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Many of total systems of PDEs can be reduced to the polynomial form. As was shown
by various authors, one of the best methods for the numerical solution of the initial value
problem for ODE systems is the Taylor Series Method (TSM). In the article, the authors
consider the Cauchy problem for the total polynomial PDE system, obtain the recurrence
formulas for Taylor coefficients, and then formulate and prove a theorem on the accuracy of
its solutions by TSM.
Keywords: Taylor Series Method, total polynomial PDE system, polynomial system,
numerical PDE system integration.

1. Introduction. This work directly continues and generalizes what was proposed
in the articles [1–6] (for ODE and PDE systems) and [7] (for total linear PDE systems)
to the case of total polynomial systems of PDEs. First, we consider some preliminaries
(largely from [1–7]): the Cauchy problem for total systems and polynomial total systems;
additional variables method [2–4]; Taylor coefficients and estimates to total linear systems
of PDEs; Cauchy formula for product of multivariate power series; the idea of schemes
and the concept of the Taylor Series Method (TSM). In final section the examples of how
one arrives at total polynomial systems of PDEs are discussed.

Remark 1. Note that using the additional variables method one reduces total systems
of PDEs to polynomial form. Using the Cauchy formula of the product of multivariate
power series and the method of undetermined coefficients we can derive simple recurrence
formulas for Taylor coefficients. The derivation of these formulas is based on the concept
of a scheme that was introduced in [2]: given the initial data and the scheme for right-hand
sides of a polynomial total system, allows one to sequentially calculate all necessary Taylor
coefficients of its solution.

As examples, the total polynomial ODE and PDE Cauchy problems one can consider
in [7, 8].

2. Preliminaries to Cauchy problem for total PDEs. Consider the total system
of partial differential equations with the initial conditions [9]:

∂xj

∂tν
= fν,j(x1, . . . , xn, t1, . . . , ts), xj(t0) = x0,j , j = 1, . . . , n, ν = 1, . . . , s. (0)

Methods for solving this problem are oriented to the general case when the right-hand
sides fν,j belong to the class of smooth or piecewise smooth functions. At the same time,
in many applied problems, for which methods are developed, it is quite possible to reduce
this problem to the case when the functions fν,j are algebraic polynomials in x1, . . . , xn
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(by introducing the special additional variables [1–4]. In these cases, the obtained Cauchy
problem is called polynomial, and it can be written as

∂xj

∂tν
=

∑
m∈[0:L+1]

∑
i∈I(m)

aν,m,j [i]xi, xj(t0) = x0,j , j = 1, . . . , n, ν = 1, . . . , s, (1)

or, in other form,

∂xj

∂tν
=

u∑
m=0

aν,m,jx
i(m), xj(t0) = x0,j , j = 1, . . . , n, ν = 1, . . . , s, (2)

where
x = (x1, . . . , xn) ∈ Cn, i = (i1, . . . , in) ⇒ xi = xi1

1 · . . . · xin
n ,

xj , x0,j , tν , t0,ν , aν,m,j ∈ C, xi(0) = 1, |i| = i1 + . . .+ in,

I(m) = {i ∈ Zn |i1, . . . , in � 0, |i| = m}, L ∈ [0 : +∞), u ∈ [1 : +∞),

and xi(0), xi(1), . . . , xi(u) are all different monomials from the right-hand sides of the
equations (1) and (2).

Remark 2. The coefficients aν,m,j in (1) and (2), generally speaking, are different.
Since the problems (1) and (2) are two forms of writing the same Cauchy problem, we use
the one that seems more convenient, and each time we notice which form we are talking
about, but this is also obvious in the context — by the formulas and from text.

We denote the solution of the problem (1) and (2) by x(t, t0, x0) or, briefly, by x(t).
In addition, we will utilize the designations

x(k) =
∂|k|x
∂tk

, |k| = k1 + . . .+ ks, x
(k)
0 = x(k)(t0),

x(0) = x, x
(0)
0 = x0, |x| = max

i∈[1:n]
|xi|, Oρ(t0) = Oρ1(t0) × . . .×Oρs(t0),

Oρν (t0) = {t ∈ Cs|(∀j ∈ [1 : s], j �= ν)(tj = t0,j), |tν − t0,ν | < ρν}, (3)

TMx(t, t0, x0) =
M∑

m=0

x
(m)
0

(t− t0)m

m!
, δTMx(t, t0, x0) = x(t, t0, x0) − TMx(t, t0, x0),

m! =
s∏

μ=1

mμ!, 0! = 1, k = (k1, . . . , ks),

M = (M1, . . . ,Ms) ∈ [0 : +∞)s, ρ = (ρ1, . . . , ρs) ∈ (0,+∞)s.

Here TM and δTM are the operators that put in correspondence the Taylor polynomial
TMx(t, t0, x0) and the remainder δTMx(t, t0, x0) to the solution of the problem (1) (or
(2) which is the same). The vector radius of convergence of the Taylor series we denote
as R(t0, x0) = (R1(t0, x0), . . . , Rs(t0, x0)) and, instead, later in this paper as a domain,
where Taylor series converge we will utilize Oρ(t0) = Oρ1(t0)× . . .×Oρs(t0), see above in
(3) and below — in Propositions 1 and 4.

2.1. Additional variables method and polynomial total systems of PDEs.
In the case s = 1, the idea of an above-mentioned reduction from the non-polynomial
total Cauchy problem for PDEs (i. e. for ODEs) to the polynomial total problem (1)
(or (2) which is the same) goes back to A. Poincare [10] and J. Steffensen [11, 12]. In
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the general case s � 1, in [1–4], sufficient and necessary and sufficient conditions for
reducing equations to polynomial form were formulated and proved, numerous algorithms
and examples from Dynamics and other fields of Mathematics and Mathematical Physics
were also given there. We now give a couple of simple definitions, and then formulate
the necessary and sufficient condition mentioned. A function ϕ(x1, . . . , xσ) is said to
satisfy a total polynomial system, if it is a component of its solution. The class of all
functions ϕ(x1, . . . , xσ) satisfying polynomial systems is denoted by Σσ. It is evident that
the implications Σ1 ⊂ Σ2 ⊂ . . . hold true. All elementary functions and a wide variety of
special functions of Mathematical Physics belong to Σ1. By F σ

m, σ, m ∈ [1 : +∞), one
denotes the class of all scalar functions of x1, . . . , xm, which may be represented through
finite compositions of basic operations +,−,×, / and functions belonging to Σσ. Of course,
the basic operations can be considered as functions from Σσ, but then polynomials and
rational functions would have to be denoted formally as a finite superpositions of functions
from Σσ which would be both funny and sad.

N&S Condition: The total system (0) one can reduce to polynomial form by intro-
ducing a number of additional variables if all fν,j belong to F σ

m for some σ ∈ [1 : +∞).
2.2. Taylor coefficients and estimates to total linear systems of PDEs. Here

we consider a special case of problem (2) (or (1)) — the linear Cauchy problem, which we
write in the form:

∂x

∂tν
= aν +Aνx, x(t0) = x0, ν = 1, . . . , s, (4)

x = (x1, . . . , xn), x0 = (x0,1, . . . , x0,n) ∈ Cn,

aν = (aν,1, . . . , aν,n) ∈ Cn, |aν | = max
i∈[1:n]

|aν,i|,

t = (t1, . . . , ts), t0 = (t0,1, . . . , t0,s) ∈ Cs, Aν = (aν,i,j), aν,i,j ∈ C.

In addition to (3), we also need the given below notation here:

(Akν
ν x)i =

n∑
j=1

aν,i,jxj , ρν = 1/sν, sν =‖ Aν ‖∞= max
i∈[1:n]

sν,i, sν,i =
n∑

j=1

|aν,i,j |,

Tμe
τ =

μ∑
m=0

τm

m!
, δTμe

τ = eτ − Tμe
τ , μ = 1, 2, . . . . (5)

Because of the equality

∂|k|x
∂tk

=
∂kνx

∂tkν
, k = (k1, . . . , ks), |k| = k1 + . . .+ ks, ν = 1, . . . , s,

implies that the Taylor coefficients for solutions of the problem (4) satisfies the recurrence
equalities

x(kν)

kν !
=

(Akν
ν x+Akν−1

ν aν)
kν !

.

Thus the result formulated in the following Proposition has been proved (see [7]).
Proposition 1. The solution x(t, t0, x0) of the problem (4) is holomorphic on Oρν (t0)

(see (3)) separately in tν and satisfies there the inequality

|δTMx(t, t0, x0)| � (|x0| + |aν |ρν)δTMνe
|tν−t0,ν |/ρν . (6)
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The smaller sν = ρ−1
ν the better the estimates (6). To improve these estimates, it is

natural to introduce a scaling transformation in the problem (4):

xj = αjyj , αj > 0, j ∈ [1 : n]. (7)

Then instead of problem (4) we get the following:

∂y

∂tν
= bν +Bνy, y(t0) = y0, ν = 1, . . . , s,

y = (y1, . . . , yn), y0 = (y0,1, . . . , y0,n), bν = (bν,1, . . . , bν,n), Bν = (bν,i,j),

yi = α−1
i xi, bν,i = α−1

i aν,i, bν,i,j = α−1
i αjaν,i,j ,

and using the designations

ρν(α) =
1

sν(α)
, sν(α) = max

i∈[1:n]
sν,i(α), sν,i(α) = α−1

i

n∑
j=1

αj |aν,i,j |, α = (α1, . . . , αn)

(8)
(compare (8) with (5)) have derived Corollary.

Corollary. The solution x(t, t0, x0) of the problem (4) is holomorphic on Oρν(α)(t0)
separately in tν and satisfies there the inequality

|δTMxi(t, t0, x0)| � αi (|y0| + |bν |ρν(α)) δTMνe
|tν−t0,ν |/ρν(α) (9)

(compare (9) with (6)).
As we noted above (see before (7)), to improve estimates (9), it is natural to reduce

the value of sν(α) by choosing α. For the optimal choice of α, it is necessary to solve a
minimax problem. In [13], we gave examples of solving such problems for important real
models described by ODE systems. Sometimes it’s easier to select them as α for some
other reasons. For example, you can use α obtained for the linear approximation of the
original non-linear equations in a neighborhood of the initial data. In the paper [7], we
explained how, in applications, the matrix Aν of the mentioned approximation should be
replaced with a square positive matrix A+

ν so that Perron’s theorem [14] can be used to
select scaling factors. Then as scaling factors α1, . . . , αn in Corollary it is natural to use the
components of a positive eigenvector α∗ = (α∗

1, . . . , α
∗
n) of the matrix A+

ν corresponding
to its eigenvalue λ(A+

ν ), maximum in absolute value. For convenience, recall the Perron’s
theorem.

Theorem (Perron). Let the matrix P = (pi,j) be positive, i. e. pi,j > 0 for all
i, j ∈ [1 : n]. Then the following statements are true [10]:

a) there is a single eigenvalue λ(P ) of this matrix with the largest absolute value;
b) this eigenvalue is positive and simple, and the corresponding eigenvector can be

chosen positive;
c) the following equality holds :

λ(P ) = min
x1,...,xn>0

max
i∈[1:n]

⎛⎝ n∑
j=1

pi,jxj/xi

⎞⎠.
2.3. Cauchy formula for product of multivariate power series. Consider the

product of two series absolutely convergent in some complex domain:

A =
∞∑

α1,...,αs=0

xα(t− t0)α, B =
∞∑

β1,...,βs=0

yβ(t− t0)β ,
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i. e. A · B =
∞∑

α1,...,αs=0

xα(t− t0)α
∞∑

β1,...,βs=0

yβ(t− t0)β .

This product is a series in powers of (t − t0) that converges absolutely in some domain
D ⊂ Cs, and therefore, its sum does not depend on the order of the terms xαxβ(t−t0)α+β .
In particular, we can put

∞∑
α=0

xα(t− t0)α ·
∞∑

β=0

yβ(t− t0)β =
∞∑

μ=0

μ∑
α=0

xαyμ−α(t− t0)μ, (10)

μ = (μ1, . . . , μs) = α+ β, α = (α1, . . . , αs), β = (β1, . . . , βs).

2.4. Taylor series method to polynomial total systems of PDEs. The Taylor
series method for solving the Cauchy problem (1) (or (2)) consists in constructing a table
of approximate values x̃tw = x̃(tw) using the formula

x̃τw = TNwx(τw, τw−1, x̃τw−1), w = 1, 2, . . . ,

where Nw = (Nw,1, . . . , Nw,s) ∈ (0 : +∞)s, τ0 = t0, τw = τw−1 +hw, τw = (τw,1, . . . , τw,s),
hw = (hw,1, . . . , hw,s) ∈ Cs and hw has to satisfy the inequalities

|hw,ν| < Rν(τw−1, x̃τw−1), ν = 1, . . . , s. (11)

The calculation of each value of x̃τw is called the step of the method, and hw is called the
size of this step (or, briefly, the step). In the general case of integration along a curve in
Cs, all hw,ν are complex numbers, and points τw lie on this curve. To calculate x̃τw for
some given τw with high accuracy even for τw from its domain of convergence (see (11)),
the number of steps may turn out to be large, which can cause a fast accumulation of
rounding errors and an increased processor time. That is why it is advisable to use the
steps as large as possible (in actual fact, one has to find all ρν as large as possible).

3. Estimates in the case of polynomial total systems.
3.1. Schemes and Taylor coefficients to polynomial systems of PDEs. Let

the set T = (xi(n+1), . . . , xi(u)) of all different nonlinear monomials in right-hand sides of
system of equations (2) is arranged (as in equations (1)) in such a way that

2 � |i(n+ 1)| � |i(n+ 2)| � . . . � |i(u)| � L+ 1.

Here |i| = i1 + . . .+ in is the power of the monomial xi, and L + 1 is the maximal power
of monomials in T . Consider the condition

(∀r ∈ [(n+ 1) : u))(∃p, q ∈ [1 : r))(xi(r) = xi(p) · xi(q)). (12)

If this condition holds, then one can consider the scheme

S = ((p(n+ 1), q(n+ 1)), . . . , (p(u), q(u)))

consisting from u − n pairs (p(r), q(r)) such that r > p(r), q(r) for any r ∈ [(n+ 1) : u]
(see [2, 6]): using the scheme one can propose algorithms which, given the monomials
xi(1) = x1, . . . , x

i(n) = xn, implement successive evaluation of all other monomials in T .
It is obvious that any set of monomials can be supplemented by other monomials so

that it has a scheme, and it can be assumed (and we do assume it in what follows) that
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the set T of different non-linear monomials (supplemented, if necessary) has the scheme
S = ((p(n+ 1), q(n+ 1)), . . . , (p(u), q(u))).

In the case s = 1, to calculate the Taylor coefficients xk,p of the solution

xi(k) =
∞∑

p=0

xk,p(t− t0)p, k ∈ [0 : u],

to the problem (2) (or (1)) and all other monomials in T , we obtained recurrence formu-
las [2]

xk,0 = xk(t0), k ∈ [1 : n], (13)

xk,r =
r∑

l=0

xp(k),lxq(k),−l, k ∈ [n+ 1 : u],

xk,r+1 = (r + 1)−1
u∑

l=0

ak,lxl,r , k ∈ [1 : n]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , r = 0, 1, . . . . (14)

Now, acting in a similar (but slightly more complicated) way, we generalize these
formulas to the case s � 1 (see below — (18), (19)). If we assume that (see (2))

xi(m) =
∞∑

l1,...,ls=0

xm,l(t− t0)l, m = 0, . . . , u, l = (l1, . . . , ls), (15)

then using the method of undetermined coefficients, one can derive recurrent formulas
to the Taylor coefficients xm,l = xm,l1,...,ls . Indeed, substituting (15) into the equation
contained within the condition (12) and using the Cauchy formula (10) we obtain:

xi(r) = xi(p) · xi(q), r ∈ [(n+ 1) : u), p(r), q(r) ∈ [1 : r) ⇒

⇒
∞∑

l=0

xr,l(t− t0)l =
∞∑

l=0

xp(r),l(t− t0)l ·
∞∑

l=0

xq(r),l(t− t0)l =

=
∞∑
l=0

l∑
μ=0

xp(r),lxq(r),l−μ(t− t0)l, μ = (μ1, . . . , μs) ⇒

⇒
∞∑

l=0

(
xr,l −

l∑
μ=0

xp(r),lxq(r),l−μ

)
(t− t0)l = 0 ⇒ xr,l −

l∑
μ=0

xp(r),lxq(r),l−μ = 0. (16)

Then substituting (15) into (2) and using the designations e1 = (1, 0, . . . , 0), . . . , es =
(0, . . . , 0, 1) we derive:

∂

∞∑
λ1,...,λs=0

xj,λ(t− t0)λ/∂tν =
u∑

k=0

aν,j,kx
i(k), j = 1, . . . , n, ⇒

⇒
∞∑

λ=(λ1,...,λs)=0

λνxj,λ(t− t0)λ−eν =
u∑

k=0

aν,j,k

∞∑
l1,...,ls=0

xk,l(t− t0)l.

Making the substitution λ 
→ (l + eν) in the left-hand side of this formula, we obtain:
∞∑

l1,...,ls=0

(lν + 1)xj,l+eν (t− t0)l =
u∑

k=0

aν,j,k

∞∑
l1,...,ls=0

xk,l(t− t0)l ⇒
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⇒
∞∑

l1,...,ls=0

[
(lν + 1)xj,l+eν −

u∑
k=0

aν,j,kxk,l

]
(t− t0)l = 0 ⇒

⇒ xj,l+eν =
1

lν + 1

u∑
k=0

aν,j,kxk,l. (17)

Formulas (2), (16), (17) and designations

lr = (lr1, . . . , l
r
s), lr+1 = (lr1 + 1, . . . , lrs + 1), l0 = (0, . . . , 0), r = 0, 1, 2, . . . ,

lead to the following algorithm for sequentially calculating the Taylor coefficients to the
solution of the Cauchy problem to the total polynomial system of partial differential
equations (2) (and (1)):

xj,0 = xj(t0), j ∈ [1 : n], (18)

xj,lr =
∑lr

μ=0 xp(j),lrxq(j),lr−μ, j ∈ [(n+ 1) : u],

xj,lr+eν = 1
lν+1

∑u
k=0 aν,j,kxk,l, j ∈ [1 : n], ν ∈ [1 : s]

⎫⎬⎭ , r = 0, 1, . . . . (19)

Note that in the case s = 1, these formulas reduce to (13), (14).
The estimates for linear equations one can find in our paper [7].
3.2. Introduction to the infinite systems method to polynomial systems of

PDEs. Omitting details, the idea of the method of infinite systems can be outlined as
follows [1, 2].

S t e p 1. Introducing an infinite set of new variables, one reduces the original problem
(1) or (2) to the Cauchy problem for an infinite linear system of differential equations.

S t e p 2. Using linearity, some results are obtained for the last problem.
S t e p 3. These results are interpreted in terms of the original Cauchy problem.
In accordance with this idea, let us, for any i ∈ ⋃+∞

m=1 I(m), introduce the variables
in the problems (1), (2)

x[i] = xi, (20)

and suppose that the sets χ(m) = {x[i]| i ∈ I(m)} are ordered in increasing m, and the
elements in each of them are ordered so that i1 = k1, . . . , ij = kj , ij+1 > kj+1 implies
that x[i] precedes x[k]. The ordered variables x[i] are denoted by z1, z2, . . . and the vector
of these is z = (z1, z2, . . .). In addition, we introduce the initial value

z0 = (z1,0, z2,0, . . . , zn,0, zn+1,0, . . .) = (x1,0, x2,0, . . . , xn,0, x
2
1,0, x1,0x2,0, . . . , x

2
n,0 . . .)

respectively corresponding to the initial vector x0 = (x1,0, x2,0, . . . , xn,0) of the original
Cauchy problem. The numbers p of the components zp of z are associated with multi-
indices i ∈ ⋃+∞

m=1 I(m) of variables x[i] by some one-to-one correspondence p = ω(i),
i = Ω(p) (Ω = ω−1), which has the obvious property

ω(χq) = (σq−1(n) : σq(n)], (21)

where σq(n) = (q + n)!/(q!n!) − 1 is the number of elements in the set
⋃q

m=1 χm.
Proposition 2. If we assume that aν,j,m[i] in (1) are defined for all multi-indices i

with integer components, moreover, they are equal to zero, if |i| > L+ 1 or at least one of
the components of i is negative, then the following formulas hold:
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∂x[k]
∂tν

=
L∑

m=0

∑
i∈J(m)

αν,m[k, i]x[k + i], ν = 1, . . . , s,

(22)
k = (k1, . . . , kn) ∈ Zn, z(t0) = z0.

Here

J(m) = {i ∈ Zn | i1 � −1, . . . , in � −1, |i| = m}, αν,m[k, i] =
n∑

j=1

kjaν,j,m[i+ ej].

P r o o f. Indeed,

∂x[k]
∂tν

=
∂(xk1

1 · . . . · xkn
n )

∂tν
=

n∑
j=1

kj(xk/xj)∂xj

∂tν
=

=
n∑

j=1

kj(xk/xj)
L+1∑
m=1

∑
i∈I(m)

aν,j,m[i]xi =
n∑

j=1

L+1∑
m=0

∑
i∈I(m)

kjaν,j,m[i]xk+i/xj =

=
L∑

m=0

∑
i∈J(m)

⎛⎝ n∑
j=1

kjaν,j,m[i+ ej]

⎞⎠ x[k + i] =
L∑

m=0

∑
i∈J(m)

αν,m[k, i]x[k + i],

which is the required result.
3.3. Estimates to polynomial systems of PDEs. Let us write (22) as the s

Cauchy problems for the function z:

∂z

∂tν
= Gνz, ν = 1, . . . , s, z(t0) = z0, (23)

and note that in fact these (like (22)) are s separate countable Cauchy problems of the
same structure, differing in matrices Gν and arguments tν . Each row of the matrix Gν

and each of its columns contain only a finite number of nonzero elements. Therefore, in
particular, all its non-negative degrees are defined. Differentiating successively equation
(23) we obtain

∂z

∂tν
= Gνz,

∂2z

∂t2ν
= GνGνz = G2

νz, . . . ,
∂rz

∂trν
= Gr

νz, . . . . (24)

Now we use formulas (22) to obtain estimates of the quantities (24).
Proposition 3. Let aν,j,m[i], x0,1, . . . , x0,n be the coefficients and initial data of

problem (1), Gν be the matrix of equation (23), (Gνz)p be the p-th component of the
vector Gνz and the following designations are used:

sν = max
j∈[1:n]

sν,j , sν,j =
L∑

m=0

γm
∑

i∈J(m)

|aν,j,m[i+ ej ]|, γ = |x0| = max
j∈[1:n]

|x0,j |. (25)

Then for any natural numbers p, q connected by the relation (see (21))

p ∈ (σq−1(n) : σq(n)], (26)
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and for any natural number j, the inequality

|(Gj
νz)p| � sjγq

∏
m∈[0:j−1]

(q +mL), ν = 1, . . . , s, γ = |x0| = max
l∈[1:n]

|x0,l|, (27)

holds.
P r o o f. We will use mathematical induction.
1. From definition (20) and γ (see (25)) we deduce the inequality

|x[k + i]| = |x[k]||x[i]| � γkγi. (28)

If p, q are connected by relation (26), then this means that zp = x[k] for |k| = q, and, using
(22), (27), (28), we have the following inequalities:

|(Gνz)p| =
∣∣∣∣∂zp

∂tν

∣∣∣∣ =
∣∣∣∣∂x[k]∂tν

∣∣∣∣ �
L∑

m=0

∑
i∈J(m)

n∑
j=1

kj |aν,j,m[i+ ej ]||x[k + i]| � sγqq,

this means that inequality (27) is proved for j = 1.
2. Suppose that p, q, as before, are connected with the relation (26) and the inequality

(27) holds for j = r. Let the designations yp = drzp/dt
r
ν , y[k] = drx[k]/dtrν , y = (y1, y2, . . .)

are introduced. As one can see, this means that yp = y[k], y = drz/dtrν and y = Gr
νz (see

(27)). Recalling the definition of the function ω (see (21)) one derives the inequality

|y[k + i]| = |yω(k+i)| =
∣∣(Gr

νz)ω(k+i)

∣∣ � srγ|k+i| ∏
m∈[0:r−1]

(|k + i| +mL). (29)

Differentiating (22) and (23) r times, one obtains similar equations

∂y[k]
∂tν

=
L∑

m=0

∑
i∈J(m)

αν,m[k, i]y[k + i], (30)

∂y

∂tν
= Gνy. (31)

Using (29)–(31) one obtains:

|(Gr+1
ν z)p| = |(Gνy)p| =

∣∣∣∣∂yp

∂tν

∣∣∣∣ =
∣∣∣∣∂y[k]∂tν

∣∣∣∣ �
L∑

m=0

∑
i∈J(m)

n∑
j=1

kj |aν,j,m[i+ ej]||y[k + i]| �

�
L∑

m=0

∑
i∈J(m)

n∑
j=1

kj |aν,j,m[i+ ej ]|srγ|k+i| ∏
μ∈[0:r−1]

(|k + i| + μL) �

� sr+1γqq
∏

μ∈[0:r−1]

(q + L+ μL) = sr+1γq
∏

μ∈[0:r]

(q + μL),

i. e., inequality (27) holds for j = r + 1. Thus, the inequality (27) is proved by induction.
Proposition 4. Let aν,m,j , x0,1, . . . , x0,n be the coefficients and initial data of the

problem (1) and, in addition to (3), the following designations are used:

ρν = 1/(Lsν), sν = max
j∈[1:n]

sν,j ,
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sν,j =
L∑

m=0

γm
∑

i∈J(m)

|aν,m,j[i+ ej]|, γ = |x0| = max
j∈[1:n]

|x0,j |,

b(τ) = (1 − τ)−1/L, b
(m)
0 =

(
dmb(τ)
dτm

)
τ=0

=
m−1∏
l=0

(1/L+ l).

Then, for every ν ∈ [1 : s], j ∈ [1 : +∞), M = (M1, . . . ,Ms) ∈ [1 : +∞)s the solution
x(t, t0, x0) of the problem (1) is holomorphic on Oρν (t0) (see (3)) separately in tν and
satisfies there the inequality

|δTMx(t, t0, x0)| � |x0|δTMb(|t− t0|/ρν).

P r o o f. The set of the first n components of the solution to the problem (23)
coincides with the solution to the problem (1); therefore, from (24) and (27) (for q = 1,
p ∈ [1 : n]) we obtain

|x(l)
0 | � slγ

∏
m∈[0:l−1]

(l +mL).

Using this inequality, we find

|δTMx(t, t0, x0)| =

∣∣∣∣∣
∞∑

l=M+1

x
(l)
0

(t− t0)l

l!

∣∣∣∣∣ �

� |x0|
∞∑

l=M+1

x
(l)
0

(
t− t0
ρ

)l ∏
m∈[0:l−1]

1/L+m

l!
= |x0|δTMb

(
t− t0
ρ

)
.

Q.E.D.
Now, introducing the additional variable xn+1 = 1, replacing the free terms aν,0,j in

(1) with aν,0,jxn+1, and using there the scaling transformation xj = αjyj, j ∈ [1 : n],
where αj are arbitrary positive parameters we can see that Proposition 4 implies the
following result (compare with Corollary).

Proposition 5. Let aν,m,j , x0 = (x0,1, . . . , x0,n), be the coefficients and initial data
of the problem (1) and, in addition to (3), the following designations are used:

γ = |x0| = max
j∈[1:n]

s|x0,j |, ρν(α) =
1

Lsν(α)
,

sν(α) = max
j∈[1:n]

sν,j(α), sν,j(α) = α−1
j

⎛⎝|aν,0,j | +
L∑

m=0

γm
∑

i∈J(m)

|aν,m,j [i+ ej]|
⎞⎠ ,

b(τ) = (1 − τ)−1/L, b
(m)
0 =

(
dmb(τ)
dτm

)
τ=0

=
m−1∏
l=0

(1/L+ l).

Then, for every ν ∈ [1 : s], j ∈ [1 : +∞), M = (M1, . . . ,Ms) ∈ [1 : +∞)s, the solution
x(t, t0, x0) of the problem (1) is holomorphic on Oρν (t0) (see (3)) separately in tν and
satisfies there the inequality

|δTMx(t, t0, x0)| � |x0|δTM b(|t− t0|/ρ).
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4. Conclusion. In Section 2 of this paper the systems of PDEs in general and two
different polynomial forms were considered. Besides, some neсessary questions such as
reduction of DEs in Dynamics to polynomial form by introducing a number of additional
variables (the necessary and sufficient conditions), the idea of schemes and the concept
of the TSM, obtaining Taylor coefficients and estimates to total linear and polynomial
systems of PDEs, Cauchy formula for product of multivariate power series, necessary
notation etc. The main results we considered in the Section 3. There using the infinite
systems method we formulated and proved the Propositions 2–5. The last proposition
one can consider as a real means of implementing the Taylor series method of solving
polynomial systems of total partial differential equations. It is worth noting that the
beginning of the research presented in the article were the papers on which the dissertation
[15] is based.

The prospects. As a short-term perspective, we suggest the proposed method applying
to important problems in Mathematical Physics, Astronomy, Dynamics, Chemistry, and
Applied Mathematics in general. In particular, it worth to be considered the following
tasks:

• four examples of total polynomial systems of partial differential equations for the
two-body problem proposed by us in [7];

• a series of systems of total Dynamics equations, the right-hand sides of which depend
on different force potentials (see, for example, [16–20]).
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Оценки в методе рядов Тейлора для полиномиальных
полных систем УрЧП

Л. К. Бабаджанянц, И. Ю. Потоцкая, Ю. Ю. Пупышева

Санкт-Петербургский государственный университет, Российская Федерация,
199034, Санкт-Петербург, Университетская наб., 7–9

Для цитирования: Babadzanjanz L. K., Pototskaya I. Yu., Pupysheva Yu. Yu. Estimates for
Taylor series method to polynomial total systems of PDEs // Вестник Санкт-Петербургского
университета. Прикладная математика. Информатика. Процессы управления. 2021. Т. 17.
Вып. 1. С. 27–39. https://doi.org/10.21638/11701/spbu10.2021.103

Многие из полных систем уравнений в частных производных сводятся к полино-
миальной форме. Как было показано разными авторами, одним из лучших методов
численного решения задачи начального приближения для систем обыкновенных диффе-
ренциальных уравнений является метод рядов Тейлора (TSM). В предыдущих статьях
авторов была рассмотрена задача Коши для линейных полных систем УрЧП, получены
коэффициенты Тейлора и оценки для методов рядов Тейлора для линейного случая. На
основе этих результатов в настоящей работе рассматривается задача Коши для полной
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полиномиальной системы УрЧП. Для этого случая получены рекуррентные формулы
для коэффициентов Тейлора. С их помощью сформулирована и доказана теорема о точ-
ности решения полной полиномиальной системы УрЧП методом TSM с использованием
метода бесконечных систем.
Ключевые слова: метод рядов Тейлора, полные полиномиальные системы УрЧП, поли-
номиальные системы, численное интегрирование систем УрЧП.
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