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The article examines the infimum and supremum of an infinite number of fuzzy numbers.
It is shown that familiar properties of these operations, which are valid for real numbers,
may apply to fuzzy numbers only under certain conditions. A formula for computing the
infimum and supremum of any set of fuzzy numbers is provided. Since the union and meet
of type-2 fuzzy sets are defined via the infimum and supremum of fuzzy numbers, all the
results obtained are applicable to these operations as well.
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1. Introduction. Fuzzy sets introduced by L. A. Zadeh [1] have numerous
applications in various fields of research due to their ability to deal with uncertain
information. Usual crisp sets may be characterized by an indicator function that takes
two values: 1 for elements belonging to a set, and 0 for all others. In fuzzy sets this
function is called membership function, and it is permitted to take any value between 0
and 1. Higher values of the membership function correspond to higher degrees of certainty
in whether an element should be part of a set. When the elements are the reals, fuzzy sets
are called fuzzy numbers.

The next step in generalization of membership is allowing the values of the
membership function themselves to be fuzzy [2]. So in type-2 fuzzy sets membership
functions map elements to the fuzzy numbers. Some studies [3, 4] have found that increased
fuzziness makes type-2 fuzzy sets better suited for certain tasks than type-1 fuzzy sets.
Thus, it is undoubted that type-2 fuzzy sets will have many applications, so studying their
properties is an important task.

M. Mizumoto and K. Tanaka [5] examined the set-theoretic operations on a finite
number of type-2 fuzzy sets. In some areas, for instance, in an axiomatic approach to
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Pareto set reduction [6], the need arises to operate on infinite number of type-2 fuzzy
sets. In this case the results from [5, 7] are not directly applicable. The aim of this paper
is to determine the conditions under which the set-theoretic operations preserve their
usual properties when applied to an infinite number of type-2 fuzzy sets. And since these
operations are closely related to operations on the values of membership functions, i. e.
on fuzzy numbers, we simultaneously study the properties of infimum and supremum of
an infinite set of fuzzy numbers.

Operations on type-2 fuzzy sets are derived using Zadeh’s extension principle. Such
definitions are inconvenient for direct computations, so various algorithms and formulae
exist to simplify performing set-theoretic operations on certain classes of type-2 fuzzy sets.
One such formula was given by N. N. Karnik and J. M. Mendel [7] for computing join and
meet of a finite number of type-2 fuzzy sets. It is applicable to a broad class of type-2 fuzzy
sets, namely, the sets with strongly normal and convex values of membership functions.
Our main result generalizes this formula to accept infinite, possibly uncountable number
of type-2 fuzzy sets.

2. Preliminaries. Let X be the universal set of objects of any kind. A (type-1)
fuzzy set A over X is a set of pairs (x, ua(z)), where x € X, pa(z) € [0;1]. The number
wa(z) is called a degree of membership of an element z in the fuzzy set A. The statement
“z certainly belongs to A” corresponds to pa(z) = 1, the assertion z ¢ A is written as
wa(z) = 0. Values of 14 (z) between 0 and 1 represent uncertainty about whether x should
be part of the set A or not: the higher the value pa(z), the more confident we are that
x € A. The function py : X — [0;1] is called the membership function of the fuzzy set A.
Since a fuzzy set is fully determined by its membership function, we will often use them
interchangeably.

Let A and B be two fuzzy sets over the universal set X . Their union AU B, intersection
AN B, and complement A are defined as follows: paup(r) = max{ua(z);us(z)},
pans(x) = min{pa(x); pp(z)}, pg(x) = 1—pa(z). It is said that A C Bif pa(x) < pp(x)
for every z € X.

An a-cut of a fuzzy set p4 is the crisp set A, = {z € X: pa(x) > a}.

A height of a fuzzy set pa is ha = sup pa(x). If ha = 1, the fuzzy set pa is called

zeX
normal. If furthermore pa(x) = 1 for some z € X, the fuzzy set pa is called strongly
normal.

A fuzzy set pa over a convex set X is itself called convez if for any A € (0;1) and
z,y € X it is true that pa (Az + (1 — A)y) > min{pa(z); pa(y)}.

A fuzzy number is a fuzzy set over the reals R. For fuzzy numbers the convexity
condition may be rewritten in an easier form: a fuzzy number u is convex if u(y) >
min{u(z); u(z)} for any z < y < z.

A fuzzy number p is upper semicontinuous if its a-cuts are closed for any « € [0; 1].
Observe that upper semicontinuous normal fuzzy numbers are necessarily strongly normal.

Operations on fuzzy numbers are derived using Zadeh’s extension principle [2]: given

some binary operation o on reals, one may define upog(x) = sup min{up(u); ug(v)} for
uUovV==x
fuzzy numbers P and Q. Thus, if 4 and v are two fuzzy numbers, their minimum pu A v

and maximum p V v are
WAV ()=  sup  min{u(wiv()}, (pve)(e)= swp  min{p(u);r()}.
min{u,v}=x max{u,v}=x
We will also use the complement operator: (—u)(x) = u(l — ).

Becraux CII6L'Y. [puknagaas matematnka. Uuadopmaruka... 2021. T. 17. Beim. 2 109



A type-2 fuzzy set B over the universal set X is given by its membership function
pp: X x [0;1] — [0;1], which now takes two arguments. The value up(r,u) may be
thought of as a degree of certainty that the membership degree of z in B should be equal
to u. If the element =z is fixed, then pup(x,u) can be viewed as a fuzzy number over [0; 1].
Thus, it can be said that in type-2 fuzzy sets the degree of membership of every element
is given by a fuzzy number, while in type-1 fuzzy sets membership degrees were ordinary
real numbers. Hence, it is natural to define union and intersection of type-2 fuzzy sets via
maximum and minimum of fuzzy numbers.

We will say that a type-2 fuzzy set B has normal (convez, etc.) fuzzy grades if for
every x € X its membership function pup(z,u) is a normal (convex, etc.) fuzzy number
over [0;1].

Following [5], we define a meet of type-2 fuzzy sets A and B as the type-2 fuzzy
set AN B given by panp(z,u) = pa(x,u) A pp(x,u). Their join AU B is paup(z,u) =
pa(z,u)Vup(x,u). The complement —A of a type-2 fuzzy set Ais pa(x,u) = pa(z, 1—u).
The inclusion relation is defined as follows: A C B, if AT B = A and AU B = B. This
definition can be transferred to fuzzy numbers as well: a fuzzy number p is said to be not
greater than a fuzzy number v, u C v, if u Av =y and p Vv = v. For normal and convex
fuzzy numbers the conditions u A v = p and p VvV v = v are equivalent [5].

3. Definitions. We will employ Zadeh’s extension principle to define infimum and
supremum of a set of fuzzy numbers. Let p;, i € I, be fuzzy numbers. The index set I may

be finite or infinite, countable or uncountable. Their infimum A u; and supremum \/ u;
iel i€l
are fuzzy numbers with the following membership functions:

(/\ ,ui> (z) = sup 1nf wi(zs), (\/ ,ui> () = sup inf p(x;).

il inf @i=a € i€l Sup Ti=x el
i 1€

The suprema are taken over all possible sets of x; that have the specified infimum or
supremum.

Using these operations, it is possible to define the join and meet of an arbitrary
number of type-2 fuzzy sets. Let A;, i € I, be type-2 fuzzy sets. Their meet [] A4; and

i€l

join | | A; are type-2 fuzzy sets with the membership functions given by

icl

pry a (@) = N pa,(z,u) ,ul_lA =\/ 1a,(z,u) (1)
el i€l i€l

4. De Morgan’s laws. Hereafter, without loss of generality, we will suppose that all
fuzzy numbers under consideration are defined over [0;1].
Lemma 1. For any fuzzy numbers u;, i € I,

ﬁ/\/h':\/ﬂ/m _‘\/Mz’:/\_‘,ui-

i€l i€l i€l i€l
Proof. By definition, <—' A ,Ui> () = </\ ,ui) (1—-=2z) = sup 1nfpl(xl) =
i€l el lnf r;=1— 2 1€
sup  inf p;(z;) = sup  inf (1 —2;) = <\/ —|,ui> (). The second equation
1— 1nf Ti=x €l sup(l—z;)= z 1€l icl
i€l
can be proved similarly. (I

110 Becraux CII6L'Y. Ipuknaanas matemarnka. Uadopmaruka... 2021. T. 17. Beim. 2



Theorem 1. For any type-2 fuzzy sets A;, i € I,

S[J4 =] -4, - ]4=]]-4
i€l icl icl icl

Proof. From (1), - 17 a4, (w,u) = = A\ pa, (@, u), g -a,(@,u) =\ —pa,(z,u), so

i€l el i€l el
the first equation directly follows from lemma 1. So does the second equation. ]

Thus, De Morgan’s laws hold for any number of type-2 fuzzy sets.

In the following discussion, we will concentrate on properties of infimum of fuzzy
numbers, and, therefore, meet of type-2 fuzzy sets. Using De Morgan’s laws, it will be
easy to transfer the obtained results to supremum of fuzzy numbers and join of type-2
fuzzy sets.

5. Properties of infimum of fuzzy numbers. In this section we will study
whether the infimum operation preserves the properties of normality, convexity and upper
semicontinuity.

Lemma 2. If y;, i € I, are normal fuzzy numbers, then their infimum N p; and

i€l
supremum \/ p; are also normal fuzzy numbers.
i€l
Proof. Denote p = A p;. Take arbitrary e > 0. As p; are normal, there exist

iel
such x; that p;(x;) > 1 —e. Then 1n§pl(xl) > 1 —e. If we denote 1n§x2 = z, then
i€ S

w(x) = sup 1nf wi(yi) = 1n§ pi(x;) = 1 —e. As this is true for any € > 0, we may
mf yi=x? €
conclude that sup pu(x) = 1. The proof for supremum is similar. O

xr
Lemma 3. If u;, i € I, are strongly normal fuzzy numbers, then so are their infimum
N\ wi and supremum \/ ;.

i€l icl
Proof. Consider the infimum u = A p;, the reasoning for supremum is similar.
iel
As p; are strongly normal, there exist such z} that p;(z}) = 1. Let z* = ing xf. Then
1€
w(x*) = sup inf p;(z;) > inf p(af) = 1. O
inf @;—* 1€1 icl
i€l

Lemma 4. If p;, i € I, are convex fuzzy numbers, then their infimum N p; and
iel
supremum \/ p; are also convex fuzzy numbers.
il
Proof. Consider the infimum p = A u;, the proof for supremum is similar.
il
A fuzzy number p; over [0;1] is convex if and ounly if its membership function is
nondecreasing on [0;z}) and nonincreasing on [z};1] or nondecreasing on [0;z}] and
nonincreasing on (z; 1] for some z}. Let z* 1n§x
i€

Take x < y < z* and suppose that p(z) > p(y). Let € = L (u(x) — p(y)) > 0. As

w(x) = sup inf p;(z;), there exist such z; that infz; = = and inf p;(z;) > p(x) —e.
inf ;=x i€l i€l i€l
i€l

Let y; = max{x;;y} > x;. Since * < zf, all functions u,; are nondecreasing on [0;z*).

Hence, pi(y;) = wi(z;), and i»nf wi(ys) = 1n§ pi(x;). As 1n§ wi(z;) = = < y, there exists
1€ 1€ 1€

such index j that z; < y, and then y; = y. At the same time, y; > y for all ¢ € I. Thus,

infy; = y. Therefore, u(y) > inf pi(yi) > inf pui(w:) > p(w) —e = 3 (u(z) + ny)) > py)-

This contradiction proves that p is nondecreasing on [0; z*).
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Consider the set J(z) = {i € I:xz} < x}. All functions pu; with j € J(z) are
nonincreasing on [z;1]. If z > a* = i_ngxf, then J(z) # @. Take z* < 2 < y and
1€

suppose that u(z) < p(y). Let e = 2 (u(y) — p(z)) > 0. There exist such y; that i_ng Yi =y
1€

and 1r61§pl(yl) > u(y) —e. Let @; = x for i € J(x), and x; = y; for i ¢ J(x). As J(x) # &,
7

1n§xl = x. Then pu(z) > 1n§,u2(xz) For i € J(x), as y; > i.nﬁyi =y > 2 = x due

S S 1€

to p; being nonincreasing on [z;1], w;(z;) > pi(y;). For i ¢ J(x), we have x; = y;,
so pi(z;) = pi(y;). Thus, 115 pi(x;) = 125 1i(yi)- Collecting all inequalities, we obtain
p(z) > p(y) — e = p(x) + ¢, a contradiction. Hence, the function p must be nonincreasing
on (z*;1].

Let K = {i € I:zf = z*}. If i ¢ K, then =} > z*, and the function p; is
nondecreasing on [0; z*].

Cousider the case where for Vi € K the functions p; are nondecreasing on [0; z*], or
K = @. Then all functions p;, i € I, are nondecreasing on [0; *]. Take z < 2* and suppose
that p(x) > p(z*). Let € = & (u(x*) — p(x)) > 0. Then there exist @; such that 11611fr x; =

and in§ pi(x;) > p(x)—e. Asx < z*, there will be indices ¢ € I for which z; < a*. For these
1S

i let y; = x*. Then p;(y;) = pi(x;). For all other indices, in other words, when z; > x*,
let yi = w;. Then infy; = &%, and p(e”) > inf pi(yi) > inf pi(wi) > ple) —e = pla) +e,
a contradiction. Thus, in this case the function u is nondecreasing on [0; z*].

Now consider the case where for some k£ € K the function uy is nondecreasing on
[0; 2*) and nonincreasing on [z*; 1]. Suppose that for some y > z* we have u(x*) < u(y).
Let ¢ = £ (u(y) — p(x*)) > 0. There exist such y; that 1r€1§ y; =y and 1r€1§ wi(yi) > p(y) —e.

Let x; = y; for i # k, and z, = 2* < y < y, so that pr(xr) > pr(yx). Then ingxi = z*,
1€
and p(z*) > ing i) = i_ng wi(yi) > p(y) —e > u(x) + €, a contradiction. Thus, in this
1€ 1€

case the function y is nonincreasing on [z*;1].

Summing up, the function p is either nondecreasing on [0; z*] and nonincreasing on
(z*;1], or nondecreasing on [0; z*) and nonincreasing on [z*;1]. Thus, p is convex. O

Theorem 2. The join and meet of any number of type-2 fuzzy sets with normal
(strongly mormal, convex) fuzzy grades are also type-2 fuzzy sets with normal (strongly
normal, convex) fuzzy grades.

Proof follows from (1) and lemmas 2—4. O

Unfortunately, the set of upper semicontinuous fuzzy numbers is not closed with
respect to the infimum and supremum operators, as the following example demonstrates.
Let

11
1, Og.ﬁgi*;,
pi(r) =40, 1-1<p<2
1, 2<z<1,
for i € N. It is easy to verify that
o0 L, 0<z<y,
(/\Mz)(l‘): 0, %<x<%,
=1 1, 2<z<.

Thus, despite every p; being upper semicontinuous, their infimum is not upper semicon-
tinuous.
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Lemma 5. If u;, i € I, are normal conver upper semicontinuous fuzzy numbers,
then their infimum N w; and supremum N p; are strongly normal, convez, and upper

icl il
semicontinuous.
P roof. Consider the infimum g = A p;, as the proof for supremum is similar.
iel

As normal upper semicontinuous fuzzy numbers are strongly normal, there exist z}
such that p;(z}) = 1. Let z* = in§ xf. Then p(z*) = 1.
1€

From previous lemmas it follows that p is strongly normal and convex, so it remains
to show that 4 is upper semicontinuous. Consider an a- cut A={z: plx) > a}. As p is

strongly normal, it is nonempty. Let ' = inf =z, and 2’ = sup x. If 2’ = 2", then the
w(w)za ) Za

set A = {z'} consists of a single point and is thus closed. Consider the case 2’ < z”. By
convexity of u, (2';2") CA. As pu(z*) =12, ' <z* < 2",

For every i € I we define B; = {z: p;(z) > a}. Since all p1; are upper semicontinuous,
these sets are closed, and since all u; are strongly normal and convex, B; = [a;; b;], and
a; < .’L‘;k < bi.

If 35 € I: pj(2’) > «, then, taking z; = 2’ and x; = =} > z* > 2 for i # j, we
obtain 115 x; = ' and 125 wi(z;) = pi(z') > a, so p(x’) > a. Suppose that p;(z") < a for

all j € I. As o’ < 2* < af < b;, ¢/ < a;. Consider a = 12?“1 We have p;(a;) = a, so

i_nfpl-(ai) > «. Since ¢’ < q; for Vi € I, 2/ < a. If a = 2/, then immediately p(z') > a.

Consider the case 2’ < a. Take ¢ > 0, y, = 2’ + = for n > ny = max{#; ﬁ},

so that 2/ < y, < min{a;2"}. As y2, € (2';2"), u(an) > «a. Then there exist 7' such

that ingm = 9o, and 1nf u,( ™) > a — e. Since Yo, < Yn, there exists such j, € I that
1€

Yon < 2 < Un and,uj"( ') >a—c. Let now x; = inf 27 forie | {jn}, and z; = a7

Jn=1 n>no

for the remaining indices i € I\ J {jn}. Ifi € U {jn}, then p;(27 ) > a — ¢ whenever

n>ngo n>ng
Jn = %, SO using upper semicontinuity we get p;(x;) > « — e. For the remaining indices
wi(x;) = 1. Thus, mfuz(x,) > a — ¢, while 1nf x; = inf 27 =a'. Therefore, u(z’) > a.

n>ng

Consider the set J={iel:a;< x”}. If J =@, 2" <af for all i € I, hence,

" <a*. But * < 2,50 2* = 2", and p(z”) = p(x*) = 1 > a. Consider the case J # @.
Let b= ian’bj. Ifb> 2", then b; > 2" > z7 for every j € J, so p (") > p;(bj) = o as p;

j€
are nonincreasing on (x7; 1]. Then, taking z; = 2" for i € J and x; = 2] > 2" for i ¢ J,
we obtain ing pi(x;) = « and i_ng x; = 2", so pu(z”) = «. Consider the case b < z”. Take
S 1€

n

y € (max{z’;b};2"). As b <y, 3j € J: bj <y. Then p;(y) < a. As p; is nonincreasing
on (z7;1], pj(x;) < py(y) for Va; > y. Then for any x; such that ing x; = y we will have
1€

T; =y, so ;relgm(fﬂi) < () < py(y). Then p(y) < pi(y) < a. But y € (2;2"), so

u(y) > «, a contradiction. Thus, b < 2 is impossible.

Summing up, we have shown that p(z’) > a and p(z”) > a, so A = [2';2"] is a closed
set. Thus, p is upper semicontinuous. O

Theorem 3. The join and meet of type-2 fuzzy sets with normal convex upper
semicontinuous fuzzy grades are type-2 fuzzy sets with strongly normal convex upper
semicontinuous fuzzy grades.

Proof follows from (1) and lemma 5. O
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6. Idempotency of infimum. Consider the following example. Let

0,
p(x) =41,
0

)

NN N
= ol wl=

T
xT
xT

who wli= O
N NN

It is a strongly normal and convex fuzzy number, but it is not upper semicontinuous. It is
easy to verify that uA p = p. But if we take an inﬁnite number of identical fuzzy numbers

i = i, 1 € N, and compute their infimum v = /\ i, then we will find that /\ i 7

= =1

s

W Wi~ O
N IN N
8 8 8
VAANEA
= ol @I

37
jnjg wi(z;) = 1, and thus yield v (%) = 1. The infimum v is still not upper semicontinuous,
1€

Indeed, due to infinite number of arguments, we may take x; = % + %, so that _inlf[ T = %
1€

however. This example demonstrates that using not upper semicontinuous fuzzy numbers

may violate one of intuitive properties of infimum, namely, idempotency: for real numbers,

if x; = x for Vi € N, then jnjg x; = x, but this may not hold for fuzzy numbers unless they
1€

are upper semicontinuous.
Let J = N, and I; = {1} for every j € J. Observe that |J I; = {1} is a finite set. Let
jeJ
p1 = p from the previous example. Then we have A A wpi # A p;. Thus, even such
jeJ
seemingly obvious properties as independence of infimum from reordering or grouping its
arguments must, be carefully examined.

Lemma 6. Let y1;, i € I, be fuzzy numbers, and I = \J I;. Then if J is a finite set,

jed
or all the fuzzy numbers u; are upper semicontinuous, N\ N pi= N\ wi, and \/ '\ i =
jediel; icl jeJiel;

V i

iel
Proof. Denote v; = A wi, v= A vj, p= N\ .
iel; jeJ iel
Suppose first that y(z) > v(z). Take e = 1 (u(x) — v(z)) > 0. Then there exist x; such
that i_ng x; =, i_ng wi(xi) > p(x) —e. For y; = jnIf x; we will have v;(y;) > _inlf pi(x;), so
S S 1€l el

ian’ vi(y;) = jn}’ wi(xi) > p(x) —e. As for any § > 0 there exists ¢ € I for which x; < x4+,
Jje 1el;
there exists j € J such that the index ¢ € I;, so y; < z; < x + 4. Thus, ing Y = T.
je
Therefore, v(z) > ing wi(y;) > p(x) —e = v(x) + €, a contradiction.
j€e

Suppose now that u(z) < v(z). Take ¢ = 1 (v(z) — p(z)) > 0. There exist such z;
that inf z; = = and inf vj(z;) > v(z) — e. Then, for every j € J, there exist such zj;
JjEJ

jeJ
that 1nlf 2 = x; and 1nf pi(zjs) > vi(xj) —e > v(x) — 2. Let y; = inf ;. Since
1€ j:i€l;

Tj = X5 =X, Y = T For any 0 > 0 we can find such index j that z; < = + 4, and
then such ¢ € I; that zj; < x; + 0 < + 26. Then y; < x5 < = + 26. Thus, 1n§y2 = .
1€

If p4; are upper semicontinuous, then for every ¢ € I, for all j such that ¢ € I;, from
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wixjs) = _inlf wi(xj;) = v(z) — 2 we may conclude that u;(y;) > v(z) — 2¢. If J is finite,
1elj
y; = xj; for some j € J, so again p;(y;) = pi(zji) > jn}’ wi(zj;) > v(z) — 2e. Then
SYH]

w(x) = in§ wi(yi) = v(z) — 2e = p(x) + 2¢, a contradiction.
1€

Thus, p = v, as desired. The second formula can be proved in a similar way. O
Theorem 4. Let A;, i € I, be type-2 fuzzy sets, and I = |J I;. If J is finite, or
jeJ
the type-2 fuzzy sets A; have upper semicontinuous fuzzy grades, then || || A:i = | ] A,
jeJiel; i€l

IT I 4:= 1] A:.

jeTiel; icl
Proof follows from (1) and lemma 6. O

Theorem 5. Let A;, i € I, be type-2 fuzzy sets with normal convex fuzzy grades.
Then
i€l i€l

9) TI wi C I1 ps for any J C T
i€l ieJ
8) U mC L pi for any JC L.
ieJ i€l
Proof. By theorem4, A, [[ A= ][] Ai= ]] A4, and due to normality and
iel ie{juI iel
convexity of fuzzy grades [[ A; C A;. The other properties can be proved similarly. O
iel

Theorem 6. For type-2 fuzzy sets with normal convex upper semicontinuous fuzzy
grades:
1) if AC B; for Vi €I, then AC [] B;;

i€l
2)if B, C A forViel, then | | B; C A;
iel
icl icl icl icl
Proof. Denote A = By. If A C B;, then By N B; = By. Using theorem 4, we
obtalnAI_IHB,: H Bz: H Bz: H(BOHB]):HBO:H HBZ:
i€l ie1U{0} ie U {04} jer jer jET ic{0}
jeI
Il B:i = Bo = A. The second property is similar. Finally, by theorem 5, [] A; C
e U {0} iel
jeI

A; T B; C || B; for any j € I. Then by previous properties we get the remaining
i€l
inclusions. © ]
7. Formulae for join and meet of type-2 fuzzy sets. Let y;,i € I = {1,2,...,n},
be strongly normal convex fuzzy numbers. Let zF be such points that p;(zf) = 1,14 € I.
Without loss of generality, suppose that 7 < 25 < --- < z}. Then infimum and supremum
of these numbers can be computed as follows [7]:

max pi(z), x<af,

n i=1,...,n
(/\ m) () =, min p;(2), 2 ST < Ty,
= min pi(z), x>y,
i=1,...,n
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min_ pi(x), @<,

n i=1,....,n

i=1 *

_Imax ,U,Z(Z), Tz Ly

i=1,...,n
These formulae at the same time allow to compute join and meet of a finite number of
type-2 fuzzy sets, as these operations by definition are reduced to maximum and minimum
of fuzzy numbers corresponding to each element of the universal set.
o0
Consider the following example. Let p,(z) =1— (1 — /)", n € N,and g = A fin.
n=1
Take arbitrary e > 0. If z,, = 27", then lim p,(x,) = lim (1 —27") = 1. Then for some
n—oo n—oo i
nyg € N we will have p,(z,) > 1 — ¢ for Vn > ng. Let z; = 27* for ¢ > ng, and z; = 1
for ¢ < ng. Then jnjg z; = 0, and jn]{’[ wi(x;) =1 —e,80 pu(0) = 1 —e. Due to arbitrariness
S S

of g, 4(0) = 1. Now note that u,(0) =0 for Vn € N, so sup 1, (0) # p(0). Thus, the given
neN

formulae cannot be naively generalized to the case of infinite number of fuzzy numbers.
Lemma 7. Let p;, i € I, be normal convex upper semicontinuous fuzzy numbers, and

pw= N pi. Then

i€l
lim sup 1;(y), Viel Ay <wz:pi(y) =1,
MR S (2)
inf wi(x), Feldy<ax: puly) =1

iel: 3y<z: pily)=1

Proof. As normal upper semicontinuous fuzzy numbers are strongly normal, there

exist x; such that p;(z;) = 1. Let 27 = (inf x;. By upper semicontinuity, u;(z}) = 1.
HilTi)=
Let also z* = inf z].
i€l

Consider x < z*. By choice of z* we have Vi € I Zy < z: p;(y) = 1. Since all p;
are convex, they are nondecreasing on [z;z*]. Then so is ¢(y) = sup p;(y). Indeed, if for
i€l

some ',z such that x < 2’ < 2’ < 2* we had p(z’) = sup p;(z") > sup p (") = p(z"),
i€l iel

then for e = 1 (p(2') — ¢(2")) > 0 there would exist such j € I that y;(z) > (') —c =
e@”) +e > (") = pi(z”), so p; would not be nondecreasing. Futhermore, ¢(y) > 0,

so the function ¢(y) is monotone and bounded on [x;x*]. Therefore, () = lirr}ro o(y)
y—x

exists. As p(y) is nondecreasing, ¥ (x) < ¢(y) for Yy € [z; z*].

Let y, = 2 + x;;x, n € N, be a monotonically decreasing sequence, y, — x + 0 as
n — oo. Since y, € (x;2*), p(yn) = ¥(x). Take arbitrary € > 0. Then for every n € N
we can find 4,, € I such that ;, (yn) > @(yn) — € = ¥(x) — €. Denote I. = {i,,: n € N}.

Let z; = inf  y, fori € I, and x; = zf for ¢ ¢ I.. Since y,, - x + 0, 1n£xl = .
1€

NnEN: i, =1
For i € I. we have p;(y,) > ¥(x) —e for n € N: i, = i, so due to u; being upper
semicontinuous, u;(x;) = ¢(x) — e. For other indices ¢ ¢ I., simply p;(x;) = 1. Thus,

p(zx) > i_n? wi(x;) = (x) — €. Due to arbitrariness of €, p(x) > ¢(z).
1€

Suppose that p(z) > ¢(z). Let € = 3 (u(z) — ¥ (z)) > 0. Then 3§ > 0: Vy € (z;2 +

d) = lp(y) — ¢(z)| < e. Hence, ¢(y) < ¥(z) + e = u(z) —e for Yy € (z;2 + J). As

 is nondecreasing, ¢(z) < ¢(y) < p(x) —e. Since p(r) = sup i_ng wi(x;), there exist
1€

inf z;=x
i€l
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such z; that ing z; = x and ing wi(x;) > u(zx) — e. For the found ¢ then 3j: z; < = + 4,
S S
so o(z;) < p(z) —e < inf pi(zi) < py(x;) < suppi(z;) = (), a contradiction. Thus,
e iel

() = ().

Consider now =z = z*. Taking z; = x}, we get in§ z; = x* and in§ wi(z;) = 1, so
i€ i€

p(x*) =1.
If3iel:zf=a"thenitisthecasedi €I, Jy < x: pu(y) =1.Forie I,if Jy <z =
x*: pi(y) =1, then z* < 2} <y, soy = z*, so p;(z*) = 1. Then inf wi(zx) =
i€l Jy<Lz: pi(y)=1
1 = p(x).

If 27 > «* for Vi € I, then, obviously, Vi € I Ay < z: p;(y) = 1. Since z* = i_ng xf, we
1€
=

may choose a sequence . — z*+0. Then sup u;(z}) = pn(2:) = 1,50 lLim sup u;(y) =
i€l Y=z +0 e
1= p(z*).

Finally, consider © > a*. Let J(z) ={i € I: 2} < z}. As z* = 12? xf Jiel:xf <uw,

so J(xz) # @. Besides, the condition z} < z is equivalent to Jy < z: p;(y) = 1, so the
infimum in (2) is taken over J(z) exactly.
Let x; = « for i € J(z), and a; = 2} for ¢ ¢ J(x). Then 1rel§xl =z and 1rel§,uz(xl) =
K3 K3
A i (), so p(x) = ok i ().
Suppose that p(z) > x(z) = 1?(f )M(x). Let ¢ = 3 (u(z) — x(x)) > 0. Then there
iceJ(x

exist such x; that in§ z; = = and in§ wi(zi) > p(x) —e. Hence, pi(z;) > p(x) — e for all
S S
i € I. On the other hand, as x(z) = 11J1(f )ui(x) Jj e J(x): pj(z) < x(x) +e=plx) —e.
ed(z
As j € J(z), 7 < x, so by convexity the function j; is nonincreasing on [z;1]. As z; > z,
wi(z;) < pj(x) < p(x) —e, a contradiction. Thus, p(z) = x(z). O

It must be noted that we cannot completely get rid of the upper limit sign in (2), as
the following example demonstrates. Let

3=

1, z=-,

/Ln(x) = {O z # 1

be a fuzzy number that represents the crisp number % Obviously,

N 1, z=0,
(Am)o={o 270

is the fuzzy counterpart of the crisp zero. But

1, Lfen,

x

neN

so the ordinary limit lirﬁ0 sup pn(x) does not exist. Fortunately, this can happen only
T—r neN
when the membership function of the infimum equals 1. In other cases ordinary limit

exists, as follows from the proof.
The presented formula (2) can be used to compute fuzzy grades for join and meet of
any number of type-2 fuzzy sets, as in the following result.
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Theorem 7. Let A;, i € I, be type-2 fuzzy sets with normal convex upper semiconti-
nuous fuzzy grades. Then for any x € X, u € [0;1],

. *
 m SUD LA, (z,u), u<u(z),
Pl a(z,u) = 41, u=u*(z),
i€l .
inf  pa,(z,u), u > u*(x),
i€J(z,u)
inf  pa,(x,u), u < u'(z),
i€J (z,u)
My Ai(x7u) =435 u:uo(m),
“ lim sup pa,(z,u), u>u’(z),
v=u—0 ;c7

where u*(x) = inful(z), uf(z) = inf wu, u'(z) = supud(z), W(z) = sup u,
iel pa; (z,u)=1 iel pa; (z,u)=1

J(@yu)={i e I:uzul(z)}, J'(z,u)={i € I:u<ud(z)}.

Proof. The first part directly follows from the proof of lemma 7 and (1). The
second formula can be derived from the first with the use of De Morgan’s laws. O

8. Conclusions. Zadeh’s extension principle gives a natural way to extend known
operations on real numbers to fuzzy numbers. However, they might not retain all usual
properties. We have studied an extension of infimum and supremum to fuzzy numbers. We
have shown that these operations preserve normality and convexity, but do not preserve
upper semicontinuity. At the same time, if fuzzy numbers are not upper semicontinuous,
their infimum and supremum might behave counter-intuitively, for example, they might be
not idempotent. The conditions under which familiar properties of infimum and supremum
hold have been given. We have also derived folmulae for computing infimum and supremum
of arbitrary number of fuzzy numbers. All obtained results are applicable to type-2 fuzzy
sets, as set-theoretic operations on them are defined using infimum and supremum of fuzzy
numbers.
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COB,I[I/IHEHI/IE u cjaussHue 6eCKOHEedHOro Ha60pa HEUYEeTKNX MHOXKecTB Thuna 2%

O. B. Bacxkos

Camkr-Ilerepbyprckuit rocymapcrBenusiit yuusepcurer, Poccuiickas Penepanus,
199034, CankTt-IleTepbypr, YHUBepCcUuTETCKAad HAO., 7-9

Has urtuposauust: Baskov O. V. Join and meet of infinite number of type-2 fuzzy sets // Becr-
uuk Cankr-Ilerepbyprckoro yausepcurera. [Ipuknaaunas maremaruka. Madopmaruka. IIpomecest

yupasiernsi. 2021. T. 17. Bemm. 2. C. 108-119. https://doi.org/10.21638/11701 /spbu10.2021.201

M3y4gatoTcst CBOMCTBA COETMHEHVS U CAUSTHNS OECKOHEYHOTO KOJIMYECTBA HEYETKUX MHOKECTB
tuna 2. Takke nCCIeIyIOTCS TECHO CBA3AHHBIE C HUMU OIEPANNY WHMPUMYMa U CyIPEMyMa
HaJl HEYeTKUMH YnucjaaMu. [JoKa3aHo, 9TO KJIACChl HEYETKUX MHOXKECTB THUIMA 2 C HOPMAaJib-
HBIMH WJIA BBIMYKJIBIMU CTETIEHSIMHU TTPUHAIECKHOCTH 3aMKHYTHI OTHOCUTEIHHO COeTUHEHMS
¥ CIUSIHUS, OJTHAKO TIOJIyHEITPEPBIBHOCTH CBEPXY MPHU ITOM MOYKET He COXPAHITHCS. YCTAHOB-
JIEHBI YCJIOBUs, IIPU KOTOPHIX CIIPABEJINBHI TAKWE OCHOBHBIE CBOMCTBA COEIMHEHWS W CJIHSI-
HUS KaK WAEMIIOTEHTHOCTH, KOMMYTATUBHOCTh M ACCOITMATUBHOCTE. JloKa3amna KOpPeKTHOCTH
mpuMeHeHnss "HPUMYyMa U CYIIPEMYMa K 00eMM YacTSM HEPABEHCTB HOPMAJIHHBIX BBIILYKJIBIX
TIOJIyHETIPEPHIBHBIX CBEPXY HedeTKmX umcesi. Hakower, mpuseseHa hopMmysia IjTsi HAXOXKIe-
HUus QYHKITUN TPUHAIIEKHOCTH COETUHEHNS U CIVNSHUS OECKOHEYHOTO KOJNYIECTBA HEIETKUX
MHOXKECTB THIIa 2.

Karouesvie caro6a: HedeTKIE MHOXKECTBA TUTIA 2, COeINHEHNe, CIUAHIe, HeYeTKHUe IUC/Ia, WH-
dbumymMm, cynpemym.
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