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ON MORSE INDEX RETRIEVAL

DANIIL MAMAEV

Chebyshev Laboratory, St. Petersburg State University, 14th Line V.O., 29, Saint
Petersburg 199178 Russia

Abstract. A smooth function 𝑓 in a neighbourhood of the unit sphere 𝑆𝑛−1 is said to
be extendible with index 𝜆 if it can be extended to a function 𝐹 in the unit ball 𝐵𝑛 such
that 𝐹 has a unique critical point 𝑝 and the Morse index of 𝑝 is equal to 𝜆. It is easy to
see that a function 𝑓 cannot be extendible with both index 𝜆 and 𝜇 if one of them is odd
and the other is even. We prove that on the level of Morse-Barannikov complexes there
are no obstructions to the existence of 𝑓 that is extendible with all possible indices of the
same parity. We also prove that for any two indices that differ by two there indeed exists
a function 𝑓 extendible with either of the indices.
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1. Introduction

Consider a smooth function 𝑓 in a neighbourhood of the unit sphere 𝑆𝑛−1 inside the unit
ball 𝐵𝑛

0(1). Its smooth extensions inside the unit ball generically have only non-degenerate
critical points. In [1] S.Barannikov, following a question by V.I. Arnold, gave a lower bound
for the number of critical points of such extensions making use of what later became known
as Morse-Barannikov complexes. In the present paper we consider a related problem.

Problem 1.1. Suppose we are given a smooth function 𝑓 in a neighbourhood 𝑈 of the unit
sphere 𝑆𝑛−1 inside the unit ball 𝐵𝑛

0(1). Let 𝐹 : 𝐵𝑛
0(1) → R be a smooth extension of 𝑓 such

that the origin 0 is the unique critical point of 𝐹 and Hess0 𝐹 is non-degenerate. What
information about the Morse index 𝜇𝐹 (0) can be retrieved from 𝑓?

We say that a function 𝑓 defined in a neighbourhood 𝑈 of the unit sphere 𝑆𝑛−1 inside
the unit ball 𝐵𝑛

0(1) admits index 𝜆 if there exists a smooth extension 𝐹 : 𝐵𝑛
0(1) → R of

𝑓 such that the origin is the unique critical point of 𝐹 and its Morse index is equal to 𝜆.
There are cases when a function admits only one index. For instance, if grad 𝑓 |𝑆𝑛−1 always
points inside the ball, then 0 must be the point of global maximum of 𝐹 hence 𝜇𝐹 (0) = 𝑛.
In general, the parity of 𝜇𝐹 (0) can be retrieved from 𝑓 (see Proposition 4.1).

The main results of the paper are formulated in Proposition 4.6 and Theorem 6.1. In
Proposition 4.6 we prove that on the level of Morse-Barannikov complex there are no
obstructions to the existence of a function 𝑓 that admits all the indices of the same parity.
In Theorem 6.1 we prove that for any 0 ≤ 𝜆 ≤ 𝑛− 2 there exists a function 𝑓 define in a
neighbourhood of 𝑆𝑛−1 that admits both index 𝜆 and 𝜆 + 2.

We firmly believe that the following statement must hold.

Conjecture 1.2. For any 𝑛 ≥ 2 there exist functions 𝑓0 and 𝑓1 in a neighbourhood of 𝑆𝑛−1

such that 𝑓0 admits indices 0, 2, . . . , 2 · [𝑛/2] and 𝑓1 admits indices 1, 3, . . . , 2 · [(𝑛+1)/2]−1.

Theorem 6.1 settles the conjecture in dimensions 2 and 3; the fact that the proof of
the theorem is constructive indicates that the usual artefacts of higher dimensions such as
exotic smooth structures should not come into our way.

The paper is organised as follows. In Section 2 we briefly review the basics of Morse and
Cerf’s theories, the goal of this section is mainly to fix the notation. In Section 3 we define
the Morse-Barannikov complex (our definition differs slightly from the original one) and
restate the results of Cerf’s theory in the terms of that complex. In Section 4 we apply the
Morse-Barannikov complex to Problem 1.1. Namely, in Proposition 4.1 we prove that the
parity of 𝜇𝐹 (0) can be retrieved from 𝑓 , in Proposition4.5 we construct Morse-Barannikov
complexes admitting two indices that differ by two, and in Proposition 4.6 we construct
Morse-Barannikov complexes that admit all possible indices of the same parity.

Sections 5 and 6 are devoted to the proof of Theorem 6.1. In Section 5 we develop a
number of tools to perform the metamorphoses of functions in a controllable manner. In
Section 6 we first explain the two-dimensional case and then prove the theorem.

In Sections 5 and 6 we do not use the Morse-Barannikov complexes directly, so the
content of Sections 3 and 4 is not strictly necessary to understand the last two sections.
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2. Preliminaries: Morse and Cerf’s theories

In this section we mainly follow two books by Milnor [4], [5] and a more modern expo-
sition by Nicolaescu [6].

Throughout the text smooth means 𝐶∞, a manifold means a manifold with boundary,
and a closed manifold means a compact manifold without boundary. Let 𝑀𝑛 be a smooth
𝑛-dimensional manifold with the boundary 𝜕𝑀 . For a boundary point 𝑝 ∈ 𝜕𝑀 the tangent
space 𝑇𝑝𝜕𝑀 divides the tangent space 𝑇𝑝𝑀 into two semi-spaces that consist of the vectors
pointing inside or outside the manifold; these (open) semi-spaces are denoted by 𝑇 𝑖𝑛

𝑝 𝑀 and
𝑇 𝑜𝑢𝑡
𝑝 𝑀 respectively.
For a smooth fibre bundle 𝐸 → 𝑀 and a subset 𝑋 ⊆ 𝑀 we denote by 𝐶∞(𝑋,𝐸) the

space of smooth sections of 𝐸 over 𝑋. That is, the space of (global) smooth vector fields on
𝑀 is 𝐶∞(𝑀,𝑇𝑀), the space of smooth real-valued functions 𝐶∞(𝑀,𝑀×R) is abbreviated
to 𝐶∞(𝑀).

Given a vector field 𝑉 ∈ 𝐶∞(𝑀,𝑇𝑀) and a smooth function 𝑓 ∈ 𝐶∞(𝑀) the derivative
of 𝑓 along 𝑉 is the function 𝑉 𝑓 ∈ 𝐶∞(𝑀) given by 𝑉 𝑓(𝑝) = 𝑑𝑝𝑓(𝑉 (𝑝)) for any 𝑝 ∈ 𝑀 .

2.1. Morse functions. Let 𝑓 : 𝑀 → R be a smooth function. A point 𝑝 ∈ 𝑀 is called
a critical point of 𝑓 if the differential 𝑑𝑝𝑓 : 𝑇𝑝𝑀 → R vanishes, otherwise 𝑝 is called a
regular point of 𝑓 . The point 𝑝 is critical if and only if in (any hence all) local coordinates
(𝑥1, . . . , 𝑥𝑛) around 𝑝 the partial derivatives 𝜕𝑓

𝜕𝑥𝑖 vanish at 𝑝. Crit 𝑓 denotes the set of all
critical points of 𝑓 .

Let 𝑝 be a critical point of the function 𝑓 . The Hessian form of 𝑓 at 𝑝 is a symmetric
bilinear form Hess𝑝 𝑓 : 𝑇𝑝𝑀 × 𝑇𝑝𝑀 → R defined on a pair of tangent vectors 𝑢, 𝑣 ∈ 𝑇𝑝𝑀
by

Hess𝑝 𝑓(𝑢, 𝑣) =
(︀
𝑈(𝑉 𝑓)

)︀
(𝑝),

where 𝑈 and 𝑉 are arbitrary extensions of 𝑢 and 𝑣 to local vector fields around 𝑝. In local
coordinates (𝑥1, . . . , 𝑥𝑛) around 𝑝 one has

Hess𝑝 𝑓

(︂
𝜕

𝜕𝑥𝑖
,

𝜕

𝜕𝑥𝑗

)︂
=

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑝).

The 𝑛× 𝑛 matrix 𝐻𝑝𝑓 with entries (𝐻𝑝𝑓)𝑖,𝑗 = 𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗 (𝑝) is called the Hessian matrix of 𝑓

at 𝑝 in the local coordinates (𝑥1, . . . , 𝑥𝑛).
A point 𝑝 ∈ Crit 𝑓 is called a degenerate critical point of the function 𝑓 if the Hes-

sian form Hess𝑝 𝑓 is degenerate (that is, there exists a vector 𝑣 ∈ 𝑇𝑝𝑀 such that
Hess𝑝 𝑓(𝑣, ) : 𝑇𝑝𝑀 → R vanishes). Otherwise 𝑝 is called a non-degenerate (or Morse)
critical point of the function 𝑓 . The point 𝑝 is degenerate if and only if in local coordinates
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(𝑥1, . . . , 𝑥𝑛) around 𝑝 the Hessian matrix 𝐻𝑝𝑓 has a zero eigenvalue. Morse 𝑓 denotes the
set of all Morse critical points of 𝑓 .

For a point 𝑝 ∈ Morse 𝑓 its Morse index 𝜇𝑓 (𝑝) is the maximal dimension of a subspace
of 𝑇𝑝𝑀 on which the Hessian form Hess𝑝 𝑓 is negative definite, that is,

𝜇𝑓 (𝑝) = max {dim𝑉 : 𝑉 ≤ 𝑇𝑝𝑀 and ∀𝑣 ∈ 𝑉 ∖ {0} Hess𝑝 𝑓(𝑣, 𝑣) < 0} .
The Morse index 𝜇𝑓 (𝑝) is equal to the number of negative eigenvalues of the Hessian matrix
𝐻𝑝𝑓 in local coordinates (𝑥1, . . . , 𝑥𝑛) around 𝑝.

Definition 2.1. A smooth function 𝑓 : 𝑀 → R on the smooth manifold 𝑀 with the
boundary 𝜕𝑀 is called a Morse function if

(1) Crit 𝑓 ⊂ 𝑀 ∖ 𝜕𝑀 , that is, there are no critical points of 𝑓 in the boundary 𝜕𝑀 ,
(2) Morse 𝑓 = Crit 𝑓 , that is, the critical points of 𝑓 are non-degenerate, and
(3) Morse 𝑓 |𝜕𝑀 = Crit 𝑓 |𝜕𝑀 , that is, the critical points of the restriction of 𝑓 to the

boundary 𝜕𝑀 are non-degenerate.

2.2. Flow lines.

Definition 2.2. Let 𝑓 be a Morse function on a smooth manifold 𝑀 .
(1) A local coordinate system (𝑥1, . . . , 𝑥𝑛) in a neighbourhood 𝑈𝑝 of a point 𝑝 ∈ Crit 𝑓

is adapted to 𝑓 if

𝑓 = 𝑓(𝑝) −
(︀
𝑥1
)︀2 − . . .−

(︀
𝑥𝜆
)︀2

+
(︀
𝑥𝜆+1

)︀2
+ . . . + (𝑥𝑛)2 in 𝑈𝑝

(2) A vector field 𝑉 ∈ 𝐶∞(𝑀,𝑇𝑀) is called a gradient-like vector field for 𝑓 if
𝑉 𝑓(𝑝) > 0 for all non-critical 𝑝 ∈ 𝑀 , and for any critical point 𝑝 of 𝑓 there
exists a neighbourhood 𝑈𝑝 of 𝑝 and a coordinate system (𝑥1, . . . , 𝑥𝑛) in 𝑈𝑝 adapted
to 𝑓 such that 𝑉/2 = −𝑥1 𝜕

𝜕𝑥1 − . . .− 𝑥𝜆 𝜕
𝜕𝑥𝜆 + 𝑥𝜆+1 𝜕

𝜕𝑥𝜆+1 + . . . + 𝑥𝑛 𝜕
𝜕𝑥𝑛 on 𝑈𝑝.

(3) A Riemannian metric 𝑔 ∈ 𝐶∞(𝑀,𝑆2𝑇 *𝑀) is adapted to 𝑓 if for any critical point
𝑝 of 𝑓 there exists a neighbourhood 𝑈𝑝 of 𝑝 and a coordinate system (𝑥1, . . . , 𝑥𝑛)

in 𝑈𝑝 adapted to 𝑓 such that 𝑔 = (𝑑𝑥1)
2

+ . . . + (𝑑𝑥𝑛)2 on 𝑈𝑝.

Lemma 2.3 (Morse). Let 𝑓 be a smooth function on a smooth manifold 𝑀 and 𝑝 be a
non-degenerate critical point of 𝑓 . Then there exists a neighbourhood 𝑈 of 𝑝 and local
coordinates (𝑥1, . . . , 𝑥𝑛) on 𝑈 adapted to 𝑓 .

Remark 2.4. Let 𝑓 be a Morse function on a smooth manifold 𝑀 with boundary 𝜕𝑀 .
Riemannian metrics on 𝑀 adapted to 𝑓 and gradient-like vector fields for 𝑓 are closely
related. Namely,

(1) Given a Riemannian metric 𝑔 on 𝑀 adapted to 𝑓 (their existence is easily deduced
by a partition of unity argument), the vector field 𝑉 = grad𝑔 𝑓 is called the gradient-
like vector field for 𝑓 associated to 𝑔.

(2) Given a gradient-like vector field 𝑉 for 𝑓 one can define a Riemannian metric 𝑔 on
𝑀 adapted to 𝑓 such that grad𝑔 𝑓 = 𝑉 in the following fashion. Fix neighbourhoods
𝑈𝑝 from the definition of the gradient-like vector field. Define Riemannian metrics
𝑔𝑝 ∈ 𝐶∞(𝑈𝑝, 𝑆

2𝑇 *𝑀) by 𝑔𝑝 = (𝑑𝑥1)
2

+ . . . + (𝑑𝑥𝑛)2. Take a positive definite
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bilinear form ̃︀𝑔 ∈ 𝐶∞(𝑀 ∖ Crit 𝑓, 𝑆2(ker 𝑑𝑓)*) and define a Riemannian metric
𝑔𝑟𝑒𝑔 ∈ 𝐶∞(𝑀 ∖ Crit 𝑓, 𝑆2𝑇 *𝑀) by

𝑔𝑟𝑒𝑔(𝑢 + 𝑎𝑉 (𝑥), 𝑣 + 𝑏𝑉 (𝑥)) = ̃︀𝑔(𝑢, 𝑣) + 𝑎𝑏 · (𝑉 𝑓)(𝑥) for 𝑢, 𝑣 ∈ ker 𝑑𝑥𝑓 and 𝑎, 𝑏 ∈ R.

The metric 𝑔 is obtained from 𝑔𝑝 and 𝑔𝑟𝑒𝑔 using a partition of unity subordinate to
the open cover {𝑈𝑝}𝑝∈Crit 𝑓 ∪ {𝑀 ∖ Crit 𝑓} is the one we need.

Now let 𝑀 be a closed manifold, 𝑓 : 𝑀 → R be a Morse function and 𝑉 ∈ 𝐶∞(𝑀,𝑇𝑀)
be a gradient-like vector field for 𝑓 . Denote by Φ𝑡 the flow on 𝑀 determined by −𝑉 , that
is,

𝑑

𝑑𝑡

⃒⃒⃒⃒
𝑡=𝑡0

Φ𝑡(𝑥) = −𝑉 (Φ𝑡0(𝑥)) and Φ0(𝑥) = 𝑥 for any 𝑥 ∈ 𝑀 and 𝑡0 ∈ R.

For any point 𝑥 ∈ 𝑀 the limits Φ±∞(𝑥) = lim
𝑡→±∞

Φ𝑡(𝑥) exist and are critical points of 𝑓 . For

a point 𝑥 ∈ 𝑀 the curve 𝛾𝑥
𝑉 = Φ (𝑥) : R → 𝑀 is called the parametrised flow line through

𝑥 (with respect to 𝑉 ) and its image is called the (unparametrised) flow line through 𝑥
(with respect to 𝑉 ).

For a point 𝑝 ∈ Crit 𝑓 we set

𝑊±
𝑝 = 𝑊±

𝑝 (𝑉 ) := Φ−1
±∞(𝑝) =

{︂
𝑥 ∈ 𝑀 : lim

𝑡→±∞
Φ𝑡(𝑥) = 𝑝

}︂
.

The sets 𝑊+
𝑝 and 𝑊−

𝑝 are called the stable and unstable manifolds of 𝑝 with respect to 𝑉
respectively.

Definition 2.5. Let 𝑓 : 𝑀 → R be a Morse function on a smooth closed manifold 𝑀 and
𝑉 ∈ 𝐶∞(𝑀,𝑇𝑀) be a gradient-like vector field for 𝑓 . 𝑉 is called a Morse-Smale vector
field adapted to 𝑓 if for any 𝑝, 𝑞 ∈ Crit 𝑓 the unstable manifold 𝑊−

𝑝 (𝑉 ) intersects the
stable manifold 𝑊+

𝑞 (𝑉 ) transversally.

Theorem 2.6 (Smale, [8]). For any Morse function 𝑓 on a smooth closed manifold 𝑀
there exists a Morse-Smale vector field on 𝑀 adapted to 𝑓 .

Let 𝑓 : 𝑀 → R be a Morse function on the closed manifold 𝑀𝑛 and let 𝑉 ∈ 𝐶∞(𝑀,𝑇𝑀)
be a Morse-Smale vector field adapted to 𝑓 . Consider two points 𝑝, 𝑞 ∈ Crit 𝑓 . The
intersection 𝑊 𝑝

𝑞 = 𝑊−
𝑝 ∩𝑊+

𝑞 consists of the flow lines with source 𝑞 and target 𝑝 and its
dimension is

dim𝑊 𝑝
𝑞 = 𝑛− (codim𝑀 𝑊−

𝑝 + codim𝑀 𝑊+
𝑞 ) = 𝑛− (𝜇𝑓 (𝑝) + 𝑛− 𝜇𝑓 (𝑞)) = 𝜇𝑓 (𝑝) − 𝜇𝑓 (𝑞).

The space 𝑊 𝑝
𝑞 is endowed with a free action of R given by the flow Φ. The quotient

ℳ𝑝
𝑞 = 𝑊 𝑝

𝑞 /R is obviously in bijection with the flow lines going from 𝑝 to 𝑞 and is thus
called the moduli space of flow lines from 𝑝 to 𝑞.

Proposition 2.7.
(1) Let 𝑓(𝑞) < 𝑟 < 𝑓(𝑝). Then 𝑊 𝑝

𝑞 ∩𝑓−1(𝑟) is a smooth submanifold of 𝑀 of dimension
𝜇𝑓 (𝑝) − 𝜇𝑓 (𝑞) − 1.
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(2) The moduli space ℳ𝑝
𝑞 is a smooth manifold diffeomorphic to any of 𝑊 𝑝

𝑞 ∩ 𝑓−1(𝑟)
with 𝑓(𝑞) < 𝑟 < 𝑓(𝑝).

Now let 𝑝 and 𝑞 be critical points of indices 𝜆 and 𝜆 − 1 respectively. Then ℳ𝑝
𝑞 is a

0-dimensional compact manifold, that is, a finite set with discrete topology. For each flow
line 𝛾 ∈ ℳ𝑝

𝑞 we define its sign sgn 𝛾 to be ±1 depending on the orientation of a frame
at a point 𝑥 ∈ 𝛾 ∩ 𝑓−1(𝑟), consisting of positively oriented frames of 𝑊−

𝑝 ∩ 𝑓−1(𝑟) and
𝑊+

𝑞 ∩ 𝑓−1(𝑟) at point 𝑥 together with 𝑉 (𝑥).

2.3. Cerf’s theory. For a more detailed exposition of Cerf’s theory see [2] and [7].
Let 𝑓, 𝑔 : 𝑀 → R be two smooth functions on a closed manifold 𝑀 . They are called

equivalent if there are diffeomorphisms 𝑅 : 𝑀 → 𝑀 and 𝐿 : R → R such that 𝑓 = 𝐿∘𝑔∘𝑅−1.
A Morse function is called non-resonant if all of its critical values are distinct. A Morse
function is called simply resonant if the number of its distinct critical values differs by one
from the number of its critical points. A smooth function 𝑓 : 𝑀 → R is called a birth-death
function if all of its critical points but one are Morse, all the critical values are distinct,
and there is a local coordinate system around the only non-Morse point 𝑝 in which the
function is expressed as

𝑓 = 𝑓(𝑝) −
(︀
𝑥1
)︀2 − . . .−

(︀
𝑥𝜆
)︀2

+
(︀
𝑥𝜆+1

)︀2
+ . . . +

(︀
𝑥𝑛−1

)︀2
+ (𝑥𝑛)3 .

Proposition 2.8.
(1) Let 𝑓 be a non-resonant Morse function. Then there is a neighbourhood 𝑈 of 𝑓

such that each 𝑔 ∈ 𝑈 is a non-resonant Morse function equivalent to 𝑓 .
(2) Let 𝑓 be a simply resonant Morse function. Then there is a neighbourhood

𝑈 = 𝑈> ⊔ 𝑈= ⊔ 𝑈< of 𝑓 such that 𝑈= is a codimension-one submanifold of 𝑈 con-
sisting of simply resonant Morse functions equivalent to 𝑓 , while 𝑈> and 𝑈< are
open subsets consisting of equivalent non-resonant Morse functions.

(3) Let 𝑓 be a birth-death function. Then there is a neighbourhood 𝑈 = 𝑈0 ⊔ 𝑈1 ⊔ 𝑈2 of
𝑓 such that such that 𝑈1 is a codimension-one submanifold of 𝑈 consisting of birth-
death Morse functions equivalent to 𝑓 , while 𝑈0 and 𝑈2 are open subsets consisting
of equivalent non-resonant Morse functions. # Crit 𝑔 = # Crit 𝑓−1 for 𝑔 ∈ 𝑈0 and
# Crit 𝑔 = # Crit 𝑓 + 1 for 𝑔 ∈ 𝑈2.

Let us denote by ℱ0 the set of non-resonant Morse functions, by ℱ𝛼
1 the set of birth-

death functions and by ℱ𝛽
1 the set of simply resonant functions. ℱ0 is an open dense subset

of 𝐶∞(𝑀,R) (in 𝐶2-topology), ℱ𝛼
1 and ℱ𝛽

1 are codimension-one (Frechet) submanifolds of
𝐶∞(𝑀,R).

Proposition 2.9. Let 𝑓0, 𝑓1 : 𝑀 → R be two non-resonant Morse functions. Then there
exists a path 𝛾 : [0, 1] → 𝒞∞(𝑀,R) such that

(1) 𝛾(0) = 𝑓0 and 𝛾(1) = 𝑓1;
(2) 𝛾(𝑡) is a non-resonant Morse function, simply resonant Morse function or a birth-

death function for all 𝑡 ∈ [0, 1];
(3) 𝛾(𝑡) intersects ℱ𝛼

1 and ℱ𝛽
1 transversally (and thus in a finite number of points).
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Moreover, a generic path satisfying (1) satisfies (2) and (3).

Definition 2.10. A Morse function 𝐹 : 𝑀 → R on the smooth manifold 𝑀 with the
boundary 𝜕𝑀 is called non-resonant if all the critical values of 𝐹 and of 𝐹 |𝜕𝑀 are distinct.

3. The Morse-Barannikov complex

3.1. Definition and first examples. Let 𝐹 ∈ 𝐶∞(𝑈) be a Morse function in a neigh-
bourhood 𝑈 of the boundary 𝜕𝑀 of a smooth manifold 𝑀𝑛, 𝑉 ∈ 𝐶∞(𝑈, 𝑇𝑀) be a gradient-
like vector field for 𝐹 , and 𝑊 ∈ 𝐶∞(𝜕𝑀, 𝑇𝜕𝑀) be a Morse-Smale vector field adapted to
𝑓 = 𝐹 |𝜕𝑀 .

Definition 3.1. The Morse-Barannikov complex (MB-complex for short) associated to the
triple (𝐹, 𝑉,𝑊 ) is a decorated graph in the plane drawn as follows.

(1) For each 𝑝 ∈ Crit 𝑓 draw a vertex with coordinates (𝜇𝑓 (𝑝), 𝑓(𝑝)) marked by 𝑝 with
an arrow pointing upwards if 𝑉 (𝑝) ∈ 𝑇 𝑜𝑢𝑡

𝑝 𝑀 and downwards if 𝑉 (𝑝) ∈ 𝑇 𝑖𝑛
𝑝 𝑀 .

(2) For each pair of critical points 𝑝, 𝑞 ∈ Crit 𝑓 with 𝑓(𝑝) > 𝑓(𝑞) and 𝜇𝑓 (𝑞) + 1 =
𝜇𝑓 (𝑝) = 𝜆 count the numbers +𝑝

𝑞 and −𝑝
𝑞 of the points in ℳ𝑝

𝑞 with sign +1 and −1
respectively.

(3) If +𝑝
𝑞 > 0, then draw a graph of a convex increasing function 𝑎 : [𝜆−1, 𝜆] → R with

𝑎(𝜆− 1) = 𝑓(𝑞) and 𝑎(𝜆) = 𝑓(𝑝) and write the number +𝑝
𝑞 near the graph (we omit

the number if +𝑝
𝑞 = 1).

(4) If +𝑝
𝑞 > 0, then draw a graph of a concave increasing function 𝑏 : [𝜆 − 1, 𝜆] → R

with 𝑏(𝜆− 1) = 𝑓(𝑞) and 𝑏(𝜆) = 𝑓(𝑝) and write the number −𝑝
𝑞 near the graph (we

omit the number if −𝑝
𝑞 = 1).

Thus an 𝑛-dimensional MB-complex consists of vertices that are characterised by a quadru-
ple (𝑝, 𝜇, 𝑐, 𝑣), where 𝜇 = 𝜇(𝑝) ∈ {0, . . . , 𝑛 − 1}, 𝑐 = 𝑐(𝑝) ∈ R, and 𝑣 = 𝑣(𝑝) ∈ {↑, ↓} and
oriented edges that are represented by graphs of concave or convex increasing functions.
We draw the lines {𝑥 = 0}, . . . , {𝑥 = 𝑛 − 1} on which all the vertices sit for convenience,
and we do not draw arrows for edges as every edge goes from left to right and from bottom
to top.

The MB-complex defined above is a slight refinement of the framed Morse complex
defined by Barannikov in [1]. In a sense, our definition is a step from the framed Morse
complex to the category 𝒞𝑓 from [3].

Example 3.2. Let 𝑀 = 𝐵𝑛
1 (0) be the closed unit ball in R𝑛, 𝐹 be the restriction of

the height function in R𝑛 to 𝑀 (i.e. 𝐹 (𝑥1, . . . , 𝑥𝑛) = 𝑥𝑛), 𝑉 = 𝜕
𝜕𝑥𝑛 , 𝑊 (𝑥) be the or-

thogonal projection of 𝑉 (𝑥) to 𝑇𝑥𝜕𝑀 = 𝑇𝑥𝑆
𝑛−1. Then 𝑓 = 𝐹 |𝑆𝑛−1 has only two crit-

ical points 𝑡 = (0, . . . , 0, 1) and 𝑏 = (0, . . . , 0,−1), the points of global maximum and
minimum respectively. 𝜇𝑓 (𝑡) = 𝑛 − 1, 𝜇𝑓 (𝑏) = 0. The MB-complex is simply 𝑛 lines
{𝑥 = 0}, . . . , {𝑥 = 𝑛− 1} with two points: (𝑛− 1, 1) and (0,−1) with arrows pointing up-
wards and downwards respectively. If 𝑛 = 2 then these two points are joint by two curves,
a convex and a concave one, see Figure 1.
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F=1

F=0

F=-1

0 1

t t

b b

Figure 1. A trivial MB-complex in dimension 2

Example 3.3. Let 𝑀 = 𝐵𝑛
1 (0) be the closed unit ball in R𝑛 and let

𝐹 (𝑥1, . . . , 𝑥𝑛) = 𝑎1
(︀
𝑥1
)︀2

+ . . . 𝑎𝑛 (𝑥𝑛)2 + 𝜀 ·
(︁(︀

𝑥1
)︀3

+ . . . + (𝑥𝑛)3
)︁

with 𝑎1 < . . . < 𝑎𝑘 < 0 < 𝑎𝑘+1 < . . . < 𝑎𝑛 and 100𝜀 < |𝑎𝑖− 𝑎𝑗| ∀𝑖, 𝑗. Then Crit 𝑓 = {±𝑒𝑖},
around the critical point ±𝑒𝑖 the function 𝑓 looks like

𝑓 = 𝑎𝑖 +
∑︁
𝑗 ̸=𝑖

(𝑎𝑗 − 𝑎𝑖)
(︀
𝑥𝑗
)︀2 ± 𝜀 ·

(︃
1 −

∑︁
𝑗 ̸=𝑖

(︀
𝑥𝑗
)︀2)︃3/2

± 𝜀 ·
∑︁
𝑗 ̸=𝑖

(︀
𝑥𝑗
)︀3

,

thus 𝜇𝑓 (±𝑒𝑖) = 𝑖− 1. The MB-complex consists of 𝑛 lines {𝑥 = 0}, . . . , {𝑥 = 𝑛− 1} with
two points (𝑖 − 1, 𝑎𝑖 ± 𝜀) on each. Arrow at a point (𝑖 − 1, 𝑎𝑖 ± 𝜀) points upwards if
𝑘 + 1 ≤ 𝑖 ≤ 𝑛 and downwards if 1 ≤ 𝑖 ≤ 𝑘. A point at the level 𝜆 is connected to all the
points at the levels 𝜆± 1. See Figure 2.

3.2. Metamorphoses of the MB-complex. Here we will restate some results of Cerf’s
theory in the language of the MB-complex. The restatement is due to Barannikov (see [1]).

Let 𝑀 be a smooth manifold with the boundary 𝑁1 = 𝜕𝑀 , 𝐹 : 𝑀 → R be a Morse
function on 𝑀 , 𝑁0 be a submanifold of 𝑀 , 𝐼 : 𝑁0 × [0, 1] → 𝑀 be an isotopy joining
𝑁0 and 𝑁1. Take a Riemannian metric 𝑔 on 𝑀 such that grad𝑔|𝑁𝑡

𝐹 |𝑁𝑡
is a Morse-Smale

vector field adapted to 𝑓𝑡 = 𝐹 |𝑁𝑡
for 𝑡 ∈ {0, 1}.

Theorem 3.4 (Barannikov, [1]).
∙ If there are no critical points of 𝐹 in im 𝐼, then the MB-complex of 𝑓1 can be

obtained from that of 𝑓0 by the following operations:
(a) An application of an orientation-preserving diffeomorphism 𝐿 : R → R to each

line 𝑥 = 0, . . . , 𝑥 = 𝑛− 1. In this case, for each vertex (𝑝, 𝜆, 𝑐, 𝑣) the value
𝐿(𝑐) − 𝑐 is non-negative if 𝑣 =↑ and is non-positive if 𝑣 =↓.

(b) A vertical move of a vertex (𝑝, 𝜆, 𝑐0, 𝑣) along the direction of 𝑣. The new value
𝑐 should be such that if there is a path from (𝑝1, 𝜆1, 𝑐1, 𝑣1) to 𝑝0, then 𝑐1 < 𝑐
and if there is a path from 𝑝0 to (𝑝2, 𝜆2, 𝑐2, 𝑣2), then 𝑐 < 𝑐2.
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a

a
a

a a a

b
b b

b b b

c

c
c

c c c

d
d d

d d d

F=2+ε

F=2-ε

F=1+ε

F=1-ε

F=1+ε

F=1-ε

F=-1+ε

F=-1-ε

F=-2-ε

F=-2+ε

F=-1+ε

F=-1+ε

Figure 2. Standard two-dimensional MB-complexes of indices 0, 1, and 2.

(c) An insertion of two critical points of neighbouring indices 𝜆 and 𝜆 − 1 with
arrows pointing in the same direction and one curve joining them, some other
curves joining new points with the old ones can appear. This operation can
only be performed if there are no old critical values of 𝑓 in between the two
new critical values.

(d) A deletion of two critical points of neighbouring indices 𝜆 and 𝜆−1 with arrows
pointing in the same direction and one curve joining them. This operation can
only be performed if there are no critical values of 𝑓 in between the critical
values at the two deleted points.

∙ If there is one critical point of 𝐹 in im 𝐼 and it has index 𝜆, then, in addition to the
operations (a)–(d), one of the following two operations should be performed once.

(𝜆.𝑎) A change of the direction of an arrow at a point at the level 𝜆 from down to
up.

(𝜆.𝑏) A change of the direction of an arrow at a point at the level 𝜆− 1 from up to
down.

Definition 3.5. An MB-complex is called trivial if it can be obtained from the MB-
complex in Example 3.2 by a metamorphose of type (1).

An MB-complex is called standard of index 𝜇 if it can be obtained from the MB-complex
in Example 3.3 with 𝑘 = 𝜇 by a metamorphose of type (1).
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4. Applications of MB-complexes to the problem

4.1. Some information on Morse index from an MB-complex. Let 𝑓 : 𝑈 → R be a
Morse function without critical points on the neighbourhood 𝑈 of 𝑆𝑛−1 inside 𝐵𝑛

0(1). For
each 𝑝 ∈ 𝑆𝑛−1 the vector 𝑑𝑝𝑓 ̸= 0 and if 𝑝 is a critical point of 𝑓 |𝑆𝑛−1 , then 𝑑𝑝𝑓 = 𝑇𝑝𝜕𝑆

𝑛−1

since otherwise 𝑝 would be a critical point of 𝑓 . We introduce the following notation:

Crit𝜆(𝑓) = {𝑝 ∈ Crit 𝑓 : 𝜇𝑓 (𝑝) = 𝜆};

Crit𝑜𝑢𝑡(𝑓) = {𝑝 ∈ Crit 𝑓 : 𝑑𝑝𝑓 |𝑇 𝑜𝑢𝑡
𝑝 𝑀 > 0}, Crit𝑖𝑛(𝑓) = {𝑝 ∈ Crit 𝑓 : 𝑑𝑝𝑓 |𝑇 𝑖𝑛

𝑝 𝑀 > 0};

Crit𝑜𝑢𝑡𝜆 (𝑓) = Crit𝜆(𝑓) ∩ Crit𝑜𝑢𝑡(𝑓), Crit𝑖𝑛𝜆 (𝑓) = Crit𝜆(𝑓) ∩ Crit𝑖𝑛(𝑓).

Proposition 4.1. Let 𝐹 be a smooth extension of 𝑓 to 𝐵𝑛
0(1) such that

Crit𝐹 = Morse𝐹 = 0. Then the parity of 𝜇𝐹 (0) can be retrieved from 𝑓 . Namely,

(−1)𝜇𝐹 (0) = (−1)𝑛 +
𝑛−1∑︁
𝜆=0

(−1)𝜆 · # Crit𝑜𝑢𝑡𝜆 (𝑓) = 1 −
𝑛−1∑︁
𝜆=0

(−1)𝜆 · # Crit𝑖𝑛𝜆 (𝑓)

Proof. Consider a Riemannian metric 𝑔 on 𝐵𝑛
0(1) that is adapted to 𝐹 and is standard in

a neihbourhood of 𝑆𝑛−1. We can assume that grad𝑔|𝑆𝑛−1
𝑓 is a Morse-Smale vector field

adapted to 𝑓 (if this is not the case, then push slightly 𝑆𝑛−1 inside 𝐵𝑛
0(1)). Take a small

sphere 𝑆0 inside 𝐵𝑛
0(1) such that 0 is not inside 𝑆0 such that grad𝑔|𝑆0

𝐹 |𝑆0
is a Morse-Smale

vector field adapted to 𝐹 |𝑆0
, and the MB-complex associated to (𝐹 |𝑆0

,𝑊, grad𝑔|𝑆0
𝐹 |𝑆0

)

is trivial.
By Theorem 3.4, the MB-complex associated to (𝑓, 𝑉, grad𝑔|𝑆𝑛−1

𝑓) can be obtained
from the one associated to (𝐹 |𝑆0

,𝑊, grad𝑔|𝑆0
𝐹 |𝑆0

) by the metamorphoses (a)–(d) and a
metamorphoses (𝜇𝐹 (0).𝑎) or (𝜇𝐹 (0).𝑏).

Note that the metamorphoses (a)–(d) do not change the alternating sums in the state-
ment. A metamorphoses (𝜇𝐹 (0).𝑎) increments # Crit𝑜𝑢𝑡𝜇𝐹 (0) while decrementing # Crit𝑖𝑛𝜇𝐹 (0).
A metamorphoses (𝜇𝐹 (0).𝑏) decrements # Crit𝑜𝑢𝑡𝜇𝐹 (0)−1 while incrementing # Crit𝑖𝑛𝜇𝐹 (0)−1.
Thus
𝑛−1∑︁
𝜆=0

(−1)𝜆 · # Crit𝑜𝑢𝑡𝜆 (𝑓) =
𝑛−1∑︁
𝜆=0

(−1)𝜆 · # Crit𝑜𝑢𝑡𝜆

(︀
𝐹 |𝑆0

)︀
+ (−1)𝜇𝐹 (0) = (−1)𝑛−1 + (−1)𝜇𝐹 (0)

and
𝑛−1∑︁
𝜆=0

(−1)𝜆 · # Crit𝑖𝑛𝜆 (𝑓) =
𝑛−1∑︁
𝜆=0

(−1)𝜆 · # Crit𝑖𝑛𝜆
(︀
𝐹 |𝑆0

)︀
− (−1)𝜇𝐹 (0) = (−1)0 − (−1)𝜇𝐹 (0).

�

Remark 4.2. Given a gradient-like vector field 𝑉 ∈ 𝐶∞(𝑆𝑛−1, 𝑇𝐵𝑛
0(1)) for 𝑓 (along 𝑆𝑛−1)

one can retrieve the parity of 𝜇𝐹 (0) easily, the way we did it has an advantage of looking
only at a finite number of points. Let (𝑥1, . . . , 𝑥𝑛) be a local coordinate system around 0

from Definition 2.2 and 𝑆0 be a small sphere given by (𝑥1)
2

+ . . . + (𝑥𝑛)2 = 𝜀. Connect
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𝑆𝑛−1 with 𝑆0 by an isotopy 𝐼 : 𝑆𝑛−1 × [0, 1] → 𝐵𝑛
0(1). Then 𝑣𝑡(𝑥) = 𝑉 (𝐼(𝑥, 𝑡))/|𝑉 (𝐼(𝑥, 𝑡))|

defines a homotopy between 𝑣1, 𝑣0 : 𝑆𝑛−1 → 𝑆𝑛−1 hence deg 𝑣1 = deg 𝑣0. It can be easily
computed that deg 𝑣0 = (−1)𝜇𝐹 (0)+𝑛, thus 𝑉 determines the parity of 𝜇𝐹 (0).

Sometimes one can retrieve the exact value of 𝜇𝐹 (0) from the MB-complex, one of the
instances of that is provided below.

Proposition 4.3. Let 𝐹 be a smooth extension of 𝑓 to 𝐵𝑛
0(1) such that

Crit𝐹 = Morse𝐹 = 0. If a point 𝑝 ∈ Crit𝑛−1 𝑓 (𝑝 ∈ Crit0 𝑓) with the largest (smallest)
value of 𝑓(𝑝) lies in Crit𝑖𝑛𝑛−1 𝑓 (Crit𝑜𝑢𝑡0 𝑓), then 𝜇𝐹 (0) = 𝑛 (𝜇𝐹 (0) = 0).

Proof. The version in brackets follows from the unbracketed one by taking −𝐹 instead of
𝐹 . We prove the version without brackets.

The global maximum 𝑀 of 𝐹 is attained somewhere. If it is attained at 𝑆𝑛−1, then
𝐹 (𝑝) = 𝑀 , but 𝐹 grows on a curve in 𝐵𝑛

0(1) emanating from 𝑝 along 𝑣 for any 𝑣 ∈
𝑇 𝑖𝑛
𝑝 𝐵𝑛

0(1), a contradiction. Thus 𝑀 is attained at a critical point of 𝐹 in 𝐵𝑛
0(1) ∖ 𝑆𝑛−1,

but Crit𝐹 = {0}, so the origin is the point of global maximum of 𝐹 and since it is
non-degenerate, we have 𝜇𝐹 (0) = 𝑛. �

4.2. MB-complexes admitting different indices.

Definition 4.4. Let 𝐶 be an MB-complex. We say that 𝐶 admits a critical point of index
𝜆 if 𝐶 can be obtained from a trivial MB-complex by metamorphoses (a)–(d) and one of
the metamorphoses (𝜆.𝑎) or (𝜆.𝑏).

We will abbreviate the metamorphoses in the following way. A metamorphose is not
completely determined by its abbreviation, yet it should be clear from the context what
metamorphose we mean.
𝑝 ↑ 𝑞 The vertex 𝑝 moves up and becomes higher than 𝑞.
𝑝 ↓ 𝑞 The vertex 𝑝 moved down and becomes lower than 𝑞.

+𝑎𝑏 ↑ Two vertices 𝑎 and 𝑏 with arrows up and a curve joining them are added.
+𝑎𝑏 ↓ Two vertices 𝑎 and 𝑏 with arrows down and a curve joining them are added.
−𝑎𝑏 ↑ Two vertices 𝑎 and 𝑏 with arrows up and one curve joining them are deleted.
−𝑎𝑏 ↓ Two vertices 𝑎 and 𝑏 with arrows down and one curve joining them are deleted.
↑ 𝑝 ↓ An arrow at point 𝑝 is changed from up to down.
↓ 𝑝 ↑ An arrow at point 𝑝 is changed from down to up.

Proposition 4.5. For any 𝑛 ≥ 2 and 0 ≤ 𝜆 ≤ 𝑛− 2 there is an MB-complex 𝐴𝑛
𝜆 with four

vertices admitting both indices 𝜆 and 𝜆 + 2.

Proof. 𝐴𝑛
𝜆 is an MB-complex consisting of four vertices 𝑚, 𝑑, 𝑢,𝑀 with 𝜇(𝑚) = 0, 𝜇(𝑑) = 𝜆,

𝜇(𝑢) = 𝜆+ 1, 𝜇(𝑀) = 𝑛− 1, 𝑐(𝑚) < 𝑐(𝑑) < 𝑐(𝑢) < 𝑐(𝑀), and 𝑣(𝑚) =↓, 𝑣(𝑑) =↑, 𝑣(𝑢) =↓,
𝑣(𝑀) =↑.

𝐴𝑛
𝜆 admits index 𝜆 since it can be obtained from a trivial MB-complex by applying +𝑑𝑢 ↓

and then ↓ 𝑑 ↑.
𝐴𝑛

𝜆 admits index 𝜆 + 2 since it can be obtained from a trivial MB-complex by applying
+𝑑𝑢 ↑ and then ↑ 𝑢 ↓.
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Figure 3. The MB-complexes 𝐴2
0 and 𝐴3
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Figure 4. The MB-complexes 𝐴4
0, 𝐴4

1, and 𝐴4
2

See Figures 3 and 4 for some examples. �

Proposition 4.6. For any 𝑛 ≥ 2 there are two MB-complexes 𝐶0 = 𝐶𝑛
0 and 𝐶1 = 𝐶𝑛

1 such
that 𝐶0 admits critical points of indices 0, 2, . . . , 2 · [𝑛/2] and 𝐶1 admits critical points of
indices 1, 3, . . . , 2 · [(𝑛 + 1)/2] − 1.

Proof. Both 𝐶0 and 𝐶1 have two vertices at each level, and a vertex at level 𝜆 is connected
by a curve to each of the vertices at the neighbouring levels. The vertices at the level 𝜆
are called 𝑢𝜆 and 𝑑𝜆; 𝑢𝜆 is higher than 𝑑𝜆) for all 𝜆; the vertices at the level 𝜆 are lower
than the vertices at the level 𝜆 + 1. In 𝐶0 all 𝑢𝜆 have arrows up, and all 𝑑𝜆 have arrows
down except the case when 𝑛 is odd, then 𝑑𝑛−1 has arrow up. In 𝐶1 the vertices 𝑢0 and
𝑑0 have arrows down and all other 𝑢𝜆 have arrows up and all other 𝑑𝜆 have arrows down
except the case where 𝑛 is even, then 𝑑𝑛−1 has arrow up.

Let 0 ≤ 𝜆 ≤ 𝑛 be an even number. We now describe the general algorithm for obtaining
𝐶0 from a trivial MB-complex by metamorphoses (a)–(d) and one metamorphose of type
(𝜆). See Figures 5 and 6 for examples.

(1) 𝜆 = 0. First perform +𝑢0𝑑1 ↓, then perform 𝑢2𝑘−1𝑢2𝑘 ↑ and 𝑑2𝑘𝑑2𝑘+1 ↓ until reaching
𝑑𝑛−1 or 𝑢𝑛−1 depending on the parity of 𝑛. Next, for each 𝑘 ≥ 1 perform 𝑢2𝑘 ↑ 𝑑2𝑘.
Finally, perform ↓ 𝑢0 ↑.

(2) 2 ≤ 𝜆 ≤ 𝑛 − 1. Perform 𝑢2𝑘𝑢2𝑘+1 ↑ and 𝑑2𝑘+1𝑑2𝑘+2 ↓ until reaching 𝑑𝜆. Then
perform 𝑢𝜆𝑑𝜆+1, next perform 𝑢2𝑘−1𝑢2𝑘 ↑ and 𝑑2𝑘𝑑2𝑘+1 ↓ until reaching 𝑑𝑛−1 or 𝑢𝑛−1

depending on the parity of 𝑛. After that perform 𝑢𝑖 ↑ 𝑑𝑖 for each 𝑖 with 𝑐(𝑢𝑖) < 𝑐(𝑑𝑖)
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ind 0 ind 2 ind 4
+𝑢0𝑑1 ↓ +𝑢0𝑢1 ↑ +𝑢0𝑢1 ↑
+𝑢1𝑢2 ↑ +𝑑1𝑑2 ↓ +𝑑1𝑑2 ↓
+𝑑2𝑑3 ↓ +𝑢2𝑑3 ↓ +𝑢2𝑢3 ↑
+𝑢3𝑢4 ↑ +𝑢3𝑢4 ↑ +𝑑3𝑑4 ↓
𝑢2 ↑ 𝑑2 𝑢1 ↑ 𝑑1 𝑢1 ↑ 𝑑1
𝑢4 ↑ 𝑑4 𝑢4 ↑ 𝑑4 𝑢3 ↑ 𝑑3
↓ 𝑢0 ↑ ↓ 𝑢2 ↑ ↓ 𝑑4 ↑

Figure 5. 𝐶0 in dimension 5 and metamorphoses from a trivial complex to 𝐶0

ind 0 ind 2 ind 4 ind 6
+𝑢0𝑑1 ↓ +𝑢0𝑢1 ↑ +𝑢0𝑢1 ↑ +𝑢0𝑢1 ↑
+𝑢1𝑢2 ↑ +𝑑1𝑑2 ↓ +𝑑1𝑑2 ↓ +𝑑1𝑑2 ↓
+𝑑2𝑑3 ↓ +𝑢2𝑑3 ↓ +𝑢2𝑢3 ↑ +𝑢2𝑢3 ↑
+𝑢3𝑢4 ↑ +𝑢3𝑢4 ↑ +𝑑3𝑑4 ↓ +𝑑3𝑑4 ↓
+𝑑4𝑑5 ↓ +𝑑4𝑑5 ↓ +𝑢4𝑑5 ↑ +𝑢4𝑑5 ↑
𝑢2 ↑ 𝑑2 𝑢1 ↑ 𝑑1 𝑢1 ↑ 𝑑1 𝑢1 ↑ 𝑑1
𝑢4 ↑ 𝑑4 𝑢4 ↑ 𝑑4 𝑢3 ↑ 𝑑3 𝑢3 ↑ 𝑑3
↓ 𝑢0 ↑ ↓ 𝑢2 ↑ ↓ 𝑢4 ↑ ↑ 𝑑5 ↓

Figure 6. 𝐶0 in dimension 6 and metamorphoses from a trivial complex to 𝐶0
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ind 1 ind 3
+𝑢0𝑢1 ↑ +𝑢0𝑑1 ↓
+𝑑1𝑑2 ↓ +𝑢1𝑢2 ↑
+𝑢2𝑢3 ↑ +𝑑2𝑑3 ↓
𝑢1 ↑ 𝑑1
𝑢3 ↑ 𝑑3 𝑢2 ↑ 𝑑2
↑ 𝑢0 ↓ ↓ 𝑑3 ↑

Figure 7. 𝐶1 in dimension 4 and metamorphoses from a trivial complex to 𝐶1

ind 1 ind 3 ind 5 ind 7
+𝑢0𝑢1 ↑ +𝑢0𝑑1 ↓ +𝑢0𝑑1 ↓ +𝑢0𝑑1 ↓
+𝑑1𝑑2 ↓ +𝑢1𝑢2 ↑ +𝑢1𝑢2 ↑ +𝑢1𝑢2 ↑
+𝑢2𝑢3 ↑ +𝑑2𝑢3 ↑ +𝑑2𝑑3 ↓ +𝑑2𝑑3 ↓
+𝑑3𝑑4 ↓ +𝑑3𝑑4 ↓ +𝑢3𝑢4 ↑ +𝑢3𝑢4 ↑
+𝑢4𝑢5 ↑ +𝑢4𝑢5 ↑ +𝑑4𝑢5 ↑ +𝑑4𝑑5 ↓
+𝑑5𝑑6 ↓ +𝑑5𝑑6 ↓ +𝑑5𝑑6 ↓ +𝑢5𝑢6 ↑
𝑢1 ↑ 𝑑1 𝑢2 ↑ 𝑑2 𝑢2 ↑ 𝑑2 𝑢2 ↑ 𝑑2
𝑢3 ↑ 𝑑3 𝑢3 ↑ 𝑑3 𝑢4 ↑ 𝑑4 𝑢4 ↑ 𝑑4
𝑢5 ↑ 𝑑5 𝑢5 ↑ 𝑑5 𝑢5 ↑ 𝑑5 𝑢6 ↑ 𝑑6
↑ 𝑢0 ↓ ↑ 𝑑2 ↓ ↑ 𝑑4 ↓ ↑ 𝑑6 ↓

Figure 8. 𝐶1 in dimension 7 and metamorphoses from a trivial complex to 𝐶1
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(these are odd 𝑖 before 𝜆 and even 𝑖 after 𝜆). Finally, perform ↓ 𝑢𝜆 ↑ if 𝜆 < 𝑛− 1
or ↓ 𝑑𝑛−1 ↑ otherwise.

(3) 𝜆 = 𝑛. Perform 𝑢2𝑘𝑢2𝑘+1 ↑ and 𝑑2𝑘+1𝑑2𝑘+2 ↓ until reaching 𝑑𝑛−2. Then perform
𝑢𝑛−2𝑑𝑛−1 ↓. Next for each odd 1 ≤ 𝑖 ≤ 𝑛 − 3 perform 𝑢𝑖 ↑ 𝑑𝑖. Finally, perform
↑ 𝑑𝑛−1 ↓.

Let 1 ≤ 𝜆 ≤ 𝑛 be an odd number. We now describe the general algorithm for obtaining
𝐶1 from a trivial Morse-Barannikov by metamorphoses (a)–(d) and one metamorphose of
type (𝜆). See Figures 7 and 8 for examples.

(1) 𝜆 = 1. Perform 𝑢2𝑘𝑢2𝑘+1 ↑ and 𝑑2𝑘+1𝑑2𝑘+2 ↓ starting from 𝑘 = 0 until reaching 𝑑𝑛−1

or 𝑢𝑛−1 depending on the parity of 𝑛. Then perform 𝑢𝑖 ↑ 𝑑𝑖 for each odd 𝑖. Finally,
perform ↑ 𝑢0 ↓.

(2) 3𝜆 ≤ 𝑛 − 1. First perform 𝑢0𝑑1 ↓. Then perform 𝑢2𝑘−1𝑢2𝑘 ↑ and 𝑑2𝑘𝑑2𝑘+1 ↓
until reaching 𝑢𝜆−1. Next perform 𝑑𝜆−1𝑢𝜆 ↑. After that perform 𝑑2𝑘−1𝑑2𝑘 ↓ and
𝑢2𝑘𝑢2𝑘+1 ↑ until reaching 𝑑𝑛−1 or 𝑢𝑛−1 depending on the parity of 𝑛. Then perform
𝑢𝑖 ↑ 𝑑𝑖 for each 𝑖 with 𝑐(𝑢𝑖) < 𝑐(𝑑𝑖) (these are even 𝑖 before 𝜆 and odd 𝑖 after 𝜆).
Finally, perform ↑ 𝑑𝜆−1 ↓.

(3) 𝜆 = 𝑛. First perform 𝑢0𝑑1 ↓. Then perform 𝑢2𝑘−1𝑢2𝑘 ↑ and 𝑑2𝑘𝑑2𝑘+1 ↓ until reaching
𝑑𝑛−1. Next perform 𝑢𝑖 ↑ 𝑑𝑖 for all even 𝑖 ≥ 2. Finally, perform ↓ 𝑑𝑛−1 ↑.

�

5. Toolbox: metamorphoses of Morse functions

Definition 5.1. Let 𝑈 ⊂ 𝐵𝑛
0(1) be a neighbourhood of 𝑆𝑛−1 and 𝑓 : 𝑈 → R be a Morse

function without critical points. We say that 𝑓 admits index 𝜆 if there exists a Morse
function 𝐹 : 𝐵𝑛

0(1) → R such that
(1) 𝐹 |𝑈 = 𝑓 ,
(2) Crit𝐹 = {0}, and
(3) 𝜇𝐹 (0) = 𝜆.

Remark 5.2. It is clear from Theorem 3.4, that if 𝑓 admits index 𝜆, then the MB-complex
associated to (𝑓, grad 𝑓,𝑊 ) admits index 𝜆 (𝑊 ∈ 𝐶∞(𝜕𝑀, 𝑇𝜕𝑀) is a Morse–Smale vector
field adapted to 𝑓).

Note that if 𝑓 is extendable with index 𝜆, then so is 𝐿 ∘ 𝑓 for any orientation-preserving
diffeomorphism 𝐿 of R and 𝑓 ∘𝑅−1 : 𝑅(𝑈) → R for any diffeomorphism 𝑅 of 𝐵𝑛

0(1).
Note also that if 𝐹 : 𝑀 → R is a Morse function and 𝐴 is a closed subset of 𝑀 not

meeting Crit𝐹 , then a vector field 𝑉 ∈ 𝐶∞(𝐴, 𝑇𝑀) satisfying 𝑉 𝐹 > 0 can be extended
to a gradient-like vector field ̃︀𝑉 ∈ 𝐶∞(𝑀,𝑇𝑀) for 𝐹 and a Riemannian metric 𝑔 ∈
𝐶∞(𝐴, 𝑆2𝑇 *𝑀) along 𝐴 can be extended to a Riemannian metric 𝑔 ∈ 𝐶∞(𝑀,𝑆2𝑇𝑀)
adapted to 𝐹 . In particular, if 𝐹 : 𝐵𝑛

0(1) → R is a Morse function, then we can assume
that the Riemannian metric adapted to 𝐹 is the standard metric coming from R𝑛 outside
an arbitrary neighbourhood 𝑈 of Crit𝐹 .
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5.1. Flips.

Definition 5.3. Let 𝐹 : 𝐵𝑛
0(1) → R be a Morse function without critical points and

𝑝 ∈ 𝑆𝑛−1 be a critical point of 𝐹 |𝑆𝑛−1 . A Morse function ̃︀𝐹 : 𝐵𝑛
0(1) → R is a flip of 𝐹 at 𝑝

of index 𝜆 if
(1) ̃︀𝐹 = 𝐹 outside some neighbourhood 𝑈𝑝 of 𝑝 in 𝐵𝑛

0(1);
(2) grad𝐹 (𝑝) and grad ̃︀𝐹 (𝑝) point in opposite directions;
(3) ̃︀𝐹 ⃒⃒⃒

𝑆𝑛−1
= 𝐹 |𝑆𝑛−1 ;

(4) Crit ̃︀𝐹 = {0} and 𝜇 ̃︀𝐹 (0) = 𝜆.

The following statement is a refinement of [1, Lemma 1] by Barannikov.

Lemma 5.4. Let 𝐹 : 𝐵𝑛
0(1) → R be a Morse function without critical points and 𝑝 ∈ 𝑆𝑛−1

be a critical point of 𝑓 = 𝐹 |𝑆𝑛−1 with 𝜇𝑓 (𝑝) = 𝜆 and grad𝐹 (𝑝) ∈ 𝑇 𝑖𝑛
𝑝 𝐵𝑛

0(1). Then there
exists a flip ̃︀𝐹 of 𝐹 at 𝑝 of index 𝜆.

Proof. Without loss of generality we can assume that 𝐹 (𝑝) = 0. Choose a local coordinate
system (𝑥1, . . . , 𝑥𝑛−1, 𝑦) in a neighbourhood 𝑈1 of 𝑝 in such a way that

(1) 𝑈1 is given by 𝑦 ≤ 0,
(2) 𝑥 = (𝑥1, . . . , 𝑥𝑛−1) is a coordinate system in 𝑈1 ∩ 𝑆𝑛−1 adapted to 𝑝 (with respect

to 𝑓), and
(3) 𝐹 (𝑥, 𝑦) = 𝑓(𝑥) − 2𝑦 (to satisfy that first choose ̃︀𝑦 such that (1) and (2) hold, and

then define 2𝑦(𝑥, ̃︀𝑦) = 𝑓(𝑥) − 𝐹 (𝑥, ̃︀𝑦)).
Let 𝑎 > 0 be such that 𝑈2 = 𝐵𝑛−1

0 (𝑎)× [−𝑎,+∞) satisfies 𝑈2∩{𝑦 ≤ 0} ⊂ 𝑈1. Note that
for (𝑥, 𝑦) ∈ 𝑈2 with 𝑦 ≤ 0 we have

𝐹 (𝑥, 𝑦) = −
𝜆∑︁

𝑖=1

(︀
𝑥𝑖
)︀2

+
𝑛−1∑︁

𝑖=𝜆+1

(︀
𝑥𝑖
)︀2 − 2𝑦.

By modifying 𝐹 on {(𝑥, 𝑦) ∈ 𝐵𝑛−1
0 (𝑎) × (−𝑎/5, 0) : 𝑎/5 < |𝑥| < 4𝑎/5} we can ob-

tain a smooth function 𝐹1 without critical points such that 𝐹1(𝑥, 𝑦) = 𝐹 (𝑥, 0) for
2𝑎/5 ≤ |𝑥| ≤ 3𝑎/5 and −𝑎/10 < 𝑦 ≤ 0. Now we extend this function to the smooth func-
tion

𝐹2 : 𝐵𝑛−1
0 (𝑎) × (−𝑎, 0] ∪ {(𝑥, 𝑦) ∈ 𝑈2 : 2𝑎/5 ≤ |𝑥| ≤ 3𝑎/5} → R

by 𝐹2(𝑥, 𝑦) = 𝐹2(𝑥, 0) for 2𝑎/5 ≤ |𝑥| ≤ 3𝑎/5 and 𝑦 > 0.
Define a function 𝐺 : 𝐵𝑛−1

0 (𝑎) × [0,+∞) by

𝐺(𝑥, 𝑦) = 1 −
𝜆∑︁

𝑖=1

(︀
𝑥𝑖
)︀2

+
𝑛−1∑︁

𝑖=𝜆+1

(︀
𝑥𝑖
)︀2

+ (𝑦 − 1)2.

Note that 𝐹2 and 𝐺 satisfy 𝐹2(𝑥, 0) = 𝐺(𝑥, 0) for 𝑥 ∈ 𝐵𝑛−1
0 (𝑎) and

grad𝐹2(𝑥, 0) = grad𝐺(𝑥, 0) for |𝑥| ≤ 𝑎/5. So there is a smooth extension 𝐹3 : 𝑈2 → R
of 𝐹2 such that

(1) 𝐹3(𝑥, 𝑦) = 𝐺(𝑥, 𝑦) for |𝑥| ≤ 𝑎/5 and 𝑦 ≥ 1/2 and
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(2) Crit𝐹3 = Crit𝐺 = {(0, . . . , 0, 1)}.
Now let ̃︀𝑦 : 𝐵𝑛−1

0 (𝑎) → R be a smooth function satisfying
(1) ̃︀𝑦(𝑥) = 2 for |𝑥| ≤ 𝑎/5,
(2) ̃︀𝑦(𝑥) = 0 for |𝑥| ≥ 𝑎/2, and
(3) 𝐹3(𝑥, ̃︀𝑦(𝑥)) = 𝐹 (𝑥, 0) for all 𝑥 ∈ 𝐵𝑛−1

0 (𝑎).
Take a diffepmorphism Φ of 𝑈2 such that

(1) Φ(𝑥, 𝑦) = (𝑥, 𝑦) for |𝑥| ≥ 2𝑎/5 and
(2) Φ(𝑥, ̃︀𝑦) = (𝑥, 0) for all 𝑥 ∈ 𝐵𝑛−1

0 (𝑎).
The function 𝐹4(𝑥, 𝑦) = 𝐹3(𝑥,Φ

−1(𝑥, 𝑦)) is almost the one we need. The only difference is
that the critical point 𝑞 of 𝐹4 is not at the origin, so ̃︀𝐹 = 𝐹4∘Ψ where Ψ is a diffeomorphism
of 𝐵𝑛

0 that maps 0 to 𝑞 and is the identity near 𝑆𝑛−1. �

Corollary 5.5. Let 𝐹 : 𝐵𝑛
0(1) → R be a Morse function without critical points and 𝑝 ∈

𝑆𝑛−1 be a critical point of 𝑓 = 𝐹 |𝑆𝑛−1 with 𝜇𝑓 (𝑝) = 𝜆 − 1 and grad𝐹 (𝑝) ∈ 𝑇 𝑜𝑢𝑡
𝑝 𝐵𝑛

0(1).
Then there exists a flip ̃︀𝐹 of 𝐹 at 𝑝 of index 𝜆.

Proof. It follows from the proposition that there exists a flip ̃︂−𝐹 of −𝐹 at 𝑝 of index 𝑛−𝜆.
Then −

(︁̃︂−𝐹
)︁

is a flip for 𝐹 at 𝑝 of index 𝜆. �

5.2. Standard births.

Definition 5.6. Let 𝐹 : 𝐵𝑛
0(1) → R be a Morse function, 𝑉 ∈ 𝐶∞(𝑆𝑛−1, 𝑇𝑆𝑛−1) be a

Morse–Smale vector field adapted to 𝑓 = 𝐹 |𝑆𝑛−1 , 𝑝 ∈ 𝑆𝑛−1 be a regular point of 𝑓 , 𝑈𝑝

be a neighbourhood of 𝑝 in 𝐵𝑛
0(1), 𝛾 = 𝛾𝑝

𝑉 be the flow line through 𝑝, and 𝜀 > 0 be such
that 𝛾(𝑡) ∈ 𝑈𝑝 for |𝑡| < 3𝜀. We say that a Morse function ̃︀𝐹 : 𝐵𝑛

0(1) → R is obtained
from 𝐹 by a standard birth in 𝑈𝑝 of index 𝜆 if there exists a Morse-Smale vector field̃︀𝑉 ∈ 𝐶∞(𝑆𝑛−1, 𝑇𝑆𝑛−1) for ̃︀𝑓 = ̃︀𝐹 ⃒⃒⃒

𝑆𝑛−1
such that

(1) ̃︀𝐹 = 𝐹 and ̃︀𝑉 = 𝑉 outside 𝑈𝑝;
(2) Crit ̃︀𝑓 = Crit 𝑓 ∪ {𝑝−, 𝑝+} where 𝑝± = 𝛾(±𝜀) ∈ 𝑈𝑝;
(3) 𝜇 ̃︀𝑓 (𝑝+) = 𝜆, 𝜇 ̃︀𝑓 (𝑝−) = 𝜆 + 1, 𝛾𝑝̃︀𝑉 (−𝜀, 𝜀) is the unique flow line between 𝑝+ and 𝑝−,

and im 𝛾
𝛾(−2𝜀)̃︀𝑉 ∪ im 𝛾𝑝̃︀𝑉 ∪ im 𝛾

𝛾(2𝜀)̃︀𝑉 = im 𝛾𝑝
𝑉 .

(4) grad𝐹 (𝑥) and grad ̃︀𝐹 (𝑥) both lie in either 𝑇 𝑖𝑛
𝑥 𝐵𝑛

0(1) or 𝑇 𝑜𝑢𝑡
𝑥 𝐵𝑛

0(1) for any 𝑥 ∈ 𝑆𝑛−1.

The construction we present here is essentially the one known classically and explained
by Cerf in [2, III.1]. The only difference is that we have an additional dimension, that is,
we need to extend the modification of a function on 𝑆𝑛−1 to its tubular neighbourhood.
This is done straightforwardly, yet we write the construction in some detail as we later
need its additional property, namely, that one can relate standard births at two points on
the same flow line.

Lemma 5.7. Let 𝐹 : 𝐵𝑛
0(1) → R be a Morse function, 𝑉 ∈ 𝐶∞(𝑆𝑛−1, 𝑇𝑆𝑛−1) be a Morse–

Smale vector field adapted to 𝑓 = 𝐹 |𝑆𝑛−1, 𝑝 ∈ 𝑆𝑛−1 be a regular point of 𝑓 with grad𝐹 (𝑝) /∈
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𝑇𝑝𝑆
𝑛−1, and 𝜆 ∈ {0, . . . , 𝑛−2} be a number. Then for any sufficiently small neighbourhood

𝑈𝑝 of 𝑝 and sufficiently small 𝜀 > 0 there exists a Morse function ̃︀𝐹 : 𝐵𝑛
0(1) → R obtained

from 𝐹 by a standard birth in 𝑈𝑝 of index 𝜆.

Proof. Without loss of generality we can assume that 𝐹 (𝑝) = 0. Choose a local coordinate
system (𝑥1, . . . , 𝑥𝑛−1, 𝑦) in a neighbourhood 𝑈1 of 𝑝 such that

(1) 𝑈1 is given by 𝑦 ≤ 0;
(2) 𝐹 (𝑥1, . . . , 𝑥𝑛−1, 𝑦) = 𝑥𝑛−1 + 𝜎𝑦 with 𝜎 = 1 if grad𝐹 (𝑝) ∈ 𝑇 𝑜𝑢𝑡

𝑝 𝐵𝑛
0(1) and 𝜎 = −1 if

grad𝐹 (𝑝) ∈ 𝑇 𝑖𝑛
𝑝 𝐵𝑛

0(1);
(3) the flow line through 𝑝 is given by 𝛾(𝑡) = (0, . . . , 0, 𝑡, 0).

Let 𝑎 > 0 be such that 𝑈2 = 𝐵𝑛−1
0 (𝑎) × (−𝑎, 𝑎) satisfies 𝑈2 ∩ {𝑦 ≤ 0} ⊂ 𝑈1. Let

𝑜𝑚𝑒𝑔𝑎 : R → R be a smooth function that is equal to 1 for |𝑥| < 𝑎/4, equal to 0 for
|𝑥| > 𝑎/2, symmetric with respect to 0 and monotone on [0,+∞). Define a function

𝐺(𝑥, 𝑦) = −
𝜆∑︁

𝑖=1

(︀
𝑥𝑖
)︀2

+
𝑛−2∑︁

𝑖=𝜆+1

(︀
𝑥𝑖
)︀2

+
(︀
𝑥𝑛−1

)︀3
+ (1 − 2𝜔(|(𝑥, 𝑦)|))𝜀1𝑥𝑛−1 + 𝜎𝑦

and a diffeomorphism

Φ(𝑥, 𝑦) = (𝑥1, . . . , 𝑥𝑛−2,−
𝜆∑︁

𝑖=1

(︀
𝑥𝑖
)︀2

+
𝑛−2∑︁

𝑖=𝜆+1

(︀
𝑥𝑖
)︀2

+
(︀
𝑥𝑛−1

)︀3
+ 𝜀1𝑥

𝑛−1, 𝑦),

where 𝜀1 = 3
(︀
3𝜀
4

)︀2/3.
Then ̃︀𝐹 = 𝐺 ∘ Φ−1 and ̃︀𝑓 = ̃︀𝐹 ⃒⃒⃒

{𝑦=0}
have the following properties

(1) ̃︀𝐹 (𝑥, 𝑦) = 𝑥𝑛−1 + 𝜎𝑦 = 𝐹 (𝑥, 𝑦) if |𝑥| > 𝑎/2 or |𝑦| > 𝑎/2;
(2) Crit ̃︀𝐹 = ∅;
(3) Crit ̃︀𝑓 = {𝑝+, 𝑝−} = {(0, . . . , 0, 𝜀, 0), (0, . . . , 0,−𝜀, 0)}; 𝜇 ̃︀𝑓 (𝑝+) = 𝜆, and

𝜇 ̃︀𝑓 (𝑝−) = 𝜆 + 1;
(4) 𝜕 ̃︀𝐹

𝜕𝑦
(𝑥, 𝑦) = 𝜎 = 𝜕𝐹

𝜕𝑦
(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝑈2.

Thus ̃︀𝐹 and ̃︀𝑉 = grad ̃︀𝑓 are the desired function and vector field. �

Remark 5.8. From the construction it follows that ̃︀𝑓 and ̃︀𝑉 depend only on 𝑓 and 𝑉 and
not on the extension of 𝑓 to 𝐹 .

5.3. Connecting two Morse functions. Since two Morse functions with the same
Morse-Barannikov complex are not necessarily equivalent, we need to find a way to some-
how connect them. First we prove a technical lemma that allows us to obtain a Morse
function without critical points in a neighbourhood of 𝑆𝑛−1 inside R𝑛 from two Morse
functions without critical points in neighbourhoods of 𝑆𝑛−1 inside {𝑥 ∈ R𝑛 : |𝑥| ≤ 1} and
{𝑥 ∈ R𝑛 : |𝑥| ≥ 1}.

Lemma 5.9. Let 𝐹 be a continuous function on 𝑆𝜀 = {𝑥 ∈ R𝑛 : 1 − 𝜀 < |𝑥| < 1 + 𝜀}
which is a Morse function without critical points on 𝑆+

𝜀 = {𝑥 ∈ R𝑛 : 1 ≤ |𝑥| < 1 + 𝜀} and
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𝑆−
𝜀 = {𝑥 ∈ R𝑛 : 1 − 𝜀 < |𝑥| ≤ 1}. Suppose that grad

(︀
𝐹 |𝑆+

𝜀

)︀
(𝑝) = grad

(︀
𝐹 |𝑆−

𝜀

)︀
(𝑝) for all

𝑝 ∈ Crit 𝐹 |𝑆𝑛−1. Then there exists a Morse function without critical points ̃︀𝐹 on 𝑆𝜀 such
that ̃︀𝐹 is equal to 𝐹 in a neighbourhood of 𝜕𝑆𝜀.

Proof. Let 𝐹± be smooth extensions of 𝐹 from 𝑆±
𝜀 to 𝑆𝜀 such that

grad
(︀
𝐹 |𝑆±

𝜀

)︀
(𝑥) = grad (𝐹±) (𝑥) for all 𝑥 ∈ 𝑆𝑛−1. Taking a smaller 𝜀

we can assume that 𝐹± are Morse functions without critical points. Let
𝑐 = min𝑦∈𝑆𝑛−1 min

{︀⃒⃒
grad 𝐹 |𝑆+

𝜀
(𝑦)
⃒⃒
,
⃒⃒
grad 𝐹 |𝑆−

𝜀
(𝑦)
⃒⃒}︀

, for 𝑝 ∈ Crit 𝐹 |𝑆𝑛−1 let 𝑈𝑝 be
a small cap on 𝑆𝑛−1 around 𝑝 such that |grad𝐹+(𝑥) − grad𝐹−(𝑥)| < 𝑐/100 and
|grad𝐹±(𝑥) − grad𝐹±(𝑝)| < 𝑐/100 for any 𝑥 ∈ 𝑈𝑝. Pick 𝛿 > 0 such that the following
conditions are satisfied

(1) 𝐹 𝑡
𝛼+,𝛼− = 𝛼+ 𝐹+|𝑡𝑆𝑛−1 + 𝛼− 𝐹−|𝑡𝑆𝑛−1 is a Morse function equivalent to 𝐹 |𝑆𝑛−1 for

any 𝑡 ∈ [1 − 𝛿, 1 + 𝛿] and 𝛼+, 𝛼− > 0 with 𝛼+ +𝛼− = 1 and for any 𝑞 ∈ Crit𝐹 𝑡
𝛼+,𝛼−

the point 𝑞/|𝑞| lies in 𝑈𝑝 for the corresponding 𝑝 ∈ Crit 𝐹 |𝑆𝑛−1 ;
(2) |grad𝐹±(𝑥) − grad𝐹±(𝑥/|𝑥|)| < 𝑐/100 for any any 𝑥 ∈ 𝑆𝛿.

Take a partition of unity {𝜙+, 𝜙−} on 𝑆𝜀 subordinate to the open cover{︀
{𝑥 ∈ R𝑛 : 1 − 𝛿 ≤ |𝑥| ≤ 1 + 𝜀}, {𝑥 ∈ R𝑛 : 1 − 𝜀 ≤ |𝑥| ≤ 1 + 𝛿}

}︀
such that 𝜙+ constant on

each |𝑥|𝑆𝑛−1, decreases in |𝑥| and |grad𝜙+| < 2/𝛿. We define ̃︀𝐹 = 𝜙+𝐹+ + 𝜙−𝐹−. We
need to prove that ̃︀𝐹 has no critical points.

Consider 𝑥 ∈ 𝑆𝜀. If 𝑥 /∈ 𝑆𝛿, then ̃︀𝐹 coincides with 𝐹+ or 𝐹− in a neighbourhood of 𝑥,
therefore, 𝑥 is not a critical point of ̃︀𝐹 . Now let 𝑥 ∈ 𝑆𝛿. If 𝑥 is not a critical point of̃︀𝐹 ⃒⃒⃒

|𝑥|𝑆𝑛−1
, then 𝑥 is obviously not a critical point of ̃︀𝐹 . If 𝑥 ∈ Crit ̃︀𝐹 ⃒⃒⃒

|𝑥|𝑆𝑛−1
, then let 𝑝 be

the corresponding critical point of 𝐹 |𝑆𝑛−1 . We have⃒⃒⃒
grad ̃︀𝐹 (𝑥)

⃒⃒⃒
=
⃒⃒
grad𝐹−(𝑥) + (𝐹+(𝑥) − 𝐹−(𝑥)) · grad𝜙+(𝑥) + 𝜙+(𝑥) · (grad𝐹+(𝑥) − grad𝐹−(𝑥))

⃒⃒
≥
⃒⃒
grad𝐹−(𝑝)

⃒⃒
−
⃒⃒
grad𝐹−(𝑝) − grad𝐹−(𝑥/|𝑥|)

⃒⃒
−
⃒⃒
grad𝐹−(𝑥) − grad𝐹−(𝑥/|𝑥|)

⃒⃒
−
⃒⃒
grad𝜙+(𝑥)

⃒⃒
· |𝑥− 𝑥/|𝑥|| · max

𝑦∈[𝑥,𝑥/|𝑥|]

⃒⃒
grad𝐹+(𝑦) − grad𝐹−(𝑦)

⃒⃒
−
⃒⃒
grad𝐹+(𝑥) − grad𝐹−(𝑥)

⃒⃒
For 𝑦 ∈ [𝑥, 𝑥/|𝑥|] we have⃒⃒
grad𝐹+(𝑦) − grad𝐹−(𝑦)

⃒⃒
≤
⃒⃒
grad𝐹+(𝑦) − grad𝐹+(𝑦/|𝑦|)

⃒⃒
+
⃒⃒
grad𝐹+(𝑥/|𝑥|) − grad𝐹−(𝑥/|𝑥|)

⃒⃒
+
⃒⃒
grad𝐹−(𝑦/|𝑦|) − grad𝐹−(𝑦)

⃒⃒
≤ 3𝑐/100

so ⃒⃒⃒
grad ̃︀𝐹 (𝑥)

⃒⃒⃒
≥ 𝑐− 𝑐/100 − 𝑐/100 − 2

𝛿
· 𝛿 · 3𝑐

100
− 3𝑐/100 > 0

thus 𝑥 is not a critical point of ̃︀𝐹 . �
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Now we connect two Morse functions in such a way that the result will satisfy the
assumptions of the previous lemma.

Lemma 5.10. Let 𝑓1, 𝑓2 : 𝑆−
𝜀 → R be two Morse functions without critical points. Suppose

that Crit 𝑓1|𝑆𝑛−1 = Crit 𝑓2|𝑆𝑛−1 = 𝐶, for each 𝑝 ∈ 𝐶 𝑓1(𝑝) ̸= 𝑓2(𝑝) and the vectors grad 𝑓𝑖(𝑝)
both point out if 𝑓2(𝑝) > 𝑓1(𝑝) and point in if 𝑓2(𝑝) < 𝑓1(𝑝). If there exists a smooth vector
field 𝑉 ∈ 𝐶∞(𝑆𝑛−1, 𝑇𝑆𝑛−1) such that 𝑉 𝑓𝑖(𝑥) > 0 for any 𝑥 ∈ 𝑆𝑛−1 ∖𝐶, then there exists a
Morse function without critical points 𝐹 : {𝑥 ∈ R𝑛 : 1 ≤ |𝑥| ≤ 2} = 𝐴 → R such that

(1) 𝐹 (𝑖 · 𝑥) = 𝑓𝑖(𝑥) for any 𝑥 ∈ 𝑆𝑛−1;
(2) 𝑖 · grad𝐹 (𝑖 · 𝑝) = grad 𝑓𝑖(𝑝) for any 𝑝 ∈ 𝐶;

Proof. For each 𝑥 ∈ 𝑆𝑛−1 denote by 𝑛𝑥 the unit outer normal to 𝑆𝑛−1 at 𝑥. For 𝑝 ∈ 𝐶 let
𝑈𝑝 be a small cap in 𝑆𝑛−1 around 𝑝 such that

sgn(𝑓2(𝑥) − 𝑓1(𝑥)) = sgn ⟨𝑛𝑥, grad 𝑓1(𝑥)⟩ = sgn ⟨𝑛𝑥, grad 𝑓2(𝑥)⟩ for all 𝑥 ∈ 𝑈𝑝.

Let 𝜙𝑝 : {𝑥 ∈ 𝐴 : 𝑥/|𝑥| ∈ 𝑈𝑝} → R be a smooth function such that for any 𝑥 ∈ 𝑆𝑛−1

(1) 𝜙𝑝(𝑥) = 𝑓1(𝑥) and grad𝜙𝑝(𝑥) = grad 𝑓1(𝑥);
(2) 𝜙𝑝(2𝑥) = 𝑓2(𝑥) and 2 grad𝜙𝑝(2𝑥) = grad 𝑓2(𝑥);
(3) 𝜙𝑝|[𝑥,2𝑥] is strictly monotone.

Let 𝐹𝑟𝑒𝑔 : 𝐴 → R be a convex combination of 𝑓1 and 𝑓2:

𝐹𝑟𝑒𝑔(𝑥) = (2 − |𝑥|)𝑓1(𝑥/|𝑥|) + (|𝑥| − 1)𝑓2(𝑥/|𝑥|).
Take a partition of unity {ℎ𝑝}𝑝∈𝐶 ∪{ℎ} subordinate to an open cover {𝑈𝑝}𝑝∈𝐶 ∪{𝑈} where
𝑈 = 𝑆𝑛−1 ∖ 𝐶 and define

𝐹 = ℎ𝐹𝑟𝑒𝑔 +
∑︁
𝑝∈𝐶

ℎ𝑝𝜙𝑝.

We need to check that 𝐹 has no critical points. Indeed, ⟨grad𝐹 (𝑥), 𝑥/|𝑥|⟩ = 0 only if
𝑓1(𝑥) = 𝑓2(𝑥) and that can happen only outside each of 𝑈𝑝. But then for 𝑦 ∈ 𝑆𝑛−1 we have

𝐹 (|𝑥| · 𝑦) = (2 − |𝑥|)𝑓1(𝑦) + (|𝑥| − 1)𝑓2(𝑦),

so
𝑉 𝐹 (|𝑥| · )(𝑦) = ((2 − |𝑥|))𝑉 𝑓1(𝑦) + (|𝑥| − 1)𝑉 𝑓2(𝑦) > 0

thus grad𝐹 (𝑥) ̸= 0. �

6. Functions in a neighbourhood of 𝑆𝑛−1 admitting different indices

With all the tools developed in the previous section we are ready to construct a function
that admits two different indices. We first illustrate the idea with the two-dimensional
case.

Let 𝐹 0
1 ∈ 𝐶∞(𝐵2

0(1)) be a Morse function without critical points given by
𝐹 0
1 (𝑥, 𝑦) = 2𝑦(Φ0(𝑥, 𝑦)), where Φ0 is a diffeomorphism of the plane that maps 𝐵2

0 dif-
feomorphically onto the figure bounded by the red curve on Figure 9. Let 𝐹 2

1 ∈ 𝐶∞(𝐵2
0(1))

be a Morse function without critical points given by 𝐹 0
1 (𝑥, 𝑦) = 𝑦(Φ2(𝑥, 𝑦)), where Φ2 is a

diffeomorphism of the plane that maps 𝐵2
0 diffeomorphically onto the figure bounded by
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y=1

y=-1

y=0.15 

y=-0.1

Figure 9. Insertion of a pair of critical points with arrows down in dimen-
sion 2

y=1

y=-1

y=0.4

y=-0.3

Figure 10. Insertion of a pair of critical points with arrows down in dimen-
sion 2

the red curve on Figure 10. Which choose the diffeomorphisms Φ0 and Φ2 in such a way
that Crit 𝐹 0

1 |𝑆1 = Crit 𝐹 2
1 |𝑆1 .

𝐹 0
2 is obtained from 𝐹 0

1 by a flip of index 0 at the critical point 𝑝0 with 𝐹 0
1 (𝑝0) = −0.2. 𝐹 2

2

is obtained from 𝐹 2
1 by a flip of index 2 at the critical point 𝑝2 with 𝐹 2

1 (𝑝2) = 0.4. Now, using
Lemma 5.10, we connect 𝐹 0

2 and 𝐹 2
2 , let 𝐺 be the resulting function in {𝑝 ∈ R2 : 1 ≤ |𝑝| ≤ 2}

(see Figure 11).
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2

1

-1

-2

0.4

-0.3

0.3

-0.2

G
F

F2

2

2

0

Figure 11. Connecting two functions in dimension 2

𝐺 and 𝐹 2
2 satisfy the assumptions of Lemma 5.9, so there exists a Morse function function

𝐹 2
3 ∈ 𝐶∞(𝐵2

0(2)) such that Crit𝐹 2
3 = {0}, 𝐹 2

3 is equal to 𝐹 2
2 in a neighbourhood of the

origin and is equal to 𝐺 in a neighbourhood of 2𝑆1.
Now extend 𝐹 0

2 from 𝐵2
0(2) to a function 𝐹 0

3 on 𝐵2
0(2 + 𝜀) such that no new critical

points occur and the Morse-Barannikov complexes for 𝐹 0
2 and 𝐹 0

3 near the boundary are
the same. 𝐹 2

3 and 𝐹 0
3 satisfy the assumptions of Lemma 5.9 near 2𝑆1, so there exists a

Morse function 𝐹 on 𝐵2
0(2 + 𝜀) such that Crit𝐹{0}, 𝐹 is equal to 𝐹 2

3 in a neighbourhood
of the origin and to 𝐹 0

3 in a neighbourhood 𝑈 of (2 + 𝜀)𝑆1.
We obtained a function 𝐹 |𝑈 that can be extended to 𝐵2

0(2 + 𝜀) in two different ways:
by 𝐹 and by 𝐹 0

3 . In the former case we have Crit𝐹 = Morse𝐹 = {0} and 𝜇𝐹 (0) = 2, and
in the latter one we have Crit𝐹 0

3 = Morse𝐹 0
3 = {0} and 𝜇𝐹 (0) = 0. Now let us proceed

with the general case.

Theorem 6.1. Let 𝑛 ≥ 2 and 0 ≤ 𝜆 ≤ 𝑛−2. Then there exists a Morse function 𝑓 : 𝑈 → R
in the neighbourhood 𝑈 of 𝑆𝑛−1 inside 𝐵𝑛

0(1) that admits both indices 𝜆 and 𝜆 + 2.

Proof. First we construct functions 𝐹 𝜆 and 𝐹 𝜆+2 guided by the combinatorial procedure
described in Proposition 4.5.

(1) 𝐹 𝜆
0 = 𝐹 𝜆+2

0 = 𝑥𝑛. The gradient-like vector fields 𝑉 = grad 𝑥𝑛|𝑆𝑛−1 for the standard
round metric on the sphere, Φ𝑡 is the flow on 𝑆𝑛−1 generated by −𝑉 . The critical
points of 𝑓𝜆

0 and 𝑓𝜆+2
0 are 𝑛 = (0, . . . , 0, 1) and 𝑠 = (0, . . . , 0,−1).

(2) Let 𝛾 be the flow line on 𝑆𝑛−1 through the point 𝑝 = (1, 0, . . . , 0). Denote 𝑝+ = 𝛾(𝜀),
𝑝− = 𝛾(−𝜀).

(3) Set 𝐹 𝜆
1 = 𝐹 𝜆

0 ∘Ψ𝜆 and 𝐹 𝜆+2
1 = 𝐹 𝜆+2

0 ∘Ψ𝜆+2, where Ψ𝜆 and Ψ𝜆+2 are diffeomorphisms
of 𝐵𝑛

0(1) such that Ψ𝜆
⃒⃒
𝑆𝑛−1 = Φ2𝜀 and Ψ𝜆+1

⃒⃒
𝑆𝑛−1 = Φ−2𝜀.
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(4) 𝐹 𝜆
2 and 𝐹 𝜆+2

2 are obtained by a standard birth at point 𝑝 from 𝐹 𝜆
1 and 𝐹 𝜆+2

1 re-
spectively.

(5) 𝐹 𝜆
3 is a flip of 𝐹 𝜆

2 at 𝑝− of index 𝜆, 𝐹 𝜆
3 is a flip of 𝐹 𝜆+2

3 at 𝑝+ of index 𝜆 + 2.
(6) Let 𝐿 : R → R be an orientation preserving deffeomorphism such that

𝐿(𝑓𝜆
3 (𝑠)) < 𝑓𝜆+2

3 (𝑠) < 𝑓𝜆+2
3 (𝑝−) < 𝐿(𝑓𝜆

3 (𝑝−)) < 𝐿(𝑓𝜆
3 (𝑝+)) < 𝑓𝜆+2

3 (𝑝+) < 𝑓𝜆+2
3 (𝑛) < 𝐿(𝑓𝜆

3 (𝑛)).

Set 𝐹 𝜆
4 = 𝐿 ∘ 𝐹 𝜆

3 and 𝐹 𝜆+2
4 = 𝐹 𝜆+2

3 .
(7) Use Lemma 5.10 to connect 𝐹 𝜆

4

⃒⃒
𝑆−
𝜀

and 𝐹 𝜆+2
4

⃒⃒
𝑆−
𝜀

by a function 𝐺 : {1 ≤ |𝑥| ≤ 2} →
R.

(8) Let 𝐹5 be an extension of 𝐹 𝜆
4 to 𝐵𝑛

0(1 + 𝜀) such that no new critical points occur
and the MB-complex of 𝑓𝜆

4 does not change.
(9) The functions 𝐹 𝜆+2

4

⃒⃒
𝑆−
𝜀

and 𝐺|𝑆+
𝜀

satisfy the assumptions of Lemma 5.9, let 𝐹 𝜆+2
5

be the resulting Morse function in 𝐵𝑛
0(2).

(10) The function 𝐹 𝜆+2
5

⃒⃒
2𝑆−

𝜀
and 𝐹 𝜆

5

⃒⃒
2𝑆+

𝜀
satisfy the assumptions of Lemma 5.9, let 𝐹 𝜆+2

6

be the resulting Morse function in 𝐵𝑛
0(2 + 2𝜀).

The functions 𝐹 𝜆
5 and 𝐹 𝜆+2

6 are equal in a neighbourhood of 𝜕𝐵𝑛
0(2 + 2𝜀),

Crit𝐹 𝜆
5 = Crit𝐹 𝜆+2

6 = {0}, 𝜇𝐹𝜆
5

(0) = 𝜆, and 𝜇𝐹𝜆+2
6

(0) = 𝜆 + 2. Thus we constructed
the desired functions. �

7. Conclusion

Now that we have constructed functions in a neighbourhood of spheres that admit two
indices differing by two, we can outline a path to Conjecture 1.2. The combinatorial part is
done in Proposition 4.6, and we believe one should follow the algorithm there. The obvious
difficulty is that we do not yet developed a way to change the value of 𝑓 at a critical point
in a controllable fashion. Some other technical difficulties will undoubtedly arise, yet we
consider following the combinatorial procedure from the proposition promising and hope
it will lead us to the proof of the conjecture.
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