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Models and methods of traffic distribution are being developed by researchers all over the
world. The development of this scientific field contributes to both theory and practice. In this
article, the non-linear optimization of traffic flow re-assignment is examined in order to solve
continuously the travel demand estimation problem. An approach has been developed in
the form of computational methodology to cope with the network optimization problem.
A uniqueness theorem is proved for a certain type of road network. Explicit relations
between travel demand and traffic flow are obtained for a single-commodity network of
non-intersecting routes with special polynomial travel time functions. The obtained findings
contribute to the theory and provide a fresh perspective on the problem for transportation
engineers.
Keywords: travel demand estimation, traffic assignment problem, non-linear optimization,
bi-level optimization.

1. Introduction. Estimation of traffic flows on the roads of urban areas requires
determination of the rules by which drivers choose their routes. The methodological basis
for the traffic assignment is presented by behavioral principles. The most popular principle
is formulated by [1]: the journey times in all actually used routes are equal and less than
those that would be experienced by a single vehicle on any unused route.

In other words, no driver can unilaterally reduce his/her travel costs by shifting to
another route. Such a principle of route choice is known as Wardrop’s first principle
or user equilibrium behavioral principle. The assignment of traffic flows according to
the Wardrop’s first principle corresponds to a competitive non-cooperative equilibrium
assuming complete selfishness of users [2]: everyone wants to reach the destination point
as fast as possible and chooses the route that will lead to the lowest potential travel costs
(temporary, financial, moral, etc.) [3, 4]. This principle fully takes the factor of mutual
influence of users into account, and its essence can be expressed as follows: in case of
equilibrium traffic assignment, no user may lower his/her transportation cost through
unilateral action [5]. In the paper, we consider the Wardrop’s first principle as the basic
behavioral patterns of users within a particular network.

The first mathematical formulation of this principle was obtained by M. Beckman
et al. [6]. Subsequently, this mathematical model has become a classic [7], and today it
appears to be one of the key elements in the traffic flow theory [8]. Besides, it should be
mentioned that the traffic assignment problem has a form of an optimization program if
and only if the performance time of a link is depended on the flow of this link solely [9].
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2. Traffic flow re-assignment in network optimization problems. Let us
consider a network, presented by the connected directed graph G = (V,E) consisting of
sequentially numbered vertices V , |V | = v and sequentially numbered edges E, |E| = m.
We will use the following notation: W is the set of pairs of vertices (an origin and a
destination), W ⊆ V × V , |W | = n, w ∈ W ; Rw is the set of routes between the origin-
destination pair w, R = {Rw}w∈W , |R| = r; xe � 0 is the traffic flow through the edge
e ∈ E, x = (. . . , xe, . . .)T; te(xe) is a smooth increasing function that models the travel
time (delay) of the flow xe, xe � 0, through the congested edge e, e ∈ E; fw

r � 0
is the traffic flow through the route r ∈ Rw between the OD-pair w, fw = {fw

r }r∈Rw

and f = {fw}w∈W ; Fw > 0 is the travel demand between a given OD-pair w ∈ W ,∑
r∈Rw fw

r = Fw, F = {Fw}w∈W ; δw
e,r is an indicator,

δw
e,r =

{
1, if the edge e, e ∈ E, lies along the route r, r ∈ Rw;
0, otherwise.

Formally, within the introduced notation, the user equilibrium in a road network is
such an assignment of travel demand Fw, w ∈W , between available routes f , that∑

e∈E

te(xe) · δw
e,r

{
= tw, if fw

r > 0,
� tw, if fw

r = 0, ∀r ∈ Rw, (1)

subject to
xe =

∑
w∈W

∑
r∈Rw

fw
r · δw

e,r.

In formula (1) tw > 0 is the equilibrium travel time through any actually used route
between the OD-pair w, w ∈ W [1, 6]. Let us introduce a vector t = tn×1 = (. . . , tw, . . .)T,
w ∈ W .

For the first time, the traffic assignment problem was formulated by M. Beckman et al.
[6, 10]:

Z(x∗) = min
x

∑
e∈E

xe∫
0

te(u) du, (2)

subject to ∑
r∈Rw

fw
r = Fw ∀w ∈ W, (3)

fw
r � 0 ∀r ∈ Rw, w ∈ W, (4)

with definitional constraints

xe =
∑

w∈W

∑
r∈Rw

fw
r δ

w
e,r ∀e ∈ E. (5)

It is proved that the solution x∗ of the optimization problem (2)–(5) is the user equilibrium
of Wardrop [6, 7].

3. Travel demand estimation. Travel demand values are input data in the problem
(2)–(5). In other words, in the traffic assignment problem, it is required to find the
equilibrium values of arc flows from the known set of OD-pairs and known values (positive)
of travel demand between these pairs. It seems natural to understand the inverse problem
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to the traffic assignment as a problem of finding the OD-pairs and the volumes of travel
demand between them in compliance with the given values of arc flows of the road network.
Let us introduce the set F,

F = {F |Fw � 0 ∀w ∈ V × V },
the set X(F ) for all F ∈ F,

X(F ) = {x|xe =
∑

w∈V ×V

∑
r∈Rw

fw
r δ

w
e,r ∀e ∈ E,

∑
r∈Rw

fw
r = Fw, fw

r � 0 ∀r ∈ Rw, w ∈ V × V },

and the mapping Z, Z : F → Rm
+, where Rm

+ is nonnegative orthant of vector space of
dimension m, presented by the function

Z(F ) = arg min
x∈X(F )

∑
e∈E

xe∫
0

te(u) du.

The mapping Z establishes a relationship between equilibrium traffic flow assignment
patterns x ∈ X and feasible travel demand patterns F ∈ F.

Due to the mapping Z(F ), F ∈ F, the travel demand estimation problem can be
formulated in a form of bi-level optimization program as follows [11]:

min
F∈F

||Z(F ) − x||, (6)

subject to

Z(F ) = arg min
x∈X(F )

∑
e∈E

xe∫
0

te(u) du. (7)

Theorem 1. The travel demand estimation problem (6), (7) for the single-commodity
network with disjoint routes can be relaxed so:

min
F�0

||xi − x̄i||, (8)

subject to

x = arg min
x

n∑
s=1

xs∫
0

ts(u) du (9)

on a set of restrictions
n∑

s=1

xs = F, xs � 0 ∀s = 1, n, (10)

for any i from the set of actually used routes.
P r o o f . Let us consider the problem of traffic assignment on the network of disjoint

routes:

min
x

n∑
s=1

xs∫
0

ts(u) du (11)
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subject to
n∑

s=1

xs = F, (12)

xs � 0 ∀s = 1, n. (13)
The (11)–(13) problem is a convex optimization problem, and therefore it has a unique
solution for any fixed F . Moreover, if F̃ �= F̂ , then corresponding equilibrium assignment
of flows x̃ and x̂ are such, that x̃ �= x̂.

Let us suppose that there are F̃ and F̂ such that F̃ < F̂ , but there is an index k,
1 � k � n, such that x̂k � x̃k. Solutions of the problem (11)–(13) for F̃ and F̂ satisfy the
following conditions: ti(x̃i) = t̃, if x̃i > 0, and ti(x̂i) = t̂, if x̂i > 0 (i. e. for all actually
used routes). In addition, the functions ti(xi) ∀i = 1, n are increasing. Therefore, if there
exists an index k such that x̂k � x̃k, then tk(x̂k) � tk(x̃k), which means t̂ � t̃ and x̂i � x̃i

for all actually used routes, which leads to

F̂ =
n∑

i=1

x̂i �
n∑

i=1

x̃i = F̃ .

We cross a contradiction. Thus, if F̃ > F̂ , then x̃i > x̂i for all actually used routes
i = 1, n. In other words, by the known traffic on any arc, one can uniquely determine
travel demand F .

Theorem 1 is proved.
Thus, in case of a single-commodity network of disjoint routes with non-linear travel

time functions, the traffic value on a single arc is sufficient in order to reconstruct travel
demand value uniquely.

Let us introduce functions ai(xi) = ti(xi) − t′i(xi)xi and bi(xi) = t′i(xi) for i = 1, n.
An effective way to solve the problem (8)–(10) can be based on the following methodology:
continuous changing of F leads to continuous changing of xi, i = 1, n, (q + 1) iteration as
follows [12]:

1. To reindex kq components xq and t(xq) so that

a1(x
q
1) � a2(x

q
2) � . . . � ak(xq

k).

2. To find kq+1 � kq (amount of non-zero components xq+1) from the condition
kq+1∑
i=1

akq+1 (x
q
kq+1

) − ai(x
q
i )

bi(x
q
i )

� F <

kq+1∑
i=1

akq+1+1(x
q
kq+1+1) − ai(x

q
i )

bi(x
q
i )

.

3. To calculate xq+1:

xq+1
i =

1
bi(x

q
i )

F +
∑kq+1

s=1
as(xq

s)

bs(xq
s)∑kq+1

s=1
1

bs(xq
s)

− ai(x
q
i )

bi(x
q
i )
, i = 1, kq+1,

xq+1
i = 0, i = kq+1, n.

4. To check the fulfilment of the termination criterion
kq+1−1∑

i=1

∣∣∣ti(xq+1
i ) − ti+1(x

q+1
i+1 )

∣∣∣ < ε.

In other words, the problem (8)–(10) of bi-level optimization does have a specific descent
direction.
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Theorem 2. Consider a single-commodity network of disjoint routes with the link
performance functions ti(xi) = ai + bi(xi)m, m > 1, ai � 0, bi > 0, for all i = 1, n. The
travel demand F is equal to

F =
k∑

i=1

m

√
bl(xl)m + al − ai

bi
∀l = 1, k,

where k satisfies

a1 � . . . � ak < al + bl(xl)m � ak+1 � . . . � an.

P r o o f . Lagrangian of the problem (9), (10) is

L =
n∑

i=1

xi∫
0

ti(u) du+ t1

(
F −

n∑
i=1

xi

)
+

n∑
i=1

ξi(−xi),

where t1 and ξi � 0, i = 1, n, are multipliers of Lagrange. Partial derivatives of the
Lagrangian with respect to xi, i = 1, n, must be equal to zero

∂L

∂xi
= ti(xi) − t1 − ξi = 0,

that leads to
ti(xi) = t1 + ξi. (14)

The complementary slackness condition requires the equalities ξixi = 0 be true for all
i = 1, n. In this case, if xi > 0, then ξi = 0. If xi = 0, then ξi � 0. According to the
Lagrangian function the Khun—Tucker conditions are both sufficient and necessary. In
this case (14) is defined as

ti(xi)
{

= t1, if xi > 0,
� t1, if xi = 0, ∀i = 1, n,

wherefrom
ai + bi(xi)m

{
= t1, if xi > 0,
� t1, if xi = 0, ∀i = 1, n. (15)

Without loss of generality we assume that xi > 0 for i = 1, k, k � n. According to (10)
and (15) we have

n∑
i=1

xi =
k∑

i=1

xi =
k∑

i=1

m

√
t1 − ai

bi
= F,

or
n∑

i=1

xi =
k∑

i=1

xi =
k∑

i=1

m

√
bl(xl)m + al − ai

bi
= F ∀l = 1, k.

Moreover, according to (15), for all unused routes bl(xl)m + al � ai, while for used routes
bl(xl)m + al � ai, that leads to

a1 � . . . � ak < al + bl(xl)m � ak+1 � . . . � an.

Theorem 2 is proved.
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Corollary. Consider a network of parallel routes: ti(xi) = ai + bixi, ai � 0, bi > 0,
for all i = 1, n. The mapping G function has the following explicit form:

G(x) = (al + blxl)
k∑

s=1

1
bs

−
k∑

s=1

as

bs
∀l = 1, k,

where k is defined as

a1 � . . . � ak < al + blxl � ak+1 � . . . � an.

Therefore, for a single-commodity network of disjoint routes with certain polynomial
travel time functions, the relations between travel demand and traffic flow can be obtained
explicitly.

4. Conclusion. Within the paper, non-linear optimization for efficient re-assignment
traffic flows, under continuous changing of travel demand values, was studied. The ap-
proach was given in the form of computational methodology to cope with the network
optimization problem. The uniqueness theorem was proved for a certain type of road net-
work. Explicit relations between travel demand and traffic flow was obtained for a single-
commodity network of disjoint routes with certain polynomial travel time functions. The
obtained findings contribute to the theory and give fresh managerial insights for traffic
engineers.
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Модели и методы распределения транспортных потоков разрабатываются исследовате-
лями всего мира. Развитие этого научного направления вносит вклад как в теорию, так
и в практику. В настоящей работе исследуется вопрос непрерывного решения задачи
оценки спроса на перемещение посредством нелинейной оптимизации перераспределе-
ния транспортных потоков. Разработан подход в виде вычислительной методологии
для решения оптимизационных сетевых задач такого рода. Доказана теорема един-
ственности для определенного типа улично-дорожных топологий. Построены в явном
виде отношения между спросом на перемещение и транспортным потоком для сети из
непересекающихся маршрутов со специальными полиномиальными функциями време-
ни движения. Полученные результаты вносят вклад в теорию, позволяют транспортным
инженерам по-новому решать рассматриваемую проблему.
Ключевые слова: оценка спроса на перемещение, распределение транспортных потоков,
нелинейная оптимизация, двухуровневая оптимизация.
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