant time as well as insertion or deletion of a
vertex of degree 2.

• For each vertex 𝑣 its data 𝐷𝑣 is stored. It is a list of the three sites that define the Voronoi
circle of 𝑣, that is, the sites whose cells are incident to 𝑣.

• A dynamic nearest neighbor structure (DNN) [12] for the sites which supports insertion and
deletion of sites and nearest neighbor queries in �̃�(1) amortized time.

• The graph Γ𝑁 of big cells which is simply the dual graph to the subgraph of 𝐺𝑁 formed by
big cells. Vertices of Γ𝑁 are big cells themselves and edges connect vertices corresponding to
pairs of big cells that are adjacent. Graph Γ𝑁 has 𝑂(𝑁

3
4 ) edges, since it is a planar graph

of at most 𝑁
3
4 vertices. For each pair of adjacent big cells 𝑏1, 𝑏2 we also store two Voronoi

vertices they share. We store graph Γ𝑁 as an adjacency list, where for each vertex, its edges
are stored in a binary search tree ordered counterclockwise around the corresponding big cell.
The vertices of Γ𝑁 are stored in a binary search tree. This allows us to access any edge of Γ𝑁

in �̃�(1) time.
• For each big cell 𝑏𝑖 store a circular linked list of Θ(|𝑏𝑖| /𝑁

1
4 ) data structures each associated

with a consecutive range of 𝑂(𝑁
1
4 ) paws of 𝐵𝑖, see Figure 6. Each structure stores the Voronoi

circles of the relevant paws of 𝑏𝑖 (recall that a paw is relevant if it is not incident to a big cell,
see Definition 6).
The collections of circles are stored using dynamic circle-reporting structures (DCRs) that are
variants of the DNN structure constructed in [2]. DCRs support insertion and deletion of
circles in time �̃�(1), and given a query point, report all 𝑘 circles containing the point in time
�̃�(𝑘).
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• For each big cell 𝑏𝑖 a yard tree 𝑇𝑏𝑖 supporting the following operations in �̃�(1) time:
– for a specified continuous range 𝑣1 . . . 𝑣𝑚 of vertices of 𝑏𝑖 updating 𝐷𝑣1 . . . 𝐷𝑣𝑚 , changing

𝑠𝑖 to a given site 𝑠𝑗 .
– removing a continuous range of vertices from 𝑏𝑖 and create a new cell with these vertices

preserving their order (split),
– merging the trees that correspond to big cells 𝑏𝑖 and 𝑏𝑗 (when two cells are merged their

common edge is deleted), so that the same operations can apply to the resulting tree.
One can use link-cut trees [25] or a collection of red-black trees with two-way pointers for this
purpose, see Cormen et al. [14] for details.

• For each cell 𝑓𝑖 we need to store its size |𝑓𝑖|.

2.2 Insertion of a Site

We aim to implement the update of graph 𝐺𝑁−1 to become 𝐺𝑁 when a new site 𝑠𝑁 is added
to the Voronoi diagram. Our goal is to quickly locate the affected cells that need combinatorial
changes, and to avoid processing the other cells. When the cells that need changes are located, we
implement these changes using the techniques of [2].

Let the cell of the new site 𝑠𝑁 be called 𝑓𝑁 . We denote the boundary of 𝑓𝑁 by 𝒞𝑁 . According
to Theorem 2, what we are about to perform is the flarb operation on graph 𝐺𝑁−1 of the current
Voronoi diagram and curve 𝒞𝑁 .

We first use the DNN structure to locate one Voronoi cell, call it 𝑓dnn, that must change — the
one whose site is the closest to newly added 𝑠𝑁 . We then add 𝑠𝑁 to the DNN. Finally we create the
queue with all big cells of 𝐺𝑁−1 and cell 𝑓dnn. This whole procedure takes �̃�(1) time as the list of
all big cells is already stored.

We then remove each cell 𝑓 from the queue, process it, and add into the queue the small cells
neighboring 𝑓 with unprocessed changes. We do not have to add big cells neighboring 𝑓 as all of
them were already in the initial queue and thus will be processed. Figure 7 shows a pseudocode of
this procedure.

2.3 Recognizing Cells With Changes

Let 𝑓 be a cell with combinatorial changes. We can identify the neighboring cells of 𝑓 that
change using the following theorem:

Theorem 9 ([2]). Let 𝑔 be a cell adjacent to 𝑓 . Let 𝑣1, 𝑣2 be the vertices of 𝑔 that are paws of 𝑓 .
Cell 𝑔 needs to undergo combinatorial changes if and only if the Voronoi circle of 𝑣1 or 𝑣2 encloses
𝑠𝑁 .

See Figure 8a for an example. Cell 𝑓 is a cell with changes, 𝑛1 and 𝑛2 are its paws. The Voronoi
circle of 𝑛1 encloses the new site 𝑠𝑁 and the one of 𝑛2 does not. Therefore cells 𝑓1 and 𝑓2 need
combinatorial changes as they are incident to vertex 𝑛1, and cell 𝑓3 does not need any changes.

We now consider separately the case when cell 𝑓 is a big cell (Section 2.3.1) and the case when
it is a small cell (Section 2.3.2).

2.3.1 Cell 𝑓 is Big

We use DCRs of cell 𝑓 : they return all the relevant paws of 𝑓 whose Voronoi circles enclose
𝑠𝑁 . Small cells that are incident to these paws and are adjacent to 𝑓 need combinatorial changes
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1: Q := queue of all big cells
2: Changed := empty array of cells
3: Q.append (𝑓dnn)

4: DNN.insert(𝑠𝑁 )

5: while not Q.empty do
6: 𝑓 := Q.dequeue
7: Changed.append(𝑓)

8: if 𝑓 is big then
9: add 𝑓 ’s small neighbors that need changes

to Q using Section 2.3.1
10: else (𝑓 is small)
11: add 𝑓 ’s neighbors that need changes

to Q using Section 2.3.2
12: end if
13: end while

14: implement changes in cells in Changed
as described in Section 2.4

15: Some small cells have become big and some big have become small,
fix corresponding data structures as described in Section 2.5

Figure 7: Pseudocode describing insertion of new site 𝑠𝑁

and thus have to be added to queue Q.

Two cells are to be considered separately: those that are neighboring 𝑓 through an edge that is
crossed by 𝒞𝑁 . Denote them by 𝑓Left and 𝑓Right, see Figure 8b. If they are small, we check whether
the Voronoi circles of at most four paws of 𝑓 incident to them (call these paws 𝑝1 . . . 𝑝4) enclose 𝑠𝑁 ,
and, if yes, add the corresponding cell to the queue. To find Voronoi circles of these paws we get the
data 𝐷𝑝1 . . . 𝐷𝑝4 from the structures 𝑇𝑏𝑖 associated with big cells adjacent to 𝑓Left and 𝑓Right, which
requires �̃�(1) time.

2.3.2 Cell 𝑓 is Small

We can look at every paw 𝑛𝑖 of 𝑓 and identify those, whose Voronoi circle encloses 𝑠𝑁 . This
requires �̃�(𝑁

1
4 ) time in total. We add to Q small cells adjacent to 𝑓 that are incident to these paws

as they need changes according to Theorem 9.

2.4 Implementing Combinatorial Changes

In this section we describe how to implement combinatorial changes in a cell 𝑓 which lies in
Changed. We again consider separately the case when 𝑓 is big (Section 2.4.1) and the case when 𝑓

is small (Section 2.4.2).

2.4.1 Processing Big Cells

Processing a big cell 𝑓 consists of the following four steps:

12
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Figure 8: Identifying Voronoi cells that need changes. (a) Voronoi circle of vertex 𝑛1 encloses 𝑠𝑁 ,
and the circle of 𝑛2 does not. (b) 𝑣 is a paw of big cell 𝑓 returned by a DCR. Highlighted are the
cells that are to be added to the queue.

Updating the Vertices We update a continuous range of 𝑓 ’s vertices 𝑣1 . . . 𝑣𝑘 — we need to
change their data 𝐷𝑣1 . . . 𝐷𝑣𝑘 to indicate that these vertices are now incident to the cell of 𝑠𝑁 and
not the cell of 𝑠. This can be done in �̃�(1) time using the yard tree 𝑇𝑓 .

Updating the Graph of the Voronoi Diagram The first thing to do is a link along 𝒞𝑁 creating
two vertices: vertex 𝑣1 incident to 𝑓 , 𝑓𝑁 , 𝑓Left, and vertex 𝑣2 incident to 𝑓 , 𝑓𝑁 , 𝑓Right (see Figure 8b).
After this link the part of 𝑓 inside 𝒞𝑁 becomes a part of the new cell 𝑓𝑁 — luckily, all vertices of
this part are already updated during the previous step.

There may be some big cells adjacent to 𝑓 that are already processed, creating other parts of
the new cell. We have to join these parts together by cutting edges of 𝑓 that have portions inside
𝒞𝑁 and are incident to already processed big cells. Finding these edges in a straightforward way
could be slow as 𝑓 can have a really large number of edges inside 𝒞𝑁 and we do not have enough
time to look at each of them individually. Luckily, graph Γ𝑁−1 contains the information about edges
shared by big cells. Thus we can in �̃�(1) time find and delete edges incident to both 𝑓 and already
processed big cells inside 𝒞𝑁 . The edges shared by 𝑓 and other big cells inside 𝒞𝑁 will be deleted
when these other big cells will be processed.

Updating the Graph of Big Cells The two operations we just carried out — split of 𝑓 by the
new edge 𝑣1𝑣2 and joining of some cells that are parts of 𝑓𝑁 — can change the set of big cells and
add or cut some connections between them. However, Γ𝑁−1 can be updated accordingly in �̃�(1)

time when such an operation is executed. It can be done as follows:

While undergoing a split, vertex 𝑓 falls apart into two vertices: 𝑓 ′ and 𝑓
(𝑓)
𝑁 (the latter represents

a part of the new cell). They share newly created edge 𝑣1𝑣2 of the Voronoi diagram. Note that the
cells adjacent to 𝑓

(𝑓)
𝑁 form a continuous range of cells that were adjacent to 𝑓 .

Thus we need �̃�(1) time to cut a continuous range from the binary search tree of cells adjacent
to 𝑓 , �̃�(1) time to add a new edge between 𝑓 ′ and 𝑓

(𝑓)
𝑁 to their binary search trees and �̃�(1) time

to re-balance the binary search tree of all big cells.

Joining can be also done in �̃�(1) time. When two cells 𝑓1, 𝑓2 are joined we remove a node
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corresponding to 𝑓1 from binary search tree of 𝑓2 and vice versa, this takes �̃�(1) time. We then join
the trees of 𝑓1 and 𝑓2 also in �̃�(1) time since cells that were adjacent to 𝑓1 form a continuous range
of cells adjacent to the new one.

Fixing Data Structures There are two data structures associated with 𝑓 that have to be con-
sidered:

• 𝑇𝑓 can be updated in �̃�(1) time the same way we did with the graph of big cells.
• DCRs of relevant paws: when big cells are joined or split, most of DCR-s stay intact. The only

DCRs that need to be rebuilt are those whose range contains the endpoints of the edge that
is either cut or added. Rebuilding of a DCR takes �̃�(𝑁

1
4 ) time since at most 𝑂(𝑁

1
4 ) circles

are stored there.

2.4.2 Processing Small Cells

A small cell is different from a big cell in that we can consider every edge of it, and it will take
us �̃�(𝑁

1
4 ) time. We will implement the combinatorial changes in 𝑓 , and after this we update the

DCRs of neighboring big cells.

We can in time �̃�(𝑁
1
4 ) distinguish whether 𝑓 has one, two, or more vertices inside the new cell

(if they exist). Below we describe these three cases separately.

One Vertex Inside the New Cell See Figure 9a. Let 𝑓𝑖, 𝑓𝑘 be the cells adjacent to 𝑓 that share
an edge with 𝑓 inside 𝒞𝑁 . Let those edges be called 𝑒𝑖, 𝑒𝑘 respectively.

(a) (b)

Figure 9: Processing a cell with one vertex inside the new cell

It is certain that neither 𝑓𝑖 nor 𝑓𝑘 have been processed yet: if 𝑓𝑖 is processed then there would
be a vertex 𝑣 = 𝒞𝑁 ∩ 𝑒𝑖. Then we have to create the face in the graph that is separated from 𝑓 , 𝑓𝑖,
𝑓𝑘, bounded by 𝒞𝑁 , and is a part of the new cell 𝑓𝑁 .

To do so, we perform a link operation inside 𝑓 along 𝒞𝑁 : we create new vertices 𝑣1 on 𝑒𝑖, 𝑣2 on
𝑒𝑘 and add an edge 𝑣1𝑣2 to 𝐺𝑁−1, see Figure 9b. 𝑣1 is incident to the cells of sites 𝑠, 𝑠𝑖 and 𝑠𝑁 ; 𝑣2
is incident to the cells of 𝑠, 𝑠𝑗 and 𝑠𝑁 .

Two Vertices Inside the New Cell We check whether cells adjacent to 𝑓 that share an edge
with it inside 𝒞𝑁 have been already processed. If not (see Figure 10a), we perform a link operation
inside 𝑓 similarly to the previous paragraph, see Figure 10b.

Otherwise let us denote three faces sharing an edge with cell 𝑓 inside curve 𝒞𝑁 by 𝑓1, 𝑓2, 𝑓3,
see Figure 11a.
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(a) (b)

Figure 10: Processing a cell with two vertices inside the new cell when no surrounding cells are yet
processed

(a) (b)

Figure 11: Processing a cell with two vertices inside the new cell when there are processed neighboring
cells — no structural changes are needed

Lemma 10. It is only 𝑓2 that can have been already processed.

Proof. Suppose 𝑓1 is processed. It must then have an edge along 𝒞𝑁 . It implies that there is a vertex
where 𝒞𝑁 meets the common edge of 𝑓1 and 𝑓 . This vertex becomes the third vertex of 𝑓 inside 𝒞𝑁 .
However, 𝑓 has only two such vertices, which is a contradiction.

If 𝑓2 is processed and is part of 𝑓𝑁 then the data 𝐷𝑣1 , 𝐷𝑣2 of its vertices was updated when we
were processing it. Therefore 𝑓 does not need to undergo any combinatorial changes, the common
edge of 𝑓 and 𝑓𝑁 can be obtained by preserving operation which was described in Section 1.1.1, see
Figure 3. Thus no links and cuts are required, see Figure 11b. This completes implementing changes
in 𝑓 .

More Vertices Inside the New Cell Again we check whether any of the cells adjacent to 𝑓

have been processed already. If not, it is enough to perform one link creating two new vertices 𝑣1,
𝑣2 and to update the data 𝐷𝑣𝑗 of all the vertices of cell 𝑓 between 𝑣1 and 𝑣2: now they are incident
to the cell of 𝑠𝑁 , see Figure 12a.

If some cells sharing an edge with 𝑓 inside 𝒞𝑁 are already processed and represent a part of
new cell, then for each processed cell 𝑓 ′ adjacent to 𝑓 we also perform a cut removing their common
edge 𝑒 and then remove vertices incident to this edge that now have degree 2, see Figure 12b.

Updating the DCRs of Big Neighbors of 𝑓 The last step is that for every vertex 𝑣 of 𝑓 whose
list of adjacent cells has changed during update of 𝐺𝑁−1 we find all big cells for which 𝑣 is a paw
(there are at most three such cells, since 𝑣 has degree 3), recalculate the Voronoi circle of 𝑣, and
update Voronoi circle of 𝑣 in DCRs of those cells which takes �̃�(1) time.
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(a) (b)

Figure 12: Processing a cell with three or more vertices inside the new cell. (a) No adjacent faces
have been processed yet (b) Adjacent face 𝑓 ′ has been processed

2.5 When Small Cells Become Big

When the size of a cell crosses the threshold of 𝑁
1
4 , it can be easily identified since we store

all the sizes. If a big cell 𝑏 is split into a number of cells and one of them is small, or if 𝑁 becomes
greater than |𝑏|4, we delete all the structures associated with it, including DCRs and the structure
𝑇𝑓 . We also remove from Γ𝑁−1 the vertex corresponding to 𝑏.

The other way around, a new big cell can appear in the diagram when:

• the new cell 𝑓𝑁 intersects many of the old cells and has more than 𝑁
1
4 vertices, or

• a cell 𝑓𝑘 with 𝑁
1
4 − 1 vertices has one vertex inside 𝑓𝑁 and gets one additional vertex while

being processed, see Figure 9.

New cell 𝑓𝑁 inherits the portion of its DCRs from its parts that previously were parts of big
cells. The number of circles of paws of previously small cells that need to be added to DCRs can be
bounded from above by the size of a small cell times the number of cells that undergo changes —
that is,

𝑁
1
2 ·𝑁

1
4 = 𝑁

3
4 .

The structure 𝑇𝑓𝑁 is inherited in part by 𝑓𝑁 from big cells that intersect curve 𝒞𝑁 . The
number of vertices that have to be added to 𝑇𝑓𝑁 after that is bounded from above by the number
of combinatorial changes in current insertion.

The cell 𝑓𝑘 still has size |𝑓𝑘| ≤ 2𝑁
1
4 , so yard tree 𝑇𝑓𝑘 can be built in �̃�(𝑁

1
4 ): it only takes time

polylogarithmic in the size of the cell to add each vertex.

2.6 Correctness and Time Complexity

Theorem 11. Inserting a new site 𝑠𝑁 to our data structure and updating it requires �̃�(𝑁
3
4 ) amor-

tized time.

Proof. Let 𝑠 be the number of small cells that change, and 𝑏1, 𝑏2, . . . , 𝑏|𝐵| be the big cells. Let ℓ𝑖 be
the number of circles returned by the DCR structures of 𝑏𝑖.

All the operations on a small cell take �̃�(𝑁
1
4 ) time. For all the big cells together the operations

on updating the graph structure and the graph of big cells require �̃�(𝑁
3
4 ) total time. The number

of DCR-s that have to be rebuilt is bounded from above by the number of changes in the graph.

Finally, the amortized time complexity is

�̃�

⎛⎝𝑠𝑁
1
4 +

|𝐵|∑︁
𝑖=1

(︂⌈︂
|𝑏𝑖|
𝑁

1
4

⌉︂
+ ℓ𝑖

)︂
+ 𝑁

3
4 + 𝑠𝑁

1
4

⎞⎠ .
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Since 𝑠 is 𝑂(𝑁
1
2 ) amortized [2],

∑︀|𝐵|
𝑖=1 |𝑏𝑖| ≤ 𝑁 , |𝐵| ≤ 𝑁

3
4 , and

∑︀|𝐵|
𝑖=1 ℓ𝑖 ≤ 𝑠𝑁

1
4 , this is simply

�̃�(𝑁
3
4 ) amortized.

The problem of maintaining the convex hull of a set of points in R3 subject to point insertion
can also be solved using our data structure. Namely, consider the dual problem of maintaining the
intersection of a set of halfspaces. The two blocks of our data structure that are specific for Voronoi
diagrams, translate in this setting as follows. To find the first face affected by the insertion (or
report that it does not exist) we need to find the vertex extreme in the direction normal to the plane
being inserted; if it is affected, then all the three incident faces are affected. We check whether a
vertex is affected by determinimg the above/below relation between this vertex and the plane baing
inserted. Thus Chan’s structure [12] is again enough for our needs.

2.7 Discussion and open problems

We presented the algorithm for the insertion of a site with the running time of �̃�(𝑁
3
4 ). However,

this result still does not match the theoretical lower bound of Θ(𝑁
1
2 ). The question remains if it is

possible to present an algorithm with a runtime of �̃�(𝑁
1
2 ). In the following section we show some

preparations for one of possible approaches to such an algorithm.

3 Estimating the number of combinatorial changes in a Voronoi
diagram with several point sites and one line

In this section, we consider a Voronoi diagram whose sites are a straight line ℓ and several
points to one side from ℓ. Without loss of generality, ℓ is horizontal and all the sites are above ℓ.
We also assume that the sites are in general position:

• no three lie on a common line,
• no four lie on a common circle,
• 𝑥-coordinates and 𝑦-coordinates of no two sites coincide.

Figure 13: A Voronoi diagram for several point sites and a straight line

An example of such diagram can be seen in Figure 13. Insertion of a new point site is considered,
and we want to estimate the number of combinatorial changes that happen in the diagram. We are
mainly interested in the changes that concern the beach line:

Definition 7. The beach line is the border of the cell of ℓ. It is a curve comprised of parabolas
whose focal points are point sites.
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We know from [3] that for a Voronoi diagram of 𝑛 point sites the amortized number of com-
binatorial changes per insertion is 𝑂(

√
𝑛). We aim at proving a similar estimate for the case when

one site is a line.

3.1 Voronoi diagrams and Davenport – Schinzel sequences

When dynamic Voronoi diagrams are studied, it is necessary to find the operations that can
describe what happens to the Voronoi diagram when a new site is inserted. When all the sites are
points, those operations are links and cuts. In this section, we describe an operation that can be
used to express transformations in the beach line. The operation is called relabel.

We view the beach line as a sequence of sites which are the focal points of the corresponding
parabolas. One site can enter this sequence several times.

Definition 8. Let 𝑠 be a site of the Voronoi diagram, and 𝑠new be the site that is inserted. Let 𝐼

be a segment or a ray of ℓ. Then relabel(𝑠, 𝑠new, 𝐼) is replacing every occurence of 𝑠 with 𝑠new in the
beach line above 𝐼.

A relabel can be applied for any two elements of a sequence and a segment, however in this
paper we will only deal with relabels that arise from building the beach line adding parabolas one-
by-one. An example of a relabel can be seen in Figure 14: letters 𝑠 are replaced with letters 𝑠′ inside
segment 𝐼.

𝑎1 𝑎2 𝑎3 𝑎5𝑎4

𝑠𝑠𝑠
𝑠

𝑠
𝑠

𝑠′

𝑠′ 𝑠′

𝐼

Figure 14: relabel(𝑠, 𝑠′, 𝐼)

When a point site 𝑠new is inserted into a Voronoi diagram, several edges of the graph of the
diagram that belonged to a cell of another site, now belong to the cell of 𝑠new. However, this can be
accounted for by a single link or cut. Similarly, when the parabola of 𝑠new appears in several places
in the beach line instead of 𝑠, this can be accounted for by a single relabel.

An example can be seen in Figure 15. Site 𝑠new is inserted; old beach line is shown orange, and
new beach line is shown black. Three parabolas are drawn fully: those correspond to 𝑠1, 𝑠2, and
𝑠new. The change in the beach line of the Voronoi diagram caused by the insertion can be expressed
as two relabels: relabel(𝑠new, 𝑠1, 𝐼1) and relabel(𝑠new, 𝑠2, 𝐼2) — the parabola of 𝑠new is closer to ℓ

than the parabolas of 𝑠1 and 𝑠2, that is why occurences of 𝑠1 and 𝑠2 are replaced with 𝑠new. Note
that the first relabel affects two occurences of 𝑠1 in the beach line above 𝐼1.

Let us consider the sequence of sites corresponding to the parabolas of the beach line in their
respective order, denote it by 𝑆. Sequence 𝑆 has one important property.

Definition 9 ([24]). A sequence is called a Davenport – Schinzel sequence of order 2 if it has
no subsequences of the form . . . 𝑎 . . . 𝑏 . . . 𝑎 . . . 𝑏 . . ., and no two consecutive letters of it are equal.
Davenport – Schinzel sequences of no other orders than 2 are considered in this paper, so we will
further omit writing «of order 2».
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Figure 15: The change that occurs in the beach line when a new site is inserted can be expressed as
two relabels

Lemma 12. Sequence 𝑆 of sites corresponding to the parabolas of the beach line is a Davenport –
Schinzel sequence.

The inverse also holds and is stated by the following Lemma.

Lemma 13 ([24]). For every Davenport – Schinzel sequence 𝑆 such that its first and last letters are
equal, there exists such a configuration of point sites that the sequence corresponding to the beach
line of the Voronoi diagram of this configuration is 𝑆.

We will further only consider Davenport – Schinzel sequences with equal first and last letters.
After all, each sequence can be made such a sequence by adding a letter 𝜖 to its front and to its
back.

We can consider relabel as an operation on an arbitrary Davenport – Schinzel sequence, re-
placing each occurence of one letter with another letter inside a given segment. Note that we can
construct any Davenport – Schinzel sequence using only relabels.

Definition 10. Let 𝑆 be a Davenport – Schinzel sequence over the alphabet {𝑠1, . . . , 𝑠𝑛}. Define
Rel(𝑆) as the shortest sequence of relabel operations such that

1) 𝑆 can be obtained by applying the relabels in Rel(𝑆) consecutively to the sequence 𝑠1 of
length 1,

2) if 𝑖 < 𝑗, all relabels with 𝑠𝑖 as the second argument occur in Rel(𝑆) before all relabels with 𝑠𝑗
as the second argument.

Definition 11. Let 𝑆 be a Davenport – Schinzel sequence over the alphabet {𝑠1, . . . , 𝑠𝑛}. Rel𝑗(𝑆)

is a subsequence of Rel(𝑆) where the second argument is equal to 𝑠𝑗 . 𝑆𝑗 is the Davenport – Schinzel
sequence obtained by applying Rel2(𝑆), . . ., Rel𝑗(𝑆) consequtively to the sequence 𝑠1 of length one.

Lemma 14. For each Davenport – Schinzel sequence 𝑆 there exists Rel(𝑆).

Proof. Consider the configuration of sites and parabolas corresponding to 𝑆. Such a configuration
exists by Lemma 13. Add the parabolas of this configuration to it one-by-one and note that every
addition of a parabola can be expressed as a set of relabels. All the properties that have to hold for
Rel(𝑆) also hold for the sequence we constructed.

We will be proving the following Theorem:
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Theorem 15. For any Davenport – Schinzel sequence 𝑆 over the alphabet {𝑠1, . . . , 𝑠𝑛} the length of
Rel(𝑆) is 𝑂(𝑛

√
𝑛).

This Theorem means that the average number of relabels per addition of a letter is 𝑂(
√
𝑛).

3.2 Tree representation of a Davenport – Schinzel sequence

Over the history of the studies of Davenport – Schinzel sequences, several ways to connect them
to trees and other data structures were suggested [21, 23]. In this thesis, we consider another natural
yet new approach.

Consider two letters 𝑎, 𝑏 in a Davenport – Schinzel sequence 𝑆. Since no alternations of the
form . . . 𝑎 . . . 𝑏 . . . 𝑎 . . . 𝑏 . . . are allowed, two cases are possible:

1) all occurences of 𝑎 are located in 𝑆 before all occurences of 𝑏 (or vice versa),

2) all occurences of 𝑏 are located in 𝑆 between two consecutive occurences of 𝑎 (or vice versa).

All the other configurations yield at least one anternation of which there can be none in a
Davenport – Schinzel sequence.

Definition 12. We say that letter 𝑎 of a Davenport – Schinzel sequence 𝑆 surrounds letter 𝑏 if all
occurences of 𝑏 are located in 𝑆 between two consecutive occurences of 𝑎.

Lemma 16. There exist no letters 𝑎1, . . . 𝑎𝑚 in a Davenport – Schinzel sequence 𝑆 such that

• 𝑎1 surrounds 𝑎2,
• 𝑎2 surrounds 𝑎3,
. . .

• 𝑎𝑚−1 surrounds 𝑎𝑚,
• 𝑎𝑚 surrounds 𝑎1.

Proof. The condition above would mean that all occurences of 𝑎1 are located between two consecutive
occurences of 𝑎𝑚, and all occurences of 𝑎𝑚 are located between two consecutive occurences of 𝑎1.
We arrive at a contradiction.

Let us connect by an oriented edge each letter to each letter it surrounds. Lemma 16 means
that the graph we obtain is acyclic. That means we can perform a topological sort on it and find
direct descendants of each vertex 𝑎: those surrounded by 𝑎 but not surrounded by any other vertex
surrounded by 𝑎.

What we obtain by connecting each vertex to each its direct descendant is a tree. An example
of a tree corresponding to a Davenport – Schinzel sequence and a configuration of sites and parabolas
corresponding to it can be seen in Figure 16.

The correspondence between Davenport – Schinzel sequence and trees defined this way is not
one-to-one: the same tree corresponds to the sequences 𝑎𝑥𝑎𝑦𝑎 and 𝑎𝑥𝑦𝑎. However, this can be fixed
by adding walls inside nodes, and in this thesis we will be using the same notation for letters in the
sequence and nodes in the tree, applying notions such as «number of occurences» and «number a
children» to a single name. Define the size of a vertex in a tree:

Definition 13. For letter 𝑎 in a Davenport – Schinzel sequence 𝑆 we denote by size(𝑎) the number
of children of 𝑎 in the tree corresponding to 𝑆 plus one.
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𝑓

𝑎

𝑏 𝑐 𝑑

𝑔

ℎ 𝑘

(a) (b)

Figure 16: (a) A tree and (b) a configuration of sites and parabolas that correspond to a Davenport –
Schinzel sequence 𝑓𝑎𝑏𝑎𝑐𝑑𝑎𝑓𝑔ℎ𝑔𝑘𝑔𝑓

Lemma 17. For a Davenport – Schinzel sequence 𝑆 over the alphabet {𝑠1, . . . , 𝑠𝑛},

2𝑛− 1 ≥
𝑛∑︁

𝑖=1

size(𝑠𝑖) ≥ length(𝑆).

Proof. To prove the first inequality, let us give one coin to the root of the tree, and two coins to
every other letter. In total we have given at most 2𝑛− 1 coins. Let each letter pass one of its coins
to its parent in the tree. Now each letter has one coin given to it initially, and one coin from each
of its children. This makes the total number of coins be equal to

∑︀
size(𝑠𝑖).

For the second inequality, note that the number of occurences of a letter is at most the number
of its children plus one, since there can not be two equal letters in a row, and two occurences of a
letter 𝑎 must be separated by at least one child of 𝑎.

3.3 The order of relabels

Now that we have connected Davenport – Schinzel sequences to trees, we will consider changes
of the tree corresponding to a sequence when a relabel is applied to it. This will help us visualize
the operations, define and estimate the potential function, and better illustrate the changes in a
sequence.

𝑎 𝑎

𝑠𝑗

𝑠𝑗

(a)

𝑠𝑗 𝑠𝑗

𝑎 𝑎

(b)

Figure 17: (a) Nodes that are relabelled must form a contiguous subtree, (b) The roots of such
subtrees must be children of a single vertex
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Lemma 18. The set of letters 𝑠𝑖 such that relabel(𝑠𝑖, 𝑠𝑗 , ·) ∈ Rel𝑗(𝑆) is a union of several contiguous
subtrees whose roots are children of a single vertex 𝑅𝑗 in the tree corresponding to 𝑆𝑗−1.

Proof. Consider two vertices that are relabelled. If one of them is an indirect descendant of the other,
then the vertices between them must also be relabelled. Otherwise there is a non-relabelled vertex
that surrounds the lower relabelled vertex. This yields an alternation 𝑠𝑗𝑎𝑠𝑗𝑎 in 𝑆𝑗 , see Figure 17a.
Thus, the vertices that are relabelled form contiguous subtrees.

If two roots of such subtrees are not children of a single vertex, there is a non-relabelled ancestor
of one of them that is not an ancestor of the other, call it 𝑎. This yields an alternation 𝑠𝑗𝑎𝑠𝑗𝑎 in 𝑆𝑗 ,
see Figure 17b. This is clearly a contradiction.

Figure 18: A possible set of vertices that are relabelled

An example of a possible set of vertices that can be relabeled in Rel𝑗(𝑆) (i. e. that satisfies the
condition of Lemma 18) can be seen in Figure 18.

Without loss of generality, we assume that relabels in Rel𝑗(𝑆) are applied from top of the tree
down, level by level, from left to right. This order of relabels helps us make sure we avoid any
alternations on intermediate steps when not all relabels in Rel𝑗(𝑆) are yet applied, since at any step
the set of vertices that have been relabelled satisfies the condition of Lemma 18. Also this order is
convenient for our proof of the 𝑛

√
𝑛 bound.

Lemma 19. When relabels in Rel𝑗(𝑆) are applied, only two nodes of the tree can increase in size: 𝑠𝑗
and 𝑅𝑗.

Proof. When relabels are applied, some occurences of some letters are replaced with 𝑠𝑗 . Suppose a
child 𝑏 of a vertex 𝑎 is not a child of 𝑎 anymore. It means a relabel has been applied to 𝑎 or another
descendant of 𝑎.

If the relabel is applied to 𝑎, then 𝑏 can find itself between two occurences of 𝑠𝑗 or between an
𝑠𝑗 and an 𝑎. In the first case 𝑏 is now a child of 𝑠𝑗 , and in the second case it is a child of 𝑅𝑗 , since
it is neither surrounded by 𝑠𝑗 nor by 𝑎, and 𝑅𝑗 is the parent of 𝑠𝑗 .

If the relabel is not applied to 𝑎, than the only other letter that can happen to surround 𝑏 is 𝑠𝑗 :
𝑎 was the closest to surround 𝑏, and 𝑠𝑗 is the only letter of which there can be new occurences.

3.4 Inserts and length of a Davenport – Schinzel sequence

One would want to say that when relabel(𝑠𝑖, 𝑠𝑗 , 𝐼) is applied, size(𝑠𝑖) decreases: 𝑠𝑗 either steals
some children from 𝑠𝑖 or wholly replaces the only occurence of 𝑠𝑖. However, there is one case when
a relabel does not reduce size(𝑠𝑖).
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𝑠new

𝑠1 𝑠2

𝑠3

𝑠4

Figure 19: An example of an insert. A new occurence of 𝑠new appears, yet size(𝑠3) does not decrease.
This can be expressed as a relabel of 𝑠3 by 𝑠new.

Definition 14. An insert is a relabel that does not reduce the size of the node it is applied to.

An example of an insert can be seen in Figure 19. We will denote by Insert𝑖 and Relabel𝑖 the
numbers of relabels in Rel𝑖 that are and are not inserts, respectively. We can not use the argument
that inserts make sizes of many distinct nodes decrease, that is why we will try to take the length
of the Davenport – Schinzel sequence into consideration. For this, we will describe what happens
to the length of a sequence and to the sizes of nodes in the tree corresponding to it when several
inserts and relabels are applied.

Lemma 20. 1) When an insert is applied to a Davenport – Schinzel sequence, the length of the
sequence increases by 1.

2) When a relabel that is not an insert is applied to a Davenport – Schinzel sequence, the length
of the sequence may decrease, but by at most 2.

Proof of 1). If relabel(𝑠𝑖, 𝑠𝑗 , 𝐼) is an insert, it can in fact be expressed as an addition of one occurence
of 𝑠𝑗 to the Davenport – Schinzel sequence. Note that 𝑠𝑗 can only appear once inside 𝐼, since
otherwise it would steal children from 𝑠𝑖 inside 𝐼. Furthermore, 𝑠𝑗 can not replace a single whole
occurence of 𝑠𝑖, since the children of 𝑠𝑖 that are incident to that occurence will become children of
𝑠𝑗 .

Proof of 2). If the length of the sequence decreases when relabel(𝑠𝑖, 𝑠𝑗 , 𝐼) is applied, it means
that some occurences of 𝑠𝑗 that appear as a result of the relabel are adjacent to some existing
occurences of 𝑠𝑗 . Since we are performing relabels from the top of the tree down, this can only
happen to the two extreme occurences of 𝑠𝑖 if they are being relabelled: they should be adjacent to
some occurences of 𝑠𝑗 , since 𝑠𝑗 can either surround or have a common parent with 𝑠𝑖 at the moment
of relabel(𝑠𝑖, 𝑠𝑗 , 𝐼).

Corollary 21. The increase in length of the Davenport – Schinzel sequence after all the operations
from Rel𝑗(𝑆) is applied is at least Insert𝑖 − 2 · Relabel𝑖.

3.5 Proof of amortized bound

Proof of Theorem 15. Define the potential function for a Davenport – Schinzel sequence 𝑆 over the
alphabet {𝑠1, . . . , 𝑠𝑛} as

Φ = 3 ·
𝑛∑︁

𝑖=1

min
{︀

size(𝑠𝑖), 2
√
𝑛
}︀
− length(𝑆).
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We are going to estimate |Rel𝑗(𝑆)| + Φ𝑗 − Φ𝑗−1. We denote by size𝑗(𝑠𝑖) the size of the vertex
𝑠𝑖 in the tree corresponding to the sequence 𝑆𝑗 .

|Rel𝑗(𝑆)| + Φ𝑗 − Φ𝑗−1 = Insert𝑗 + Relabel𝑗 +

+ 3 ·
𝑛∑︁

𝑖=1

min
{︀

size𝑗(𝑠𝑖), 2
√
𝑛
}︀
− 3 ·

𝑛∑︁
𝑖=1

min
{︀

size𝑗−1(𝑠𝑖), 2
√
𝑛
}︀

− (*)

− (length(𝑆𝑗) − length(𝑆𝑗−1)) (**)

By Lemma 19 we can estimate (*) from above by 2
√
𝑛− (Relabel𝑗 −

√
𝑛): only 𝑠𝑗 and 𝑅𝑗 can

increase in size, and all the relabels that are not inserts reduce the size of the vertex that they are
applied to (which are distinct for all distinct inserts). However, at most

√
𝑛 relabels applied to the

vertices whose size is at least 2
√
𝑛 (due to Lemma 17, there can only be

√
𝑛 such vertices) do not

reduce the value of the potential.

By Corollary 21, we can estimate (**) from above by − Insert𝑗 +2 Relabel𝑗 . The final estimate
for the whole sum is

|Rel𝑗(𝑆)| + Φ𝑗 − Φ𝑗−1 ≤ Insert𝑗 + Relabel𝑗 +

+ 9
√
𝑛 − 3 Relabel𝑗 −

− Insert𝑗 + 2 Relabel𝑗 =

= 9
√
𝑛.

Φ𝑛 − Φ1 is bounded by 3𝑛, and all the other values of the potential cancel out. This means
that |Rel(𝑆)| = 𝑂(𝑛

√
𝑛).

3.6 Discussion and open problems

After the upper bound of 𝑂(
√
𝑛) is shown, a natural question is if there exists a matching lower

bound: is there actually a Davenport – Schinzel sequence the construction of which requires Ω(𝑛
√
𝑛)

relabels. Finsing such an example or proving a tghter upper bound is an interesting quest.

4 Bounds on the number of egde-to-edge gluings of squares

In this section, we prove that the number of edge-to-edge gluings of 𝑛 squares is polynomial
in 𝑛. This result allows to develop a polynomial algorithm to list all the gluings.

Theorem 22. There are 𝑂
(︀
𝑛36

)︀
edge-to-edge gluings of at most 𝑛 squares that correspond to convex

polyhedra.

Proof. Triangulate the polyhedron corresponding to the gluing and draw its faces on the square grid.
By Gauss—Bonnet theorem, the polyhedron has no more than 8 vertices, and thus at most 18 edges.
An edge shared by two faces must have the same lengths of 𝑥- and 𝑦-projections on the drawings
of these faces, see Figures 20a, 20b.

Count the number of sets of triangles satisfying this restriction and taking up at most 𝑛 squares.
For each edge, we can pick lengths of its 𝑥- and 𝑦-projections. Since the edge is a part of a flat face,
all the squares that intersect the edge are distinct. There is at most 𝑛 of them, which yields that
both projections are at most 𝑛, so there is at most 𝑛2 ways to choose the edge.
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(a) (b) (c)

Figure 20: (a), (b) Highlighted edge has the same lengths of projections on the drawings of two
faces. (c) Two ways to place an edge with given projections that preserve convexity of the face.

Once the projections of the edges are known, let us draw the faces on the grid. At every vertex,
there is at most two ways to place the next edge, such that the convexity of the face is preserved,
those differ by 𝜋

2 , see Figure 20c for an example. This adds at most 22·18 ways to draw the faces
once the edges are known, which gives the total of at most (2𝑛)36 gluings.

Theorem 23. There are Ω
(︀
𝑛3

)︀
edge-to-edge gluings of at most 𝑛 squares that correspond to convex

polyhedra.

Proof. To prove the theorem, we construct a series of such gluings. These gluings correspond to
doubly-covered octagons, the octagons being obtained by cutting edges of a rectangle with sides no
longer than

√
𝑛
2 , one at least twice as long as the other, see Figure 21.

Figure 21: An example of an octagon produced by cutting angles of a rectangle

Pick width and height of the rectangle. Denote width by 𝑎, pick it so that 0 < 𝑎 ≤ 1
2

√
𝑛.

Denote height by 𝑏, pick it so that 0 < 𝑏 ≤ 𝑎
2 . An octagon is defined by its vertices on the vertical

edges of the rectangle (those are highlighted in Figure 21). There are
(︀
𝑏
2

)︀2 ∼ 1
4𝑏

4 ways to choose
these vertices.

To sum up, the number of octagons obtained by cutting edges of a rectangle is

Ω

⎛⎜⎝
√
𝑛
2∑︁

𝑎=1

𝑎
2∑︁

𝑏=1

𝑏4

⎞⎟⎠ = Ω

⎛⎜⎝
√
𝑛
2∑︁

𝑎=1

𝑎5

⎞⎟⎠ = Ω
(︀
𝑛3

)︀
.

Theorem 24. The bound of Theorem 23 is tight: there are 𝑂(𝑛3) doubly covered convex polygons
that can be glued from 𝑛 squares.

Proof. Edges of a doubly covered polygon glued from squares can only have four directions: vertical,
horizontal, or inclined by 𝜋

2 or 3𝜋
2 . Thus any doubly covered polygon glued from squares is an

octagon cut from a rectangle. Some edges of the octagon, however, may have zero length.
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𝐷

𝐶

𝐵

𝐴

𝐻

𝑏

𝑎

𝑏

Figure 22: An octagon cut from rectangle and its dimensions

Let us denote the numbers of squares traversed by the edges by 𝐴, . . . , 𝐻, as shown in Figure 22.
The width of the circumscribed rectangle is denoted by 𝑎, and the height of the circumscribed
rectangle is denoted by 𝑏. We can think that 𝑎 ≤ 𝑏. Note that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝐴 + 𝐵 + 𝐻 = 𝐷 + 𝐸 + 𝐹 = 𝑏

𝐵 + 𝐶 + 𝐷 = 𝐹 + 𝐺 + 𝐻 = 𝑎

𝑏 ≤ 𝑎

𝑎 · 𝑏 ≤ 𝑛
2

Six variables out of these ten: 𝑎, 𝐴, 𝐵, 𝐷, 𝐹 , 𝐻 — define other four. This means, given values
of 𝑎, 𝐴, 𝐵, 𝐷, 𝐹 , 𝐻, the octagon is either defined uniquely or non-existent:

𝑏 = 𝐴 + 𝐵 + 𝐻

𝐸 = 𝐴 + 𝐵 + 𝐻 −𝐷 − 𝐹

𝐶 = 𝑎−𝐵 −𝐷

𝐺 = 𝑎−𝐻 − 𝐹

Let us now count the ways to pick 𝑎, 𝐴, 𝐵, 𝐷, 𝐹 , 𝐻.

First case 1 ≤ 𝑏 ≤ 𝑎 ≤
√
𝑛. In this case all the variables 𝐴, . . . , 𝐻 are at most

√
𝑛, which

yields the number of ways to pick six variables does not exceed (
√
𝑛)6 = 𝑛3.

Second case 𝑎 ≥
√
𝑛, 𝑏 ≤ 𝑛

𝑎 . In this case 𝐴, 𝐵, 𝐷, 𝐹 , 𝐻 are at most 𝑛
𝑎 since they all contribute

to the height of the octagon. The number of ways to pick six variables is hence equal to

𝑛∑︁
𝑎=

√
𝑛

(︁𝑛
𝑎

)︁5
.

We now split and estimate this sum. Assume 𝑛 is a power of 2 or consider the closest to 𝑛

power of 2 from above.
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𝑛∑︁
𝑎=

√
𝑛

(︁𝑛
𝑎

)︁5
≤

log𝑛∑︁
𝑖= log𝑛

2

2𝑖∑︁
𝑎=2𝑖−1

(︁𝑛
𝑎

)︁5
≤

≤
log𝑛∑︁

𝑖= log𝑛
2

(︁ 𝑛

2𝑖−1

)︁5
· 2𝑖 =

log𝑛∑︁
𝑖= log𝑛

2

2𝑛 ·
(︁ 𝑛

2𝑖−1

)︁4
=

=

log𝑛
2∑︁

𝑖=0

2𝑛 ·
(︂ √

𝑛

2𝑖−1

)︂4

= 2𝑛3 ·

log𝑛
2∑︁

𝑖=0

16

24𝑖
= 𝑂(𝑛3).

We implemented an algorithm that enumerates all the gluings of at most 𝑛 squares for a given
graph structure of a convex polyhedron. It showed that one gluing can admit several ways to cut
itself into flat polygons, see Figure 23. Thus it can appear in the list several times.

0
1

2
3 3

2

1
0

(a)

0

1
2

3
0

1
2

3

(b)

Figure 23: Doubly covered parallelogram can be cut into two flat quadrilaterals in two ways, the
latter consisting of its faces

4.1 Algorithm to classify edge-to-edge gluings of squares

The algorithm consists of the following steps:

1) Generate the list of all edge-to-edge gluings of at most 𝑛 squares, denote it 𝐿(𝑛). Due to
Theorem 22, this step takes polynomial time.

2) For each gluing in 𝐿(𝑛), generate matrix of pairwise distances between its vertices. Due to
Theorem 8, this step takes 𝑂(𝑛3) time per gluing.

3) Unicalize the list of matrices up to homothety and permutation of rows and columns, leave
only corresponding elements of 𝐿(𝑛). Since the matrices are of at most 8 rows and 8 columns,
it takes polynomial time to remove duplicates from the list.

The output of this algorithm is the list of all non-isomorphic edge-to-edge gluings of at most 𝑛
squares.

4.2 Discussion and open problems

The cornerstone of the technique we have been using is the possibility to draw a face of a
polyhedron glued from squares on a planar grid. It allows us to estimate the number of valid gluings.
The same technique can seemingly be applied for the cases of regular hexagons and triangles, since
these polygons also tile the plane.
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