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1 Introduction

The notion of a propositional proof system is a central notion of proof
complexity. The classical version of the definition of a proof system by Cook
and Reckhow [CR79] is a polynomial-time mapping of all strings (“proofs”)
onto “theorems” that are elements of a certain language L. If the language
of theorems is the language of all propositional tautologies TAUT, then the
proof system is called a propositional proof system. A propositional proof
system is polynomially bounded if it has a polynomial size proof for every
tautology. The problem of the existence of a polynomially bounded proposi-
tional proof system is the fundamental problem of proof complexity and it is
equivalent to the problem of the equality of classes NP and coNP. A propo-
sitional proof system can also be equivalently defined as a polynomial-time
function that takes a formula and a string and verifies whether the given
string is a valid proof of the given formula. In order to be a valid proof
system such a function should accept at least one string for each tautology
(completeness) and reject all strings for all other formulas (soundness). The
latter definition is more convenient for working with simulations, so we will
use it throughout the entire work.

Similarly to the languages in complexity classes, propositional proof sys-
tems also have notions for “reduction”. A proof system Π simulates another
proof system Φ if for every tautology the size of its shortest Π-proof is at
most polynomially longer than the size of the shortest Φ-proof. However, we
are mostly interested in a stronger notion of p-simulation that additionally
requires the existence of a polynomial-time mapping of all Π-proofs into Φ-
proofs (the mapping can also access the tautology). The second major open
problem in proof complexity is the problem of the existence of an optimal
(p-optimal) proof system, thats it, a system that simulates (p-simulates) any
other proof system. The existence of the optimal propositional proof system
would not only reduce the problem NP

?
= coNP to proving proof size bounds

for just one proof system, but also imply the existence of a complete disjoint
NP pair [Raz94; Pud01].
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Unfortunately, there is no known correspondence between the problem of
the existence of an (p-)optimal proof system and any structural assumptions
(like NP

?
= coNP for the problem of the existence of a polynomially bounded

proof system). Kraj́ıček and Pudlák [KP89] showed that the existence of
an optimal (respectively, p-optimal) propositional proof system follows from
the assumption NE = coNE (respectively, E = NE) and Köbler, Messner
and Torán [KMT03] weakened these conjectures to double exponential time,
however, the converse implication is not known nor widely believed.

A proof system is automatizable if it has an algorithm that, given a
tautology, is able to produce its proof in a time polynomial in the length
of the shortest proof. Automatizability seems to be quite a restrictive trait
of a proof system, that is, for many proofs systems it is known that they
are not automatizable unless P = NP [AM20; de +20; Göö+20; Gar20].
However, it is not known whether optimal proof systems (if they exist) can
be automatizable.

Since the problem of the existence of (p-)optimal proof system is seem-
ingly hard, it is also interesting to consider its extended or restricted cases.
Cook and Kraj́ıček showed that optimal proof systems with non-uniform ad-
vice exist and that even one bit of advice per proof length is sufficient to
p-simulate all classical propositional proof systems [CK07]. Another way to
extend the problem is to generalize the notion of p-simulation. The most
prominent example of this approach is the notion of effective simulation in-
troduced by Pitassi and Santhanam [PS10].

In this work we focus on another special case of the problem. We in-
troduce a notion of C-simulation, a specialized version of p-simulation, for
certain classes of circuits C and study the problem of the existence of C-
optimal propositional proof systems (i.e. systems that C-simulate any other
propositional proof system). In Section 2 we provide a positive result for
this problem: the existence of p-optimal proof systems implies the existence
of C-optimal proof systems for any reasonable class C. Then, we introduce a
notion of a bounded proof system and dedicate Sections 4 and 5 to negative
results. These results state that no efficiently bounded C-optimal (where C

stands for monotone and AC0-circuits, respectively) proof system could exist
unless there exists an automatizable optimal proof system. Informally, it
means that simulating other systems in C-optimal proof system using only
efficient proofs is almost as hard as automatizing.

2 Definitions and the unbounded case

Let TAUT denote the language of all propositional tautologies. We use
the following definition of a proof system.

Definition 1. A propositional proof system is a polynomial-time algorithm
Π(𝜙,𝑤) such that for all 𝜙
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𝜙 ∈ TAUT ⇐⇒ ∃𝑤 Π(𝜙,𝑤) = 1

This definition is equivalent to the classic definition by Cook and Reck-
how [CR79] for the case of the language of all tautologies.

The standard notion of reduction of proof systems is p-simulation. The
problem of the existence of p-optimal proof systems is a major open question,
therefore, we define a stronger notion of the C-simulation for relatively small
classes C of circuits.

Definition 2. Let C be a class of circuits. A propositional proof system Π
is C-simulated by propositional proof system Π′ if and only if there exists a
polynomial-time algorithm 𝑃 such that for every formula 𝜙 ∈ TAUT algo-
rithm 𝑃 (𝜙,𝑚) generates a circuit from class C that maps all Π-proofs of 𝜙
of the size 𝑚 into Π′-proofs of 𝜙.

Note that the generated circuit takes only the proof as the input and
does not see the formula, but it is compensated by the fact that 𝑃 is able to
produce different circuits for different formulas. It is also important to note
that since the produced circuit takes only the proof as its input, if class C

has some restrictions on the size of the circuit (e.g. AC0 requires the circuit
to be polynomial-size), these restrictions should be considered as a function
of 𝑚 and not |𝜙|+𝑚.

Definition 3. A propositional proof system is C-optimal if and only if it
C-simulates any other propositional proof system.

For C equal to the class of all circuits the notion of C-simulation differs
from p-simulation only at the fact that the size of the output of C-simulation
is determined by the formula and the size of the input proof, while for p-
simulation it is not necessary. However, it does not affect the ability to
simulate one system by another if the target system allows to add padding
symbols to its proofs. Therefore, for such C, a C-optimal proof system exists
if and only if there exists a p-optimal proof system. Thus, we are mostly
interested in the problem of existence of C-optimal proof systems for smaller
classes of circuits.

Let Copy be a class of monotone NC-circuits of depth 1. In other words,
the output bits of circuits from Copy could be either constants or copies of
the input bits.

Theorem 1. Let Π be a p-optimal proof system. Then there exists a Copy-
optimal proof system Π′.

Proof. Let Π′ be a proof system such that its proofs are tuples of three
elements

⟨︀
𝐴,𝑤, 1𝜏(|𝑤|)

⟩︀
with elements interpreted as follows. 𝐴 is a number

of some Turing machine with an alarm clock that works in time 𝜏(|𝑤|), 𝑤 is

3



some string and 1𝜏(|𝑤|) is just a padding to ensure that the size of the proof is
at least 𝜏(|𝑤|). The tuple is a valid Π′-proof if and only if the string obtained
as a result of running 𝐴 on string 𝑤 for 𝜏(|𝑤|) steps is a valid Π-proof. It is
easy to see that Π′ is a propositional proof system. On the other hand, if Π
is p-optimal, then for any other proof system Φ there exists an algorithm 𝐴
such that given Φ-proof 𝑤 it runs in polynomial time 𝜏(𝑤) and outputs some
valid Π-proof. As a consequence, the tuple

⟨︀
𝐴,𝑤, 1𝜏(|𝑤|)

⟩︀
is a valid Π′-proof.

It remains to check that this tuple could be generated by some circuit from
Copy, but 𝐴 and 1𝜏(|𝑤|) are some constants depending only on Φ and 𝑤 is
just a copy of the input.

It is important to note that it is crucial for the construction above to allow
of an arbitrary length, because although 𝐴 and 1𝜏 are constants depending
only on Φ, they can be very long and their sizes cannot be bounded in any
reasonable way unless Π is automatizable (then 𝐴 and 𝜏 could be chosen as
global constants, independent from Φ, see Lemma 2 below).

In order to formalize this observation, we provide the following definition.

Definition 4. An 𝑓 -bounded propositional proof system is a proof system
that given formula 𝜙 accepts only proofs of size at most 𝑓(𝜙), where 𝑓 is a
polynomial-time function.

Note that any proof system could be made 𝑓 -bounded just by rejecting
too long proofs, if the size of the shortest proof never exceeds 𝑓(𝜙). However,
this operation does not preserve optimality.

Definition 5. An 𝑓 -bounded proof system called exactly bounded if it ac-
cepts only proofs of size exactly 𝑓(𝜙).

Note that any bounded proof system could be made exactly bounded by
simply adding the padding to all short proofs, but it may cause two following
problems. The first problem is that this operation changes the size of the
shortest proof, which is important for automatizability. And the second
problem is that we can lose optimality once again, if the bound is too large,
because a simulation possibly would not be able to output all the padding in
time. However, this problem could be avoided by allowing the simulations
to write padding for free. This change of definition would make some trivial
systems optimal (e.g. the system accepting proofs consisting of padding
only), but it is not a problem, because all those systems are automatizable.
Moreover, we would discuss mostly the case of simulation of proof systems
with long proofs inside systems with short proofs, where this difference is
not important (because we always able to output all padding in time), so all
theorems below holds for both definitions of simulations.

Lemma 2. If there exists an automatizable optimal proof system Π, then
there exists an exactly bounded Copy-optimal proof system Π′.
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Proof. Let 𝐴 be a polynomial-time algorithm that given formula 𝜙 finds its
Π-proof and let 𝜏 be the running time of 𝐴. Consider the proof system Π′

from Theorem 1 and the tuple ⟨𝐴, 𝜀, 1𝜏 ⟩ where 𝜀 is the empty string. By the
definition of Π′, the tuple ⟨𝐴, 𝜀, 1𝜏 ⟩ is a valid Π′-proof, its size polynomially
bounded by the size of the shortest Π-proof and depends only on the size
of the given formula. Therefore, this proof system could be made exactly
bounded by simply rejecting all the proofs of size other than the size of the
given tuple.

The converse also holds, which is a corollary to Theorem 3.
In the rest of the work we will discuss the problem of the existence of an

exactly bounded proof system that is optimal under simulations with rela-
tively small classes of circuits. Out goal would be to prove that for certain
classes C of circuits an exactly bounded C-optimal proof system exists if and
only if it is automatizable in polynomial or expected polynomial time. The
only way to make a proof system exactly bounded is to add padding for the
short proofs and to reject long. As it was mentioned above, this operation
does not preserve the size of the shortest proof, so if the bound was too large,
the automatizability of the generated proof system does not necessarily mean
the automatizability of the original proof system. But it is true in the most
interesting case when the bound is polynomial in size of the shortest proof.
Thus, informally speaking, results of this kind (namely, Theorems 3 and 5)
state that generating efficient proofs in the optimal proof system (here op-
timal in the sense of monotone and AC0-simulations, respectively) based on
proofs in other systems is almost as hard as automatizing.

3 The structure of hard instances

In this section we present the family of proof systems that would be used
in both Theorems 3 and 5 as proof systems that would be hard to simulate in
the optimal proof system unless the optimal proof system was automatizable.

Let Π be an exactly bounded proof system and 𝑓 be an arbitrary function.
Consider an arbitrary formula 𝜙. By the definition of an exactly bounded
proof system all Π-proofs of 𝜙 have the same size 𝑚. Now, we construct proof
system Φ𝑓 (Π) using proof system Π (from now on we will omit parameter
Π when it will be clear what proof system is meant). All the Φ𝑓 -proofs of
𝜙 consist of 𝑚 blocks of the size 𝑓(𝑚), thats it, all Φ𝑓 -proofs are of the size
𝑚𝑓(𝑚) and Φ𝑓 is also an exactly bounded proof system. We match bits
of Π-proofs to the blocks of Φ𝑓 -proofs. A string 𝑥 of the size 𝑚𝑓(𝑚) is a
valid Φ𝑓 -proof if and only if there exists a Π-proof 𝑦 such that each bit of 𝑦
is equal to the parity of the bits of the corresponding block in 𝑥. In other
words, if we consider 𝑥 as a sequence of 𝑚 binary strings ⟨𝑥1, 𝑥2, . . . , 𝑥𝑚⟩,
where |𝑥𝑖| = 𝑓(𝑚) for all 𝑖, the string 𝑦 = 𝑦1𝑦2 . . . 𝑦𝑚, where 𝑦𝑖 :=

∑︀
𝑗 𝑥𝑖,𝑗

mod 2, would be a valid Π-proof if and only if 𝑥 is a valid Φ𝑓 -proof. Note
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Block 1 Block 2 Block 3 Block 4 Block 5 Π-proof
...

...
...

𝑥2 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
𝑦2 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0
𝑥3 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1
𝑦3 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0
𝑥4 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0
...

...
...

Figure 1: An example of (𝑥𝑖) and (𝑦𝑖) for 𝑚 = 5 and Π-proof 10110

that this definition also describes an algorithm that can verify Φ𝑓 -proof in
time 𝑓(𝑚) ·poly(𝑚). Thus, Φ𝑓 is a valid proof system for any function 𝑓(𝑚)
that can be computed in time poly(𝑚).

4 Optimality under monotone simulations

In this section we consider the case of simulations with monotone circuits.

Theorem 3. If there exists an exactly bounded proof system Π that is optimal
under simulations with monotone circuits, then Π is automatizable.

Proof. Let 𝑚 be the size of all Π-proofs. Note that 𝑚 depends on formula
𝜙. Consider proof system Φ𝑚+1(Π). Since Π is optimal, there is a monotone
simulation that maps all valid Φ𝑚+1 proofs into Π-proofs. The idea of the
proof is to construct a set of polynomial quantity of Φ𝑚+1-proofs and then
to prove that at least one of these proofs should be mapped to some valid
Π-proof by the monotone simulation.

For two Boolean strings 𝑥, 𝑦 of the same size, we say that 𝑥 ≤ 𝑦 if each bit
of 𝑥 is less or equal than the corresponding bit of 𝑦. Consider the sequence
of strings 𝑥0, 𝑥1, . . . , 𝑥𝑚+1 where 𝑥𝑖 is the string consisting of 𝑚 equal blocks
that consist of 𝑖 ones and 𝑚 + 1 − 𝑖 zeroes in this exact order, 𝑚(𝑚 + 1)
bits in total (see Figure 1). Recall that each Φ𝑚+1-proof corresponds to the
Π-proof obtained by computing parities of the bits in each block. Note that
𝑥𝑖 corresponds to the string of 𝑚 zeros if 𝑖 is even and to the string of 𝑚 ones
if 𝑖 is odd. Therefore, for every 𝑖, there exists a valid Φ𝑚+1-proof 𝑦𝑖 such that
𝑥𝑖 ≤ 𝑦𝑖 ≤ 𝑥𝑖+1. Now, consider a monotone circuit 𝐶 that maps Φ𝑚+1-proofs
into Π-proofs. By monotonicity, for each 𝑖, either 𝐶(𝑥𝑖+1) have strictly more
ones than 𝐶(𝑥𝑖) or 𝐶(𝑥𝑖) = 𝐶(𝑦𝑖) = 𝐶(𝑥𝑖+1). Obviously, 𝐶(𝑥𝑖+1) cannot
have strictly more ones than 𝐶(𝑥𝑖) for all 𝑖 since all 𝐶(𝑥𝑖) are 𝑚-bit strings
and 𝑚-bit string cannot have more than 𝑚 ones. Therefore, 𝐶 should map at
least one of 𝑥𝑖 into the same string as some 𝑦𝑗 , that is, into a valid Π-proof.

Let 𝐴 be the algorithm that does the following:
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1. Generates a monotone circuit 𝐶 that maps Φ𝑚+1-proofs into Π-proofs.

2. Computes 𝐶(𝑥𝑖) for all 𝑖, checks whether Π(𝜙,𝐶(𝑥𝑖)) = 1 and returns
the first 𝐶(𝑥𝑖) that is a valid Π-proof.

Since one of the 𝐶(𝑥𝑖) maps into a valid Π-proof, the algorithm always
finds a proof. It only remains to check whether 𝐴 runs in polynomial time.
By definition, the first step could be done in time polynomial in 𝑚(𝑚 + 1)
which is clearly polynomial in 𝑚. The second step is also can be done in
polynomial in 𝑚 time since the size of 𝐶 is polynomial in 𝑚 and there are
only 𝑚 + 1 strings 𝑥𝑖. Thus, 𝐴 runs in polynomial in 𝑚 time and hence Π
is automatizable.

Corollary 4. An automatizable p-optimal proof systems exists if and only if
there exists an exactly bounded proof system Π that is optimal under simu-
lations with monotone circuits.

Proof. Directly follows from Lemma 2 and Theorem 3 and the fact that Copy-
simulation implies monotone simulation and monotone simulation implies
p-simulation.

5 Optimality under AC0-simulations

In this section we prove the following theorem.

Theorem 5. If there exists an exactly bounded AC0-optimal proof system,
then it is automatizable in expected polynomial time.

Firstly, we prove the following simplified version of this theorem, and
then we adapt the proof for Theorem 5.

Theorem 6. If there exists an exactly bounded AC0-optimal proof system
such that its proofs are verifiable in AC0 (not necessarily uniform), then it is
automatizable in expected polynomial time.

In order to prove this theorem we firstly deduce it from the following
theorem and then prove the remaining using several lemmas.

Let ℛ𝑙
𝑛 be a set of all partial assignments that leave exactly 𝑙 unassigned

variables. Note that ℛ0
𝑛 is then a set of all possible assignments of the size

𝑛. Let 𝐿𝑓 be the language of Boolean strings divided into 𝑚 blocks of the
size 𝑓(𝑚) such that the parity of all bits in each block is 0.

Theorem 7. There exists a function 𝑓 = poly(𝑚) such that for any language
𝐿 containing 𝐿𝑓 as a subset, if 𝐿 ∈ AC0, then Pr𝑥←ℛ0

𝑚𝑓(𝑚)
[𝑥 ∈ 𝐿] = 1−𝑜(1).
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Proof of Theorem 6. Let Π be a system from the theorem statement. Now,
we construct an algorithm that given a formula 𝜙 constructs its Π-proof.
We would describe the algorithm for a fixed 𝜙, however, it would be clear
that the algorithm is polynomial in sum of the sizes of 𝜙 and its Π-proof.
Consider the proof system Φ𝑓 (Π) (from now on we will denote it as Φ𝑓 ) with
a function 𝑓 from Theorem 7. By optimality of Π there exists an AC0-circuit
𝐶 that maps Φ𝑓 -proofs into Π-proofs. Consider the language 𝐿 of Φ𝑓 -proofs
(not necessarily valid) that are mapped by 𝐶 into valid Π-proofs. This
language is clearly accepted by the AC0-circuit obtained by concatenation of
circuit 𝐶 and the circuit that verifies Π-proofs. Now, choose an arbitrary
valid Π-proof 𝑥. Every valid Φ𝑓 -proof should be mapped by circuit 𝐶 into
a valid Π-proof, therefore, 𝐿 contains all the strings such that the parity of
all bits in each block is equal to the corresponding bit in 𝑥. Without loss of
generality we can assume 𝑥 = 0𝑚, because otherwise we can add negations to
the first bits in blocks corresponding to ones in 𝑥. Now, we are able to apply
Theorem 7 and conclude that the algorithm that chooses a random string 𝑦
and returns 𝐶(𝑦) finds a valid proof with at least constant probability. Thus,
the algorithm that does this procedure repeatedly until finds a valid Π-proof
works in expected polynomial time.

In order to prove Theorem 7, we need decision tree version of H̊astad’s
Switching Lemma [Juk92; Bea95] that is a corollary to the proof of H̊astad’s
Switching Lemma by Razborov [H̊as87; Raz95].

Let DT(𝑓) be the minimal height of a decision tree for a function 𝑓 .

Lemma 8 (Decision tree version of H̊astad’s Switching Lemma [Juk92;
Bea95]). Let 𝑓 be an arbitrary Boolean function that can be computed by
a tree-like AC-circuit of depth 𝑑 and size 𝑀 . Let 𝑠 ≥ 2 be an arbitrary
integer and 𝑝 = 1

128𝑠 . Then,

Pr
𝜌←ℛ𝑝𝑑𝑛

𝑛

[DT(𝑓 |𝜌) > 𝑠] ≤ 𝑀2−𝑠.

We also need the following lemma.

Lemma 9. Consider 𝑛 variables divided into 𝑘 blocks of the size 𝑏 (i.e.
𝑛 = 𝑘𝑏). Let 𝑓(𝜌) be a function that takes a partial assignment on these
variables and counts the number of blocks without unassigned variables. If
𝑙 ≤ 𝑛 and 𝑙 = Ω(𝑘3), then

Pr
𝜌←ℛ𝑙

𝑛

[𝑓(𝜌) ≥ 1] = 𝑜(1)
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Proof.

Pr
𝜌←ℛ𝑙

𝑛

[𝑓(𝜌) ≥ 1] ≤ E𝜌←ℛ𝑙
𝑛
𝑓(𝜌) =

𝑘
(︀(𝑘−1)𝑏

𝑙

)︀(︀
𝑘𝑏
𝑙

)︀
= 𝑘

∏︀
𝑗<𝑙 𝑘𝑏− 𝑗 − 𝑏∏︀

𝑗<𝑙 𝑘𝑏− 𝑗

= 𝑘
∏︁
𝑗<𝑙

(︂
1− 𝑏

𝑘𝑏− 𝑗

)︂

≤ 𝑘

(︂
1− 1

𝑘

)︂𝑙

= 𝑜(1).

The second equality holds because of linearity of expectation and in the
last equality we use the fact that 𝑙 = Ω(𝑚3).

The following proof is similar to the proof of the fact that no AC0 circuit
could compute parity on more than a constant part of all possible input
strings, but has a couple of additional difficulties.

Proof of Theorem 7. Consider a tree-like AC-circuit 𝐶 that accepts language
𝐿. Let 𝑀 be its size and 𝑑 be its depth. The proof consists of two following
steps.

1. We apply a random partial assignment on 𝐶 and use Lemma 8 to
obtain a function with small DT with probability 1− 𝑜(1).

2. Then, knowing the fact that 𝐿𝑓 ⊂ 𝐿, we prove that with probability
1− 𝑜(1) the obtained function is constant 1.

In order to use Lemma 8, we need to consider random partial assignment
𝜌 chosen equiprobably from ℛ𝑝𝑑𝑚𝑓(𝑚)

𝑚𝑓(𝑚) , where 𝑝 = 1
128𝑠 for some parameter

𝑠. Now, our goal is to choose parameters 𝑠 and 𝑓(𝑚). We firstly state all
restrictions on 𝑠 and 𝑓 generated by both steps 1 and 2 and after that choose
proper values for 𝑠 and 𝑓 . Note that while 𝑓 is a function of 𝑚, parameter
𝑠 could be dependent on some parameters of circuit 𝐶, namely, 𝑑.

We start with step 2. Let 𝐶|𝜌 denote the function obtained after step 1.
Clearly, if DT(𝐶|𝜌) is less than numbers of unassigned variables in each
block, then each leaf of the shortest decision tree corresponds to a partial
assignment that does not make 𝐿𝑓 constant. 𝐿𝑓 ⊂ 𝐿 and the function in
each leaf is constant, therefore, value in each leaf is 1 and 𝐶|𝜌 ≡ 1. In
order to ensure that DT(𝐶|𝜌) is less than numbers of unassigned variables
in each block with probability 1 − 𝑜(1) it is sufficient to make sure that
𝑠 < 𝑚 and the number of unassigned variables in each block is at least
𝑚 also with probability 1 − 𝑜(1). For the second restriction we can apply
Lemma 9 with 𝑘 = 𝑚2 (we divide each of 𝑚 blocks into 𝑚 subblocks and use
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them as blocks in the statement of the lemma) and replace it with restriction
𝑝𝑑𝑚𝑓(𝑚) ≥ 𝑚6.

Step 1 does not add any additional specific restrictions, except for 𝑠 ≥ 2
and the restriction on the probability of success 𝑀2−𝑠 = 𝑜(1). As it easy to
see, both these restrictions are satisfied if we choose 𝑠 = Θ(𝑚𝑔(𝑑)) for some
function 𝑔.

Thus, our restrictions are 𝑠 = Θ(𝑚𝑔(𝑑)), 𝑔(𝑑) < 1 and 𝑝𝑑𝑚𝑓(𝑚) ≥ 𝑚6.
For the last restriction we can use 𝑝 = 1

128𝑠 and rewrite it in the form
𝑚5(128𝑠)𝑑 ≤ 𝑓(𝑚). Now it is clear that we can choose 𝑓(𝑚) = 𝑚6 and
𝑠 =

𝑑√𝑚
128 and satisfy all the restrictions.

Now we can prove Theorem 5. This proof is a pure adaptation of the
proof above to the general case, but it is more complicated.

Proof of Theorem 5. The algorithm is the same as in the proof of the theo-
rem 6, but the parameter 𝑓 would be different. Similarly to the proof above
we consider AC-circuit 𝐶 that maps Φ𝑓 -proofs into Π-proofs and the func-
tion 𝐹 that takes a Φ𝑓 -proof 𝑥 and answers whether 𝐶(𝑥) is a valid Π-proof.
Our goal is to prove that Pr𝑥←ℛ0

𝑚10
[𝐹 (𝑥) = 1] = 1 − 𝑜(1) which would im-

mediately imply that the algorithm that repeatedly computes 𝐶(𝑥) with a
random string 𝑥 finds a valid Π-proof in expected polynomial time.

Function 𝐹 clearly can be computed in polynomial time, but possibly
not by AC0 circuit anymore. Hence, we have to manually verify that the
proof of Theorem 7 can be applied to 𝐹 . 𝐶 is a circuit with 𝑚 output gates.
Without loss of generality we can replace it with 𝑚 separate tree-like AC0

circuits with one output gates each. It affects the size of 𝐶, but it remains
polynomial in 𝑚, so we can afford it.

Similarly to the proof of Theorem 7 we apply Lemma 8 to these circuits
and obtain 𝑚 functions with DT ≤ 𝑠 with probability at least 1 − 𝑀2−𝑠

(here 𝑀 is the size of 𝐶, i.e. the sum of sizes of 𝑚 circuits corresponding to
the output bits). 𝐹 |𝜌 is a function that depends only on the answers of the
obtained 𝑚 circuits, therefore, DT(𝐹 |𝜌) can never exceed the sum of DT of
obtained circuits and the following inequality holds

Pr
𝜌←ℛ𝑝𝑑𝑛

𝑛

[DT(𝐹 |𝜌) > 𝑠𝑚] ≤ 𝑀2−𝑠.

Now, in order to make sure that 𝐹 |𝜌 ≡ 1 with probability at least 1−𝑜(1)
we need to add restriction 𝑠 < 𝑚 and make sure that each block has at least
𝑚2 unassigned variables with probability at least 1 − 𝑜(1). It also can be
done using Lemma 9, but this time with 𝑘 = 𝑚3 (we divide each block into
𝑚2 subblocks) and with restriction 𝑝𝑑𝑚𝑓(𝑚) ≥ 𝑚9.

Now, we can choose 𝑓(𝑚) = 𝑚9 and 𝑠 =
𝑑√𝑚
128 to satisfy all restrictions

and conclude that Pr𝑥←ℛ0
𝑚10

[𝐹 (𝑥) = 1] = 1− 𝑜(1).

10



Note that although the probabilities of the success in both Theorems 6 and 5
are close to 1, this approach cannot be generalized to the case of determin-
istic automatization, because the algorithm uses circuits in the simulation
only as a black box, and can not guarantee that it finds the valid proof in
any feasible time. Moreover, if there exists an optimal automatizable proof
system, then for any deterministic algorithm of this type there exists an
optimal proof system Π′ and an AC0-simulation of proof system Φ(Π′) that
answers invalid proofs on all queried proofs.
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