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The article analyses a linear nonstationary interval system of ordinary differential equations
so that the elements of the matrix of the system are the intervals with the known lower
and upper bounds. The system is defined on the known finite time interval. It is required to
construct a trajectory, which brings this system from the given initial position to the given
final state. The original problem is reduced to finding a solution of the differential inclusion of
a special form with the fixed right endpoint. With the help of support functions, this problem
is reduced to minimizing a functional in the space of piecewise continuous functions. Under
a natural additional assumption, this functional is Gateaux differentiable. For the functional,
Gateaux gradient is found, necessary and sufficient conditions for the minimum are obtained.
On the basis of these conditions, the method of the steepest descent is applied to the original
problem. Some numerical examples illustrate the constructed algorithm realization.
Keywords: linear nonstationary interval system of ordinary differential equations, differential
inclusion, support function, the steepest descent method.

1. Introduction. Finding a solution of interval systems of ordinary differential
equations is an important problem. This is because in many real processes the object
is governed by the system in the presence of uncertainty. It can be of a different nature:
structural parameters of the system, errors, material properties, perturbations. However,
the change interval of these uncertainties is usually known heuristically. Such interval
systems are considered in this paper.

One basic approach, which can be effectively applied to the problem considered,
is using standard interval methods for reachable set estimation. For linear models an
enclosure of the exact solution set is obtained (see, for example, [1-3]). Let us also note
also some works devoted to estimating attainability sets in nonlinear case [4-7].

One problem, which is closely connected with the considered in this paper, is numerical
solutions of fuzzy differential equations. Since in the work [8] the authors introduced
the notion of fuzzy numbers and defined the basic arithmetic operations with them and
Chang and Zadeh [9] introduced the fuzzy derivative, this mathematical field began to
develop rapidly. Elementary fuzzy calculus was constructed by the authors in [10]. Later
fuzzy calculus was applied to the differential equations. Kandel and Byatt [11] applied
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the concept of fuzzy differential equation to the analysis of fuzzy dynamical problems.
The important Cauchy problem for fuzzy differential equations was considered by many
authors, for example, Kaleva [12]. One of the main concepts of fuzzy calculus is Hukuhara
derivative [13].

A scheme based on the classical Euler method was used in the article [14] for numerical
solution of the fuzzy systems. The papers [15-17] also used Euler method and Runge —
Kutta scheme for such problems. Solving numerically the fuzzy differential equation by
the Taylor method is considered in the following paper [18]. In [19] modified Taylor series
method is considered. In [20] the approximate solution of fuzzy differential equations
system with the homotopy analysis method, introduced in [21], is found. The work [22]
seeks for the “minimal” solution of the fuzzy system, based on the pseudo inverse. All
the mentioned papers deal with the known right-hand side, but with the interval initial
condition. The paper [23] proposes a new interval analysis method for the dynamic response
of nonlinear systems with uncertain-but-bounded parameters using Chebyshev polynomial
series. This paper deals with the interval right-hand side and shows on examples, that as
a rule Chebyshev polynomial series are more effective, than Taylor polynomial series.

Although there are many papers considering the systems with some uncertainties,
much less works are devoted to the solution of boundary value problems. The paper
[24] considers the problem of the existence of solutions to the two-point boundary value
problem. The tolerable solution set for interval linear systems is also estimated in [25]. The
work [26] considers questions connected with the construction of two-sided estimates for
solution sets of systems of nonlinear differential equations with interval parameters. In work
[27] numerical methods for constructing the boundaries of the solution set of boundary
value problems for ordinary differential equations (ODE) with interval coefficients are
investigated. The paper [28] develops a new solution method, which constructs a solution
as a fuzzy set of real vector-functions (the crisp coefficients of the system are considered,
while forcing functions and initial conditions are fuzzy). The papers [29] and [30] present
a method for modelling and simulation of uncertain dynamical systems, using differential
inclusions and fuzzy arithmetic transformation respectively. Real paper is devoted to the
boundary value problem with the linear nonstationary nonhomogeneous right-hand side.
The initial problem is reduced to the boundary value solution of a differential inclusion,
which is sought for in the same fashion as in the work [31]. See some advantages of the
proposed scheme in Remarks 1 and 7 below.

Consider the linear nonstationary interval system of ODE

x=Alt)x+g(t), te€][0,T], (1)
where
a1 @n e @i2) - [y, @i lg.(t) 5, (1)]
A [221:@1] [sz:am} . [an:a%] L g= [gi(t)yg(t)] , @)
[in .anl] [QnZ anﬂ s [an a'rm] [gn(t) In (t)]
with the boundary conditions
x(0) = xo (3)
and
x(T) = . (4)
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In formula (1) T is the given finite moment of time, z is a n-dimensional continuous
vector-function of the phase coordinates with piecewise continuous and bounded derivative
in the interval [0, T]. In formula (2) a,;(t) and @;;(t), a;;(t) < @;(t) vt € [0,T], 4,5 = 1,n,
are given continuous functions and g (t) and g;(t), g,(t) < g;(t) V¢t € [0,1], i = 1,n,
are given continuous functions. Further, for brevity, we will write a,;, a@;, 9, i instead of
a;;(t), @i (t)7gi(t)7§i(t) respectively, i, j = 1,n, t € [0,T]. In formulas (3), (4) zo, zr € R"
are the given vectors.

It is required to find the vector-function z* € C,,[0,T], which is a solution of system
(1) and satisfies conditions (3), (4). We assume, that there exists such a solution.

Here C),[0, T is the space of n-dimensional vector-functions, continuous in [0, T, with
derivative from the space P,[0,T]; P,[0,T] is the space of n-dimensional vector-functions,
piecewise continuous and bounded in [0, 7. In the sequel, we also need the space L2 [0, T]
of square-summable in [0, 7] n-dimensional vector-functions.

If tg € [0,T) is the point of discontinuity of the vector-function &, then we suppose
that &(tg) is a right-handed derivative of the vector-function & at the point to, ©(T) is
a left-handed derivative of the vector-function & at the point T'.

Remark 1. The stated problem may be considered as the following control problem.
It is required to find the “controls” w;;(t) € P[0,T] (such as a;;(t) < wi;(t) < @i;(t)
vt € [0,T], i,j = T,n) and vi(t) € P[0,T] (g,(t) < vi(t) < gi(t) vt € [0,T], i = 1,n),
which bring system (1) (with the matrix A(¢) consisting of the elements w;;(t), i,j = 1,n,
and the vector g(t) consisting of the elements v;(¢), i = 1,n) from initial point (3) to final
state (4) in the time T. However, in such formulation it is required to find n? 4+ n control
functions. On the other hand, from the construction of the method described in the article,
one will see that if we write the system of this problem in form (1), (2) and apply the
proposed method, then the computational costs are proportional just to the dimension n
of the considered system.

For the arbitrary set F' C R™ define the support function (of the vector ¢ € R") as
follows: ¢(F,v) = sup(f,+), where (a,b) is the inner product of the vectors a,b € R™.

fer

Let us rewrite the system (1) in the form of the differential inclusion
peF(nt), teloT], (5)

here
F(xz,t) = A(t)x + g(t).

Apparently, the mapping F'(z,t) is a convex compact set from R” for every moment of time
t € [0,T] and for every phase point € R™. One can also see that F(x;t) is continuous.

Now we can reformulate the original problem as follows. It is required to find the
vector-function a* € C,[0,T], which is a solution of differential inclusion (5) and satisfies
conditions (3), (4).

Remark 2. Instead of trajectories from the space C,[0,T] with derivatives from
the space P,[0,T] in the paper one can consider absolutely continuous in the interval
[0,T] trajectories with measurable and almost everywhere bounded in [0,T] derivatives
respectively (which must satisfy the differential inclusion almost everywhere on [0, T]). The
choice of the space of solutions in the article is explained by the possibility of their practical
construction. Note that under the assumptions made there exists [32] even a continuously
differentiable (“classical”) solution of the Cauchy problem (3), (5) at least in the vicinity
of the initial point xg.
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2. Reduction to the unconstrained minimization problem. Further, for
brevity, we sometimes write F instead of F'(x,t). Since for all ¢ € [0,T] and for all z € R™
the multivalued mapping F'(z,t) is a convex, closed and bounded set in R™, inclusion (5)
may be rewritten as follows [33]:

(@(t),9) < c(F(x(t),t),¢) Vpe§, Viel0,T]

where S is the unit sphere in R™ with the center in the origin.
Calculate the support function of the set F'. For this note that the mapping F is an
n-dimensional parallelepiped with the the center ¢(x) = (c1(x),. .., cn(2))":

a;; +a; g, +9;
) =Y g E
j=1

and with the half-sides

" Tij — 9i— 9,
rla) = S|y I
1

.
Il

So the support function of the set F' can be expressed [33] by the formula

C Z Cz % + Z Tz |'(/JZ Vi € S. (6)
i=1

We have for every ¢ € S (if z;(¢t) #0,i=1,n)

aC(F(x,t),¢) — 27: +aﬂ

o s ! (7)

Jj=1 Jj=1

So we see that the support function of the set F'is continuously differentiable in the phase
coordinates x, if x; #0 Vi =1,n.
Denote z(t) = &(t), z € P,[0,T], then from (3) we get

z(t) = xo + /tZ(T)dT.

Put
U, 2,t) = (2(t),¥) — c(F(z(t), 1), ¥), (8)

h(z,t) = maxmax{0, /¢ t 9
(z’ ) e { s ("/}7 Z, )} ( )
and construct the functional

T
1
o(z) = 5 | B(=(0), ). (10)
2 J

Remark 3. The magnitude h(z(t),t) at the every fixed ¢ € [0,T] is the Euclidean
distance from the point z(t) to the set F(x(t),t), and functional (10) is the half-squared
deviation (in the L2[0, T]-norm) of the trajectory z(t) from the set F(z,t).
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Consider the set
Q={z€ P,J0,T] | p(2) =0}.

It is not difficult to see that for functional (
p(z) =0 (2 €Q), if (&(t),¢) < c(F(z(b),t),¢) Vel vielo,T],  (11)
o(z) >0 (z ¢ Q), otherwise,

so inclusion (1) is satisfied, if p(z) = 0.
Introduce the functional

10) the following relations are valid:

T

1
x(z)==|zo+ [ 2(t)dt —ar
2 J

One can see that boundary conditions (3), (4) are satisfied, if x(z) = 0.
Construct the functional
I(z) = ¢(2) + x(2). (12)
We see, that z* is the global minimizer of functional (12), if
¢

() =xo+ | 2" (r)dr
/

is the solution of the initial problem. So, the problem of finding an approximate solution
of the original problem has been reduced to the minimization of functional (12) in the
space P,[0,T].

3. Differential properties and minimum conditions of the functional I.
Suppose the coordinate x;(t), i = 1,n, t € [0, T], vanishes only at the finite number of time
moments t;; € [0,7], i = 1,n. Denote such a set of trajectories X[0,7]. If z € X[0,T7,
Ic(F(, 1), 9)

ox _
of the finite number of points t;;, i = 1, n.

Suppose the optimal trajectory * belongs to X0, 7.

Remark 4. The assumption made is presumably not burdensome, as it is violated,
for example, in the case when there exists such a “coordinate” x, i € {1, ldots, n}, which
remains in the zero position (and has zero “speed”) in some interval [t1,t2] C [0,T], t2 > t1.
Such a case does not seem natural for control systems considered on the finite interval
[0,T].

Let us obtain some crucial sufficient conditions, when this case for sure doesn’t occur
for n = 1 and n = 2 for homogeneous equations.

Consider the case n = 1. We have the equation

@(t) = lay, (1) au(®)]z(@), x(0) =z0, t€][0,T].

then the derivative exists and is continuous in (x,1,t) with the exception

t
Here the explicit solution is x(t) = x(0) exp (/ u(t)dt) #0 Vt € [0,T], if z(0) # 0
0

(where u(t) € [ay,(t) a11(¢)] Ve € [0,T)).
Cousider the case n = 2. Suppose z1(t) = 0 Vt € [t1,t2] C [0,T], t2 > t;. Then
Yt € [t1,t2] we have
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If there exists such a point ¢* € [t1,t2], that 0 € [ay5(t*) @12(t*)], then from the first

equation we conclude, that x2(t*) = 0. The considered (second) linear homogeneous
equation has the zero “initial” condition, so its solution vanishes on the whole interval:
x2(t) =0 Vit € [t1,1t2]. But in this case we have z1(t1) = 0, 22(t1) = 0, so if we consider

the original system on the whole interval [0, T] with this “initial” condition, we see, that it
has the only solution x1(¢) = 0, 2(t) = 0 Vt € [0,T], what is impossible, if 23, + 23, # 0.

If we argue in a completely analogous fashion in the following case z2(t) = 0
Vit € [ts,ta] C [0,T], t4 > t3 (suppose there exists such a point t* € [t3,t4], that
0 ¢ [ag; (t*) G21(t*)]), then we will come to the analogous conclusion (that this is also
impossible, if 23, + 23, # 0).

Let us study the differential properties of functional (12) for the support function of
a more general form (later we will return to the specific support function given by formula
(6), see Remark 5 below).

Assume that the support function c(F(x,t),w) of the arbitrary set F(z,t) (which
is convex compact set from R™ for all ¢ € [0,7] and for all z € R™) is differentiable in

] . ac(F(x, t), 1/1)

the phase variable x and that the vector-function — 0
i

Then for all z,y € C,[0,T], and for all ¢y € S, t € [0, T] the following relation holds:

c(F(x(t) +ay(t), 1), ¢) — c(F(x(t),1),v) =

is continuous in (z,v,t).

- Q<W’ ?/(t)> + o(a, z(t),y(t), ¥, 1), (13)
O(Q’x(t)aay(t)vwat) s 07 When a i, 0.

Let v € P,[0,T]. Fix the point z € P,[0,T]. Put

za(t) = z(t) + av(t), y(t) = /v(T)dT. (14)
0

Using well-known properties of support functions [32] and equations (13), (14), let us
calculate

U, 2a,t) =LY, 2,t) + aH1 (¥, 2,0,t) + o(o, ¥, 1), (15)
o(a, ¥, t)

(67

— 0, when a | 0,

where
t

Hy(wy2,0.0) = (6,000)) — { [ or)ar, D0,

0
Using relations (8), (9), find

h(za,t) = h(z,t) + aH(z,v,t) + o(a, t),

t
M%O, when « | 0,

here
H(z,v,t) = max Hy(¢,z,0,t), if maxl(y,z,t) >0,
PYER(z,t) ves
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H(z,v,t) =0, if maxl(e),z,t) <0,
(z,v,1) if max £(4, z,1)
H(z,v,t) = max max{0, Hi(¢,z,v,t)}, if max{(y,z,t) =0,
YER(z,t) PeS
with

R(z,t) = {E(zgt) € S| max{0,£(s), 2z, 1)} = wr(r%?gs max{O,ﬂ(%z,t)}}.

Due to the structure of functional (8) it is easy to see, that in the case ¢(¢, z,t) > 0
the maximum of the function max{0, £(, z,t)} = £(1¢), z,t) is reached at the only element
Y*(z,t) € S. Actually, in this case the point z does not belong to the set F. From the
properties of the support function, it is known [33], that at every fixed t € [0, T] the value
h(z(t),t) is the Euclidean distance from the point z(¢) to the set F(x(t),t), that is

h(2(1),8) = ||2(t) — f(x(t), 1)]

where f(z(t),t) is the projection of the point z(t) on the set F(z(t),t), which is unique as
F(z(t),t) is the convex compact. Hence it is clear, that the maximum of the expression

h(z(t),t) = L(, 2(t), 1) = (2(t), ¥) — e(F(x(t), 1), ¢) = |[z(t) — f(=(t), )]

is reached at the vector

U (2(t), 1) = (2(t) = f((t), 1) /12(t) — F(a(t), )],

which is unique because of the uniqueness of the vector f(z(t),t). So in this case the set
R(z,t) consists of the only element ¥*(z,1).
Now it is not difficult to obtain the expansion

R7,

T
P(za) = ¢(2) +Oé/h(Z(t),t)H(Z(t)’v(t)’t) + o(a, t)dt. (16)
0

It is obvious, that if z € Q, then the functional ¢ is Gateaux differentiable, and its
Gateaux gradient vanishes.
Consider the case z ¢ Q. Denote

w(z,t) = (magc@(@/z,z,t))z >0,

so in this case

as
w(z,t) = h?(z,t) = (rggggcrnax{o,é(w,z,t)})2 =
2
_ (%lg?e(w,z,t)) = (Y (2, 1), 2, 1),

because z ¢ Q. As it has been already noted, in this case this maximum is reached at
the only element 1*(z,t). Then the function ¢*(z,t) is continuous in z at the fixed ¢ [34],
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Ic(F(z,1),v)
ox

is continuous in z at the fixed ¢. Further, by Lagrange’s mean value

therefore, in view of the continuity of the function
ow(z,t)
0

z
theorem there exists such a number § = 6(¢) € [0, 1], that (note that the function *(z,t)
is in fact continuous in (z,t) [34], so all the integrals below exist)

we conclude, that the

function

ow(z + fav, t) v>

w(z + av,t) —w(z,t) = a< Ep

_J0w(z,t) ow(z + Oav,t)  Odw(z,t)
N < 0z ,v>+a< 0z 0z

go(ercw %0/ )’t)>dt

,v> vt € [0,T).

Then we have

_ %/T<v(t)7a (1) Bonft) ) Oule(0.)
0
<3 00 / [Pttt - e an

The multiplier HE(:;%)%] [lv(t)]] is bounded, as v € P,[0,T]. The norm under the integral
telo,

tends to zero, when « | 0 at the every fixed ¢ € [0, 7] due to the continuity of the function
ow(z,t)

in z at the fixed ¢. Besides, this norm is bounded due to the continuity of the

Oc(F(z,1), . .
function w Then by Lebesgue’s dominated convergence theorem expression

x
(17) tends to zero, when « | 0, what proves Gateaux differentiability of the functional ¢
in the case z ¢ 2. Note that this reasoning also means that in formula (16) we in fact have

t
that ole,?) — 0, when « | 0, uniformly in ¢t € [0, T].

e’
Using the rule of the maximum function differentiation [34], calculate

duw(z,1) _ (W™ 2,1) . Oc(F(z,1),0)
B = 2max (=, 1) = = 2h(s 1) (97 - ),

(18)

Using classical variation, it is easy to calculate Gateaux gradient of the functional x:

T
:xo—l—/z (t)dt — zp. (19)
0

Remark 5. As it has been noted, the existence and the continuity of the vector-

Jde(F(x,t _

M holds true for support function (6), if z; # 0 Vi = 1,n. By the
x

assumption made this condition is violated only at the finite number of points ¢;;. So we

can divide the interval [0,7] in finite number of the intervals [0,%11],... and considered

all the integrals separately on these intervals. Then on each of the corresponding open

function
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ac(F(:E, t), 7,[1)
Ox
holds true for support function (6) as on these intervals each coordinate x;, i = 1, n, retains
its sign. So for all such intervals we can precisely repeat the previous proof, made for the
whole interval [0,7]. Hence incorporating these obvious minor changes in the previous
reasoning (see formulas (15), (17) and (18), and making use of (19) we finally get the

following theorem.
Theorem 1. Let x € X[0,T]. The functional I is Gateauz differentiable at the point z
and its Gateaux gradient at the point z is given by the formula

intervals (0,%11), ... the existence and the continuity of the vector-function

T
VI() = a7 (2,0) — [ (et ) AT ED: D gy
+xo+ [ 2(t)dt — xp. (20)
/

Oc(F (x,t),¥")

In (20) th j
n (20) the expression D

this formula).

The following theorem formulates the known minimum conditions of a differentiable
functional.

Theorem 2. Let * € X|[0,T]. For the point z* to minimize the functional I, it is
necessary to have

is given by the formula (7) (with ¥* instead of ¥ in

(F(@*(1),7), ¢ (z"(1),7))
Ox

On = h(=", )0 (%, 1) — /h(z*(r),r) dc dr +

T

+ 0+ /z*(t)dt -z, (21)
0

here 0,, is the zero element of the space P,[0,T]. It is apparent, that if I(z*) = 0, then the
condition (21) is also sufficient.

4. The steepest descent method. Describe the well-known steepest descent
method [35] for finding stationary points of the functional I. Fix an arbitrary point
2! € P,[0,T]. Let the point z*¥ € P,[0,T] be already constructed. In order to apply
this method correctly, we still assume that =¥ € X [0, T]. If minimum condition (21) holds,
then the point z* is the stationary point of the functional I, and the process terminates.
Otherwise let us put

ZkJrl _ Zk _ ,ka]'(zk)’
t
where the vector-function z*(t) = xo + / 2#(7)dr, and the magnitude vy, is the solution

of the following one-dimensional minimization problem:

1;n>1161](zk —AVI(ZF)) = I1(z% = VI(ZF)). (22)
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Due to (22) I(z**1) < I(z%). If the sequence {2*} is finite, then its last point is the
stationary point of the functional I by construction.
Let the functional VI be uniformly continuous and bounded on the ball in L2[0,7]

with the center in the origin and the radius v > sup Izl 22 (0,r)- We suppose that the
z2€Z1

Lebesgue set Z; = {z € P,[0,T] | I(z) < I(2')} is bounded in the L2[0,T] norm. If the
sequence {z*} is infinite, then the method converges [36] in the sense

HVI(Z — 0, when k& — oo.

") |L$L[0,T]

5. Numerical examples. Let us consider some examples of the implementation
of the proposed algorithm. In both examples the process was interrupted at the k*-th
iteration, provided that HVI(Z’C*)HL2 0.1 S e* =1075.

Example 1. Consider the inter\?alvsystem

il = []-a 3]1’1 + [*4, *2]1’2,
&2 = [0,2]z1 + -3, 0]z,
where t € [0,1]. There are the boundary conditions
z(0) = (1,2), (1) = (-5.45,—0.75)".

It is required to find a solution of this differential inclusion, which satisfies the given
boundary conditions.
In this example

o(F,) = (221 = 3wa)hy + (21 — L5m2) o + (|| + [w2]) Y] + (o] + 1.5]a2]) [l

Put z!' = (1,1)’, then 2* = (1 +¢,2 + ).
Four iterations were made according to the proposed algorithm. As a result the point

21(t) =1 — 5.3358t — 1.4325¢? + 0.3183¢3,

x3(t) = 2 — 1.8884t — 1.2197t* + 0.4775t> — 0.1194¢t*

was constructed (it is written out with precision up to the 4-th sign), see Fig. 1, a, b.
One can make sure, that the boundary conditions for the trajectory z* are satisfied.
Besides, the interval system is also satisfied, as (it can be easily checked) ¢(¢, z*,t) < 0Vt €
[0,1] (see (2) and (11)), see Fig. 1, ¢, d. Note, that due to the structure of the functional (21)
the exact solution z* was obtained, i. e. the interval system and the boundary conditions
are satisfied exactly. (This is because on some iterations (including the last iteration) the
solution of the problem (22) was obtained exactly.) So HVI(Z‘*)HL2 0.1 = 0.
Example 2. Consider the interval system ’

T, = —x1 + [t, Qt].’L‘Q,

To =21 — 2% + [—tg, 0],

where ¢ € [0,1]. There are the boundary conditions
z(0) = (2,3), (1) =(1.5,1)".
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Fig. 1. Solution of example 1

It is required to find a solution of this differential inclusion, which satisfies the given
boundary conditions.
In this example

C(FJ/J) = (—.’L‘l + 1.5t.’1’§2)¢1 + (l‘1 — 2x9 — 0.5t2)¢2 + 0.5t|x2‘|’(/}1| + 0.5t2|’(/J2‘.

Put 2! = (1,1)’, then ' = (2 +¢,3 +¢).
Seven iterations were made according to the proposed algorithm. As a result the point

zi(t) = 2 — 1.0002t> + 2.4732t% — 1.9937t — 0.0253t* 4 0.0425¢° + 0.0014¢° + 0.0022¢,

x3(t) = 3 — 1.1473¢3 + 3.003t* — 4.0125¢ + 0.2522t* — 0.1034¢> 4 0.0125¢5 — 0.0044¢”

was constructed (it is written out with precision up to the 4th sign), see Fig. 2, a, b. As it

has been mentioned, ||VI(z7)||,, 0.1] S 1075.

One can make sure, that the boundary conditions for the trajectory z* are satisfied.
Besides, the interval system is also satisfied, as (it can be easily checked) £(¢, z*,t) < 0
vVt € [0,1] (see (2) and (11)) (with the set accuracy 107°), see Fig. 2, ¢, d. Note the
boundary conditions are satisfied exactly.

Remark 6. The choice of the accuracy £* is based on the balance between carrying out
a not very big number of iterations and making compliance with sufficient for applications
accuracy. The calculations were performed symbolically in the Maple 12.0 package. Note
that various other known methods may be applied to minimize functional (12). The
steepest descent method has been used for simplicity. So further studies are of interest
for improving the computing efficiency of the realization of the concepts proposed in the
article (this improvements can be carried out with the help of using discretization and
also some other methods, such as conjugate gradients, to increase the effectiveness of the
minimization of the given functional).
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Fig. 2. Solution of example 2

Remark 7. As it has been noted in Introduction, the methods of estimating the
attainability set may be effectively used while solving examples 1, 2. For the problems
considered, the bounds provided by such methods are exact [1-3]. Note that solution of
the considered problems exists if and only if the vector xp lies within these bounds at
t = T. However, the proposed method of this paper gives an approach for solving more
general optimization problem (see below Remark 8), while standard interval methods can’t
be applied to such problems straightforward.

Remark 8. Consider the following more general problem. It is required to minimize
the functional

J(z) = / Fo, 2 t)dt
0

t
subject to constraints (1), (3), (4), where we have z(t) = zo + | z(7)dr and the function

0

f(z,z,t) is continuous in (z, z,t) and continuously differentiable in = and in &. Note that
under these assumptions the functional J(z) is Gateaux differentiable and its Gateaux
gradient at the point z is

T

VJ(Z) _ af(gﬁzzﬂt) + / af(l‘(Tg),xZ(T),T) dr.

t

Using the results obtained in this article it is easy to give two rather straightforward
approaches in attempt to solve this problem.
One approach for solving this problem is to construct the functional

T

D(2)=J(z)+ A /hz(z,t)dt.
0
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In the case of the free right end (i. e., when constraint (4) is absent) the recent work [37]
contains some natural sufficient conditions for penalty functional ®(z) to be completely
exact. Speaking informally, it means that there exists the finite number A* such that the
problem of minimizing functional J(z) under constraints (1), (3) is equivalent in some
sense to the unconstrained minimization of the functional ®(z) for all A > A\*. We don’t
give the details here; see the paper [37] for rigorous formulations. This result is more of
theoretical interest, as the functional ®(z) is non-differentiable, besides its structure seems
to be too complicated for applying methods of even nonsmooth optimization.

Another approach for solving this problem (including the case of the fixed right end)
is considering the unconstrained minimization of the functional

U(z) = J(z) + pl(z)

with the increasing value of the parameter p to satisfy the constraints (1), (3), (4) with the
desired accuracy (see formula (12)). Although the functional ¥(z) is Gateaux differentiable,
it is known that there are computational difficulties occurring while minimizing this
functional caused by its “ravine” structure, when the value of p is rather big. We also don’t
consider this functional in detail here. See [38] for the known theorems on the connection
between the problem of minimizing functional J(z) under constraints (1), (3), (4) and
the unconstrained minimization of the functional ¥(z) with the increasing value of the
parameter u, as well as some techniques aimed at overcoming the noted computational
difficulties. We give the following simple example of solving a real physical problem with
the help of this approach. As previously, we use the steepest descent method for finding
the stationary points of the functional ¥(z) in this example.
Example 3. Consider the interval system

&1 = X2,
&9 = [—1,—-0.5]z1 + [-2, —1]z2 — 9.8,
where ¢ € [0,1]. There is the initial condition
z(0) = (1,1)

and the right end is free. It is required to find both solutions of this differential inclusion,
which satisfy the given initial condition and minimize as well as maximize the functional

J(2) /x%(t) dt.
0

2

Such a statement of the problem admits the following physical interpretation. Consider
a weight suspended on an ideal spring in a gravity field. In addition to the gravity force
and the force from the the spring, the friction force Sv from the environment acts on
the weight, which we assume to be proportional to the weight speed v, where § is the
coefficient of resistance of the environment. Write down the Newton’s second law for the
weight (project onto the vertical y-axis):

mj = —ky — fv — myg,

here m is the weight mass; k is the spring stiffness; y is the coordinate measured from the
state, in which the spring is not stretched in this oscillatory system. Now suppose that the
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spring stiffness k as well as the environment resistance coefficient S are the functions of
time, which can vary (but lie in the known intervals at every moment of time) depending
on changes in the environment and the spring properties (for example while heating, etc.).
It is now interesting to find the minimal and the maximal possible under these conditions

mu
values of the average kinetic energy —— of the system during the considered time interval.

If we now put m =1, g = 9.8, k(t) € [0.5,1], 3(t) € [1,2], t € [0,1] and denote z; = y,
ro = v =7, we will get the differential inclusion and the cost functional above.
In this example we have

C(F, 1ﬁ) = Tt + (—0.75%‘1 — 1.5x9 — 98)’(/J2 + (0.25|{L‘1| + 05|x2\)|z/}2\

Put pu = 85, 2! = (1,0)’, then ! = (1+¢,1)’. The results in this example are written
out with precision up to the 6th sign.

Example 3.1. To minimize the functional ¥(z), 15 iterations were made according
to the proposed algorithm. As a result the point

215 (t) = 1 — 0.001341t° — 0.219599t* + 1.801792t> — 5.645627t*+

+0.006182t5 + ¢, 0 <t < 0.092,

0.998539 + 0.531280t° — 1.741569t* + 4.040669t> — 6.193228t%—
—0.049752t% + 1.048461¢ — 0.065932t” + 0.031599¢%, 0.092 < ¢ < 0.624,
0.061205t° + 3.775047t3 — 6.51987t% — 0.975091¢*—
—0.004879t% 4 0.931305 + 1.344730t, 0.624 <t < 1,
3P (t) = 14 0.037092t° — 0.006704t* — 0.878399¢3+
+5.405375t2 — 11.291254t, 0 <t < 0.092,
0.252796t" — 0.461527t5 — 0.298511¢° 4 2.656402t* — 6.96627813+
+12.122007% — 12.386457t + 1.048461, 0.092 < t < 0.624,
—0.039036t" — 13.03974t + 0.367231t° — 3.900365t>+
+11.325142t% + 1.344730, 0.624 <t < 1,

was constructed (see Fig. 3, I,a). The process was terminated at this iteration as
HV\IJ(ZH’)HL2 o1 S 25 1072. So the obtained point z* = z'° is at least the stationary

(with the set precision) point of the functional ¥(z).

One can make sure that the initial condition for the trajectory z* is satisfied and we
have I(z*) = ¢(2*) = 1.1 - 10~* (so the interval system is satisfied (according to criterion
(11)) with the set accuracy 5-10~% and, as can be easily verified, the point-wise violation
of the interval system does not exceed the value 1.5-1072) and J(2*) = 7.711839. Fig. 3,
I,b shows that the trajectory @5(t) lies practically on the boundary of the permissible
region.

Example 3.2. To maximize the functional ¥(z), 32 iterations were made according
to the proposed algorithm. As a result the point

32 () = 1 — 6.40899t% 4 4.100813t> — 1.555853t*+

+0.618022t° + ¢, 0 <t < 0.0843,
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-4 W [-1,-0.5]a} + [-2, 1]z — 9.8
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Ty
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-10 W [-1,-0.5)z} + [-2, —1]z5 — 9.8

Fig. 3. Solution of examples 3.1 (I) and 3.2 (I1)

1.001158 — 0.099432t* — 5.893454t% 4 1.830437t> + 0.295029t°+
+0.95809¢ — 0.203586t° + 0.554507¢" — 0.618585t5, 0.0843 < ¢ < 0.562,
1.050245 — 0.25779¢* — 5.571737¢* — 0.009198¢7 + 1.847321¢>+
+0.020355t5 + 0.001292t% 4 0.720453t, 0.562 < t < 1,
T32(t) = 1+ 3.090111¢* — 6.223412¢% + 12.30244¢%—
—12.81798¢, 0 <t < 0.0843,
0.95809 + 3.881548t% — 1.628687¢" — 3.711512t° + 1.475147¢*—
—0.397728t% + 5.491312t% — 11.786907t, 0.0843 < t < 0.562,
0.720453 — 0.064387t° 4 0.010339¢7 4 0.122129¢> — 11.143474¢ —
—1.03116¢% + 5.541962t2, 0.562 < t < 1,
was constructed (see Fig. 3, II,a). The process was terminated at this iteration as
HV\IJ(232)||L2 (0.7] < 2.5-1072. So the obtained point z* = 232 is at least the stationary
(with the set precision) point of the functional ¥(z).

One can make sure that the initial condition for the trajectory x* is satisfied and we
have I(2*) = p(2*) = 3.65-10~* (so the interval system is satisfied (according to criterion
(11)) with the set accuracy 5-10~% and, as can be easily verified, the point-wise violation
of the interval system does not exceed the value 2.5-1072) and J(z*) = 14.085116. Fig. 3,
I1,b shows that the trajectory &3(t) lies practically on the boundary of the permissible
region.

So we obtain the lower and the upper bounds of the system average kinetic energy
change with a possible variation of the parameters k& and § in the specified intervals: we
have 7.711839 < J(z) < 14.085116.

6. Conclusion. Thus, in this paper the problem of finding the solution of a linear
nonstationary interval system of differential equations with the given boundary conditions
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has been considered. With the help of the support functions, the original problem is
reduced to minimizing some functional. For it, Gateaux gradient is found, necessary and
sufficient conditions for a minimum are obtained. On the basis of these conditions, a
numerical method (the method of the steepest descent) for solving the initial problem
is constructed. The numerical examples illustrate implementation of this algorithm. The
possibility of applying the developed in the article method to finding the optimal (in the
sense of the integral functional) solution of the considered interval system is noted, and
this approach is demonstrated on a simple physical example.
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Wccnenyercs nuaeiinas HecTanuoHAPHAST NHTEPBAJIbHAS CUCTEMa OOBIKHOBEHHBIX T deper-
IUAJIBHBIX yPABHEHUH, B KOTOPOI 3JIEMEHTAMU MATPUITHI €€ TIPABOIl YaCTH SIBJISIOTCS WHTEP-
BaJIbl C U3BECTHLIMYU HUXKHUMU U BepxHuMH rparunamu. Cucrema onpejiesieHa Ha U3BECTHOM
KOHEYHOM WMHTEpPBaJie BpeMeHu. 1T pebyeTcs IOCTPOUTh TPAEKTOPHUIO, KOTOPasi IIPUBEIET 3Ty
CUCTEMY U3 33JIaHHOTO HAYAJBHOTO TIOJIOXKEHWS B 33JaHHOE KOHEWHOe cocTosiHme. cxos-
Hagd 33/1a9a — HaXOXKJeHue peirenus auddepeHnmnaaTbLHOro BKIIOYEHNs CIEIUAJIbHOIO BUIR
C 3aKpeIUIeHHBbIM MPaBbiM KOHIOM. C MOMOIIBIO ONOPHBIX (DYHKIMI TaKkas 3a7a49a CBOIUT-
¢ K MUHUMHU3AIm¥ (GYHKIIUOHAIA B TTPOCTPAHCTBE KYCOYHO-HEMPEPHIBHLIX (yHKImi. [Ipm
€CTeCTBEHHOM JIONIOJHATE/IbHOM IIPEOI0KeHn Janubil (yukimonan auddepennupyem
no Taro. dnsa dyuknmnonara maiizen rpaauert ['aTo, mosrydensl HEOOXOIUMbBIE U TOCTATOY-
HbIe YCJIOBHS MUHUMyMa. Ha OCHOBE 3THX yC/IOBHUI K MCXOIHON 33/1aUe TPUMEHSIETCS METO/T,
HaUCKOpeHnero ciycka. Hekoropble YuceHHble IPUMEDPHI UJLTIOCTPUPYIOT PEATU3AIUIO T10-
CTPOEHHOTO AJTOPUTMA.

Karowesoie caosa: nuHeRHAsT HECTAI[MOHAPHAS WHTEPBAJIbHAS CHCTEMa OOBIKHOBEHHBIX Iud-
depeHIMATPHBIX ypaBHeHUi, auddepeHmaabaoe BKIOYeHrne, OMopHas (DyHKIUS, MeTOT
HaNCKOPEHIero CIrycka.
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