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Many of total systems of PDEs can be reduced to the polynomial form. As was shown
by various authors, one of the best methods for the numerical solution of the initial value
problem for ODE systems is the Taylor Series Method (TSM). In the article, the authors
consider the Cauchy problem for the total polynomial PDE system, obtain the recurrence
formulas for Taylor coefficients, and then formulate and prove a theorem on the accuracy of
its solutions by TSM.

Keywords: Taylor Series Method, total polynomial PDE system, polynomial system,
numerical PDE system integration.

1. Introduction. This work directly continues and generalizes what was proposed
in the articles [1-6] (for ODE and PDE systems) and [7] (for total linear PDE systems)
to the case of total polynomial systems of PDEs. First, we consider some preliminaries
(largely from [1-7]): the Cauchy problem for total systems and polynomial total systems;
additional variables method [2—4]; Taylor coefficients and estimates to total linear systems
of PDEs; Cauchy formula for product of multivariate power series; the idea of schemes
and the concept of the Taylor Series Method (TSM). In final section the examples of how
one arrives at total polynomial systems of PDEs are discussed.

Remark 1. Note that using the additional variables method one reduces total systems
of PDEs to polynomial form. Using the Cauchy formula of the product of multivariate
power series and the method of undetermined coefficients we can derive simple recurrence
formulas for Taylor coefficients. The derivation of these formulas is based on the concept
of a scheme that was introduced in [2]: given the initial data and the scheme for right-hand
sides of a polynomial total system, allows one to sequentially calculate all necessary Taylor
coeflicients of its solution.

As examples, the total polynomial ODE and PDE Cauchy problems one can consider
in [7, 8.

2. Preliminaries to Cauchy problem for total PDEs. Consider the total system
of partial differential equations with the initial conditions [9]:

al’j
ot,

:fl/,j(xl7"'7xnat17'"7t8)7 xj(to):ajo,ja jzla"'7n7 Vzla"'75' (O)

Methods for solving this problem are oriented to the general case when the right-hand
sides f, ; belong to the class of smooth or piecewise smooth functions. At the same time,
in many applied problems, for which methods are developed, it is quite possible to reduce
this problem to the case when the functions f, ; are algebraic polynomials in z1,...,2,
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(by introducing the special additional variables [1-4]. In these cases, the obtained Cauchy
problem is called polynomial, and it can be written as

ox; .
81?5 = Z Z Aum, i zj(to) =04, j=1,...,n, v=1,...,s, (1)

me[0:L+1] i€l (m)

or, in other form,

u
= Zamm,jxi(m), Jﬁj(to) :I07j, j:l,...,n, I/Zl,...,S, (2)
m=0
where , . ,
r=(x1,...,2n) €EC", i=(i1,...,0p) ="' =27 ... 2",
Tjy %05, tu, tows Gumy €C, 'O =1, |i| =i +... +in,
Im)={i€Z" |i1,...,in 20, |ij =m}, Le[0:400), u€][l:+0),
and z*(©) 2 . 29" are all different monomials from the right-hand sides of the

equations (1) and (2).

Remark 2. The coefficients a,,m ; in (1) and (2), generally speaking, are different.
Since the problems (1) and (2) are two forms of writing the same Cauchy problem, we use
the one that seems more convenient, and each time we notice which form we are talking
about, but this is also obvious in the context — by the formulas and from text.

We denote the solution of the problem (1) and (2) by x(t, to, o) or, briefly, by z(t).
In addition, we will utilize the designations

hILd
?® =S b=kt k 2 = 2B k),

= I, |x| = Zgﬁpfb] |(EZ'|7 Op(to) = Op1 (to) X ... X Ops (to),

Op, (to) = {t e C*|(vje [1 vsl,d A V)t =tos), [t —tou| < pul (3)

20 =g, xéo)

Tarx(t, to, zo) x (m) (¢ , 0Tn(t, to, 20) = x(t, to, v0) — Tarx(t, to, 20),
0

m'

m'sz#!, 0'=1, k= (ki,..., ks),
p=1
M= (My,...,My)€[0:4+00)°, p=(p1,...,ps) € (0,400)°.

Here T); and dT); are the operators that put in correspondence the Taylor polynomial
Thx(t,to, xo) and the remainder 6Ty x (¢, to, o) to the solution of the problem (1) (or
(2) which is the same). The vector radius of convergence of the Taylor series we denote
as R(to,x0) = (Ri(to,x0), ..., Rs(to,z0)) and, instead, later in this paper as a domain,
where Taylor series converge we will utilize O,(ty) = O,, (to) X ... x O,,(to), see above in
(3) and below — in Propositions 1 and 4.

2.1. Additional variables method and polynomial total systems of PDFEs.
In the case s = 1, the idea of an above-mentioned reduction from the non-polynomial
total Cauchy problem for PDEs (i. e. for ODEs) to the polynomial total problem (1)
(or (2) which is the same) goes back to A. Poincare [10] and J. Steffensen [11, 12]. In
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the general case s > 1, in [1-4], sufficient and necessary and sufficient conditions for
reducing equations to polynomial form were formulated and proved, numerous algorithms
and examples from Dynamics and other fields of Mathematics and Mathematical Physics
were also given there. We now give a couple of simple definitions, and then formulate

the necessary and sufficient condition mentioned. A function ¢(z1,...,z,) is said to
satisfy a total polynomial system, if it is a component of its solution. The class of all
functions ¢(z1,. .., z,) satisfying polynomial systems is denoted by X,. It is evident that

the implications X3 C Yo C ... hold true. All elementary functions and a wide variety of
special functions of Mathematical Physics belong to ¥;. By F2, 0, m € [1 : 400), one
denotes the class of all scalar functions of z1, ..., z,,, which may be represented through
finite compositions of basic operations +, —, X, / and functions belonging to %,. Of course,
the basic operations can be considered as functions from ¥, but then polynomials and
rational functions would have to be denoted formally as a finite superpositions of functions
from ¥, which would be both funny and sad.

N&S Condition: The total system (0) one can reduce to polynomial form by intro-
ducing a number of additional variables if all f, ; belong to Fy, for some o € [1: 400).

2.2. Taylor coefficients and estimates to total linear systems of PDEs. Here
we consider a special case of problem (2) (or (1)) — the linear Cauchy problem, which we
write in the form:

ox

— =a,+ Az, x(tp)=x9, v=1,...,s, (4)
ot,
= (z1,...,%n), o= (20,1,...,Ton) € C",
ay, = (av1,...,a0un) € C", |ay| = max |a,;l,
i€[l:n]

t= (tl,...,ts), to = (t0717...,t075) ECS, AV = (a,,)i7j), Qu,ij e C.
In addition to (3), we also need the given below notation here:

n

n
(Alxjyx)l = Z Qv jTj, Pv = sy, su=[ A [lc= lgﬁj‘i] Sviy S = Z |aV,i7j|ﬂ
Jj=1 ' J=1

H m
T =Y % 0Tye™ =€ —The™, p=1,2... . (5)
m=0 :

Because of the equality

olklg  orvy
W:W7 k:(kl,...,k5)7 |k|:]€1++ks7 I/:17...,S,
implies that the Taylor coefficients for solutions of the problem (4) satisfies the recurrence
equalities
b)) (Akva + Ak —lq,)
k' k!
Thus the result formulated in the following Proposition has been proved (see [7]).
Proposition 1. The solution z(¢, ¢y, zo) of the problem (4) is holomorphic on O, (to)
(see (3)) separately in ¢, and satisfies there the inequality

6T (¢, to, 20)| < (|wo| + |av|py)0Tas, el o 1/v. (6)
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The smaller s, = p, ! the better the estimates (6). To improve these estimates, it is
natural to introduce a scaling transformation in the problem (4):
xj = o5y, o; >0, jel:nl. (7)
Then instead of problem (4) we get the following;:

0
aTy:bu+BUya y(to):y07 V:17"'757

Y= (yh cee 7yn)7 Yo = (90,17 ce 7yO,n)7 b, = (bu,h .- -abV,n)v B, = (bu,i,j),
yi=a; 'wy, bui=a; tavi, by = o) lajan g,

and using the designations

n
o) = , sy(a) = max s,(a), s,i(a)=a;? Zaj|a,,)i7j|7 a=(a,...,ap)
j=1

SV(Oé) 1€[1:n]
(®)
(compare (8) with (5)) have derived Corollary.
Corollary. The solution x(t,%, o) of the problem (4) is holomorphic on O,, (4)(to)
separately in ¢, and satisfies there the inequality

|6Tn i (t, to, m0)| < v (Jyo| + |bu|pw (@) 6T, eltr ~towl/pv(e) (9)

(compare (9) with (6)).

As we noted above (see before (7)), to improve estimates (9), it is natural to reduce
the value of s,(a) by choosing a. For the optimal choice of «, it is necessary to solve a
minimax problem. In [13], we gave examples of solving such problems for important real
models described by ODE systems. Sometimes it’s easier to select them as « for some
other reasons. For example, you can use « obtained for the linear approximation of the
original non-linear equations in a neighborhood of the initial data. In the paper [7], we
explained how, in applications, the matrix A, of the mentioned approximation should be
replaced with a square positive matrix A so that Perron’s theorem [14] can be used to
select scaling factors. Then as scaling factors ag, . . ., a,, in Corollary it is natural to use the
components of a positive eigenvector a* = (af,...,a}) of the matrix A} corresponding
to its eigenvalue A(A}), maximum in absolute value. For convenience, recall the Perron’s
theorem.

Theorem (Perron). Let the matric P = (p; ;) be positive, i. e. p;; > 0 for all
i,7 € [1:n]. Then the following statements are true [10]:

a) there is a single eigenvalue A\(P) of this matriz with the largest absolute value;

b) this eigenvalue is positive and simple, and the corresponding eigenvector can be
chosen positive;

c) the following equality holds:

Z1,..,Zn>04€[1:n]

/\(P) = min max Zp¢7j$j/.73¢
j=1

2.3. Cauchy formula for product of multivariate power series. Consider the
product of two series absolutely convergent in some complex domain:

o0 o0
A=Y malt—t)*, B= > yslt—to)’,
ai,...,as=0 B1,.--,8s=0
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oo oo

ie. A-B= > walt—t)* > yslt—to)”.

A1y.n,005=0 B1,..,B8s=0

This product is a series in powers of (t — to) that converges absolutely in some domain
D C C?, and therefore, its sum does not depend on the order of the terms x,z5(t—to)*".
In particular, we can put

S aalt—10)" 3 alt —10)* = 33 Tagusalt 1), (10)
a=0 B=0

pn=0 a=0

u:(ulw"aus):a_'_ﬂa O[:(Oq,...,Oés), 6:(617"'7ﬂ5)'

2.4. Taylor series method to polynomial total systems of PDEs. The Taylor
series method for solving the Cauchy problem (1) (or (2)) consists in constructing a table
of approximate values &;, = &(t,,) using the formula

Zry = TN, (Tw, Tw—1,Trpy_,), w=1,2...]

where Ny = (N1, .-, Nu,s) € (0: +00)°, 70 = to, Tw = Tw—1+Pw, Tw = (Tw 1, Tw,s),
hw = (hw1,---,hws) € C° and hy, has to satisfy the inequalities

|hw7u| <RV(Tw71a(ETw,1)7 v=1,...,s. (11)

The calculation of each value of Z, is called the step of the method, and h,, is called the
size of this step (or, briefly, the step). In the general case of integration along a curve in
C?, all hy, are complex numbers, and points 7,, lie on this curve. To calculate Z,, for
some given 7, with high accuracy even for 7, from its domain of convergence (see (11)),
the number of steps may turn out to be large, which can cause a fast accumulation of
rounding errors and an increased processor time. That is why it is advisable to use the
steps as large as possible (in actual fact, one has to find all p, as large as possible).

3. Estimates in the case of polynomial total systems.

3.1. Schemes and Taylor coefficients to polynomial systems of PDEs. Let
the set T = (!t ... 2(W) of all different nonlinear monomials in right-hand sides of
system of equations (2) is arranged (as in equations (1)) in such a way that

2 < li(n+1)| < Ji(n+2)| <... < |i(u)] < L+1.

Here |i| = i1 + ...+ 4, is the power of the monomial z¢, and L + 1 is the maximal power
of monomials in 7T'. Consider the condition

(Vreln+1):u)3Fp,qgel:r) (@) =@ . z@), (12)
If this condition holds, then one can consider the scheme

S =(p(n+1), g(n +1)),..., (p(u), q(w)))

consisting from u — n pairs (p(r),q(r)) such that r > p(r),q(r) for any r € [(n + 1) : u]

(see [2, 6]): using the scheme one can propose algorithms which, given the monomials

' =g, ..., '™ = 2. implement successive evaluation of all other monomials in 7.
It is obvious that any set of monomials can be supplemented by other monomials so

that it has a scheme, and it can be assumed (and we do assume it in what follows) that

Becrauk CII6I'Y. Ipuknagnas maremaruka. Mudopmaruka... 2021. T. 17. Beim. 1 31



the set T of different non-linear monomials (supplemented, if necessary) has the scheme
S=(p(n+1), g(n+1)),...,(p(u), q(u))).

In the case s =1, to calculate the Taylor coefficients x,;, of the solution
otk = Zwkm(t —to)?, kel[0:ul,

to the problem (2) (or (1)) and all other monomials in T', we obtained recurrence formu-
las [2]

Zro = xk(to), k€ [l:n], (13)

Tk, = lE Tp(k) i Tq(k),—1> Kk € [n+1:u,

=0

. r=0,1,.... (14)

Thrr1 =+ agx,, ke[l:n]

=0

Now, acting in a similar (but slightly more complicated) way, we generalize these
formulas to the case s > 1 (see below — (18), (19)). If we assume that (see (2))

2t m) = Z Tt —to), m=0,...,u, 1= (1,...,1s), (15)

then using the method of undetermined coefficients, one can derive recurrent formulas
to the Taylor coefficients x,; = ®m,,,...1,. Indeed, substituting (15) into the equation
contained within the condition (12) and using the Cauchy formula (10) we obtain:

) = g1 P) i) g e [(n+1):u), p(r), q(r)ell:r) =

= Zl‘r,l(t —t0)' =Y @yt —t0) - Y wgralt —to)' =
= =0 =0
oo 1

Z p(r), 1 Lq(r),l— u(t_to) H:(#la---vﬂs) =
1=0 pu=0

oo l l
= <z7’vl - Z mp(T)J%(T)Ju) (t—t0) =0 = @y~ Z Tp(r) 1 Tq(r),l—p = 0. (16)
1=0 =0 =0

Then substituting (15) into (2) and using the designations e; = (1,0,...,0),...,e5 =
(0,...,0,1) we derive:

0 > wialt—to)*/ot, Za ' ® =1 n, =

Aty As=0
o0 oo
A—ey, l
= E )\ij))\(t — to) & = E Qy,j.k E IkJ(t — to) .
A=(A1,...,05)=0 k=0 liyole=0

Making the substitution A — (I + e,) in the left-hand side of this formula, we obtain:

o0 u o
Yo A Dzjuge,t—t) =D avin >, wa(t—to) =
L, ole=0 k=0 [l =0
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= Z (l —|—1 x]l—&-c,, Zau,j kTk,l t—t()) =0 =

1
= Tjlte, =T Zau,j,kl‘k,z- (17)
v k=0

Formulas (2), (16), (17) and designations
r=5. 0, rtt= 4+, 0+, 1°=(0,...,0), r=0,1,2,...,

lead to the following algorithm for sequentially calculating the Taylor coefficients to the
solution of the Cauchy problem to the total polynomial system of partial differential
equations (2) (and (1)):
zj0 = j(to), j€[L:n], (18)
T = X Tpli) i Tai)r s J € [(n+1) 0,
, o r=0,1,.... (19)

Tjirte, = ﬁ b0 kTht, JE[l:in], ve[l:s]

Note that in the case s = 1, these formulas reduce to (13), (14).

The estimates for linear equations one can find in our paper [7].

3.2. Introduction to the infinite systems method to polynomial systems of
PDEs. Omitting details, the idea of the method of infinite systems can be outlined as
follows [1, 2].

St ep 1. Introducing an infinite set of new variables, one reduces the original problem
(1) or (2) to the Cauchy problem for an infinite linear system of differential equations.

St e p 2. Using linearity, some results are obtained for the last problem.

St e p 3 These results are interpreted in terms of the original Cauchy problem.

In accordance with this idea, let us, for any i € U;O:Ol I(m), introduce the variables
in the problems (1), (2)

zli] = 2, (20)

and suppose that the sets x(m) = {x[i]| ¢ € I(m)} are ordered in increasing m, and the
elements in each of them are ordered so that i1 = k1,..., ¢; = kj;, 441 > kjq1 implies
that z[i] precedes x[k]. The ordered variables z[i] are denoted by z1, 23, ... and the vector
of these is z = (z1, 22, .. .). In addition, we introduce the initial value

2 2
20 = (21707 22,05+ -+ 2n,0, Zn+1,0,~-) = (331,0, L2,05--+5Tn,05 L1,05 $1,0$2,0,~~,$n,0-~)

respectively corresponding to the initial vector o = (21,0, Z2,0,...,%n,0) of the original
Cauchy problem. The numbers p of the components z;, of z are associated with multi-
indices i € |J2°, I(m) of variables z[i] by some one-to-one correspondence p = w(i),
i =Q(p) (2 =w™1), which has the obvious property

w(Xq) = (0g-1(n) : ag(n)], (21)

where o4(n) = (¢ +n)!/(g!n!) — 1 is the number of elements in the set [J? _, xm.

Proposition 2. If we assume that a,,j,[i] in (1) are defined for all multi-indices ¢
with integer components, moreover, they are equal to zero, if |i] > L+ 1 or at least one of
the components of ¢ is negative, then the following formulas hold:
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L

oxlk] ) .
ot = Z Z aymlkizlk+1, v=1,...,s,

m=04e.J(m)

k:(kl,...,kn)eZ”, Z(to):

Here
Jm)={i€Z" iy = —1,...,in = —1,[i| =m}, um[k,i] = Zkau,jm + e;].

P r oo f. Indeed,

Ox[k] _ A(ahr k) _ i kj(a* /x;)0x;
oty =~

at, ot,
L+1 L+1
S ILICIISD IS DETHUEES S5 S DI T FE
j=1 m=1ieI(m) j=1m=04el(m)
:Z Z Zk’jayyj,m[i—&—ej] xlk +1] = Z Z oy mlk, ik + ],
m=0ieJ(m) \j=1 m=0ieJ(m)

which is the required result.
3.3. Estimates to polynomial systems of PDEs. Let us write (22) as the s
Cauchy problems for the function z:

0
atf, =Gz, v=1,..

8, 2(to) = 20, (23)

and note that in fact these (like (22)) are s separate countable Cauchy problems of the
same structure, differing in matrices G, and arguments t,. Each row of the matrix G,
and each of its columns contain only a finite number of nonzero elements. Therefore, in
particular, all its non-negative degrees are defined. Differentiating successively equation
(23) we obtain
z 02z J"z
g—tyzG,,z, 8—2%ZGVG,,z:Gzz,...78—t£:GZz,.... (24)

Now we use formulas (22) to obtain estimates of the quantities (24).

Proposition 3. Let a, jmli], Zo0,1,...,%on be the coefficients and initial data of
problem (1), G, be the matrix of equation (23), (G, z), be the p-th component of the
vector G,z and the following designations are used:

Sy = Max S,j, Sy, = Z ~™ Z lav;mli +€;]l, v=|zo] = max |zg;|. (25)
J€E([1:n] ) J€E([1:n]
i€J(m)
Then for any natural numbers p, ¢ connected by the relation (see (21))
p € (04-1(n) 1 og(n)], (26)
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and for any natural number j, the inequality
|(Gjuz);0| <Sj/yq H (Q+mL)ﬂ v=1,...,8 7= |(E0| = HﬁiX] |(E01| (27)
me[0:5—1]

holds.
P r o o f. We will use mathematical induction.
1. From definition (20) and ~y (see (25)) we deduce the inequality

jalk +1]| = |z [k]ll=[i] < 7" (28)

If p, ¢ are connected by relation (26), then this means that z, = z[k] for |k| = ¢, and, using
(22), (27), (28), we have the following inequalities:

‘ Z > Z’f|awml+€;]llw[’€+ i]| < 77,

m=04eJ(m) j=1

O0zp

|(Gu2)p|: 8_75,, =

this means that inequality (27) is proved for j = 1.

2. Suppose that p, q, as before, are connected with the relation (26) and the inequality
(27) holds for j = r. Let the designations y, = d"z,/dt},, y[k] = d"z[k]/dt],, y = (y1, Y2, - . .)
are introduced. As one can see, this means that y, = y[k], y = drz/dt,ﬁ and y = Gz (see
(27)). Recalling the definition of the function w (see (21)) one derives the inequality

[k + i1l = [Ytrer| = [(GL2)wihrs | < s H (Ik + i +mL). (29)
me[0:r—1]

Differentiating (22) and (23) r times, one obtains similar equations

Z Z aym [k, dylk + ], (30)

m=0ic.J(m)

9y
ot,

=Gyy. (31)

Using (29)—(31) one obtains:

r dy
|(Gu+12)17| = |(Guy)p| = |2

:’ ’ S 5 Y bylawmli+esllole +il <

Oty m=0icJ(m) j=1
L
<> Y Zk|ammz+e]|sr T Ok +il+ uL) <
m=04eJ(m) j=1 pe[0:r—1]
<s™yig [ @+ L+ul) =59 [] (a+pD),
pe[0:r—1] nel0:r]

e., inequality (27) holds for j = r + 1. Thus, the inequality (27) is proved by induction.
Proposition 4. Let a, 5, 0,1, .., %0 be the coefficients and initial data of the
problem (1) and, in addition to (3), the following designations are used:

vy =1 LV7 v = v,js
pv=1/(Lsy), s jmax s
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$u;= 2 7" D lavmyli+ell, 7= lrol = max |,
j€[Lin]

i€J(m)
B d™b(r) =
bir) = (1 — )y YL plm) _ (1/L
(1) = —m7"E ) Eo JL+1)
Then, for every v € [1: 5], j € [1: 400), M = (My,...,M,) € [1 : 400)® the solution

x(t,to, o) of the problem (1) is holomorphic on O,, (to) (see (3)) separately in t, and
satisfies there the inequality

|5TM(E(t, t071'0)| < |£L‘0|(5T]pjb(|t — tOl/Pu)-

P r o o f. The set of the first n components of the solution to the problem (23)
coincides with the solution to the problem (1); therefore, from (24) and (27) (for ¢ = 1,
p € [1:n]) we obtain

|x0 | < sly H l+mL).
me([0:1—1]

Using this inequality, we find

= y (t —to)"
Z xé)il! <

|5TM.T(t,to,JCO)| = X
I=M+1

0o l
b (t—1 1/L+m -t
<lel 2 xé)( po) Il = :|x°|5TMb( po)'

I=M+1 me[0:1—1]

Q.E.D.

Now, introducing the additional variable x,,+1 = 1, replacing the free terms a, ; in
(1) with @ay,0,jZn+1, and using there the scaling transformation z; = «ajy;, j € [1 : nl,
where «; are arbitrary positive parameters we can see that Proposition 4 implies the
following result (compare with Corollary).

Proposition 5. Let a, m_j, o = (To,1,--.,%0.n), be the coefficients and initial data
of the problem (1) and, in addition to (3), the following designations are used:
frol = max slaol, pula) = —
=z max slz a) = ,
7= jetim) 0 Pr Ls, (@)

L
sv(a) = jmax, suj(),  sus(@) =o' [avo |+ D™ Y lavmli+e¢ll |,
i€J(m)

) = =) = () sz
T= =0

drm

Then, for every v € [1 : 8], j € [1 : +00), M = (My,...,M;) € [1: +00)°, the solution
x(t,to, o) of the problem (1) is holomorphic on O, (ty) (see (3)) separately in t, and
satisfies there the inequality

|6T]y[1‘(t7 to, $0)| < |(E0|(5T]pjb(|t — t0|/p).
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4. Conclusion. In Section 2 of this paper the systems of PDEs in general and two
different polynomial forms were considered. Besides, some necessary questions such as
reduction of DEs in Dynamics to polynomial form by introducing a number of additional
variables (the necessary and sufficient conditions), the idea of schemes and the concept
of the T'SM, obtaining Taylor coefficients and estimates to total linear and polynomial
systems of PDEs, Cauchy formula for product of multivariate power series, necessary
notation etc. The main results we considered in the Section 3. There using the infinite
systems method we formulated and proved the Propositions 2—5. The last proposition
one can consider as a real means of implementing the Taylor series method of solving
polynomial systems of total partial differential equations. It is worth noting that the
beginning of the research presented in the article were the papers on which the dissertation
[15] is based.

The prospects. As a short-term perspective, we suggest the proposed method applying
to important problems in Mathematical Physics, Astronomy, Dynamics, Chemistry, and
Applied Mathematics in general. In particular, it worth to be considered the following
tasks:

e four examples of total polynomial systems of partial differential equations for the
two-body problem proposed by us in [7];

e a series of systems of total Dynamics equations, the right-hand sides of which depend
on different force potentials (see, for example, [16-20]).
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Orenku B meroze paznoB Teiisiopa IJis MOJIMHOMUAJIBHBIX
noJiHbIxX cuctem Y p4ll

JI. K. Babadocansany, U. I0. Ilomoukaa, FO. FO. Iynvwesa

Canxr-IleTepbyprckuit rocymapcTBennsiit yuusepcuret, Poccuiickas Penepanus,
199034, Canxr-Ilerepbypr, YHuBepcurerckas Hab., 7—9

g murupoBauusi: Babadzanjanz L. K., Pototskaya I. Yu., Pupysheva Yu. Yu. Estimates for
Taylor series method to polynomial total systems of PDEs // Becruuk Caukt-IleTep6ypreckoro
yuuBepcureta. [Ipuknannas maremaruka. udopmaruka. [Iporecest ynpasaenns. 2021. T. 17.
Bom. 1. C. 27-39. https://doi.org/10.21638/11701 /spbul0.2021.103

MHorue u3 MOJIHBIX CHCTEM YPaBHEHUII B YACTHBIX I[IPOM3BOJHBIX CBOJIATCS K IIOJIUHO-
muasbHOl dopme. Kak OGbLIO MOKA3aHO Pa3HBIMM aBTOPAMMU, OJHUM U3 JIYyYIIAX METOJ0B
YHUCJIEHHOTO PEIeHNs 33,1891 HaYaAJIbHOTO TPUOINZKEHUS A1 CHCTeM OOBIKHOBEHHBIX mudde-
PEHIMAIBHBIX yPaBHEHUN siBjIsieTcst MeToy| psAnos Teisiopa (TSM). B npeabiiynmx crarbsax
aBTOPOB ObLIa paccMoTpeHa 3aa4da Komu st simaeiinbix nosiabix cucreM Y pUIl, monydenst
Ko durmenTh TeMI0pa 1 OIEHKH JIsT MeTOHOB PsioB Teitopa njist auHeHOTO caydasi. Ha
OCHOBE 9TUX pe3yJIbTAaTOB B HacTosIIell pabore paccmarpuBaercs 3ajada Komm jyist moaHoi
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nonnaoMuabHON cuctembr YpUIl. Iyt aToro ciaydast mosryueHbl peKyppeHTHBIE (DOPMYJTBI
utst Koapdunmenros Teistopa. C ux nmomorpo chopMyIMpoBaHa 1 JOKa3aHa TeopeMa, O TOU-
HOCTH PEIIeHUs] ITOJTHON MOJTMHOMUAJIBHOM cuctembl Y pUIl meromom T'SM ¢ ucronb3osanuem
MeTo/1a GECKOHEYHBIX CUCTEM.

Karoweswie caosa: merop psijos Teitsiopa, rnostHbe nojguHOMuUaIbHbIE cucreMbl Y p Yl momm-
HOMUAJIbHBIE CUCTEMBI, YNCJIEHHOE nHTerpupoBanue cucrem Y pIll.
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