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1 Introduction

Many variants of finite automata are known, and although all of them define the same class of
regular languages, they differ in terms of succinctness of description. In particular, it is well-
known that every nondeterministic finite automaton (NFA) with n states can be transformed
to a deterministic finite automaton (DFA) with 2n states, and this number of states is in the
worst case necessary. This kind of succinctness tradeoffs have been studied for quite a few types
of finite automata.

Transformations involving two-way finite automata, deterministic (2DFA) and nondetermin-
istic (2NFA), have received particular attention in the literature [1, 2, 3, 9, 11, 12, 17, 18, 19].
In particular, the question of whether two-way automata can be determinized using polynomi-
ally many states is one of the most important open problems of automata theory, due to its
connection to the L vs. NL problem [8]. Their transformation to one-way automata was studied
over the years [1, 12, 18], until Kapoutsis [7] presented an optimal transformation. Kapout-
sis [7] showed how to transform an n-state 2DFA to an NFA with

(
2n
n+1

)
states, and proved

that this number of states is necessary in the worst case; transforming a 2DFA to a DFA takes
n(nn − (n− 1)n) states in the worst case [7].

Between these two perfectly conclusive results, there is an open question involving an in-
termediate model between DFA and NFA: the unambiguous finite automata (UFA), which can
use nondeterminism, yet are bound to accept each string in at most one computation (as in the
unambiguous complexity classes, such as UL and UP). The size of UFA has recently received
some attention.

As shown by Leung [10], transforming an n-state UFA to a DFA requires 2n states in the
worst case, whereas the NFA-to-UFA transformation incurs a blowup from n to 2n−1 states. In

the case of a unary alphabet, transforming a UFA to a DFA in the worst case takes eΘ(
3
√
n log2 n)

states, and the NFA-to-UFA transformation requires eΘ(
√
n logn) states [13]. Jirásek Jr. et al. [5]

showed that complementing a UFA requires at least 20.79n states, with an upper bound of 2n

states. In the unary case, the known lower bound on complementing a UFA is nΩ(log log logn),
due to Raskin [14].

Turning to the complexity of the 2DFA-to-UFA transformation, it is bound to lie between
the two bounds of Kapoutsis [7],

(
2n
n+1

)
and n(nn − (n − 1)n), and it is natural to ask what is

the exact function in this case. This question is addressed in the present work.
The first task is to establish an upper bound that would improve over the 2DFA-to-DFA

transformation. This is achieved by augmenting the NFA constructed by Kapoutsis [7] to store
extra data that allows it to ensure the uniqueness of its accepting computation. The resulting
UFA, presented in Section 3, has fewer than 2n · n! states. This construction can also be used
for 2UFA-to-UFA trasformation.

Turning to a lower bound on the 2DFA-to-UFA transformation, a witness language is defined
in Section 4 by constructing a 2DFA. The plan is to prove a lower bound on the size of every
UFA recognizing the same language using Schmidt’s theorem [15], which relies on the rank of
a certain matrix related to the language. The rank of the matrix constructed in this work
is estimated by first applying some linear transformation, and then reducing the problem to
finding the rank of another matrix, defined entirely in terms of permutations.

Lower bounds on the rank of the latter matrix are established in Section 5. An easy, purely
combinatorial estimation yields a lower bound of Ω((4

√
2)n ·n−1/2) states on the 2DFA-to-UFA

tradeoff. An improved lower bound on the rank is obtained using the group representation
theory, so that the task of calculating the rank is reduced to finding the dimension of a certain
linear space. Then, the classical Maschke’s theorem is used to decompose that linear space
into a direct sum of irreducible representations of an understandable form, from which one can
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estimate the desired dimension. This way, it shall be proved that the 2DFA-to-UFA tradeoff
is at least Ω(9n · n−3/2). Naturally, this value is also the lower bound on the 2UFA-to-UFA
tradeoff. It is conjectured that the lower bound on the rank of the matrix established in this
work is optimal, and under this assumption, the latter lower bound is the best that could be
obtained using Schmidt’s theorem.
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2 Definitions

The work uses standard finite automata models: two-way deterministic automata, one-way
unambiguous automata and two-way unambiguous automata.

Definition 1. A two-way deterministic finite automaton (2DFA) is a quintuple A =
(Σ, Q, q0, δ, F ), in which Σ is a finite alphabet; Q is a finite set of states; q0 ∈ Q is the initial
state; δ : Q× (Σ∪{`,a})→ Q×{−1,+1} is the transition function, which defines a transition
in a given state while observing a given tape symbol; F ⊆ Q is the set of accepting states,
effective at the right end-marker a.

Given an input string w = a1 . . . a`, a 2DFA operates on a read-only tape `wa. It begins
its computation in the initial state, with the head at the left end-marker (`). At every step of
the computation, the automaton is in a state q ∈ Q and observes a symbol a ∈ Σ∪ {`,a}; the
transition function gives a pair δ(q, a) = (r, d) representing the next state and the direction in
which the head moves. The set of strings, on which the computation eventually reaches the
right end-marker in an accepting state, is denoted by L(A).

Definition 2. A nondeterministic finite automaton (NFA) is a quintuple B = (Σ, Q,Q0, δ, F ),
in which Σ is a finite alphabet; Q is a finite set of states; Q0 ⊆ Q is the set of initial states; the
transition function δ : Q× Σ→ 2Q defines possible next states after reading a given symbol in
a given state; F ⊆ Q is the set of accepting states.

On an input string w = a1 . . . a`, a computation is a sequence of states p0, p1, . . . , p` satisfying
p0 ∈ Q0 and pi+1 ∈ δ(pi, ai+1) for all i. It is accepting if, furthermore, p` ∈ F . The set of strings,
on which there is at least one accepting computation, is denoted by L(B).

Definition 3. A two-way nondeterministic finite automaton (2NFA) is a quintuple C =
(Σ, Q,Q0, δ, F ), in which Σ is a finite alphabet; Q is a finite set of states; Q0 ⊆ Q is the
set of initial states; the transition function δ : Q × (Σ ∪ {`,a}) → 2Q×{−1,+1} defines possible
transitions after reading a given symbol in a given state; F ⊆ Q is the set of accepting states,
effective at the right end-marker a.

On an input string w = a1 . . . a`, a computation is a sequence of pairs
(p0, k0), (p1, k1), . . . , (pn, kn) where pi ∈ Q is a state, ki is the position of the head, with
0 6 ki 6 ` + 1. Also, the following conditions should be satisfied: p0 ∈ Q0, k0 = 0, and
(pi+1, ki+1 − ki) ∈ δ(pi, aki) for all i. Here, a0 = ` and a`+1 = a.

The computation is accepting if, furthermore, pn ∈ F and kn = `+ 1, and there is no i < n
such that pi ∈ F , ki = ` + 1. The set of strings, on which there is at least one accepting
computation, is denoted by L(C).

An NFA or 2NFA is said to be unambiguous (UFA or 2UFA respectively), if there is at most
one accepting computation on each string.
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Figure 1: A transition between frontiers (P,R) and (P ′, R′). Generally, some automaton tran-
sitions might be unused; gray arrow represents this.

3 Upper bound

The proposed new transformation of 2UFA to UFA is derived from the known 2NFA-to-NFA
transformation by Kapoutsis [7].

3.1 Transformation from 2NFA to NFA (by Kapoutsis)

For a 2NFA with a set of states Q, Kapoutsis [7] constructs an NFA with states of the form
(P,R), with P,R ⊆ Q and |P | + 1 = |R|. For an input string uv, after reading a prefix u, the
NFA guesses a frontier of one of the 2NFA’s computations on `uva: this is a pair (P,R), where
the set R consists of all states, into which the 2NFA moves to the right from the last symbol
of u; states in P are those, into which the 2NFA moves to the last symbol of u from the right.
The constructed NFA guesses a 2NFA computation’s frontier at every step of its computation.

Theorem A (Kapoutsis [7]). For every 2NFA with n states, there exists an NFA with
(

2n
n+1

)
states that recognizes the same language.

Proof. The set of initial states Q′0 of the new NFA is the set of all frontiers reachable after
processing the left end-marker `. More formally, for every q0 ∈ Q0 and for every q1 ∈ Q such
that (q1,+1) ∈ δ(q0,`), Q′0 contains all frontiers (P,R) such that q1 ∈ R and there exists a
bijection f : P → R \ {q1} with the following property: (f(p),+1) ∈ δ(p,`) for any p ∈ P .

Transitions are defined as follows: for any symbol a and two frontiers (P,R) and (P ′, R′)
there is a transition from (P,R) to (P ′, R′) on the symbol a (that is, (P ′, R′) ∈ δ′((P,R), a)) if
R∩P ′ = ∅ and there exist partitions P = P2]P4, R = R1]R2, P ′ = P ′3]P ′4 and R′ = R′1]R′3
with bijections g1 : R1 → R′1, g2 : R2 → P2, g3 : P ′3 → R′3 and g4 : P ′4 → P4 such that the
following conditions are satisfied:

1. if r ∈ R1, then (g1(r),+1) ∈ δ(r, a);

2. if r ∈ R2, then (g2(r),−1) ∈ δ(r, a);

3. if p′ ∈ P ′3, then (g3(p′),+1) ∈ δ(p′, a);

4. if p′ ∈ P ′4, then (g4(p′),−1) ∈ δ(p′, a).
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q0
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Figure 2: A profile (P,R, f) of a computation that holds short of reading the symbol a.

These rules ensure that transitions between frontiers are consistent with the transitions of
the 2NFA. Transition rules are illustrated in Figure 1.

Finally, a frontier (P,R) is accepting in the NFA, if there exists a state q ∈ R∩F such that
all other elements of P and R can be split into pairs (p, r) with (p,−1) ∈ δ(r,a).

Since there are
(

2n
n+1

)
frontiers for n states, the constructed NFA has

(
2n
n+1

)
states. The

correctness of the construction can be proven by induction on the length of a string.

This construction is known to be optimal already for the transformation of a 2DFA to a
NFA. The task is to adapt the construction to produce a UFA, given a 2UFA.

3.2 Transformation from 2UFA to UFA

The NFA constructed by the method of Kapoutsis is, in general, ambiguous, because, while
guessing the next frontier, it may produce a closed cycle alongside the main computation. This
closed cycle shall eventually be cancelled out, without the NFA’s noticing, whereas the correctly
guessed accepting computation of the 2UFA would drive the NFA to acceptance. This yields
multiple accepting computations. This is possible even if the given 2UFA is deterministic.

The above construction shall now be elaborated to ensure unambiguity. Besides a pair
(P,R), the automaton shall remember a bijection f : P ∪{Start} → R representing the states
in R reached from each state in P , as well as from the initial configuration. Such a triple
(P,R, f), illustrated in Figure 2, shall be called a (prefix) profile.

How many profiles are there? For every k = |R|, there are
(
n
k−1

)
ways to choose the

set P , and
(
n
k

)
ways to choose the set R, and k! different bijections f . Overall, there are∑n

k=1

(
n
k−1

)(
n
k

)
k! profiles. With the frontiers replaced by profiles, the following theorem is

obtained.

Theorem 1. For every n-state 2UFA, there is a UFA with
∑n

k=1

(
n
k−1

)(
n
k

)
k! states that recog-

nizes the same language.

Proof. Let A = (Σ, Q,Q0, δ, F ) be an n-state 2UFA. The goal is to construct a UFA B =
(Σ, Q′, Q′0, δ

′, F ′) with
∑n

k=1

(
n
k−1

)(
n
k

)
k! states that recognizes the same language.

Let Q′ be the set of all profiles for the set Q. Then, |Q′| =
∑n

k=1

(
n
k−1

)(
n
k

)
k!, and the

condition on the number of states is satisfied.
Transitions are defined as follows: for any symbol a and two profiles (P,R, f) and (P ′, R′, f ′)

such that R ∩ P ′ = ∅, there is a transition from (P,R, f) to (P ′, R′, f ′) on the symbol a (that
is, (P ′, R′, f ′) ∈ δ′((P,R, f), a)) if there exist partitions P = P2]P4, R = R1]R2, P ′ = P ′3]P ′4
and R′ = R′1 ] R′3 with bijections g1 : R1 → R′1, g2 : R2 → P2, g3 : P ′3 → R′3 and g4 : P ′4 → P4

such that the following conditions are satisfied:

7



a⊢ ...
q0

P2

R1
f

START

P4

R2

'R1

'R3'P3

g1

g2

g3

g4

'P4

Figure 3: A transition between profiles (P,R, f) and (P ′, R′, f ′). Generally, some automaton
transitions might be unused; gray arrow represents this.

1. if r ∈ R1, then (g1(r),+1) ∈ δ(r, a);

2. if r ∈ R2, then (g2(r),−1) ∈ δ(r, a);

3. if p′ ∈ P ′3, then (g3(p′),+1) ∈ δ(p′, a);

4. if p′ ∈ P ′4, then (g4(p′),−1) ∈ δ(p′, a).

These conditions are the same as in the construction by Kapoutsis in Theorem A.
In addition, there are also conditions on the functions f and f ′:

• if p′ ∈ P ′3, then f ′(p′) = g3(p′) (g3(p′) is reached from p′ in one move);

• if p′ ∈ P ′4, then there exists a sequence p1, r1 = f(p1), p2 = g2(r1), . . . , pm = g2(rm−1), rm =
f(pm) such that p1 = g4(p′) and f ′(p′) = g1(rm) (new path from p′ to f ′(p′) as combination
of old ones). The states pi and ri represent old paths between P2 and R2;

• there is no sequence p1, r1 = f(p1), p2 = g2(r1), . . . , pm = g2(rm−1), rm = f(pm) such that
g2(rm) = p1 (no cycles in the computation).

The last condition is the most important one, as it eliminates the source of ambiguity in
the construction by Kapoutsis.

Transition rules are illustrated in Figure 3. For element p′ ∈ P ′ the value of f ′(p′) can be
obtained by using arrows until entering the set R′.

The set of starting states Q′0 is defined in terms of transitions as the set of profiles reachable
from any of the profiles (∅, {q0},Start 7→ q0) for q0 ∈ Q0 by the left end-marker `.

To define the set of accepting states F ′, let δ(q,a) = {(q,+1)} if q ∈ F . Then, F is the set
of profiles from which at least one of profiles (∅, {q},Start 7→ q) for q ∈ F can be reached by
symbol a.

It is left to prove that B is unambiguous and recognizes the same language as 2UFA A.

Claim 1. If 2UFA A accepts a string w, then B also accepts the string w.

Proof. Consider the accepting computation of A on the string w of length n. Construct profiles
(P i, Ri, f i) for every symbol wi of the string for i ∈ {1, . . . , n+ 1} with wn+1 = a as follows:

8



• P i is the set of states in which the computation moves from the i-th to the (i − 1)-th
symbol,

• Ri is the set of states in which the computation moves from the (i − 1)-th to the i-th
symbol,

• f i(p) for p ∈ P i is the state in which the computation beginning at the (i− 1)-th symbol
in the state p first comes to the i-th symbol.

It is claimed that those profiles form an accepting computation of B.
Note that (P 1, R1, f 1) ∈ Q′0: indeed, it is impossible to move to left at the left end-marker

`, so (f 1(p),+1) ∈ δ(p,`) for any p ∈ P 1. Also, (f 1(Start),+1) ∈ δ(q0,`). Then, (P 1, R1, f 1)
is reachable from (∅, {q0},Start 7→ q0) by the symbol `: the corresponding partitions and
bijections are R1 = {q0}, R′1 = {f 1(Start)}, P ′3 = P 1, R′3 = R1 \ {f 1(Start)}, g1 : q0 7→
f 1(Start), g3 = f 1|P 1 .

Similarly, (P n+1, Rn+1, fn+1) ∈ F ′: the partitions and bijections corresponding to the tran-
sition to (∅, {q},Start 7→ q) (where q is the last state in the accepting computation of A on w)
are R1 = R′1 = {q}, P2 = P n+1, R2 = Rn+1 \ {q}, g1 : q 7→ q, and g2(r) = p if δ(r,a) = (p,−1).

Finally, (P i+1, Ri+1, f i+1) ∈ δ′((P i, Ri, f i), wi) for all i ∈ {1, . . . , n − 1}. To prove that,
define R1 as the set of states in Ri in which A moves to the right upon reading the i-th symbol,
and R′1 as the set of resulting states after such move. Other pairs of sets and bijections are
defined likewise. All conditions will be satisfied, since both profiles are constructed from a valid
computation without cycles and self-intersections.

Claim 2. If B accepts a string w, then A also accepts the string w. Furthermore, the accepting
computation of B on w is unique.

Proof. Let n be the length of w, and fix an accepting computation of B on this string. Denote
by (P i, Ri, f i) the state of B before reading the i-th symbol (for i ∈ {1, . . . , n})). Also,
let (P n+1, Rn+1, fn+1) be the state in which B finishes reading the string w. In addition,
denote by (P 0, R0, f 0) the profile (∅, {q0},Start 7→ q0) for q0 ∈ Q0 such that (P 1, R1, f 1)
is reachable from it by the symbol `. Accordingly, denote by (P n+2, Rn+2, fn+2) the profile
(∅, {q},Start 7→ q) for q ∈ F such that it is reachable from (P n+1, Rn+1, fn+1) by the symbol
a. The goal is to reconstruct an accepting computation of A on w from this sequence of profiles.

Construct a graph G with vertices labeled with pairs (q, i), where q ∈ Q, and i ∈
{0, . . . , n + 1}. Add to G all arrows checked by the automaton B in the accepting compu-
tation. Formally, for each i ∈ {0, . . . , n + 1} and q ∈ Q such that q ∈ Ri ∪ P i+1, let q′ be
the state corresponding to the state q via the bijections used in the transition from profile
(P i, Ri, f i) to profile (P i+1, Ri+1, f i+1) (then, q′ ∈ Ri+1 ∪ P i). Let s = +1 if q′ was obtained
through transition from the state q to the right, and let s = −1 otherwise. Then there is an
arrow in G from (q, i) to (q′, i+ s), if i+ s ∈ {0, . . . , n+ 1}. This arrow corresponds to the next
step of a computation of A.

The arrows in the graph G represent the valid moves of the automaton A. Hence, paths in
G are valid computations for A. An example of such graph G is illustrated in Figure 4. The
values of functions f i are given as green arrows.

In the graph G, all vertices, except (q0, 0) for q0 ∈ Q0 — the only element of R0 and (q, n+1)
for q ∈ F — the only element of P n+2, either have both indegree and outdegree equal to 0 (for
pairs not present in the computation), or have both indegree and outdegree equal to 1 (for pairs
present in the computation). Indeed, let (q, i) be a vertex in the graph G. If q is neither in Ri

nor in P i+1, then there are no arrows in or out of (q, i). If q is in Ri or P i+1 (and q cannot be
in both at the same time by the definition of transition between profiles), then there is exactly

9
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Figure 4: An example of graph built from accepting computation of B.

one arrow into (q, i) (except (q, i) = (q0, 0)) and exactly one arrow out of (q, i) (except i = n+1
and q ∈ F ).

Hence, the graph G consists of a path from (q0, 0) to (q, n+ 1) and, possibly, some disjoint
simple cycles. To finish the proof of this claim, the following result is needed:

Claim 2.1. Let i ∈ {1, . . . , n + 1} and q ∈ P i. Consider the path from (q, i − 1) in G. Let
(q′, i) be the first vertex on this path with the second coordinate equal to i. Then, q′ exists and
is equal to f i(q).

Proof. The claim is proved by induction on i.
Consider the case of i = 1 first. Consider a partition P 0 = P2 ] P4, R0 = R1 ] R2,

P 1 = P ′3 ] P ′4 and R1 = R′1 ] R′3 with bijections g1 : R1 → R′1, g2 : R2 → P2, g3 : P ′3 → R′3 and
g4 : P ′4 → P4 used in the transition from the profile (P 0, R0, f 0) to the profile (P 1, R1, f 1) by
the symbol `. Since P 0 is empty, so are P2 and P4. Since g4 is a bijection from P4 to P ′4, the
set P ′4 is also empty, and q ∈ P ′3. Then, by definition, the graph G contains an arrow from
(q, 0) to (g3(q), 1). Hence, q′ = g3(q). Since f 1(q) = g3(q) thanks to transition rules, the result
of the claim follows.

Suppose now that the claim is proved for i − 1. As with the case of i = 1, consider a
partition P i−1 = P2 ] P4, Ri−1 = R1 ] R2, P i = P ′3 ] P ′4 and Ri = R′1 ] R′3 with bijections
g1 : R1 → R′1, g2 : R2 → P2, g3 : P ′3 → R′3 and g4 : P ′4 → P4 used in the transition from the profile
(P i−1, Ri−1, f i−1) to the profile (P i, Ri, f i) by the symbol wi−1. If q ∈ P ′3, then G contains an
arrow from (q, i− 1) to (g3(q), i), and q′ = g3(q) = f i(q).

The remaining case is that q ∈ P ′4. Then, by the transition rules, there exists a sequence
p1, r1 = f i−1(p1), p2 = g2(r1), . . . , pm = g2(rm−1), rm = f i−1(pm) such that p1 = g4(q) and
f i(q) = g1(rm). Then, the graph G contains the arrows from (rk, i− 1) to (pk+1, i− 2) for every
k ∈ {1, . . . ,m− 1}, and also an arrow from (q, i− 1) to (p1, i− 2) and an arrow from (rm, i− 1)
to (f i(q), i). Furthermore, by the induction assumption, for every k ∈ {1, . . . ,m} the point
(rk, i − 1) is the first point on the path from (pk, i − 2) with the second coordinate equal to
i− 1. Since the arrows in the graph q connect only vertices which second coordinates differ by
1, said path from (pk, i− 2) to (rk, i− 1) never visits vertices with second coordinate equal to
i (since it would need to pass through i− 1 first). Hence, the whole united path from (q, i− 1)
to (rm, i− 1) never visits such vertices, and (f i(q), i) is the first one. Then, q′ = f i(q).

Claim 2.2. Graph G does not contain cycles.

Proof. Assume the opposite. Consider any such cycle C; let i be the maximal second coordinate
of a vertex therein. Denote by R the set of states q such that (q, i) is a vertex of C. For every
q ∈ R the path from (q, i) never visits vertices with the second coordinate equal to i + 1.
Therefore, R ∩ P i+1 = ∅. Since R ⊆ Ri ∪ P i+1, it follows that R ⊆ Ri.

10



Denote by P the set of states p such that G contains an arrow from (q, i) to (p, i − 1) for
some q ∈ R. In this situation, define g(q) = p. Since every state of R has one such arrow, and
no two arrows have the same endpoint, the sizes of P and R are equal, and g is a bijection from
R to P . Also note that P ⊆ P i, since vertices (p, i− 1) with p ∈ P have the arrow pointed at
them from (q, i) with q ∈ Ri.

Now, let f be the restriction of the function f i to P . By Claim 2.1, all values of f lie in R,
since the path from (p, i− 1) cannot leave the cycle C. The arrows in f represent contractions
of paths in C outside of the position i.

Then, the cycle is detected by B in the transition between profiles (P i, Ri, f i) and
(P i+1, Ri+1, f i+1), as follows. Consider a partition P i = P2 ] P4, Ri = R1 ]R2, P i+1 = P ′3 ] P ′4
and Ri+1 = R′1 ] R′3 with bijections g1 : R1 → R′1, g2 : R2 → P2, g3 : P ′3 → R′3 and g4 : P ′4 → P4

used in the transition from the profile (P i, Ri, f i) to the profile (P i+1, Ri+1, f i+1) by the symbol
wi. Note that g is the restriction of g2 to R by definition.

Then, it is possible to construct the sequence p1, r1 = f i(p1), p2 = g2(r1), . . . , pm =
g2(rm−1), rm = f i(pm) such that g2(rm) = p1, which would mean that this transition is in-
valid. Indeed, pick p1 ∈ P and define the rest of pk and rk using functions f and g instead of
f i and g2. Sunce P and R are finite, then pj = pk for some j < k. Then the sequence starting
at pj and ending at rk−1 would contradict the rules of transition between profiles.

By Claim 2.2, there are no cycles in G, and it contains only a path from (q0, 0) to (q, n+ 1).
This path is unique, because it corresponds to an accepting computation of 2UFA A on the
string w, and A has no more than one accepting computation on this string. Since different
sequences of profiles define different graphs (the graph fixes P i and Ri; and f i can be restored
through the use of Claim 2.1), the computation of B is also unique.

Therefore, B is unambiguous and recognizes the same language as A.

3.3 The asymptotics of the upper bound

Lemma 1.
∑n

k=1

(
n
k−1

)(
n
k

)
k! < 2n · n! < n(nn − (n− 1)n) for every integer n > 3.

Proof. The first inequality is proven by the following transformations:
∑n

k=1

(
n
k−1

)(
n
k

)
k! =∑n

k=1

(
n
k−1

)
n!·k!

(n−k)!·k!
6
∑n

k=1

(
n
k−1

)
· n! = (2n − 1) · n! < 2n · n!.

Then, Stirling’s approximation states that n! 6 e ·
√
n
(
n
e

)n
, and the above expression is

bounded as 2n · n! 6 2n · e ·
√
n · nn

en
= e·

√
n

( e2)
n · nn.

On the other hand, n(nn−(n−1)n) = n(n−(n−1))(nn−1 +nn−2(n−1)+ · · ·+(n−1)n−1) >
n · 1 · nn−1 = nn.

It is left to determine, for which n the inequality e·
√
n

( e2)
n < 1 holds, and verify the lemma for

small values of n.
The latter inequality is rewritten as e ·

√
n <

(
e
2

)n
, which is equivalent to e2n <

(
e2

4

)n
.

If n = 7, then e2n < 52 and
(
e2

4

)n
> 73, so the inequality is true. When n > 7 is

increased by 1, the left-hand side grows by e2 < 8 while the right-hand side grows at least by(
e2

4

)8

−
(
e2

4

)7

> 60. Hence, the inequality holds for all n > 7.

The values of the expressions in the lemma for n 6 6 are listed in Table 1.

By Lemma 1, the number of profiles is less than 2n · n!, which is in turn asymptotically
less than n(nn − (n − 1)n). This confirms that the proposed transformation to UFA is more
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Table 1: Values of expressions in Lemma 1 for 3 6 n 6 6.

n
∑n

k=1

(
n
k−1

)(
n
k

)
k! 2n · n! n(nn − (n− 1)n)

3 39 48 57
4 292 384 700
5 2 505 3 840 10 505
6 24 306 46 080 186 186

efficient than transforming a 2DFA to a DFA, as per another construction by Kapoutsis [6] (a
comparison for small values of n shall be given later on in Table 2).

Note that the number of profiles,
∑n

k=1

(
n
k−1

)(
n
k

)
k! > n!, is much larger than the number of

frontiers,
∑n

k=1

(
n
k−1

)(
n
k

)
=
(

2n
n−1

)
6 4n.
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4 The preparatory work for lower bound

A lower bound on the state complexity of transforming a 2DFA to a UFA is based on a wit-
ness language recognized by a small 2DFA, for which every equivalent UFA would require a
substantial number of states.

4.1 The witness language and its 2DFA

The witness language is defined over an alphabet Γ = ({1, . . . , n} ∪ { f | f : {1, . . . , n} →
{1, . . . , n} is a partial function }) × {l, r}, and is recognized by a 2DFA Dn with the set of
states Q = {1, . . . , n}, with q0 = 1 and F = {1}. It uses the following transitions, defined for
all x, y ∈ Q and f, g : {1, . . . , n} → {1, . . . , n}.

δ(q0,`) = (q0,+1), δ(q, (x, l)) = (x,+1), δ(q, (f, l)) =

{
(f(q),+1), if f(q) is defined

(q0,−1), otherwise

δ(q, (g, r)) =

{
(g(q),−1), if g(q) is defined

(q,+1), otherwise
δ(q, (y, r)) =

{
(q0,+1), if q = y

(q,−1), otherwise

This is the automaton used by Kapoutsis [6] in his lower bound for the transformation of
a 2NFA to an NFA. Following Kapoutsis, the subsequent proof uses four-symbol strings of
the form (x, l) (f, l) (g, r) (y, r), with x, y ∈ Q and with partial functions f, g, where f(x) is
defined and g(y) is not. These strings correspond to directed (n, n)-bipartite graphs, with f
representing arrows from left to right, and g, from right to left. The automaton Dn then verifies,
whether there is a path from x in the left part to y on the right.

The rest of this work is concerned with proving a lower bound on the size of every UFA
recognizing the language L(Dn). The only known method for proving such lower bounds is the
following theorem.

Theorem B (Schmidt [15], see also Leung [10]). Let L be a regular language, and let (x1, y1),
. . . , (xn, yn) be pairs of strings. Let M be an integer matrix defined by Mi,j = 1, if xiyj ∈ L,
and Mi,j = 0 otherwise. Then, every UFA for L has at least rankM states.

Sketch of a proof. Let U be a UFA that recognizes the language L. Construct the following
matrix M ′ with rows corresponding to the states of U and columns corresponding to the strings
yi, with values M ′

q,yi
= 1 if yi ∈ Lq(U) (yi is accepted from state q) and M ′

q,yi
= 0 otherwise.

Note that every row of the matrix M is a sum of some rows of the matrix M ′; namely, of
those that correspond to states reachable from q0 after reading xi. Hence, M ′ cannot contain
fewer than rankM rows, and the number of states of U is at least rankM .

4.2 The choice of strings for Schmidt’s theorem

In addition to the prefix profiles, describing a computation of an automaton on a prefix, a new
type of profile shall be introduced.

Definition 4. A suffix profile is a triple (g, P,R), where P,R ⊆ Q, |P | + 1 = |R|, and
g : R→ P ∪ {Accept} is a bijection.

For a given computation of automaton on the string uv, the suffix profile of v complements
the prefix profile of u. The function g in the suffix profile is constructed in a similar way as
in the prefix profile: for any state q, the state g(q) is the state in which the automaton first
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xP,R,f yg,P,R
START x

ACCEPTy

P
Rf'

g'

Figure 5: An example of interaction between a prefix profile and a matching suffix profile.

crosses the border between u and v in this computation after visiting the first symbol of v in
the state q — or g(q) = Accept, if it accepts without crossing this border.

How many suffix profiles are there? For fixed P and R with |R| = k, there are k! ways to
choose a prefix profile (P,R, f) and k! ways to choose a suffix profile (g, P,R). So, the number
of suffix profiles is equal to the number of prefix profiles.

The strings for Schmidt’s theorem are chosen as follows. Let (P,R, f) be a prefix profile,
where f : P ∪ {Start} → R is a bijection, and let x ∈ {1, . . . , n}, with x /∈ P ; such an x
exists, since |P | < n. Let f ′ : P ∪ {x} → R be a function defined by f ′(p) = f(p) for p ∈ P ,
and f ′(x) = f(Start). Then, define xP,R,f = (x, l) (f ′, l). The state x is added to create a
bijection.

Next, for a suffix profile (g, S, T ), let y be the element of T such that g(y) = Accept. Let
g′ : T \ {y} → S be a function defined by g′(r) = g(r). Define yg,S,T = (g′, r) (y, r). Again, the
state y is removed to create a bijection.

For the computation of some 2UFA on a string uv, the prefix profile (P,R, f) of u and the
suffix profile (g, P,R) of v define strings xP,R,f and yg,P,R that contain functions f ′ and g′ which
complement each other to a full path. Figure 5 illustrates this relation.

Note that f ′(x) is defined and g′(y) is not, otherwise the string xP,R,f yg,S,T would have no
chance to be accepted by Dn.

The strings xP,R,f and yg,S,T are constructed in such a way, that (P,R, f) is the largest prefix
profile of Dn on the string xP,R,f , and (g, S, T ) is the largest suffix profile of Dn on the string
yg,S,T .

Let M (n) be the square matrix defined for these strings in Schmidt’s theorem. Each row
corresponds to a prefix profile (P,R, f), each column corresponds to a suffix profile (g, S, T ),

and the element at their intersection is denoted by M
(n)
(P,R,f),(g,S,T ). The order of the matrix is

the total number of profiles, that is,
∑n

k=1

(
n
k−1

)(
n
k

)
k!.

Definition 5. On an input (x, l) (f, l) (g, r) (y, r), the automaton Dn is said to use the left-to-
right arrow from p to r, if, at some point in its computation, Dn is in the state p on the symbol
(f, l), and f(p) = r. Similarly, Dn uses the right-to-left arrow from r to p, if, at some point,
Dn is in the state r at (g, r), and g(r) = p.

In order to estimate the rank of this matrix, it shall first be subjected to a series of rank-
preserving transformations.

4.3 Inclusion-exclusion formula for rows

The first transformation considers rows and replaces them with linear combinations of the
original matrix’ rows in a reversible way, such that the rank is preserved. In order to do that,
several lemmata shall be proved first.
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Definition 6. A prefix profile (P ′, R′, f ′) shall be called a subprofile of a prefix profile (P,R, f),
if P ′ ⊆ P , R′ ⊆ R and f ′(p) = f(p) for all p ∈ P ′∪{Start}. Notation: (P ′, R′, f ′) 4 (P,R, f).

Lemma 2. Let (P ′, R′, f ′) 4 (P,R, f) be two prefix profiles, and let (g, S, T ) be a suffix profile

such that M
(n)
(P ′,R′,f ′),(g,S,T ) = 1. Then M

(n)
(P,R,f),(g,S,T ) = 1. Furthermore, the computations of Dn

on strings xP ′,R′,f ′ yg,S,T and xP,R,f yg,S,T are the same, except at the second step (when Dn visits
second symbol for the first time).

In other words: if there already is a path, then the addition of new left-to-right arrows will
not change it.

Proof. Let (xf ′ , l) be the first symbol of the string xP ′,R′,f ′ yg,S,T , and let (xf , l) be the first
symbol of the string xP,R,f yg,S,T .

The lemma is proved by induction on the step number k, starting from k = 3. After
three steps, the computation on xP ′,R′,f ′ yg,S,T gets to the third symbol in the state f ′(Start),
and the computation on xP,R,f yg,S,T gets to the third symbol in the state f(Start); since
f(Start) = f ′(Start), the induction base is proven.

After that, if k is even, then the k-th computation step depends only on the third symbol,
and third symbols in the strings xP ′,R′,f ′ yg,S,T and xP,R,f yg,S,T are equal. If k is odd, then
both computations before the k-th step were either on the fourth symbol (and they proceed
identically, since the fourth symbols are equal), or on the second symbol. If they were on the
second symbol, then the next step is identical for all states except xf ′ and xf (if they are not
equal), and states from P \ P ′. In the former case, computation on xP ′,R′,f ′ yg,S,T would loop,
which is a contradiction. In the latter two cases, it would not be accepting, since the second
symbol of the string xP ′,R′,f ′ yg,S,T lacks arrow from xf , because xf 6= xf ′ , xf /∈ P ⊇ P ′ and
(P \ P ′) ∪ P ′ = ∅.

As the computations are equal, their outcomes are also the same. Hence, M
(n)
(P,R,f),(g,S,T ) =

1.

Lemma 3. Let (P ′, R′, f ′) 4 (P,R, f) be two prefix profiles, and let (g, S, T ) be a suffix profile

such that M
(n)
(P,R,f),(g,S,T ) = 0. Then, M

(n)
(P ′,R′,f ′),(g,S,T ) = 0.

In other words: if there is no path, then the deletion of left-to-right arrows will not create a
new one.

Proof. Assume otherwise, that M
(n)
(P ′,R′,f ′),(g,S,T ) = 1. By Lemma 2, then M

(n)
(P,R,f),(g,S,T ) = 1,

which yields a contradiction.

Lemma 4. Let (P ′′, R′′, f ′′) 4 (P ′, R′, f ′) 4 (P,R, f) be prefix profiles, and let (g, S, T ) be a
suffix profile such that Dn on the string xP,R,f yg,S,T never visits the second symbol in a state

from P ′ \ P ′′. Then, M
(n)
(P ′,R′,f ′),(g,S,T ) = M

(n)
(P ′′,R′′,f ′′),(g,S,T ).

In other words: if path does not use some left-to-right arrows, then their removal will not
affect the existence of a path.

Proof. If M
(n)
(P ′,R′,f ′),(g,S,T ) = 0, then, by Lemma 3, M

(n)
(P ′′,R′′,f ′′),(g,S,T ) = 0, and the lemma is

proved.
Suppose then, that M

(n)
(P ′,R′,f ′),(g,S,T ) = 1. By Lemma 2, the computations of Dn on strings

xP,R,f yg,S,T and xP ′,R′,f ′ yg,S,T coincide (with one exception). Hence, Dn never visits the second
symbol in any state from P ′ \P ′′ on string xP ′,R′,f ′ yg,S,T . Then, this computation (with a state
change for the second step) is also an accepting computation on the string xP ′′,R′′,f ′′ yg,S,T . This
can be proved by the same induction as in Lemma 2, with a slight modification when k is odd
(the next step is not identical for q ∈ P ′ \ P ′′, but the computation on the string xP ′,R′,f ′ yg,S,T
never enters the second symbol in those states).
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Definition 7. Define a new square integer matrix L(n) of the same order as M (n), with rows
and columns indexed by prefix and suffix profiles, respectively. Each element L

(n)
(P,R,f),(g,S,T )

is defined as 1, if Dn accepts the string xP,R,f yg,S,T and uses all left-to-right arrows in the

corresponding graph. Otherwise, L
(n)
(P,R,f),(g,S,T ) = 0.

It turns out that the rows of L(n) are linear combinations of the rows of M (n) expressed by
the inclusion–exclusion principle.

Lemma 5. Let (P,R, f) be a prefix profile and let (g, S, T ) be a suffix profile. Then,

L
(n)
(P,R,f),(g,S,T ) =

∑
(P ′,R′,f ′)4(P,R,f)

(−1)|P |−|P
′|M

(n)
(P ′,R′,f ′),(g,S,T )

M
(n)
(P,R,f),(g,S,T ) =

∑
(P ′,R′,f ′)4(P,R,f)

L
(n)
(P ′,R′,f ′),(g,S,T )

Accordingly, rankL(n) = rankM (n).

Proof. The first equality follows from the second one, because∑
(P ′,R′,f ′)4(P,R,f)

(−1)|P |−|P
′|M

(n)
(P ′,R′,f ′),(g,S,T ) =

=
∑

(P ′′,R′′,f ′′)4(P ′,R′,f ′)4(P,R,f)

(−1)|P |−|P
′|L

(n)
(P ′′,R′′,f ′′),(g,S,T ) =

= L
(n)
(P,R,f),(g,S,T )

The last equality shall be expained in more detail. For any given prefix subprofile
(P ′′, R′′, f ′′) 4 (P,R, f), the expression L

(n)
(P ′′,R′′,f ′′),(g,S,T ) is present in the sum with coef-

ficient
∑

(P ′′,R′′,f ′′)4(P ′,R′,f ′)4(P,R,f)(−1)|P |−|P
′|. If (P ′′, R′′, f ′′) = (P,R, f), then necessarily

(P ′, R′, f ′) = (P,R, f), and this coefficient is equal to 1. Suppose then, that (P ′′, R′′, f ′′) 6=
(P,R, f); let m = |P |− |P ′′| (m > 0). There are 2m−1 ways to delete odd number of arrows out
of m arrows, so there are 2m−1 prefix profiles (P ′, R′, f ′) for which |P | − |P ′| is odd, and each
of them adds -1 to coefficient. Similarly, there are 2m−1 prefix profiles (P ′, R′, f ′) for which
|P | − |P ′| is even, and each of them adds 1 to coefficient. Those two groups cancel themselves
out, and resulting coefficient is 0.

If M
(n)
(P,R,f),(g,S,T ) = 0, then, by Lemma 3, M

(n)
(P ′,R′,f ′),(g,S,T ) = 0 holds for every prefix subprofile

(P ′, R′, f ′). Then, L
(n)
(P ′,R′,f ′),(g,S,T ) = 0 for every prefix subprofile (P ′, R′, f ′) of prefix profile

(P,R, f), and
∑

(P ′,R′,f ′)4(P,R,f) L
(n)
(P ′,R′,f ′),(g,S,T ) = 0. Hence, the second equality is true in this

case.
If M

(n)
(P,R,f),(g,S,T ) = 1, let P0 be the set of all states in which Dn visits the second symbol of

the string xP,R,f yg,S,T , except for the first visit.

If L
(n)
(P ′,R′,f ′),(g,S,T ) = 1 for some subprofile (P ′, R′, f ′) of profile (P,R, f), then

M
(n)
(P ′,R′,f ′),(g,S,T ) = 1, and, by Lemma 2, the computations of Dn on the strings xP ′,R′,f ′ yg,S,T and

xP,R,f yg,S,T coincide (with one exception related to the first visit of the second symbol). Since
Dn uses all left-to-right arrows on the string xP ′,R′,f ′ yg,S,T , then P ′ = P0. Then the subprofile
(P ′, R′, f ′) with P ′ = P0 is uniquely defined by restricting f to P0 ∪ {Start}. Therefore,∑

(P ′,R′,f ′)4(P,R,f) L
(n)
(P ′,R′,f ′),(g,S,T ) 6 1.

For the subprofile (P ′, R′, f ′), with P ′ = P0, Lemma 4 asserts that M
(n)
(P ′,R′,f ′),(g,S,T ) = 1,

since P0 and P \ P0 have no common elements. Then, L
(n)
(P ′,R′,f ′),(g,S,T ) = 1 for that subprofile
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(P ′, R′, f ′), and
∑

(P ′,R′,f ′)4(P,R,f) L
(n)
(P ′,R′,f ′),(g,S,T ) > 1. Hence, the second equality holds true in

this case as well.
Concerning the rank, the rows of L(n) are linear combinations of the rows of M (n), and vice

versa. Therefore, rankL(n) = rankM (n).

4.4 Inclusion-exclusion formula for columns

The columns of the matrix shall now be transformed by the same method.

Definition 8. A suffix profile (g′, S ′, T ′) shall be called a subprofile of a suffix profile (g, S, T ),
if S ′ ⊆ S, T ′ ⊆ T and g′(q) = g(q) for all q ∈ T ′. Notation: (g′, S ′, T ′) 4 (g, S, T ).

Lemma 6. Let (P,R, f) be a prefix profile, and let (g′, S ′, T ′) 4 (g, S, T ) be two suffix profiles

such that M
(n)
(P,R,f),(g′,S′,T ′) = 1. Then M

(n)
(P,R,f),(g,S,T ) = 1. Furthermore, the computations of Dn

on strings xP,R,f yg′,S′,T ′ and xP,R,f yg,S,T are the same.
In other words: if there already is a path, then the addition of new right-to-left arrows will

not change it.

Proof. Let (xf , l) be the first symbol of the strings xP,R,f yg′,S′,T ′ , and xP,R,f yg,S,T .
The lemma is proved by induction on the step number k, starting from k = 2. After two

steps, computations on xP,R,f yg′,S′,T ′ and xP,R,f yg,S,T get to the second symbol in the state xf .
Hence, the induction base is proven.

After that, if k is odd, then before the k-th step both computations were either on the
fourth symbol (and they proceed identically, since the fourth symbols are equal), or on the
second symbol, which are also equal. If k is even, then both computations were on the third
symbol, and the next step is identical for all states except those from T \ T ′, but then the
computation on xP,R,f yg′,S′,T ′ would not be accepting.

As the computations are equal, their outcomes are also the same.

Lemma 7. Let (P,R, f) be a prefix profile, and let (g′, S ′, T ′) 4 (g, S, T ) be two suffix profiles

such that L
(n)
(P,R,f),(g′,S′,T ′) = 1. Then L

(n)
(P,R,f),(g,S,T ) = 1.

In other words: if a path uses all left-to-right arrows, then the addition of new right-to-left
arrows would not change that.

Proof. Since L
(n)
(P,R,f),(g′,S′,T ′) = 1, then M

(n)
(P,R,f),(g′,S′,T ′) = 1. By Lemma 6, M

(n)
(P,R,f),(g,S,T ) = 1

and the computations of Dn on strings xP,R,f yg′,S′,T ′ and xP,R,f yg,S,T coincide. Then the sets
of used left-to-right arrows also coincide. Since Dn uses all left-to-right arrows on the string
xP,R,f yg′,S′,T ′ , the same holds for the computation on xP,R,f yg,S,T , and L

(n)
(P,R,f),(g,S,T ) = 1.

Lemma 8. Let (P,R, f) be a prefix profile, and let (g′, S ′, T ′) 4 (g, S, T ) be two suffix profiles

such that L
(n)
(P,R,f),(g,S,T ) = 0. Then, L

(n)
(P,R,f),(g′,S′,T ′) = 0.

In other words: if there is no path that uses all left-to-right arrows, then the deletion of
right-to-left arrows would not create a new one.

Proof. Assume otherwise, that L
(n)
(P,R,f),(g′,S′,T ′) = 1. By Lemma 7, then L

(n)
(P,R,f),(g,S,T ) = 1, which

yields a contradiction.

Lemma 9. Let (P,R, f) be a prefix profile, and let (g′′, S ′′, T ′′) 4 (g′, S ′, T ′) 4 (g, S, T ) be
suffix profiles such that Dn on the string xP,R,f yg,S,T never visits the third symbol in a state

from T ′ \ T ′′. Then, M
(n)
(P,R,f),(g′,S′,T ′) = M

(n)
(P,R,f),(g′′,S′′,T ′′).

In other words: if path does not use some right-to-left arrows, then their removal would not
affect the existence of a path.
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Proof. If M
(n)
(P,R,f),(g′,S′,T ′) = 0, then, by Lemma 6, M

(n)
(P,R,f),(g′′,S′′,T ′′) should also be 0, and the

lemma is proved.
Suppose then, that M

(n)
(P,R,f),(g′,S′,T ′) = 1. By Lemma 6, the computations of Dn on strings

xP,R,f yg,S,T and xP,R,f yg′,S′,T ′ coincide. Hence, Dn never visits the third symbol in any state
from T ′ \ T ′′ on the string xP,R,f yg′,S′,T ′ . Then, this computation is also an accepting compu-
tation on the string xP,R,f yg′′,S′′,T ′′ . This can be proved by the same induction as in Lemma 6,
with a slight modification for even k (the next step is not identical for q ∈ T ′ \ T ′′, but the
computation on the string xP,R,f yg′,S′,T ′ never enters the third symbol in those states).

Lemma 10. Let (P,R, f) be a prefix profile, and let (g1, S1, T1) and (g2, S2, T2) be two suffix

profiles. Suppose that M
(n)
(P ′,R′,f ′),(g1,S1,T1) = M

(n)
(P ′,R′,f ′),(g2,S2,T2) for every profile (P ′, R′, f ′) 4

(P,R, f). Then, L
(n)
(P,R,f),(g1,S1,T1) = L

(n)
(P,R,f),(g2,S2,T2).

Proof. By Lemma 5, L
(n)
(P,R,f),(g1,S1,T1) =

∑
(P ′,R′,f ′)4(P,R,f)(−1)|P |−|P

′|M
(n)
(P ′,R′,f ′),(g1,S1,T1) =∑

(P ′,R′,f ′)4(P,R,f)(−1)|P |−|P
′|M

(n)
(P ′,R′,f ′),(g2,S2,T2) = L

(n)
(P,R,f),(g2,S2,T2).

Lemma 11. Let (P,R, f) be a prefix profile, and let (g′′, S ′′, T ′′) 4 (g′, S ′, T ′) 4 (g, S, T ) be
suffix profiles such that Dn on the string xP,R,f yg,S,T never visits the third symbol in a state

from T ′ \ T ′′. Then, L
(n)
(P,R,f),(g′,S′,T ′) = L

(n)
(P,R,f),(g′′,S′′,T ′′).

Proof. In order to prove that using Lemma 10, it shall be shown that M
(n)
(P ′,R′,f ′),(g′,S′,T ′) =

M
(n)
(P ′,R′,f ′),(g′′,S′′,T ′′) for every prefix profile (P ′, R′, f ′) 4 (P,R, f).

If M
(n)
(P ′,R′,f ′),(g,S,T ) = 0, then, by Lemma 6, M

(n)
(P ′,R′,f ′),(g′,S′,T ′) and M

(n)
(P ′,R′,f ′),(g′′,S′′,T ′′) should

also be 0, and, in particular, M
(n)
(P ′,R′,f ′),(g′,S′,T ′) = M

(n)
(P ′,R′,f ′),(g′′,S′′,T ′′).

Suppose then, that M
(n)
(P ′,R′,f ′),(g,S,T ) = 1. By Lemma 2, the computations of Dn on strings

xP,R,f yg,S,T and xP ′,R′,f ′ yg,S,T coincide (with one exception, which does not affect the third
symbol). Hence, Dn never visits the third symbol in any state from T ′ \ T ′′ on the string

xP ′,R′,f ′ yg,S,T . Then, by Lemma 9, M
(n)
(P ′,R′,f ′),(g′,S′,T ′) = M

(n)
(P ′,R′,f ′),(g′′,S′′,T ′′).

Since M
(n)
(P ′,R′,f ′),(g′,S′,T ′) = M

(n)
(P ′,R′,f ′),(g′′,S′′,T ′′) for every prefix profile (P ′, R′, f ′) 4 (P,R, f),

then, by Lemma 10, L
(n)
(P,R,f),(g′,S′,T ′) = L

(n)
(P,R,f),(g′′,S′′,T ′′).

Definition 9. Define yet another integer matrix K(n) of the same dimensions as M (n) and L(n),
with its rows and columns again indexed by prefix profiles and suffix profiles respectively. Let
K

(n)
(P,R,f),(g,S,T ) be 1, if Dn accepts xP,R,f yg,S,T and uses all left-to-right and right-to-left arrows

in the corresponding graph. Otherwise, let this element be 0.

Lemma 12. Let (P,R, f) be a prefix profile, and let (g, S, T ) be a suffix profile. Then,

K
(n)
(P,R,f),(g,S,T ) =

∑
(g′,S′,T ′)4(g,S,T )

(−1)|T |−|T
′|L

(n)
(P,R,f),(g′,S′,T ′)

L
(n)
(P,R,f),(g,S,T ) =

∑
(g′,S′,T ′)4(g,S,T )

K
(n)
(P,R,f),(g′,S′,T ′)

In particular, rankK(n) = rankL(n).
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Proof. The first equality follows from the second one, because∑
(g′,S′,T ′)4(g,S,T )

(−1)|T |−|T
′|L

(n)
(P,R,f),(g′,S′,T ′) =

=
∑

(g′′,S′′,T ′′)4(g′,S′,T ′)4(g,S,T )

(−1)|T |−|T
′|K

(n)
(P,R,f),(g′′,S′′,T ′′) =

= K
(n)
(P,R,f),(g,S,T )

The last equality shall be expained in more detail. For any given suffix subprofile
(g′′, S ′′, T ′′) 4 (g, S, T ), the expression K

(n)
(P,R,f),(g′′,S′′,T ′′) is present in the sum with coefficient∑

(g′′,S′′,T ′′)4(g′,S′,T ′)4(g,S,T )(−1)|T |−|T
′|. If (g′′, S ′′, T ′′) = (g, S, T ), then necessarily (g′, S ′, T ′) =

(g, S, T ), and this coefficient is equal to 1. Suppose then, that (g′′, S ′′, T ′′) 6= (g, S, T ); let
m = |T |− |T ′′| (m > 0). There are 2m−1 ways to delete odd number of arrows out of m arrows,
so there are 2m−1 suffix profiles (g′, S ′, T ′) for which |T | − |T ′| is odd, and each of them adds
-1 to coefficient. Similarly, there are 2m−1 suffix profiles (g′, S ′, T ′) for which |T | − |T ′| is even,
and each of them adds 1 to coefficient. Those two groups cancel themselves out, and resulting
coefficient is 0.

If L
(n)
(P,R,f),(g,S,T ) = 0, then, by Lemma 8, L

(n)
(P,R,f),(g′,S′,T ′) = 0 holds for every suffix subprofile

(g′, S ′, T ′). Then, K
(n)
(P,R,f),(g′,S′,T ′) = 0 for every suffix subprofile (g′, S ′, T ′) of suffix profile

(g, S, T ), and
∑

(g′,S′,T ′)4(g,S,T ) K
(n)
(P,R,f),(g′,S′,T ′) = 0. Hence, the second equality is true in this

case.
If L

(n)
(P,R,f),(g,S,T ) = 1, let T0 be the set of all states in which Dn visits the third symbol of the

string xP,R,f yg,S,T .

If K
(n)
(P,R,f),(g′,S′,T ′) = 1 for some suffix subprofile (S ′, T ′, g′) of profile (S, T, g), then

M
(n)
(P,R,f),(g′,S′,T ′) = 1, and, by Lemma 6, the computations of Dn on the strings xP,R,f yg′,S′,T ′

and xP,R,f yg,S,T coincide. Since Dn uses all right-to-left arrows on the string xP,R,f yg′,S′,T ′ ,
then T ′ = T0. There is exactly one suffix subprofile (g′, S ′, T ′) with T ′ = T0, hence∑

(g′,S′,T ′)4(g,S,T ) K
(n)
(P,R,f),(g′,S′,T ′) 6 1.

For the subprofile (g′, S ′, T ′), with T ′ = T0, Lemma 9 asserts that M
(n)
(P ′,R′,f ′),(g,S,T ) =

M
(n)
(P ′,R′,f ′),(g′,S′,T ′) for every prefix profile (P ′, R′, f ′) 4 (P,R, f), since T0 and T \ T0

have no common elements. By Lemma 10, then L
(n)
(P,R,f),(g,S,T ) = L

(n)
(P,R,f),(g′,S′,T ′), and

L
(n)
(P,R,f),(g′,S′,T ′) = 1. Then, K

(n)
(P,R,f),(g′,S′,T ′) = 1 for that suffix subprofile (g′, S ′, T ′), and∑

(g′,S′,T ′)4(g,S,T ) K
(n)
(P,R,f),(g′,S′,T ′) > 1. Hence, the second equality holds true in this case as

well.
Concerning the rank, the rows of K(n) are linear combinations of the rows of L(n), and vice

versa. Therefore, rankK(n) = rankL(n).

The above transformations of the matrix M (3), which is of size 39 × 39, are given in Fig-
ure 6. The prefix profiles (P,R, f) are enumerated by ordering them first by |P |, and then
lexicographically by P , by R and finally by the values of f . The suffix profiles (g, S, T ) are
similarly ordered first by |S|, and then lexicographically by S, by T and finally by the values
of g.

4.5 The structure of the matrix after transformations

The figure suggests that the matrix K(3) is block diagonal. This is proved as follows.
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M (3) L(3) K(3)

Figure 6: Transformation of M (3). Each filled square contains 1, each empty square has 0.

Lemma 13. Let (P,R, f) be a prefix profile, and let (g, S, T ) be a suffix profile with (P,R) 6=
(S, T ). Then, K

(n)
(P,R,f),(g,S,T ) = 0.

Proof. Consider the string xP,R,f yg,S,T = (x, l)(f ′, l)(g′, r)(y, r). Assume the contrary, that

K
(n)
(P,R,f),(g,S,T ) = 1. Then, Dn uses all left-to-right arrows in the corresponding graph. In

particular, the set of states in which Dn arrives to (g′, r) from (f ′, l) is R, since these are the
heads of all left-to-right arrows, and the set of states in which Dn arrives to (f ′, l) from (g′, r)
is P : the tails of all left-to-right arrows, except the arrow from x to f(Start).

At the same time, Dn uses all right-to-left arrows, and the set of states in which Dn arrives
to (g′, r) from (f ′, l) is T , these are the tails of all right-to-left arrows with the addition of
y, for which g(y) = Accept; the states in which Dn arrives to (f ′, l) from (g′, r) is S, these
are the heads of right-to-left arrows. Therefore, P = S and R = T , which contradicts the
assumption.

Thus the matrix K(n) is organized into blocks corresponding to different pairs (P,R).

4.6 The matrix for permutations

The next important observation is that the blocks corresponding to pairs (P1, R1) and
(P2, R2), with |P1| = |P2|, are identical up to permutations of rows and columns. In-
deed, let g : P1 → P2 and h : R1 → R2 be fixed bijections. Then, for a prefix profile (P1, R1, f),
set g(Start) = Start, and let the corresponding prefix profile be (P2, R2, h ◦ f ◦ g−1). Ac-
cordingly, for a suffix profile (f, P1, R1), set g(Accept) = Accept, and let the corresponding
suffix profile be (g ◦ f ◦ h−1, P2, R2). The existence of a path in a bipartite graph is invariant
to such permutations of vertices. This block is denoted by P (k), where k = |R1| = |R2|.

Definition 10. Let 1 6 k 6 n. The matrix for permutations P (k) is a k!×k! submatrix of K(n)

that consists of rows and columns corresponding to profiles (P,R, f) with P = {1, . . . , k−1} and
R = {1, . . . , k}. Its rows and columns are still indexed by prefix and suffix profiles prespectively,

that is, the element corresponding to the functions f and g is denoted by P
(k)
(P,R,f),(g,P,R).

The form of the matrix P (k) for k = 2, 3, 4 is presented in Figure 10. White squares represent
zeroes, the rest of the squares contain 1.

Lemma 14. rankK(n) =
∑n

k=1

(
n
k−1

)(
n
k

)
rankP (k)
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Figure 7: M (4).

Proof. By Lemma 13, the matrix K(n) is block diagonal, and hence rankK(n) is a sum of
ranks of independent blocks. Since the blocks with the same |P | are equivalent, each block is
equivalent to the matrix for permutations P (k) with k − 1 = |P |. There are

(
n
k−1

)(
n
k

)
different

ways to choose a pair (P,R) so that |P | = k−1, hence for every k from 1 to n there are
(
n
k−1

)(
n
k

)
blocks in K(n) that are equivalent to P (k). This gives the formula.

Thus, it is sufficient to estimate the rank of the matrix for permutations.

Definition 11. Let (P,R, f) be a prefix profile with P = {1, . . . , k − 1} and R = {1, . . . , k}.
Then, the permutation corresponding to (P,R, f) is a function g : {1, . . . , k} → {1, . . . , k} de-
fined by g(p) = f(p) for p ∈ P , and g(k) = f(Start).

Definition 12. Let (f, P,R) be a suffix profile with P = {1, . . . , k − 1} and R = {1, . . . , k}.
Then, the permutation corresponding to (f, P,R) is a function g : {1, . . . , k} → {1, . . . , k} de-
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Figure 8: The matrix L(4), obtained after transformation of M (4).

fined by g(p) = f(p) for p ∈ R \ {y}, and g(y) = k, where y ∈ R is the state such that
f(y) = Accept.

Note that, conversely, each permutation has a unique corresponding prefix profile, and an
unique corresponding suffix profile of this form.

The elements of P (k) are characterized entirely in terms of permutations as follows. Let
(P,R, f1) be a prefix profile, and let (f2, P, R) be a suffix profile, with P = {1, . . . , k − 1}
and R = {1, . . . , k}. Let g1 and g2 be the corresponding permutations. Denote P

(k)
g1,g2 =

P
(k)
(P,R,f1),(f2,P,R).

Lemma 15. P
(k)
g1,g2 = 1 if and only if the permutation g2 ◦ g1 is cyclic.

Proof. Let (P,R, f1) and (f2, P, R) be profiles corresponding to g1 and to g2, respectively.
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Figure 9: The matrix K(4), obtained after transformation of L(4).

Consider the computation of Dk on the string xP,R,f1 yf2,P,R = (x, l)(f ′1, l)(f ′2, r)(y, r). Then
x = k, because P = {1, . . . , k − 1}, and y ∈ R is the state such that f2(y) = Accept, and
g2(y) = k. The automaton first moves to (f ′1, l) in the state k, and then alternates between
the second and the third symbols. This computation is depicted on Figure 12.

Consider the sequence of states, in which it visits the second symbol (f ′1, l). The sequence
begins with k. In a state q, the automaton moves to the third symbol in the state g1(q), and
then immediately returns to the second symbol in the state g2 ◦ g1(q), as long as g1(q) is not
equal to y = g−1

2 (k), which is equivalent to g2 ◦ g1(q) 6= k.

⇒© If P
(k)
g1,g2 = 1, then the element P

(k)
(P,R,f1),(f2,P,R) is 1. As P (k) is a submatrix of K(k), the

element K
(k)
(P,R,f1),(f2,P,R) is 1 as well. By definition, this means that Dk accepts xP,R,f1 yf2,P,R,

using all arrows in both directions in its computation.
The above sequence of states must contain all states, since the automaton uses all left-to-
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Figure 10: The matrices P (2), P (3) and P (4).

right arrows in its computation. Therefore, one can reach all states by applying g2 ◦ g1 starting
from k, and this exactly means that this permutation is cyclic.
⇐© Assuming that the permutation g2 ◦ g1 is cyclic, the above sequence must contain all

states, which means that all arrows in both directions are used. The sequence is concluded
with a state q satisfying g2 ◦ g1(q) = k, and then Dk accepts. Therefore, P

(k)
g1,g2 = 1.

The results obtained in this section can be summed up in the following theorem:

Theorem 2. For every n > 1, there exists a language recognized by an n-state 2DFA, for which
every UFA requires at least

∑n
k=1

(
n
k−1

)(
n
k

)
rankP (k) states, where P (k) is a k!× k! matrix, with

its rows and columns corresponding to pertumations, and P
(k)
g1,g2 = 1 if and only if g2 ◦ g1 is a

cyclic permutation.

Proof. Consider the language described in the Section 4.1. It is recognized by an n-state 2DFA.
By Theorem B, any UFA that recognizes this language should have at least rankM (n) states.
By Lemma 5, the ranks of matrices M (n) and L(n) are equal. By Lemma 12, the same is true
for L(n) and K(n). By Lemma 14, the rank of K(n) is equal to

∑n
k=1

(
n
k−1

)(
n
k

)
rankP (k). Finally,

Lemma 15 provides an alternate definition of P (k). The statement of the theorem follows.

The only thing left is to determine the rank of one particular matrix, P (k).

5 Estimating the rank of the matrix for permutations

5.1 Simple estimation of the rank

First, an easy lower bound can be obtained using purely combinatorial observations. The proof
is based on an argument that P (k) has a submatrix

(
0 P (k−1)

P (k−1) 0

)
, which can be observed in

Figure 10.

Lemma 16. Let k be an integer greater than 1. Let g1, g2 : {1, . . . , k} → {1, . . . , k} be two

permutations such that g1(k) = g2(k). Then, P
(k)

g1,g
−1
2

= 0.

Proof. Assume otherwise, that P
(k)

g1,g
−1
2

= 1. Then, by Lemma 15, g−1
2 ◦g1 is a cyclic permutation.

However, g−1
2 ◦ g1(k) = k, so g−1

2 ◦ g1 contains a cycle of length 1 6= k, which leads to a
contradiction.
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Figure 11: P (5).

25



⊢

g1

g2

⊣(k,l) (f1',l) (f2',r) (g2
-1(k),r)

Figure 12: A computation of Dk on the string xP,R,f1 yP,R,f2 , where profiles (P,R, f1) and
(P,R, f2) correspond to permutations g1 and g−1

2 , respectively.

Lemma 17. Let k be an integer. Let g1, g2 : {1, . . . , k} → {1, . . . , k} be two permutations.

Then, P
(k)

g1,g
−1
2

= P
(k)

g2,g
−1
1

(symmetry of the matrix for permutations).

Proof. An inverse of cyclic permutation is also cyclic. Hence, g−1
2 ◦ g1 is cyclic if and only if

(g−1
2 ◦ g1)−1 = g−1

1 ◦ g2 is cyclic. Then, by Lemma 15, P
(k)

g1,g
−1
2

= 1 if and only if P
(k)

g2,g
−1
1

= 1,

which means that P
(k)

g1,g
−1
2

= P
(k)

g2,g
−1
1

.

Lemma 18. Let k be an integer greater than 1. Let g1, g2 : {1, . . . , k} → {1, . . . , k} be two
permutations such that g1(k) = k, g2(k) = k − 1. Define two permutations g̃1, g̃2 : {1, . . . , k −
1} → {1, . . . , k − 1} as follows:

g̃1(p) = g1(p)

g̃2(p) =

{
g2(p), g2(p) 6= k

k − 1, g2(p) = k

Then, P
(k)

g1,g
−1
2

= P
(k−1)

g̃1,g̃
−1
2

.

Proof. The goal is to prove that g−1
2 ◦ g1 is cyclic if and only if g̃−1

2 ◦ g̃1 is cyclic. For that, the
values of g̃−1

2 ◦ g̃1 shall be expressed through the values of g−1
2 ◦ g1.

Let p ∈ {1, . . . , k − 1}. Then, g1(p) = g̃1(p), and g−1
2 (p) = g̃−1

2 (p) if p 6= k − 1. Hence, for
every p such that p 6= g−1

1 (k − 1) it holds that g−1
2 ◦ g1(p) = g̃−1

2 ◦ g̃1(p).
If p = g−1

1 (k−1), then g̃−1
2 ◦g̃1(p) = g̃−1

2 (k−1) = g−1
2 (k) = g−1

2 ◦g1(k) = g−1
2 ◦g1◦g−1

2 (k−1) =
g−1

2 ◦ g1 ◦ g−1
2 ◦ g1(g−1

1 (k − 1)) = g−1
2 ◦ g1 ◦ g−1

2 ◦ g1(p), and two transitions of g−1
2 ◦ g1 collapse

into one transition of g̃−1
2 ◦ g̃1.

Therefore, g−1
2 ◦ g1 is cyclic if and only if g̃−1

2 ◦ g̃1 is cyclic. Then, by Lemma 15, P
(k)

g1,g
−1
2

= 1

if and only if P
(k−1)

g̃1,g̃
−1
2

= 1, which means that P
(k)

g1,g
−1
2

= P
(k−1)

g̃1,g̃
−1
2

.

Note that different permutations g2 yield different g̃2, since g2 can be restored from g̃2 by
changing the value k − 1 to k and adding g2(k) = k − 1.

The results are illustrated in Figure 10. By Lemma 16, the main diagonal contains k blocks
of zeroes; by Lemma 17, the matrix is symmetric; and, by Lemma 18, the matrix P (k) contains
blocks that are the same as P (k−1).

Lemma 19. Let k be an integer greater than 1. Then, rankP (k) > 2 · rankP (k−1).
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Proof. Let Mk be a submatrix of the matrix P (k) that contains only rows corresponding to
permutations g with g(k) = k−1 or g(k) = k, and columns corresponding to permutations g−1

with g(k) = k− 1 or g(k) = k. Rows and columns for which g(k) = k− 1, shall be called small,
and others, big.

By Lemma 16, the matrix Mk consists of two blocks, since if a row and a column are both
small or big, then their intersection contains 0. By Lemma 18, those two blocks are the same
up to the permutation of rows and columns. Since those blocks have no rows or columns in
common, the rank of Mk is a sum of ranks of those two blocks, which, by Lemma 18, are equal
to rankP (k−1). Hence, rankMk = 2 · rankP (k−1). Since rankMk 6 rankP (k), the lemma is
proved.

Theorem 3. rankP (k) > 2k−1.

Proof. The theorem is proved by induction on k. Base is rankP (1) = 1, and Lemma 19 gives
the induction step.

Corollary 1. For every n, there is a language recognized by an n-state 2DFA, for which every

UFA requires at least
∑n

k=1

(
n
k−1

)(
n
k

)
2k−1 = Ω

( (4
√

2)n√
n

)
states.

Proof. By Theorem B, for theDn with n states, every UFA recognizing this language has at least
rankM (n) states. By Lemma 5, rankM (n) = rankL(n). By Lemma 12, rankL(n) = rankK(n).
By Lemma 14, rankK(n) =

∑n
k=1

(
n
k−1

)(
n
k

)
rankP (k). Finally, by Theorem 3, rankP (k) > 2k−1.

Putting these together yields a lower bound in the form of a sum.
The desired asymptotic lower bound is obtained by casting away all summands with k < dn

2
e,

and by replacing 2k−1 with 2d
n
2
e−1 in the remaining summands.

n∑
k=1

(
n

k − 1

)(
n

k

)
2k−1 ≥ 2d

n
2
e−1 ·

n∑
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(
n
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)(
n

k

)
Next, note that

∑n
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2
e
(
n
k−1

)(
n
k

)
> 1
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∑n
k=1

(
n
k−1

)(
n
k

)
, because every k-th element of the latter

sum is equal to its (n − k + 1)-th element, as
(
n
k−1

)(
n
k

)
=
(

n
n−k+1

)(
n

n−k

)
. Then, the above sum

is further estimated as follows.

2d
n
2
e−1 ·

n∑
k=dn

2
e

(
n

k − 1

)(
n

k

)
≥ 2d

n
2
e−2 ·

n∑
k=1

(
n

k − 1

)(
n

k

)
=

= 2d
n
2
e−2 ·

n∑
k=1

(
n

k − 1

)(
n

n− k

)
= 2d

n
2
e−2

(
2n

n− 1

)
.

The asymptotics of the resulting expression are finally determined by Stirling’s approxima-
tion.

2d
n
2
e−2

(
2n

n− 1

)
= 2d

n
2
e−2 n

n+ 1

(
2n

n

)
= Ω

(
√

2
n
· (2n)2n

√
2n

n2n
√
n

2

)
=

= Ω

(√
2
n
· 4n√

n

)
= Ω

(
(4
√

2)n√
n

)
.

However, the actual rank of P (k) is higher. A better estimation is obtained using alge-
braic methods, by reformulating the problem in terms of group representation theory. A short
background is presented below, and for more details, a reader is directed to a monograph by
Sagan [16].
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5.2 The matrix for permutations as an action on group algebra

For convenience, P (k) shall be replaced with another k! × k! matrix Q(k), which has its rows
and columns indexed by permutations. The new matrix is defined by Q

(k)
g1,g2 = P

(k)

g−1
1 ,g2

, for every

two permutations g1 and g2; that is, Q
(k)
g1,g2 = 1 if g2 ◦ g−1

1 is cyclic. In order to determine its
rank, the matrix shall be represented as an action on a group algebra.

Let Sk be the group of permutations on k elements. Consider the group algebra C[Sk] = CSk :
this is a linear space over the complex numbers, with coordinates corresponding to permuta-
tions, and with the following sum and composition operations.(∑

p∈Sk

app
)

+
(∑
q∈Sk

bqq
)

=
∑
p∈Sk

(ap + bp)p(∑
p∈Sk

app
)
◦
(∑
q∈Sk

bqq
)

=
∑
p,q∈Sk

apbq(p ◦ q)

Let Ck ⊆ Sk be the set of cyclic permutations, and denote their sum by qk =
∑

p∈Ck p.

Lemma 20. Q
(k)
g1,g2 = 1 if and only if there exists a cyclic permutation r such that r ◦ g1 = g2.

Proof. By the definition of Q(k), the equality Q
(k)
g1,g2 = 1 is equivalent to P

(k)

g−1
1 ,g2

= 1. By

Lemma 15, P
(k)

g−1
1 ,g2

= 1 is equivalent to existence of such cyclic permutation r, that g2 ◦g−1
1 = r.

This is equivalent to r ◦ g1 = g2.

Lemma 21. Let g1, g2 be permutations on k elements. If there exists a cyclic permutation r
such that r ◦ g1 = g2, then r is unique.

Proof. Since r ◦ g1 = g2, then r = g2 ◦ g−1
1 . Therefore, r is unique.

Lemma 22. The matrix Q(k) is a matrix of left multiplication by the sum of cyclic permutations
qk in C[Sk].

Proof. By Lemma 20, Q
(k)
g1,g2 = 1 if and only if there exists a cyclic permutation r such that

r ◦ g1 = g2. By Lemma 21, such permutation r is unique.

Multiplying by the sum of cyclic permutations on the left is an action on C[Sk]. Its image
forms a subspace, and its dimension is the rank of the matrix Q(k), which is equal to the rank
of P (k). It remains to determine this dimension.

5.3 Representations and modules

The argument is based on representations of the group G = Sk. In this work, representations
shall be given in the notation of vector spaces, and are known as modules.

Definition 13. For a group G, a G-module is any vector space V over the complex numbers,
with a homomorphism ϕ : G→ GL(V ), where GL(V ) is the set of all invertible linear mappings
V → V with a composition operation defined on them. The function ϕ then describes the action
of the elements of G on the elements of V .

For a G-module (V, ϕ), the function ϕ is naturally extended to the group algebra C[G] by
setting ϕ

(∑
g∈G agg

)
(v) =

∑
g∈G agϕ(g)(v) for every vector v ∈ V . Note that ϕ

(∑
g∈G agg

)
is

not necessarily invertible. In the following, this extension of ϕ shall always be assumed.
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Definition 14. A G-module (V, ϕ) is called reducible, if there exists a non-trivial proper sub-
space W ⊂ V invariant to the action of elements of G. Otherwise, the module is irreducible.

Theorem C (Maschke, see Sagan [16, Thm. 1.5.3]). Let G be a group, and let (V, ϕ) be a
G-module. Then there is a number d and irreducible modules W (1), . . . ,W (d), such that V is a
direct sum of these vector spaces: V = W (1) ⊕ · · · ⊕W (d).

By Maschke’s theorem, the group algebra C[Sk] is decomposed into a direct sum of irre-
ducible modules.

Theorem D ([16, Prop. 1.10.1]). Every irreducible Sk-module occurs in the decomposition of
the group algebra C[Sk] as many times, up to isomorphism, as its dimension.

Therefore, it is sufficient to consider the product by the sum of cyclic permutations in
irreducible Sk-modules.

5.4 The action of the sum of cyclic permutations on irreducible
modules

An element g of a ring R is called central, if gh = hg for every h ∈ R. Since C[Sk] is a ring, it
may have central elements.

Lemma 23. The sum of cyclic permutations, qk, is a central element of C[Sk].

Proof. Note that it is enough to prove that p ◦ qk = qk ◦ p for every permutation p ∈ Sk, since
the elements of C[Sk] are linear combinations of those permutations.

Let p ∈ Sk be a permutation, and let g ∈ Ck be a cyclic permutation. Define h = p−1 ◦g ◦p.
Then, p ◦h = g ◦ p by definition. Since g and h are conjugate in the group Sk, their cycle types
are the same, and h is also a cyclic permutation. Note that different g yield different h, since
there exists a reverse representation g = p ◦ h ◦ p−1.

Then, qk ◦ p =
∑

g∈Ck g ◦ p =
∑

h∈Ck p ◦ h = p ◦ qk, and the lemma is proved.

Lemma 24. Let G be a group. Let g ∈ G be a central element of group algebra C[G]. Let
(V, ϕ) be an irreducible G-module. Then, there is a constant λ ∈ C, such that ϕ(g)v = λv for
every element v ∈ V .

Proof. Let λ be an eigenvalue of ϕ(g). Define Vλ = {v ∈ V | ϕ(g)v = λv}. Since λ is an
eigenvalue of ϕ(g), then Vλ is non-trivial. If Vλ = V , then the lemma is proved.

Suppose then, that Vλ is a proper subspace of V . The goal is to prove that Vλ is invariant
to the action of the elements of G: that is, for every h ∈ G and for every v ∈ Vλ the product
ϕ(h)v is also in Vλ.

For h ∈ G and v ∈ Vλ, ϕ(g) · ϕ(h)v = [ϕ is a homomorphism] = ϕ(gh)v = [g is central] =
ϕ(hg)v = ϕ(h)ϕ(g)v = ϕ(h)λv = λ · ϕ(h)v, and ϕ(h)v ∈ Vλ.

Since Vλ is a non-trivial proper subspace of V that is invariant to the action of the elements
of G, the module (V, ϕ) is reducible, which leads to a contradiction.

Lemma 25. Let (V, ϕ) be an irreducible Sk-module. Then, there is a constant λ ∈ C, such that
ϕ(qk)v = λv for every element v ∈ V .

In other words, in irreducible modules, the sum of cyclic permutations acts as multiplication
by a number. If that number is non-zero, the action is full-rank; if it is zero, the rank shall be
zero as well.

Proof. By Lemma 23, the element qk is central in C[Sk]. The result of the lemma follows from
Lemma 24 for G = Sk and g = qk.
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Figure 13: (i) Young diagram for λ = (4, 4, 3, 3, 1); (ii) a standard Young tableau; (iii) a Young
diagram of a hook shape, with λ = (4, 1, 1, 1, 1); (iv) a hook of length 5 in a Young diagram.

5.5 Specht modules

The form of irreducible Sk-modules is well-studied, they are known as Specht modules.
Let k > 1 be an integer, and let λ = (λ1, . . . , λm) be a partition, with k = λ1 + . . . + λm

and λ1 > . . . > λm > 1. Every partition has a corresponding Young diagram Y (λ), as in
Figure 13(i), which consists of m rows, with each i-th row of length λi.

Definition 15. A Young tableau of size k is a Young diagram, with its boxes filled with the
elements {1, . . . , k}, with each element occurring exactly once. A tableau is standard, if the
numbers in every row and the numbers in every column increase.

A standard Young tableau is illustrated in Figure 13(ii).
The action of a permutation in Sk on a Young tableau of size k is defined by applying the

permutation to the element in every box.

Definition 16. Two Young tableaux are equivalent, if the sets of values in the corresponding
rows are the same. The equivalence class of a tableau T is called a tabloid and is denoted by
{T}. The action of a permutation on a tabloid is defined as g · {T} = {gT}.

To establish the correctness of the action of permutations on tabloids, the following condition
needs to be satisfied.

Lemma 26. Let g be a permutation. Let T and T ′ be two equivalent Young tableaux. Then,
gT and gT ′ are also equivalent.

Proof. Fix a row of Young tableaux T and T ′. Since these two tableaux are equivalent, they
contain the same set of elements S in this row. Then, gT and gT ′ also contain the same set of
elements g(S) = {g(s) | s ∈ S} in this row.

Since this holds for every row, gT and gT ′ are equivalent.

For a Young tableau T , let C(T ) be the set of permutations that preserve the set of values
in each column of T .

Let Yλ be a vector space, in which the coordinates correspond to tabloids.

Definition 17. A polytabloid corresponding to a Young tableau T is a linear combination
eT =

∑
π∈C(T ) sgn(π) · {πT} in the vector space Yλ.

The irreducible Sk-modules under concern are the Specht modules.

Definition 18. A Specht module for a partition λ of a number k is the module S(λ) = {
∑
cT eT |

cT ∈ C }, where the sum is taken over all Young tableaux T corresponding to the partition λ.
A Specht module is a subspace of Yλ.

Theorem E ([16, Thm. 2.4.6]). Specht modules are irreducible, every two distinct Specht mod-
ules are non-isomorphic, and every irreductible Sk-module is isomorphic to some Specht module.
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5.6 The action of the sum of cyclic permutations on Specht modules

What is the action of the sum of cyclic permutations on Specht modules? The question
is, for which Young tableaux T the action of the sum qkeT is non-trivial, in the sense that it is
not constant zero. This action is expressed as follows.

Lemma 27. qkeT =
∑

r∈Ck

(∑
π∈C(T ) sgn(π) · {π(rT )}

)
for every Young tableau T .

Proof. By Lemma 23, qk is a central element of C[Sk]. In particular, qk ◦ π = π ◦ qk for every
permutation π ∈ Sk. Using that, the action of the sum of cyclic permutations on the polytabloid
eT is calculated as follows.

qkeT = qk ·
∑

π∈C(T )

sgn(π) · {πT} =
∑

π∈C(T )

sgn(π)qk ◦ π{T} =
∑

π∈C(T )

sgn(π)π ◦ qk{T} =

=
∑

π∈C(T )

sgn(π)π

(∑
r∈Ck

r · {T}

)
=
∑

π∈C(T )

sgn(π)π

(∑
r∈Ck

{rT}

)
=

=
∑
r∈Ck

 ∑
π∈C(T )

sgn(π)π · {rT}

 =
∑
r∈Ck

 ∑
π∈C(T )

sgn(π) · {π(rT )}

 .

This is a sum of expressions of the form
∑

π∈C(T ) sgn(π) · {π(rT )}, akin to the expression in

the definition of the polytabloid. It turns out that, if the same tabloid {rT} could be obtained
using a column-preserving permutation g ∈ C(T ), then an expression of the above form is
actually equal to the polytabloid, up to the sign.

Lemma 28. Let T be a Young tableau, and let r ∈ Sk be a permutation. Then, if there is a
permutation g ∈ C(T ) satisfying {gT} = {rT}, then

∑
π∈C(T ) sgn(π) · {π(rT )} = sgn(g)eT . If

there is no such g, then
∑

π∈C(T ) sgn(π) · {π(rT )} = 0.

Proof. Denote T ′ = rT .

1. Suppose that there is a permutation g ∈ C(T ) satisfying {gT} = {rT}. Then, the
following is true:∑
π∈C(T )

sgn(π) · {πT ′} =
∑

π∈C(T )

sgn(π)π · {T ′}

=
∑

π∈C(T )

sgn(π)π · {gT}

=
∑

π∈C(T )

sgn(π ◦ g ◦ g−1)π ◦ g{T}

= sgn(g−1)
∑

π∈C(T )

sgn(π ◦ g)π ◦ g{T}

= [π ∈ C(T )⇔ π ◦ g ∈ C(T ),

since C(T ) is closed under composition] =

= sgn(g)
∑

π◦g∈C(T )

sgn(π ◦ g)π ◦ g{T}

= sgn(g)eT .
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2. Suppose that there is no permutation g ∈ C(T ) such that {gT} = {rT}.
Then, there exists a pair of numbers (x1, x2), that are located in the same column of T
and in the same row of T ′. Suppose, for the sake of a contradiction, that there is no such
pair. Then, all elements of the first column of T must belong to pairwise distinct rows
of T ′. Construct a permutation of the first column of T that would place all elements
into their rows in T ′. Next, in T ′, these elements are shifted into the first column,
forming an equivalent tableau with its first column identical to that in the modified T .
This process is repeated with every next column, and overall, it affects the tableaux
as follows: elements in columns of T are permuted by some permutation g, whereas
elements in rows of T ′ are permuted by some g′. Then, gT = g′T ′, and since g′ preserves
the sets of elements in the rows of T ′, the tableaux T ′ and g′T ′ are equivalent. Therefore,
{gT} = {g′T ′} = {T ′} = {rT}, which contradicts the assumption.

It has thus been proved that there is a pair of elements (x1, x2) that share the same
column in T and the same row in T ′. Denote by (x1 x2) the permutation that swaps x1

and x2, and leaves other elements on their places. Note that {(x1 x2)T ′} = {T ′}, since x1

and x2 are located in the same row of T ′, and (x1 x2) ∈ C(T ), since x1 and x2 are located
in the same column of T . Then, the following is true:

∑
π∈C(T )

sgn(π) · {πT ′} =
∑

π◦(x1 x2)∈C(T )

sgn(π ◦ (x1 x2)) · {(π ◦ (x1 x2))T ′}

= [π ∈ C(T )⇔ π ◦ (x1 x2) ∈ C(T ),

since C(T ) is closed under composition] =

=
∑

π∈C(T )

sgn(π ◦ (x1 x2)) · {(π ◦ (x1 x2))T ′}

=
∑

π∈C(T )

sgn(π) sgn((x1 x2))π · {(x1 x2)T ′}

= −
∑

π∈C(T )

sgn(π)π · {T ′}

= −
∑

π∈C(T )

sgn(π) · {πT ′}.

Since this sum is equal to its additive inverse, it is equal to 0.

Accordingly, all non-zero summands in the expression in Lemma 27 are of the form ±eT ,
and the question is, how the number of positive summands compares to the number of negative
summands.

5.7 The sum of cyclic permutations on hook-shaped tableaux

The overall sum in Lemma 27 turns out to be non-zero for Young tableaux of a special hook
shape, illustrated in Figure 13(iii), in which all rows, possibly except the first row, are of length
1.

Lemma 29. Let T be a hook-shaped Young tableau of shape λ. Let r ∈ Ck and g ∈ C(T ) be
such that {gT} = {rT}. Then g is a cycle on the first column of T . Accordingly, as there are
|λ| elements in the first column, sgn(g) = (−1)|λ|−1.
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Proof. As {gT} = {rT}, then {T} = {(g−1 ◦ r)T} by Lemma 26. Then, by the definition of
equivalence of Young tableaux, g−1◦r acts as a permutation on each row of T , and, in particular,
g−1(r(x)) = x for each number x not in the first row of T . This means that r(x) = g(x).

Suppose that g is not a cycle on the first column of T . Then, since g is in C(T ), it acts on
the first column as multiple cycles, and, accordingly, must have a cycle on a subset of the first
column that does not contain the corner element. Since this cycle contains no elements of the
first row, the equality r(x) = g(x) holds for each element of the cycle. Then the same cycle is
also in r, and this contradicts the assumption that r is cyclic.

Lemma 30. Let T be a Young tableau of shape λ = (k−m+ 1, 1, . . . , 1). Then, qkeT = cλ · eT
for some complex constant cλ 6= 0 that depends on λ only.

Proof. By Lemma 25, the sum of cyclic permutations acts on irreducible Sk-modules as multi-
plication by a constant, and it is left to prove that cλ is non-zero.

The expression on the left is transformed by Lemma 27 as qkeT =
∑

r∈Ck

(∑
π∈C(T ) sgn(π) ·

{π(rT )}
)
. By Lemma 28 expressions of the form

∑
π∈C(T ) sgn(π) · {π(rT )}, with r ∈ Ck,

evaluate either to zero or to sgn(g)eT , where g ∈ C(T ) is a permutation satisfying {gT} =
{rT}. Since T is hook-shaped, in the latter case, by Lemma 29, the value of the expression is
sgn(g)eT = (−1)|λ|−1eT , and it does not depend on the permutation r.

Accordingly, all non-zero summands in
∑

r∈Ck

(∑
π∈C(T ) sgn(π) · {π(rT )}

)
are of the same

form (−1)|λ|−1eT . In order to prove that the entire sum is non-zero, it is sufficient to find a
single r, for which the corresponding summand is non-zero.

Denote by Ti,j the j-th element of the i-th row. A cyclic permutation r is constructed as
follows, with the value listed in the order of the cycle traversal. It shifts all elements of the
first row to the right (r(T1,j) = T1,j+1 for j ∈ {1, . . . , λ1− 1}) and maps the last element to the
second row (r(T1,|λ1|) = T2,1). The rest of the first column is shifted downwards (r(Ti,1) = Ti+1,1

for i ∈ {2, . . . , |λ| − 1}), and the bottom element returns to the corner (r(T|λ|,1) = T1,1).
It remains to find such a permutation g ∈ C(T ), that {gT} = {rT}. It is defined as a cycle

on the first column, with g(Ti,1) = Ti+1,1 for i ∈ {1, . . . , |λ| − 1} and g(T|λ|,1) = T1,1, and as a
loop on each of the remaining elements: g(T1,j = T1,j) for j ∈ {2, . . . , λ1}. In order to show
that {gT} = {rT}, by Definition 16, one has to verify that, for each row of T , the sets of values
of g and r on that row are the same. Beginning with the second row, this is true, since g and
r have the same value on those elements. Since all remaining elements are in the first row, the
sets of values are the same also for the first row.

Since a permutation g ∈ C(T ) satisfying {gT} = {rT} has been found, by Lemma 28, the
summand

∑
π∈C(T ) sgn(π) · {π(rT )} is non-zero, and the entire sum is non-zero as a multiple of

this summand.

These special shapes contribute to the rank of P (k) along with other possible partitions of
k, as proved in the following lemma.

Lemma 31. Let Λ be the set of all partitions λ of the number k, for which the action of qk on
S(λ) is a multiplication by a non-zero constant. Then, rankP (k) =

∑
λ∈Λ(dimS(λ))2.

Proof. By Theorem D, every irreducible module of dimension d occurs in the decomposition of
C[Sk] into a direct sum d times up to isomorphism. It follows from Lemma 25 that the action
of the sum of cyclic permutations qk on an irreducible module either has full rank d, or its rank
is zero. Hence, every irreducible module of dimension d, on which the action of qk is non-trivial,
contributes d · d to the sum of the ranks. According to Theorem E, irreducible modules are
exactly the Specht modules.
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5.8 Dimensions of Specht modules

The exact contribution of hook-shaped partitions to the rank of P (k) shall be determined using
the following known result on the dimension of Specht modules.

Theorem F ([16, Thm. 2.6.5]). Polytabloids corresponding to standard Young tableaux for a
partition λ form the basis of the Specht module S(λ).

Accordingly, the dimension of a Specht module coincides with the number of standard Young
tableaux for a given partition. This number is given by the hook formula.

For a box x in a Young diagram, its hook length, hook(x), is the number of squares to the
right of x in the same row, below x in the same column, plus one (for x itself). An example of
a hook is given in Figure 13(iv).

Theorem G ([16, Thm. 3.10.2]). For a Young diagram Y (λ) of size k, the number of its
standard fillings is k!∏

x∈Y (λ) hook(x)
.

Corollary 2. dim(S(λ)) = k!∏
x∈Y (λ) hook(x)

5.9 Lower bound on the rank of the matrix for permutations

Using the above results, the rank of the desired matrix is estimated as follows.

Theorem 4. The rank of the k!× k! matrix P (k) is at least
(

2k−2
k−1

)
.

Proof. By Lemma 31, the rank of P (k) is the sum of squares of dimensions of Specht modules
Sλ, on which the action of qk is non-trivial. It follows from Lemma 30 that the action of qk on
hooks is non-trivial. With k fixed, a hook is determined by the size λ1 of its first row. Then,
there are m = k + 1− λ1 elements in the first column.

In order to determine the dimension of the representation corresponding to a hook-shaped
Specht module, by Corollary 2, one should determine the lengths of all hooks contained therein.
For the box at the intersection of the first row and the first column, the hook length is k. For
an i-th box in the first row, with i > 1, the hook length is λ1 − i + 1, and the product of all
these expressions is (λ1− 1)!. Similarly, for a j-th box in the first column, with j > 1, the hook
length is m− j + 1 = k + 1− λ1 − j + 1 and their product is (k − λ1)!.

Overall, dim(S(λ)) = k!
k·(λ1−1)!·(k−λ1)!

=
(
k−1
λ1−1

)
. Then, rankP (k) >

∑k
λ1=1

(
k−1
λ1−1

)2
=∑k−1

a=0

(
k−1
a

)2
. The latter sum gives the number of ways to choose a among k − 1 elements

and k − 1 − a among k − 1 other elements. This is the same as choosing k − 1 among 2k − 2
elements, and thus the lower bound obtained is

(
2k−2
k−1

)
.

5.10 The asymptotics of the lower bound

Theorem 5. For every n, there is a language recognized by a 2DFA with n states, such that
every UFA for the same language requires at least

∑n
k=1

(
n
k−1

)(
n
k

)(
2k−2
k−1

)
= Ω

(
9n

n3/2

)
states.

Proof. By Theorem B, for theDn with n states, every UFA recognizing this language has at least
rankM (n) states. By Lemma 5, rankM (n) = rankL(n). By Lemma 12, rankL(n) = rankK(n).
By Lemma 14, rankK(n) =

∑n
k=1

(
n
k−1

)(
n
k

)
rankP (k). Finally, by Theorem 4, rankP (k) >

(
2k−2
k−1

)
.

The above facts are combined into the desired estimation in the form of sum.
An asymptotic bound on this sum is obtained by estimating a single term, assuming k = αn,

for a fixed α with 0 < α < 1.
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n∑
k=1

(
n

k − 1

)(
n

k

)(
2k − 2

k − 1

)
>

(
n

αn− 1

)(
n

αn

)(
2αn− 2

αn− 1

)
=

=
n!

(αn− 1)!((1− α)n+ 1)!
· n!

(αn)!((1− α)n)!
· (2αn− 2)!

(αn− 1)!(αn− 1)!
=

=
αn · αn · αn

((1− α)n+ 1) · (2αn− 1) · 2αn
· n!n!(2αn)!

(αn)!((1− α)n)!(αn)!((1− α)n)!(αn)!(αn)!
∼

∼ α

4(1− α)
· n!n!(2αn)!

(αn)!((1− α)n)!(αn)!((1− α)n)!(αn)!(αn)!
.

The factorials are then estimated using Stirling’s approximation.

n!n!(2αn)!

(αn)!((1− α)n)!(αn)!((1− α)n)!(αn)!(αn)!
=

= Ω

(
n2n · (2αn)2αn

(αn)4αn · ((1− α)n)2(1−α)n
·

√
n

2 ·
√

2αn
√
αn

4 ·
√

(1− α)n
2

)
= Ω

(
(2α)2αn

α4αn · (1− α)2(1−α)n
· n

3
2

n3

)
=

= Ω

(
22αn

α2αn · (1− α)2(1−α)n
· 1

n
3
2

)
= Ω

((
2α

αα · (1− α)1−α

)2n

· 1

n
3
2

)
.

The function f(α) = 2α

αα·(1−α)1−α
has its maximum at α = 2

3
, and its value is calculated as

follows.

2α

αα · (1− α)1−α =
2

2
3(

2
3

) 2
3 ·
(

1
3

) 1
3

=

(
22(

2
3

)2 ·
(

1
3

)) 1
3

=

(
22 · 33

22

) 1
3

= 3

Finally, this bound is substituted into the entire sum, leading to the desired lower bound.

n∑
k=1

(
n

k − 1

)(
n

k

)(
2k − 2

k − 1

)
>

α

4(1− α)
· Ω

((
2α

αα · (1− α)1−α

)2n

· 1

n
3
2

)
=

= Ω

(
32n · 1

n
3
2

)
= Ω

(
9n

n
3
2

)
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6 Optimality of the lower bound

There is a companion result that it is not possible to achieve a better lower bound via Schmidt’s
theorem by choosing another 2DFA and different pairs of strings. In fact, even stronger result
is true:

Theorem 6. Let D be a 2UFA over an alphabet Γ with n states that recognizes a regular
language L. Let X = {x1, . . . , x`} and Y = {y1, . . . , ym} be sets of strings over the alphabet
Γ. Let M be an ` ×m matrix defined by Mi,j = 1 if xiyj ∈ L, and Mi,j = 0 otherwise. Then,
rankM 6

∑n
k=1

(
n
k−1

)(
n
k

)
rankP (k).

The proof of this theorem consists of several parts. Firstly, matrix M is defined in terms of
profiles. Secondly, linear combinations based on the inclusion-exclusion principle are applied,
yielding a new matrix with the same rank. Finally, it is shown that the rank of this new matrix
does not exceed the rank of K(n), concluding the proof.

6.1 Conversion to extended profiles

Let Q = {q1, . . . , qn} be the set of states of the 2UFA D. Let Q0 ⊆ Q be the set of starting
states of D.

In order to analyze the computations of D on all concatenations xiyj, it is necessary to
consider all possible computations on prefixes xi and on suffixes yj. This requires a variant of
the notion of a profile, called an extended profile, which represents all possible computations on
a prefix or on a suffix beginning in all states, rather than only in the states used in an actual
computation, as per the definition of a profile.

For each prefix x of a possible input string, the left extended profile on x represents the
computations of D on the input `x.

Definition 19. Let x ∈ Γ∗ be a string. A left extended profile on x is a function fx : {1, . . . , n}∪
{Start} → 2{1,...,n} representing the computations of D on the input `x as follows. For each
1 6 i 6 n and for each 1 6 j 6 n, the element j is present in fx(i) if and only if there exists
a computation that starts on the last symbol of `x in the state qi, and first moves to the right
beyond this last symbol in the state qj. Also, for each 1 6 j 6 n, the element j is present in
fx(Start) if and only if there exists a computation that starts on the first symbol of `x in the
state from Q0, and first moves to the right beyond the last symbol of this string in the state qj.

Similarly, the computations of D on a suffix ya are represented by a right extended profile
on y.

Definition 20. Let y ∈ Γ∗ be a string. A right extended profile on y is a function
gy : {1, . . . , n} → 2{1,...,n}∪{Accept} representing the computations of D on the input ya as fol-
lows. For all 1 6 i 6 n and for all 1 6 j 6 n, the element j is present in gy(i) if and only if
there exists a computation that starts on the first symbol of ya in the state qi, and first moves
to the left beyond that symbol in the state qj. Also, for all 1 6 i 6 n, the element Accept is
present in gy(i) if and only if there exists a computation that starts on the first symbol of ya
in the state qi, and accepts the string.

The constructions below are given for arbitrary left and right extended profiles
f : {1, . . . , n} ∪ {Start} → 2{1,...,n} and g : {1, . . . , n} → 2{1,...,n}∪{Accept}, which do not neces-
sarily correspond to some actual prefixes and suffixes.

For a left extended profile f and a right extended profile g, define a directed bipartite graph
Gf,g with V (Gf,g) = ({1, . . . , n}×{0, 1})∪{Start,Accept} with two parts and two additional
vertices Start and Accept as follows:
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ACCEPTSTART

(q,0) (q,1)

f

g

Figure 14: A computation graph, with a path from Start to Accept.

• for all 1 6 i 6 n and all j ∈ f(i) there is an arrow from (i, 0) to (j, 1);

• for all 1 6 j 6 n and all i ∈ g(j) there is an arrow from (j, 1) to (i, 0);

• for all 1 6 j 6 n such as j ∈ f(Start) there is an arrow from Start to (j, 1);

• for all 1 6 j 6 n such as Accept ∈ g(j) there is an arrow from (j, 1) to Accept.

The resulting graph Gf,g shall be called the computation graph for a pair of extended profiles
(f, g). The form of such a graph is illustrated in Figure 14.

As shown in the following lemma, the matrix M actually depends only on the extended
profiles on the strings in X and in Y , rather than on the strings themselves. For the strings
in X, it is enough to know only the left extended profiles on those strings, and similarly, only
right extended profiles on the strings in Y .

Lemma 32. Let D be a 2UFA over an alphabet Γ. Let x and y be strings over Γ. Let fx
be the left extended profile on x, and let gy be the right extended profile on y. Let G be the
computation graph for the pair of extended profiles (fx, gy). Then, D accepts the string xy if
and only if there is a path from Start to Accept in the graph G. Furthermore, if such a path
exists, it is unique.

Proof. The string `xya, on which 2UFA D operates, can be divided into two parts `x and
ya. For any computation of D on this string let r0, p0, r1, p1, . . . be the sequence of numbers
of states in which D crosses the boundary between x and y, in the order they appear in the
computation.

By the definition of extended profiles, r0 ∈ fx(Start), rk ∈ fx(pk−1), and pk ∈ gy(rk);
furthermore, the string xy is accepted by D if and only if for at least one computation the
sequence ends with rk with Accept ∈ gy(rk).

This means that Start, (r0, 1), (p0, 0), (r1, 1), . . . is a valid path in G. If D accepts the string
xy, then this path for accepting computation ends with a vertex (rk, 1) such that Accept ∈
gy(rk). Hence, there is an arrow from (rk, 1) to Accept, which concludes a path from Start
to Accept in G.

Conversely, if there is a path Start, (r0, 1), (p0, 0), (r1, 1), . . . , (rk, 1),Accept in G, then
one can construct a computation with the sequence r0, p0, r1, p1, . . . , rk (by the definition of
extended profiles it is possible to get from the state ri on the symbol directly to the right from
the border to the state pi on the symbol directly next to the border on the left, and from pi
to ri+1 as well; also, it is possible to cross the border for the first time in the state r0). This
sequence ends with rk such that Accept ∈ gy(rk). Therefore, D accepts xy.

If there are two paths leading from Start to Accept in G, then it is possible to construct
two accepting computations on the string `xya that have different sequences of states in which
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they crossed the boundary between x and y. However, 2UFA cannot have two different accepting
computations on the same string, which leads to a contradiction.

Corollary 3. If there are strings xi and xj with equal left extended profiles, then either of them
can be removed from X without affecting the rank of the matrix M . Similarly, if there are
strings yi and yj with equal right extended profiles, then either of them can be removed from Y
without affecting the rank of M .

Proof. By Lemma 32, if there are strings xi and xj with equal left extended profiles, then rows
i and j of the matrix M are equal, since xi can be replaced with xj in the string xiy without
affecting the acceptance status. The removal of duplicate rows preserves the rank.

The case or right extended profiles is handled in the same way, by removing duplicate
columns.

Exclude all unnecessary strings, as per Corollary 3, in any order. Now for any left extended
profile there is at most one string in X with this profile, and for any right extended profile
there is at most one string in Y with this profile, and the rank of matrix M has not changed.

Define a matrix M(n), with rows labeled with left extended profiles and columns labeled
with right extended profiles, as follows: for a left extended profile f and a right extended profile
g, define M

(n)
f,g as the number of paths from Start to Accept in the computation graph Gf,g

that never visit the same vertex twice.

Lemma 33. rankM 6 rankM(n).

Proof. Matrix M is a submatrix of matrix M(n). Indeed, by Lemma 32, matrices M and M(n)

are constructed based on the same rule (strings in the definition of M are replaced with their
extended profiles in the definition of M(n)): for a left extended profile f for string xi and a right
extended profile g for string yj, if there is no path in the corresponding computation graph Gf,g,

then Mi,j = M
(n)
f,g = 0; if there is a path, then this path is unique, and it never visits the same

vertex twice (or it would be possible to construct another path by omitting the part between

visits), so Mi,j = M
(n)
f,g = 1. The only difference is that matrix M(n) contains rows for all left

extended profiles and columns for all right extended profiles, while matrix M contains only a
subset of those.

Hence, rankM 6 rankM(n).

Then, it is sufficient to prove the desired upper bound on the rank of M(n). The latter
matrix does not depend on the automaton D.

6.2 Inclusion-exclusion formulas

In order to provide a link between matrices M (n) and M(n), several new notions shall be
introduced.

Definition 21. Let f and f ′ be two left extended profiles. The profile f ′ shall be called a
subprofile of the profile f , if f ′(x) ⊆ f(x) for every x. Notation: f ′ 4 f .

Definition 22. Let g and g′ be two right extended profiles. The profile g′ shall be called a
subprofile of the profile g, if g′(x) ⊆ g(x) for every x. Notation: g′ 4 g.

Definition 23. Let Gf,g be a computation graph for a pair of extended profiles (f, g). The set
of vertices of Gf,g, is split into the left half and the right half, as follows.

L(Gf,g) = {Start} ∪ ({1, . . . , n} × {0})
R(Gf,g) = {Accept} ∪ ({1, . . . , n} × {1})
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Then, the arrows in Gf,g shall be called left-to-right and right-to-left. Furthermore, arrows
from {1, . . . , n} × {1} to Accept, by convention, shall be regarded as right-to-left.

Definition 24. Define a new integer matrix L(n), with rows labeled with left extended profiles
and columns labeled with right extended profiles, as follows: for a left extended profile f and
a right extended profile g, define L

(n)
f,g as the number of paths from Start to Accept in the

computation graph Gf,g that never visit the same vertex twice and use all left-to-right arrows.

For an extended profile f , left or right, denote by |f | the sum of |f(x)| for all x.

Lemma 34. Let f be a left extended profile. Let g be a right extended profile. Then,

M
(n)
f,g =

∑
f ′4f

L
(n)
f ′,g

Proof. It is enough to prove that every path is counted the same number of times on both sides.
Note that paths counted on the right-hand side must be counted on the left-hand side as well,
since for f ′ 4 f the computation graph Gf ′,g is a subgraph of Gf,g. Therefore, it is sufficient
to check only the paths that are present in Gf,g.

Consider a path from Start to Accept in Gf,g, that does not visit any vertex twice. It will

be counted in exactly one of L
(n)
f ′,g; namely, the one with the left extended profile corresponding

to the set of all left-to-right arrows used by the path (indeed, then any other subprofiles would
either generate an additional left-to-right arrow, or exclude an important one).

Lemma 35. rankL(n) = rankM(n).

Proof. By Lemma 34, the rows of M(n) are linear combinations of the rows of L(n), and hence
rankL(n) > rankM(n). The ranks are actually the same, since there exists a reverse represen-
tation

L
(n)
f,g =

∑
f ′4f

(−1)|f |−|f
′|M

(n)
f ′,g

The same operation can be done with columns as well.

Definition 25. Define a new integer matrix K(n), with rows labeled with left extended profiles
and columns labeled with right extended profiles, as follows: for a left extended profile f and
a right extended profile g, define K

(n)
f,g as the number of paths from Start to Accept in the

computation graph Gf,g that never visit the same vertex twice and use all left-to-right arrows
and all right-to-left arrows.

Lemma 36. Let f be a left extended profile. Let g be a right extended profile. Then,

L
(n)
f,g =

∑
g′4g

K
(n)
f,g′

Proof. The proof is the same as for Lemma 34.

Lemma 37. rankK(n) = rankL(n).

Proof. By Lemma 36, the rows of L(n) are linear combinations of the rows of K(n), and hence
rankK(n) > rankL(n). The ranks are actually the same, since there exists a reverse representa-
tion

K
(n)
f,g =

∑
g′4g

(−1)|g|−|g
′|L

(n)
f,g′
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6.3 Internal structure of matrix K(n)

Definition 26. A left extended profile f is normal, if the following is true:

• |f(x)| 6 1 for every x;

• f(Start) 6= ∅;

• f(x) ∩ f(y) = ∅ for every x 6= y.

For every normal left extended profile f , there is a corresponding prefix profile. Let P ∪
{Start} be the set of arguments x for which |f(x)| = 1, and let R =

⋃
x∈P∪{Start} f(x). Define

the function f ◦ : P ∪ {Start} → R as follows: for x ∈ P ∪ {Start}, the value of f ◦(x) is
equal to the only element of f(x). Thanks to the normality of f , the function f ◦ is a bijection.
Then, (P,R, f ◦) is a prefix profile corresponding to f .

Definition 27. A right extended profile g is normal, if the following is true:

• |g(x)| 6 1 for every x;

• Accept ∈ g(x) for some x;

• g(x) ∩ g(y) = ∅ for every x 6= y.

For a normal right extended profile g, there also is a corresponding suffix profile. Let T be
the set of arguments x for which |g(x)| = 1, and let S ∪ {Accept} =

⋃
x∈R g(x). Define the

function g◦ : T → S ∪ {Accept} as follows: for x ∈ T , the value of g◦(x) is equal to the only
element of g(x). Thanks to the normality of g, the function g◦ is a bijection. Then, (g◦, S, T )
is the suffix profile corresponding to g.

For a normal left extended profile f and a normal right extended profile g, define a new
graph Hf,g as follows. Let (P,R, f ◦) be the prefix profile corresponding to f , and let (g◦, S, T )
be the suffix profile corresponding to g. Let xP,R,f◦ yg◦,S,T = (x, l) (f ′, l) (g′, r) (y, r). Then,
Hf,g is constructed from Gf,g by merging the vertices Start and (x, 0) into one vertex (x, 0)
and by merging the vertices Accept and (y, 1) into (y, 1), followed by removing the resulting
loop at (y, 1).

Also, define another graph Df,g with the set of vertices {1, . . . , n} × {0, 1}, as follows: for
every i with f ′(i) defined, there is an arrow from (i, 0) to (f ′(i), 1); for every i with g′(i)
defined, there is an arrow from (i, 1) to (g′(i), 0); and there are no other arrows. This graph
represents all possible computations of Dn on the second and the third symbols of the string
(x, l) (f ′, l) (g′, r) (y, r).

Lemma 38. Let f be a normal left extended profile. Let g be a normal right extended profile.
Then, Df,g = Hf,g.

Proof. Let (P,R, f ◦) be the prefix profile corresponding to f , and let (g◦, S, T ) be the suffix
profile corresponding to g. Let xP,R,f◦ yg◦,S,T = (x, l) (f ′, l) (g′, r) (y, r).

Let there be an arrow from (i, 0) to (j, 1) in Df,g. That means that f ′(i) = j. By the
construction of f ′, either i = x and f0(Start) = j, or i 6= x and f ◦(i) = j. In the former
case, j ∈ f(Start) and there is an arrow from Start to (j, 1) in the graph Gf,g. Then, there
is an arrow from (i, 0) to (j, 1) in the graph Hf,g, since i = x. In the other case, if i 6= x and
f ◦(i) = j, then j ∈ f(i) and there is an arrow from (i, 0) to (j, 1) in the graph Gf,g. Then, this
arrow is present in the graph Hf,g as well.
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Let there be an arrow from (i, 1) to (j, 0) in Df,g. That means that g′(i) = j. Then g◦(i) = j
by the construction of g′, and j ∈ g(i). Hence, there is an arrow from (i, 1) to (j, 0) in the
graph Gf,g. Then, the graph Hf,g contains this arrow as well.

Overall, there are |f |+ |g|− 1 arrows in the graph Hf,g (one arrow to Accept is excluded),
which is equal to |P | + |T | (since |P | = |f | − 1 and |T | = |g| due to the fact that f and g are
normal). The latter is the number of arrows in Df,g, because f ′ defines |P | + 1 arrows (since
f ′ is defined on P ∪ {x}) and g′ defines |T | − 1 arrows (since g′ is defined on T \ {y}). Hence,
there are no additional arrows in Hf,g.

Lemma 39. Let f be a normal left extended profile. Let g be a normal right extended profile.
Let (P,R, f ◦) be the prefix profile corresponding to f , and let (g◦, S, T ) be the suffix profile

corresponding to g. Then, K
(n)
f,g = K

(n)
(P,R,f◦),(g◦,S,T ).

Proof. Note that K
(n)
f,g can be equal only to 0 or 1. Indeed, since f and g are normal, out-degree

of every vertex of the corresponding computation graph Gf,g does not exceed 1 (since |f(x)| 6 1
for every x and |g(x)| 6 1 for every x). Furthermore, outdegree of Accept vertex is zero (by
construction of computation graph). Therefore, if path from Start to Accept exists, then it
is uniquely determined by picking the only possible outgoing arrow until arriving in Accept.

By definition, K
(n)
f,g = 1 is equivalent to the existence of a path from Start to Accept that

uses all arrows in the graph Gf,g.
The existence of a path from Start to Accept in the graph Gf,g that uses all arrows is

equivalent to the existence of a path from (x, 0) to (y, 1) in the graph Hf,g that uses all arrows
(since Start is replaced by (x, 0) and Accept is replaced by (y, 1), and there were no other
arrows from (x, 0) before merging).

By Lemma 38, graph Hf,g corresponds to string xP,R,f◦ yg◦,S,T . Hence, K
(n)
(P,R,f◦),(g◦,S,T ) = 1

is equivalent to the existence of a path from (x, 0) to (y, 1) in Hf,g that uses all arrows.
The statement of this lemma is derived from these three equivalences by combining them.

However, profiles that are not normal can be ignored:

Lemma 40. Let f be a left extended profile which is not normal. Then, K
(n)
f,g = 0 for every

right extended profile g.
Similarly, let g be a right extended profile which is not normal. Then, K

(n)
f,g = 0 for each left

extended profile f .

Proof. It is enough to check that if any condition from the definition of normal profiles is not
satisfied, then K

(n)
f,g = 0 for every choice of other extended profile.

If there exists an argument x such that |f(x)| > 1, then there is no path from Start to
Accept that uses all arrows and does not visit any vertex twice. Indeed, if such x exists,
the out-degree of corresponding vertex ((x, 0) if x 6= Start, and Start otherwise) is equal to

|f(x)| > 1. For any path counted in K
(n)
f,g , all of those arrows are used in a path. Therefore, said

path visits the corresponding vertex more than once, which leads to a contradiction. Hence,
K

(n)
f,g = 0. The same is true if |g(x)| > 1 for some x (for a vertex (x, 1)).

If f(Start) = ∅, then for all extended profiles g there are no arrows from Start in Gf,g.
Therefore, there are no paths from Start to Accept even without additional conditions, and
K

(n)
f,g = 0. Similarly, if Accept /∈ g(x) for every x, then there are no arrows to Accept, and

paths from Start to Accept cannot exist as well.
Suppose then that the third condition does not hold, and there exists an element j such that

for two arguments x 6= y, j ∈ f(x) and j ∈ f(y). Then, in-degree of the vertex corresponding
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to j (either (j, 1) if j 6= Accept, or Accept otherwise) is at least 2, and any path that uses

all arrows visits this vertex twice. Therefore, K
(n)
f,g = 0. The same is true for right extended

profiles as well (for a vertex (j, 0)).

Theorem 7. rankK(n) = rankK(n)

Proof. By Lemma 40, rows and columns of K(n), labeled with extended profiles that are not
normal, contain only zeroes, and their exclusion would not affect the rank of K(n).

By Lemma 39, matrix K(n) (with said rows and columns excluded) is identical to K(n) up
to permutation of rows and columns. Hence, ranks are also equal.

Proof of Theorem 6. By Lemma 33, rankM 6 rankM(n). By Lemma 35, rankL(n) =
rankM(n). By Lemma 37, rankK(n) = rankL(n). By Theorem 7, rankK(n) = rankK(n). By
Lemma 14, rankK(n) =

∑n
k=1

(
n
k−1

)(
n
k

)
rankP (k) Hence, rankM 6

∑n
k=1

(
n
k−1

)(
n
k

)
rankP (k).
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7 Conclusion

The bounds on the state complexity of transforming 2DFA and 2UFA to UFA established in
this work put it asymptotically between Ω

(
9n

n3/2

)
and O(2n ·n!), which shows that this is actually

a new function different from the known tradeoffs [6]. For small values of n, the bounds proved
in this work are compared in Table 2 (the known upper bound on the 2UFA-to-UFA tradeoff,
obtained from 2NFA-to-DFA transformation, is not present in the table for shortness). All lower
bounds, including the precise bounds by Kapoutsis [6], rely on using an alphabet of exponential
size, if the size of the alphabet is subexponential, the upper bounds are improved [4].

It would be interesting to determine the 2DFA-to-UFA and 2UFA-to-UFA tradeoffs precisely.
However, as shown in Theorem 6, the lower bound methods based on Schmidt’s theorem have
virtually been exhausted: it remains to establish the exact rank of the matrix P (k), which is
conjectured to be the same as the lower bound in Theorem 4. New methods would be needed
for any further improvements.

Table 2: The bounds established in this work for small values of n, compared to the known
tradeoffs from two-way to one-way finite automata.

n

2DFA → NFA 2DFA → UFA 2DFA → UFA 2DFA → DFA
2UFA → NFA 2UFA → UFA 2UFA → UFA
2NFA → NFA (lower bound) (upper bound)(

2n
n+1

) ∑n
k=1

(
n
k−1

)(
n
k

)(
2k−2
k−1

) ∑n
k=1

(
n
k−1

)(
n
k

)
k! n(nn − (n− 1)n)

1 1 1 1 1
2 4 6 6 6
3 15 39 39 57
4 56 276 292 700
5 210 2 055 2 505 10 505
6 792 15 798 24 306 186 186
7 3 003 124 173 263 431 3 805 249
8 11 440 992 232 3 154 824 88 099 230
9 43 758 8 030 943 41 368 977 2 278 824 849
10 167 960 65 672 850 589 410 910 65 132 155 990
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