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Abstract

The present thesis is devoted to knot theory. We study diagrams of knots,
links, braids, and tangles with the minimum number of crossings, the mini-
mum number of Seifert circles, and other properties. One of the main results
is the construction of a new class of link diagrams with the minimum number
of crossings. This class includes many alternating diagrams, torus ones, and
numerous diagrams whose minimality has not been proven before. Besides,
we construct a new larger class of link diagrams with the minimum number of
Seifert circles. Also, we provide results related to geometric group theory. In
particular, we describe simple criteria on a braid diagram representing a conju-
gacy class of a homogeneous braid to have the minimum number of crossings.
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1. Introduction

We use basic terminology and notions of knot theory as introduced in [3].
The central notions of the present thesis are minimal link diagrams and the crossing number

of links. The latter is a natural complexity measure of links. Recall that a diagram D of a
link L is said to be minimal if D has the least number of crossings among all diagrams of L.
The number of crossings of a minimal diagram of L is called the crossing number of L.

Historically, the crossing number is closely related to the recognition problem for links. This
problem is one of the most fundamental questions of both the early stages of knot theory and
nowadays. The recognition problem requires to construct an algorithm that decides whether
two given diagrams represent the same link. Given such an algorithm, one could determine
whether a diagram D having n crossings is minimal as follows. List all diagrams U with less
than n crossings, and for each U , determine whether U and D represent the same link.

In theory, the link recognition problem has been solved (see an expository note [20]).
The main work, which is based on the theory of normal surfaces, was done by W. Haken,
F. Waldhausen, and K. Johannson, with important contributions by S. V. Matveev,
G. Hemion, W. Jaco, and P. B. Shalen. Still, the corresponding algorithm is impractical due to
complexity issues. On the other hand, for certain classes of links, spectacular classification re-
sults have been obtained. The examples include torus links, rational links, braid index 3 links,
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alternating links, and hyperbolic links (see [4]). The last two classes have proven especially
useful to a link tabulator wanting to classify all links up to a given crossing number.

At the same time, several remarkable phenomena were discovered concerning minimal di-
agrams. Namely, some easy to verify visual properties of link diagrams guarantee the min-
imality. The examples include reduced alternating diagrams, adequate diagrams, reduced
Montesinos diagrams, and closed GMM braid diagrams, which we describe below.

One of the main results of the present thesis is the construction of a new class of minimal
link diagrams of this kind.

Let us describe the known classes of minimal link diagrams and their role in the development
of knot theory in more detail.

Recall that a link diagram D is said to be alternating if, as one follows each link compo-
nent of D, one passes overcrossings and undercrossings alternatively. A link L is said to be
alternating if L admits an alternating diagram.

Traditionally, one indexes tables of prime (meaning non-composite, see Figure 1) knots by
the crossing number, with a subscript to indicate which particular knot out of those with this
many crossings one means. In the tables, one counts mirror images as a single knot type.
We use the Rolfsen table (see [8]) for knots with ≤ 10 crossings and the KnotScape table
(see [10]) for knots with ≥ 11 crossings.

The majority of knots with ≤ 9 crossings are alternating. In particular, there are only 3
non-alternating knots 819, 820, and 821 among the 36 prime knots with ≤ 8 crossings, and
there are only 8 non-alternating knots 942,943, . . . ,949 among the 49 prime knots with 9 cross-
ings. Nevertheless, as the crossing number increases, the percentage of prime knots that are
alternating goes to 0 exponentially quickly (see Theorem 1 in [48]).

Figure 1. A composite link diagram (on the left). An isthmus (on the right).

A diagram D is said to be reduced if D has no isthmuses (see Figure 1). If D is not reduced,
one can apply an obvious transformation that reduces the number of crossings. Therefore,
any minimal diagram is reduced.

The original compilations of knot tables by P. G. Tait and C. N. Little at the end of the 19th
century gave reason to believe that any reduced alternating diagram is minimal. This well-
known fact, referred to as the first Tait conjecture, was proved in 1987 by L. Kauffman,
M. B. Thistlethwaite, and K. Murasugi independently by using the Jones polynomial for links
(see Theorem 2.10 in [35], Theorem 2 in [36], and Theorem A in [37]). Namely, they showed
that the number of crossings of any diagram of a link L is bounded from below by the difference
between the highest and the lowest degrees of the Jones polynomial VL(t) of L. Moreover, for
any reduced alternating link diagram, the equality holds.

In [38] (see Corollary 3.4), M. B. Thistlethwaite used a generalization of the Jones poly-
nomial, referred to as the Kauffman polynomial, and obtained similar minimality results for
a more general class of links, which are called adequate. Note that the precise definition is
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visual, that is, given a link diagram D, it is easy to verify whether D is adequate. All re-
duced alternating diagrams are adequate. The simplest adequate non-alternating prime knots
have 10 crossings, and there are 3 such: 10152, 10153, and 10154.

It is noteworthy that if a prime diagram is not alternating, the inequality above is strict.
The latter implies that any minimal diagram of each prime alternating link is alternating.
By using this, in [39] (see Theorem 10), the authors showed that some specific link diagrams,
referred to as reduced1 Montesinos ones, are minimal.

Another class of minimal diagrams is of some closed braids. We denote by Bn the braid
group with n strands. Recall that Bn admits the following presentation with standard Artin
generators:

Bn = ⟨σ1, . . . , σn−1 ∣ σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n − 1; σiσj = σjσi, ∣i − j∣ ≥ 2⟩.

The relation σkσk+1σk = σk+1σkσk+1 is called the braid relation, and the relation σiσj = σjσi
is called the far commutativity relation. An element of Bn is called a braid with n strands.
Given a set of symbols S, denote by S∗ the set of all words in the alphabet S. An element
of {σ1, . . . , σn−1, σ−11 , . . . , σ

−1
n−1}

∗ is called a braid word in Bn.
We visualize braid words by their diagrams, which one draws vertically from top to bot-

tom. For example, see the second picture in Figure 2 for the braid diagram corresponding
to σ2σ3σ2σ−11 σ3σ2σ3σ2σ

−1
1 . It is easy to see that there is a correspondence between the far com-

mutativity classes of braid words and the plane isotopy classes of braid diagrams. By abusing
the notation, one treats braid diagrams as braid words.

Figure 2. Examples of braid diagrams.

In [31], J. Gonzàlez-Meneses and P. M. G. Manchòn introduced a new class of braid dia-
grams, which we call the GMM ones. By definition, a braid word w ∈ {σ1, . . . , σn−1}∗ corre-
sponds to a GMM braid diagram if any only if one can obtain w from the empty word by a
finite sequence of transformations of the following types:

(1) for some i ∈ {1,2, . . . , n − 1}, inserting σiσi;
(2) for some i ∈ {1,2, . . . , n − 1}, doubling a letter σi;
(3) applying either the braid relation or the far commutativity one.

See the rightmost picture in Figure 2 for an example of a GMM braid diagram.
Any braid diagram gives rise to a link diagram via the Alexander closure, see Figure 3.

We endow the resulting link diagram with a natural downward orientation.

1In [39], reduced means something different to that of the present thesis.
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Figure 3. The Alexander closure of a braid diagram.

A link diagram D is called a GMM diagram if D is the Alexander closure of a GMM braid
diagram. For example, up to mirror images, any torus link admits a GMM diagram. All GMM
diagrams are minimal. In their research, J. Gonzàlez-Meneses and P. M. G. Manchòn used the
skein polynomial, which is a generalization of the Jones polynomial. We discuss this approach
in the next subsection.

Another class of diagrams is that of homogeneous ones, which was introduced in [11].
We assume that all link diagrams are oriented and lie on an oriented 2-sphere S2. A crossing

is said to be positive (resp. negative) if it has the form on the left (resp. right) picture
in Figure 4.

Figure 4. Smoothing of a crossing.

Let D be a link diagram. After smoothing all crossings of D, one obtains finitely many
simple closed curves, which are called Seifert circles of D.

Let Γ(D) be a graph whose vertex set is the set of all Seifert circles of D and whose edges
correspond to crossings of D.

Recall that a vertex of a finite graph is said to be a cut vertex if, as one removes it, the num-
ber of connected components of the graph increases. Let G be a finite graph. A subgraph H
of G is called a block of G if, first, H is connected; second, H has no cut vertices; third, H is
maximal for these properties.

A block H of Γ(D) is said to be homogeneous if all edges of H have the same crossing type,
which is either positive or negative. The diagram D is said to be homogeneous if each block
of Γ(D) is homogeneous.

For example, any alternating diagram is homogeneous.
A diagram D is said to be positive if all crossings of D are positive. A link L is said to be

homogeneous (resp. positive) if L admits a homogeneous (resp. positive) diagram.
Note that all prime knots up to nine crossings except 820, 821, 942, 944, 945, 946, and 948 are

homogeneous.
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Homogeneous links admit the following equivalent definition. The Seifert circles of a link
diagram D divide the 2-sphere into regions. We say that D is uniform if, within each such
region, all crossings of D have the same type. If D is uniform, then D is homogeneous.
In general, the converse does not hold. However, for any homogeneous diagram D, one can
use flips to transform D into a new diagram D′ representing the same link such that D′ is
uniform. Thus, a link L is homogeneous if and only if L admits a uniform diagram.

Figure 5. An example of a homogeneous link diagram D (on the left). The
union of Seifert circles of D with an indication of crossing types (on the right).
The orientation is omitted. The picture was taken from [18].

In contrast to alternating diagrams, there are non-minimal reduced homogeneous ones (for
example, see Figure 12 in [11]). Also, some positive links admit both non-minimal posi-
tive diagrams and non-homogeneous minimal ones (for example, 11n183, see [26]). In [11]
(see Questions 1 and 2), the author suggests studying minimal diagrams of homogeneous
links. Our results show that there are sufficient conditions on a homogeneous diagram so that
it is minimal. In particular, we describe a new class of minimal homogeneous diagrams.

Let us provide more reasons to study homogeneous diagrams. A natural question is whether
one can read off topological properties of the link given by a diagram D (such as knottedness,
splitness, and primeness) from D.

In some sense, homogeneous links are visually knotted. Namely, a homogeneous link L is
trivial if and only if for some (and hence any) homogeneous diagram D of L, Γ(D) has no
cycles (see Theorem 3 in [11] and Corollary 7.6.3 in [3]). Recall that a link L is said to be
split if L admits a disconnected diagram. Homogeneous links are visually split, that is, a
homogeneous link L is split if and only if some (and hence any) homogeneous diagram of L is
disconnected (see Corollary 3.1 in [11] and Corollary 7.6.4 in [3]). Finally, in [15], the author
conjectured that homogeneous links are visually prime, that is, a homogeneous link L is prime
if and only if some (and hence any) homogeneous diagram of L is prime. The conjecture
holds for both alternating (see Theorem 1 in [16] and Theorem 4.4 in [6]) and positive links
(see Theorem 1.4 in [14] and Theorem 1.2 in [15]).

In contrast to alternating links, for homogeneous ones, many questions remain unsolved. In
particular, no analog of the flyping conjecture (see below) has been found for homogeneous
links so far.
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1.1. The skein polynomial. Before introducing the main results of the present thesis, we
need some more preliminaries.

In [24, 25], the authors proved that there is a unique function that maps each link diagram D
to a two-variable Laurent polynomial P(D;a, z) ∈ Z[a±1, z±1] such that:

(1) If two link diagrams D and D′ represent the same link, then P(D;a, z) = P(D′;a, z).
(2) One has

aP(D+;a, z) − a−1P(D−;a, z) = zP(D0, a, z)

whenever D+, D0, and D− are link diagrams that coincide except at a small region
where the diagrams are presented as in Figure 4, respectively.

(3) If D is a knot diagram without crossings, then P(D;a, z) = 1.

The polynomial P(D;a, z) is referred to as the skein polynomial, the HOMFLY polynomial,
the HOMFLY-PT polynomial, the generalized Jones polynomial, and the twisted Alexander
polynomial of D. The second condition is referred to as the skein relation.

Given a link L, let P(L;a, z) ∶= P(D;a, z) for some (and hence any) diagram D of L.
The skein polynomial is a generalization of the Jones polynomial. Namely, for any link L, one
has

VL(t) = P(L; t, t1/2 − t−1/2).

Denote by s(D) the number of Seifert circles of D and by ∣D∣ the number of crossings of D.
Denote by ω(D) the writhe of D, that is, the difference between the number of positive and
the number of negative crossings of D. A diagram D of a link L is said to be optimal if D has
the least number of Seifert circles among all diagrams of L.

The relationship between s(D) and the skein polynomial is analogous to the relationship
between ∣D∣ and the Jones polynomial. The analogy is as follows.

Let Qi(L; z) ∈ Z[z±1] be polynomials such that P(L;a, z) = ∑
E
i=eQi(L; z)ai, Qe(L; z) ≠ 0,

and QE(L; z) ≠ 0. In [29] (see Theorem 1), the author proved that for any diagram D of L,
one has

−ω(D) − (s(D) − 1) ≤ e ≤ E ≤ −ω(D) + (s(D) − 1).(1.1)

In particular,

(E − e)/2 + 1 ≤ s(D).(1.2)

The latter is referred to as the Morton–Franks–Williams inequality. Given a link diagram D,
we say that (1.2) is sharp for D if (E−e)/2+1 = s(D). In this case, D is optimal. Note that (1.2)
is sharp if and only if both outer inequalities in (1.1) are sharp.

Note that all prime knots up to 10 crossings except 942, 949, 10132, 10150, and 10156 ad-
mit diagrams, for which the Morton–Franks–Williams inequality (1.2) is sharp. The same
is true for all closed positive braids with ≤ 3 strands (see Proposition 3.1 in [33]), fibered
alternating links (see Theorem A in [28]), rational links (see Theorem B in [28]), and GMM
ones (see Corollary 4.3 in [31]). Also, in [31], the authors proved that given a positive braid
diagram D, the Morton–Franks–Williams inequality (1.2) is sharp for the Alexander closure
of D if and only if D is a GMM braid diagram.

Let Pi(L;a) ∈ Z[a±1] be polynomials such that P(L;a, z) = ∑
M
i=mPi(L;a)zi, Pm(L;a) ≠ 0,

and PM(L;a) ≠ 0. In [29] (see Theorem 2), the author proved that for any diagram D of L,
one has

M ≤ ∣D∣ − s(D) + 1.(1.3)
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By combining (1.2) and (1.3), one has

M + (E − e)/2 ≤ ∣D∣.

Remark 1.1. The inequality (1.3) is sharp for all homogeneous diagrams (see Theorem 4
in [11], Theorem 7.6.2 in [3], and Theorem 6 in [12]). Besides, (1.3) is sharp for an almost
positive diagram of a prime knot 12n149, which is not homogeneous.

Remark 1.2. Suppose (1.3) is sharp for D. If D is optimal, then D is minimal. Indeed, for
any diagram D′ of the same link L, one has

∣D∣ =M + s(D) − 1 ≤ (∣D′∣ − s(D′) + 1) + s(D) − 1 ≤ ∣D′∣.

This result was firstly observed in [28] (see Proposition 7.4). Moreover, in this case, any
minimal diagram of L is optimal. Indeed, for any minimal diagram D′ of L, one has

s(D′) ≤ ∣D′∣ −M + 1 = ∣D′∣ − (∣D∣ − s(D) + 1) + 1 = s(D).

1.2. Braids and links. We follow [49] and generalize the Alexander closure of braids con-
struction. By using this construction, in the next subsection, we describe a new class of link
diagrams, for which the Morton–Franks–Williams inequality (1.2) is sharp.

Let C = {C1,C2, . . . ,Cs} be a set of disjoint oriented circles on the 2-sphere S2 and

∥⋅∥ ∶ C Ð→ {1,2, . . .}

be an arbitrary function, which is referred to as a weight function. Let A = {α1, α2, . . . , αt}
be a set of disjoint oriented simple closed arcs on S2. A triple (C,A, ∥⋅∥) is called a system of
weighted circles if for all i ∈ {1,2, . . . , s}, j ∈ {1,2, . . . , t}, and x ∈ (Ci ∩ αj) ∪ ∂αj, there is a
neighborhood of x diffeomorphic to one of the pictures shown in Figure 6.

Figure 6. Any point x ∈ (Ci ∩ αj) ∪ ∂αj has a neighborhood that looks like
one of these.

Let (C,A, ∥⋅∥) be a system of weighted circles. Given α ∈ A, denote by ∥α∥ the sum of weights
of all circles intersecting α. Note that for all α ∈ A, the arc α intersects each circle C ∈ C no
more than once, and ∥α∥ ≥ 2. A function

π∶A Ð→ {σ±1i ∣ i ∈ {1,2,3, . . .}}∗

is called a braid placement if for all α ∈ A, one has

π(α) ∈ {σ±1i ∣ i ∈ {1,2, . . . , ∥α∥ − 1}}∗.

Any braid placement π determines a link diagram as follows. First, for each C ∈ C, replace C
by ∥C∥ concentric circles (see Figure 7). Second, for each α ∈ A, insert a braid diagram corre-
sponding to π(α) according to the orientation. We say that the resulting link is determined
by π. Note that any link diagram arises this way.



9

Let (C,A, ∥⋅∥) be a system of weighted circles. Each connected component of

(⋃
C∈C

C) ∪ (⋃
α∈A

α)

determines a division of S2 into regions. The system (C,A, ∥⋅∥) is said to be reduced if, for
each such connected component, no topological disk region has precisely four distinct sides.

Figure 7. A link diagram determined by a braid placement.

1.3. Solid links. In this subsection, we describe our main results concerning the new class
of link diagrams, referred to as solid ones.

In [50], J. Stallings introduced the concept of homogeneous braid words. Namely,
given r1, . . . , rn−1 ∈ {1,−1}, a braid word w is said to be (r1, . . . , rn−1)-homogeneous if w
contains none of the letters σ−r11 , σ−r22 , . . . , σ−rn−1n−1 . We say that a word w is homogeneous when-
ever w is (r1, . . . , rn−1)-homogeneous for some r1, . . . , rn−1. A braid is said to be homogeneous
if it has a homogeneous braid word representative.

For example, any positive braid diagram is homogeneous. It is easy to check that the
Alexander closure of a homogeneous braid diagram is a homogeneous link diagram.

Given i, j ∈ {1,2, . . . , n} such that i < j, let

δi,j ∶= (σiσi+1 . . . σj−1σj)(σiσi+1 . . . σj−1) . . . (σiσi+1)σi.(1.4)

The braid ∆1,n determined by δ1,n is referred to as the half twist, the fundamental braid, and
the Garside element in Bn. The braid ∆2

1,n is referred to as the full twist.
Let r1, . . . , rn−1 ∈ {1,−1}. Let i1, i2, . . . , im ∈ {1,2, . . . , n} be such that 1 = i1 < i2 < . . . < im = n

and for all k ∈ {1,2, . . . ,m − 1}, one has rik = rik+1 = . . . = rik+1−1 and rik+1−1 ≠ rik+1 .
Let H+(r1, . . . , rn−1) (resp. H−(r1, . . . , rn−1)) be the class of all (r1, . . . , rn−1)-homogeneous

braid words w such that for each k ∈ {1,2, . . . ,m − 1} such that rik = 1 (resp. rik = −1),
the braid word obtained from w by deleting all letters except σ±1ik , σ

±1
ik+1

, . . . , σ±1ik+1−1 admits a

decomposition of the form v1v2v3 such that both v1 and v3 represent ∆ik,ik+1 (resp. ∆−1
ik,ik+1

).
Let H+ (resp. H−) be the union of all H+(r1, . . . , rn−1) (resp. H−(r1, . . . , rn−1)), where n ≥ 2

and r1, . . . , rn−1 ∈ {1,−1}. An element of H+ (resp. H−) is called a +solid (resp. −solid) braid
word. An element of H+ ∩H− is called a solid braid word.

For example, all braid diagrams shown in Figure 2 correspond to solid braid words.
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Definition 1.3. Let # ∈ {+,−}. Let (C,A, ∥⋅∥) be a reduced system of weighted circles and π
be a braid placement. The braid placement π is said to be #solid (resp. solid) if for all α ∈ A,
one has π(α) ∈ H# (resp. π(α) ∈ H+ ∩H−). In this case, the link diagram D determined by π
is said to be #solid (resp. solid). A link is said to be solid if it admits a solid diagram.

By using methods of [1, 2], we show that all solid diagrams are optimal. In particular,
those of them, for which (1.3) is sharp, are minimal. For the corresponding links, the crossing
number is equal to M + (E − e)/2.

Theorem 1.4. The Morton–Franks–Williams inequality (1.2) is sharp for all solid diagrams.

Corollary 1.5. All solid diagrams are optimal.

Remarks 1.1 and 1.2 imply the following results.

Corollary 1.6. All solid homogeneous diagrams are minimal.

Corollary 1.7. The Alexander closure of a homogeneous braid diagram is minimal whenever
the corresponding braid word is solid.

For example, all closed positive braid diagrams with the full twist are solid. The sharpness
result for them is well known (see Corollary 2.4 in [30], Theorem 10.5.1 in [3], Corollary 4.5
in [31], Theorem 1.3 in [32], and Corollary 1.4 in [34]). In particular, all torus links are solid.

If for a link diagram D, there exist two Seifert circles that share exactly one common
crossing, then D is not optimal. Namely, one can apply a transformation that reduces the
number of Seifert circles. The transformation is referred to as the Murasugi–Przytycki move
(see Definition 2.1 in [27]).

It follows that some reduced alternating (and hence minimal) diagrams are not optimal
(compare with Remark 1.2 above). Still, if for an alternating diagram D, any two Seifert circles
ofD have either no common crossings or at least two common crossings, then the corresponding
alternating link is solid. The sharpness of the Morton–Franks–Williams inequality (1.2) for
solid alternating links was firstly observed in [2] (see Theorem 1.1).

The non-homogeneous solid diagram D shown in Figure 8 is minimal, but (1.3) is not sharp
for D. At the same time, there exist non-minimal solid diagrams.

Figure 8. A solid non-homogeneous diagram of 11n74 and the corresponding
system of weighted circles.

Among the 36 prime knots with ≤ 8 crossings, there are 4 torus and 14 solid alternating ones.
Besides, among the 49 prime knots with 9 crossings, there are 1 torus and 16 solid alternating
ones. The second and the third braid diagrams shown in Figure 2 provide solid homogeneous
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diagrams of 943 and 947. Both 943 and 947 admit neither adequate nor reduced Montesinos
nor GMM link diagrams. Thus, Corollary 1.7 provides the first non-brute-force proof of the
following result.

Corollary 1.8. The crossing number of both 943 and 947 is 9.

A well-known conjecture states that the crossing number is additive under connected sums,
that is, connected sums of minimal link diagrams are minimal (see Problem 1.65 in [19], [20],
and p. 69 in [9]). The latter is still open in general. Since connected sums of adequate
(resp. GMM) diagrams are adequate (resp. GMM), the conjecture holds for both adequate
and GMM diagrams. Also, connected sums of minimal diagrams of torus links are mini-
mal (see Theorem 3.8 in [21] and Corollary 3.6 in [22]). Note that connected sums of solid
homogeneous diagrams are solid homogeneous. Corollary 1.6 implies the following result.

Corollary 1.9. The conjecture that the crossing number is additive under connected sums
holds for all solid homogeneous links.

Following [23], we say that a minimal diagram D is 1-regular if for any diagram D′, the
crossing numbers of links determined by connected sums of D and D′ are bounded from below
by the number of crossings of D. If the additivity of crossing number conjecture holds, then
any minimal link diagram is 1-regular. By using properties of the Kauffman polynomial, one
can show that all adequate diagrams are 1-regular. Also, all minimal diagrams of torus links
are 1-regular (see Theorem 3.8 in [21]). In [21] (see Theorem 3.8), the author provided a
sufficient condition on a link diagram to be 1-regular. By using Corollary 4.1 in [11], one
can show that optimal homogeneous diagrams satisfy the condition. In particular, all GMM
diagrams are 1-regular. Also, Corollary 1.5 implies the following result.

Corollary 1.10. All solid homogeneous diagrams are 1-regular.

Our next step is to study minimal diagrams of solid links. Recall that any minimal diagram
of a prime alternating link is alternating and that some positive links admit non-positive
minimal diagrams. Still, any minimal diagram of an alternating link is homogeneous. We
propose the following conjecture.

Conjecture 1.11. Suppose a link L admits a solid homogeneous diagram. Then any minimal
diagram of L is homogeneous.

It is not hard to check that if the Morton–Franks–Williams inequality (1.2) is sharp for a link
diagram D, then any two optimal diagrams of L have the same writhe. In particular (see Re-
mark 1.2), any minimal diagram of a solid positive link is positive. Thus, Conjecture 1.11
holds for all solid positive links.

1.4. Homogeneous braids. In this subsection, we describe our results concerning braid
diagrams. The latter provide reasons to believe that Conjecture 1.11 holds.

Let us introduce the following equivalence relations on the set of all braid diagrams with n
strands:

(1) to represent the same element of Bn;
(2) to represent conjugate elements of Bn;
(3) to represent the same link via the Alexander closure.

Note that (1) implies (2) and (2) implies (3). One treats equivalence classes generated by the
second equivalence relation as braids in the solid torus [0,1] × [0,1] × S1.
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A braid diagram is said to be minimal if it has the least possible number of crossings among
all braid diagrams representing the same braid. The number of crossings of a minimal diagram
of a braid is called the crossing number of the braid. A braid β ∈ Bn is said to be of minimal
conjugacy length if β has the smallest crossing number among all braids in the conjugacy
class {δ−1βδ ∣ δ ∈ Bn}. A braid diagram D is said to be of minimal conjugacy length if D is
minimal, and the corresponding braid is of minimal conjugacy length.

Proposition 1.12. Let r1, . . . , rn−1 ∈ {1,−1} and β be a (r1, . . . , rn−1)-homogeneous braid.
A diagram D of β is minimal if and only if D is (r1, . . . , rn−1)-homogeneous.

Corollary 1.13. A diagram D of a homogeneous braid is minimal if and only if D is homo-
geneous.

A basis of the proof of Proposition 1.12 is an analog of the Conway polynomial for tangles.

Proposition 1.14. Let β be a homogeneous braid. A diagram D of a braid in {δ−1βδ ∣ δ ∈ Bn}

is of minimal conjugacy length if and only if D is homogeneous.

A basis of the proof of Proposition 1.12 is a three-variable polynomial invariant of braids,
constructed in [41].

Note that some closed solid homogeneous braids admit non-braid-like minimal diagrams.
For example, both 10138 and 12n706 admit both closed solid homogeneous braid diagrams (see
the fourth and the fifth diagrams in Figure 2) and minimal diagrams whose Seifert circles are
not concentric. However, all minimal knot diagrams of both 10138 and 12n706 are homogeneous.

2. The skein polynomial of solid links

In this section, we prove Theorem 1.4.
Recall a general principle that is used to calculate the skein polynomial. For a trivial link

diagram D with n components, it is not hard to show that P(D;a, z) = ((a − a−1)z−1)n−1.
Given a link diagram D, let T be a rooted and edge-weighted binary tree, which is directed

from a root, such that:

(1) each vertex of T is a link diagram;
(2) the root vertex of T is D;
(3) each leaf vertex of T represents an unlink;
(4) each internal vertex has exactly two children vertices. The corresponding three link

diagrams are identical except at one crossing, and they are related by one of the two
possible relations at that crossing, as shown in Figure 9.

Figure 9. The edge weight assignment for a resolving tree.
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The tree T is called a resolving tree (for the skein polynomial) of D. One treats the resolving
tree as a parsing tree.

Any link diagram admits a resolving tree (see below). In general, there are several resolving
trees for a given diagram.

Remark 2.1. Any resolving tree T of D gives rise to a decomposition of P(D;a, z) as a sum,
which is indexed by leaf vertices of T , as follows. Note that the skein relation admits the
following equivalent forms:

P(D+;a, z) = a−2P(D−;a, z) + a−1zP(D0, a, z),

P(D−;a, z) = a2P(D+;a, z) − azP(D0, a, z).

Let U be a leaf vertex of T . Denote by γ(U) the number of link components of U . Let P be
a unique path on T from the root vertex D to the leaf vertex U . It is easy to see that the
contribution of U to P(D;a, z) is ((a − a−1)z−1)γ(U)−1 multiplied by the weights of the edges
in P . Let t(U) be the number of crossings of D that one smoothed in obtaining U , and t−(U)
be the number of negative crossings among the smoothed ones. As Figure 9 shows, the degree
of a in the weight of an edge is exactly the change of writhe from the starting vertex of the
edge to the ending vertex of the edge. Also, a z term in the weight of the edge indicates that
the ending vertex is obtained from the starting vertex by a crossing smoothing and a negative
sign in the weight indicates that the smoothed crossing is negative. It follows that

P(D;a, z) = ∑
U∈T○

(−1)t
−(U)zt(U)aω(U)−ω(D)((a − a−1)z−1)γ(U)−1,

where T○ is the set of leaf vertices of T .

Remark 2.2. We think of a resolving tree as a graph of a branching process (in the sense of
probability theory). Namely, at each internal vertex, one takes a crossing of the current link
diagram and branch on smoothing and flipping the crossing. Hence, to construct a resolving
tree, one can describe a rule that determines the corresponding crossings of intermediate link
diagrams. The rule determines the evolution of the branching process.

With this idea in mind, we describe resolving trees introduced in [2].

2.1. Two special classes of resolving trees. By a point on a link diagram D, we mean a
point x on an arc of D such that x is not a crossing. By a point on a Seifert circle C of D, we
mean a point x on the intersection of C and D.

Let U be a link diagram and m = γ(D). Let p1, p2, . . . , pm be a sequence of base points
on U such that for i ≠ j, the points pi and pj lie on distinct components of U . One may
travel through D by moving through each such component as follows. One starts at the first
marked point p1 and moves according to the orientation. As one reaches p1 again, one chooses
the second marked point p2, starts moving according to the orientation. Then one continues
similarly. Such travel is said to be natural.

During this process, one visits each crossing of U exactly twice. A crossing of U is said
to be descending (resp. ascending), if one travels along the overpassing (resp. underpassing)
strand first. The diagram U is said to be descending (resp. ascending) if each crossing of U
is descending (resp. ascending). Note that if U is descending (resp. ascending), then the
components of U are both layered from top to bottom (resp. from bottom to top) and
represent unknots. In this case, U represents an unlink.

Choose an arbitrary base point x on U . Then travel through U according to the orientation.
Denote by M(U ;x) the longest path starting at x one traveled before meeting either x or
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an ascending crossing, that is, a crossing such that one meets its underpassing strand first.
The path M(U ;x) is called a maximal descending path on U starting at x.

One defines a maximal ascending path of U starting at x similarly.

Following [2], we construct two special classes of resolving trees, which we call X-coherent
and Y-coherent. First, we describe a class of resolving trees, referred to as descending ones.

Let D be a link diagram. Let us describe a descending resolving tree T of D. The construc-
tion of the tree consists of several phases. One starts with the one vertex tree T0. At the end
of the kth phase, one obtains a rooted subtree Tk of T . The resulting subtrees satisfy

{D} = T0 ⊂ T1 ⊂ . . . ⊂ Tm = T .

Thus, one obtains each of the trees from the previous one by extensions shown in Figure 9.

Figure 10. An example of a descending resolving tree. For each vertex of the
tree, the base point is the input of another leftmost strand.

In the first phase, one chooses an arbitrary base point x1 on D. One finds the maximal
descending path M(D;x1) on D starting at x1. If M(D;x1) is closed, that is, M(D;x1)
is the whole link component of D containing x1, the phase ends. Assume M(D;x1) is not
closed. In this case, one extends the current tree at a crossing of D that is the end of the
path M(D;x1), see Figure 9. At this moment, the tree T1 consists of three vertices: a
parent D and its children D′ and D′′. Then one finds the maximal descending pathM(D′;x1)
on D′ starting at x1. If M(D′;x1) is not closed, one extends the current tree T1 similarly by
adding children of D′. One repeats the same procedure for all leaf vertices U of the current
tree T1. At the end of the first phase, for each leaf vertex U of T1, the maximal descending
path M(U ;x1) on U starting at x1 is closed. In this case, M(U ;x1) is the link component
of U containing x1. If each leaf vertex U of T1 is a knot diagram, the construction of T ends.
Otherwise, one moves to the next phase.

In the second phase, one extends T1 as follows. For each leaf vertex V of T1, one chooses an
arbitrary base point x2 on a link component of V distinct from that of containing x1. Note that
the point x2 depends on V . One finds the maximal descending path M(V ;x2) on U starting
at x2. If M(V ;x2) is not closed, one extends the current tree at a crossing of V that is the
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end of the pathM(V ;x2). One continues similarly. The second phase continues until for each
leaf vertex V of the current tree T2, the pathM(V ;x2) is closed. In this case,M(V ;x2) is the
link component of V containing x2.

One repeats the same procedure until all leaf vertices of the current tree are descending dia-
grams. Since any descending diagram represents an unlink, the resulting tree T is a resolving
tree.

By varying the base points on the leaf vertices of T0,T1, . . . ,Tm−1, one obtains a few de-
scending resolving trees of D. One may think of them as branching processes.

See Figure 10 for a descending resolving tree example of the Alexander closure of σ−11 σ2σ
−1
1 .

For the sake of simplicity, the vertices are presented as braid diagrams.
The descending resolving trees introduced in [11] (see Theorem 2). Also, see the Hoste

approach in [24] and Lemma 7.5.1 in [3].
We are in the position of describing X-coherent and Y-coherent resolving trees. Here and

below, we assume that all link diagrams lie on the oriented plane R2. Thus, one may distinguish
clockwise and counterclockwise Seifert circles of D.

Let D be a link diagram. Let us describe an X-coherent resolving tree T of D. The con-
struction of the tree consists of several phases. One starts with the one vertex tree T0. At the
end of the kth phase, one obtains a rooted subtree Tk of T . The resulting subtrees satisfy

{D} = T0 ⊂ T1 ⊂ . . . ⊂ Tm = T .

Thus, one obtains each of the trees from the previous one by extensions shown in Figure 9.
Following Remark 2.2, one defines two rules called descending and ascending ones. In the

descending rule, one keeps a descending crossing unchanged and branches on flipping and
smoothing an ascending one. In the ascending rule, one does just the opposite, that is, keeps
an ascending crossing currently visited, and branches on flipping and smoothing a descending
one.

At each phase, one follows either the descending or ascending rule. By definition, one
follows the descending rule if and only if the Seifert circle C containing a current base point x
is clockwise.

More precisely, in the first phase, one chooses an arbitrary base point x1 on D. One finds the
maximal descending (resp. ascending) path of D starting at x1 whenever the corresponding
Seifert circle is clockwise (resp. counterclockwise). If the path is not closed, one extends the
current tree at a crossing of D that is the end of the path, see Figure 9. One repeats the
same procedure for all leaf vertices U of the current tree T1. At the end of the first phase, for
each leaf vertex U of T1, the maximal descending (resp. ascending) path of U starting at x1 is
closed. If each leaf vertex U of T1 is a knot diagram, the construction ends.

In the second phase, one extends T1 as follows. For each leaf vertex V of T1, one chooses an
arbitrary base point x2 on a link component of V distinct from that of containing x1. Note that
the point x2 depends on V . One finds the maximal descending (resp. ascending) path of V
starting at x2 whenever the corresponding Seifert circle is clockwise (resp. counterclockwise).
If the path is not closed, one extends the current tree at a crossing of V that is the end of
the path. One continues similarly. The second phase ends when for each leaf vertex V of the
current tree T2, the maximal descending (resp. ascending) path of V starting at x2 is closed.

One repeats the same procedure until for each leaf vertex U of the current tree, all link
components of U are visited. This completes the construction of T .
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It is easy to see that for any leaf vertex U of T , each link component of U is either descending
or ascending. Also, the link components of U are stacked over each other. Thus, U represents
an unlink. Therefore, T is a resolving tree.

By varying the base points on the leaf vertices of T0,T1, . . . ,Tm−1, one obtains a few X-
coherent resolving trees of D.

One defines a class of Y-coherent resolving trees similarly. Namely, one follows the descend-
ing rule if and only if the Seifert circle containing a current base point is counterclockwise.

To prove Theorem 1.4, we use specific X-coherent and Y-coherent resolving trees, which we
define below.

2.2. Castle structure for link diagrams. Following [2], we describe an additional structure
for a link diagram, which is called a castle. The castle consists of several segments on Seifert
circles, which are called floors, and several crossings between them, which are called ladders.

Let D be a link diagram. A Seifert circle C of D is said to be innermost if C does not bound
any other Seifert circle inside it.

Figure 11. An example of a castle.

Let C be an innermost Seifert circle of D. Choose a base point on C. If C has no adjacent
crossings, the castle is empty. Assume C is adjacent to at least one crossing of D. Starting
at x and following the orientation of C, one orders the crossings adjacent to C, as shown
in Figure 11. Since C is innermost, the crossings lie on the same side of C. Denote by p0
and q0 the ends of a segment on C that involves all of the crossings such that p0 is the base
point and q0 is the point immediately after the last crossing adjacent to C. This segment of C
is called a floor of level 0.

Let C ′ be a Seifert circle of D that shares common crossings with C. Let p1 and q1 be
two points on C ′ immediately before the first common crossing and immediately after the
last common crossing, respectively. The segment of C ′ between p1 and q1 is called a floor of
level 1. If C shares common crossings with another Seifert circle of D, one constructs another
floor of level 1 similarly. Eventually, one constructs all floors of level 1 of the castle.
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Let C ′ be a Seifert circle containing a floor F of level 1. If F has no common crossings
with other Seifert circles of D, then F terminates. Note that one allows C ′ to have adjacent
crossings, not lying directly on F . Assume F has common crossings with other Seifert circles
of D. Starting at p1 and following the orientation of C ′, one orders these crossings. Note that
they may lie on both sides of F . Let C ′′ be a Seifert circle of D that shares common crossings
with F . Let p2 and q2 be two points on C ′′ immediately before the first common crossing
and immediately after the last common crossing, respectively. The segment of C ′′ between p2
and q2 is called a floor of level 2. If F shares common crossings with another Seifert circle
of D, one constructs another floor of level 2 adjacent to F similarly. After F is done, one
moves to another floor of level 1. Eventually, one constructs all floors of level 2 of the castle.

One repeats the same procedure until one constructed all possible floors. A crossing s of D
is called a ladder if s connects two floors of the castle. By definition, the resulting castle is a
collection of all such floors and ladders.

It is easy to see that there may be more than one separate floor on top of any given floor.
Let Fm be a top floor of level m ≥ 0, Fm−1 be the floor of level m − 1 adjacent to Fm, Fm−2
be the floor of level m − 2 adjacent to Fm−1, and so on. The collection of floors F0, F1, . . . , Fm
and all ladders between them is called a tower of the castle.

Remark 2.3. A castle has a unique floor of level 0 and several floors of higher levels. It is
easy to see that any Seifert circle of D contains at most one floor of the castle. Note that
there may be crossings of D that are not ladders of the castle and Seifert circles of D that do
not contain floors of the castle. The castle is uniquely determined by the starting innermost
Seifert circle C and a base point on it.

A castle is said to be trapped if there are two adjacent floors F1 and F2 and two adjacent
ladders s1 and s2 connecting F1 and F2 such that the interior of the disk bounded by s1, s2, F1,
and F2 contains a floor of the castle. In this case, the disk is called a trap. Otherwise, the
castle is said to be free.

A castle shown in Figure 11 is trapped. Namely, there are two traps. Roughly speaking, a
castle without trapped Seifert circles consists of several braid diagrams.

Let (C,x) be a pair consisting of an innermost Seifert circle C of D and a base point x
on C. The pair (C,x) is said to be appropriate if the corresponding castle is free. Note that
for a given link diagram, there may be several distinct appropriate pairs.

In [2] (see Lemma 4.3), the authors proved that any link diagram D, there exists an inner-
most Seifert circle C of D and a base point x on it such that (C,x) is appropriate. By using
the same argument, we prove the following result.

Let (C,A, ∥⋅∥) be a system of weighted circles and π be a braid placement. Let D be the
link diagram determined by π.

Lemma 2.4. There exists an appropriate pair (C,x) of D such that for all α ∈ A, if x lies on
the braid diagram corresponding to π(α), then x is an input of a strand of π(α).

Proof. Let (C,x) be a pair consisting of an innermost Seifert circle C of D and a base point x
on C such that for all α ∈ A, if x lies on the braid diagram corresponding to π(α), then x is an
input of a strand of π(α). Assume that the corresponding castle K is trapped. Let F1 and F2

be the boundary floors of the corresponding trap B. By the definition, B contains a floor of
the castle K. Let C1 be a Seifert circle of D lying in the trap B and containing a floor of K
such that C1 shares a common crossing with either F1 or F2. Let C2 be an arbitrary innermost
Seifert circle of D bounded by C1. Arcs α ∈ A intersecting C2 divide C2 into segments. Let y



18

be a point on any of these segments. It is easy to see that for all α ∈ A, if the point y lies on
the braid diagram corresponding to π(α), then y is an input of a strand of π(α).

Without loss of generality, C1 shares common crossings with F1. It is easy to check that
the graph Γ(D) is bipartite. Therefore, C1 shares no crossings with F2. It follows that the
castle M corresponding to (C2, y) has no floors intersecting F2. Therefore, the intersection
of M and the complement of B lies within the towers of K containing F1.

If (C2, y) is not appropriate, one repeats the same procedure as above. By using the argu-
ment above, it is not hard to show that the process ends after finitely many steps. The lemma
is proved. �

2.3. Proof of Theorem 1.4. Let D be a link diagram. Let E (resp. e) be the highest
(resp. the lowest) a-degree of the skein polynomial P(D;a, z) of D. We aim to prove that
if D is −solid, then E = −ω(D) + s(D) − 1. By using similar arguments, one can show that
if D is +solid, then e = −ω(D) − s(D) + 1. This will prove that the Morton–Franks–Williams
inequality is sharp for any solid link diagram.

Let (C,A, ∥⋅∥) be a system of weighted circles and π be a braid placement. Let D be the
link diagram determined by π.

Remark 2.5. Suppose one smoothed or flipped some crossings of D and then deleted some
link components. Let D′ be the resulting link diagram. We construct a system of weighted
circles (C′,A′, ∥⋅∥) and a braid placement π′ such that the link diagram determined by π′ is D′

as follows. First, for each α ∈ A, we smooth and flip the corresponding crossings of π(α).
Second, for another link component, we remove both the corresponding parts of Seifert circles
and strands of braid diagrams. If one of the braid diagrams has two strands, after removing
one of them, we remove the corresponding arc from the current system of weighted circles.
The resulting braid diagrams π′(α) are uniquely defined up to far commutativity. It is not
hard to check that if (C,A, ∥⋅∥) is reduced, then (C′,A′, ∥⋅∥) is reduced too.

Following [2], we define a class of X-coherent resolving trees, which we call special X-
coherent.

Let D be a link diagram. Let us describe a special X-coherent resolving tree T of D. As of
any X-coherent resolving tree, the construction of T consists of several phases. One starts
with the one vertex tree T0. At the end of the kth phase, one obtains a rooted subtree Tk
of T . The resulting subtrees satisfy

{D} = T0 ⊂ T1 ⊂ . . . ⊂ Tm = T .

Let us describe the construction of T1. We take an arbitrary appropriate pair (C1, x1) of D
such that for all α ∈ A, if x1 lies on the braid diagram corresponding to π(α), then x1 is an
input of a strand of π(α). The latter exists due to Lemma 2.4. Let x1 be a base point of the
first phase. Then we construct T1 as described in the definition of X-coherent trees.

Let us describe the construction of T2. Let U be a leaf vertex of T1. Recall that U con-
tains the base point x1. Let LC(U ;x1) be the link component of U containing x1. Denote
by U/LC(U ;x1) the link diagram obtained from U by removing LC(U ;x1). Let π1 be the
corresponding braid placement (see Remark 2.5 above). We take an arbitrary appropriate
pair (C2, x2) of U/LC(U ;x1) such that for all α ∈ A, if x2 lies on the braid diagram cor-
responding to π1(α), then x2 is an input of a strand of π1(α). The latter exists due to
Lemma 2.4. Let x2 be a base point of the second phase concerning U . At this moment, we
follow the same rules as above. Then we repeat the same procedure for all leaf vertices U
of T1. Eventually, we construct T2.
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Let us describe the construction of T3. Let V be a leaf vertex of T2. Recall that V contains
two base points: x1 and x2. Let LC(V ;x2) be the link component of V containing x2. Denote
by V/(LC(V ;x1) ∪LC(V ;x2)) the link diagram obtained from V by removing both LC(V ;x1)
and LC(V ;x2). Let π2 be the corresponding braid placement. We take an arbitrary appropri-
ate pair (C3, x3) of V/(LC(V ;x1) ∪ LC(V ;x2)) such that for all α ∈ A, if x3 lies on the braid
diagram corresponding to π2(α), then x3 is an input of a strand of π2(α). The latter exists
due to Lemma 2.4. Let x3 be a base point of the third phase concerning V . At this moment,
we follow the same rules as above. Then we repeat the same procedure for all leaf vertices V
of T2. Eventually, we construct T3.

Then we proceed similarly. In the end, we obtain a special X-coherent resolving tree T .
Recall that for a given link diagram, there may be several distinct appropriate pairs.

By varying them, we obtain a few special X-coherent resolving trees of D.

Let T be an arbitrary special X-coherent resolving tree of D.
Recall that given a leaf vertex U of T , γ(U) denotes the number of link components in a leaf

vertex U of T , t(U) denotes the number of crossings of D that one smoothed in obtaining U ,
and t−(U) denotes the number of negative crossings among the smoothed ones (see Remark 2.1
above). We say that a leaf vertex U of T contributes to the highest a-degree term a−ω(D)+s(D)−1

if
ω(U) − ω(D) + γ(U) − 1 = −ω(D) + s(D) − 1.

We are in the position of proving Theorem 1.4. The proof is in three steps.
In the first step, we show that there exists a specific leaf vertex U∗ of T contributing to

the highest a-degree term a−ω(D)+s(D)−1 such that one smoothed all positive crossings of D in
obtaining U∗. In the second step, we show that if a leaf vertex U of T contributes to the highest
a-degree term a−ω(D)+s(D)−1 of P(D;a, z), then γ(U) = s(D), ω(U) = 0, and t−(U) ≤ t−(U∗).
In the third step, we show that the previous steps imply the result.

Step 1. We start with the following observation.

Lemma 2.6. Suppose a (−1,−1, . . . ,−1)-homogeneous braid word u represents ∆−1
1,n. Then

there exist braid words of the form u1σ−11 σ
−1
2 . . . σ−1n−1u2 and u3σ−1n−1σ

−1
n−2 . . . σ

−1
1 u4 lying in the

same far commutativity class as of the braid word u such that u2, u3 ∈ {σ−11 , σ
−1
2 , . . . , σ

−1
n−2}

∗

and u1, u4 ∈ {σ−12 , σ
−1
3 , . . . , σ

−1
n−1}

∗.

Figure 12. An illustration for Lemma 2.6.

Proof. We show that by using the moves corresponding to the far commutativity relations,
one may transform u into a braid word of the form u1σ−11 σ

−1
2 . . . σ−1n−1u2. For the second braid

word, the argument is similar.
First, the statement of the lemma holds for the braid word (1.4).
Second, any two (−1,−1, . . . ,−1)-homogeneous braid words representing the same braid

are related by the diagram transformations corresponding to the braid relations and the far
commutativity relations (see Theorem 9.2.5 in [7]). It is easy to check that if one obtains a
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braid word v2 from v1 via a single move corresponding to a braid relation, the assertion holds
for v1 if and only if it holds for v2. Similar is true for a single move corresponding to a far
commutativity relation. Therefore, the statement of the lemma holds for u. The lemma is
proved. �

Figure 13. An example of a solid braid diagram. The rectangles can be filled
by arbitrary braid diagrams so that the resulting one is homogeneous.

Figure 14. The braid diagram obtained from those in Figure 13 in the con-
struction of U∗.

Recall that for any leaf vertex of a resolving tree, there is a unique path from the root to
the leaf. The path corresponds to a sequence of diagrams leading to the leaf vertex diagram.
To prove the existence of U∗, we construct such a path.

Let (C1, x1) be the appropriate pair that one used in the first phase to construct T . Start
at x1 and move according to the orientation. Assume at the moment that C1 intersects an
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arc of the system of weighted circles. Let α ∈ A be the first such arc one encountered. By the
construction of (C1, x1), the base point x1 is an input of a strand of π(α).

Recall that ∥α∥ denotes the number of strands in the braid diagram corresponding the braid
word π(α). Given a braid diagram V , the vertical lines containing the inputs of the strands
of V are referred to as Seifert segments of V .

Case 1. The first crossing one encounters is negative. This crossing has the form either σ−11
or σ−1

∥α∥−1
depending on the direction of C1. Suppose C1 is clockwise. Then the first crossing

has the form σ−11 . Recall that in this case, one has to follow the descending rule. One has no
choice but to keep the first crossing unchanged (and hence cross it). One continues traveling
along the second Seifert segment of π(a).

We assume at the moment that i2 > 2. Recall that π(α) is −solid. One waits for a crossing
of the form σ−12 . The latter exists due to Lemma 2.6. When such a crossing appears, one
has no choice but to keep it unchanged. One continues traveling along the third Seifert
segment of π(α) and waits for a crossing of the form σ−13 . The latter exists due to Lemma 2.6.
This process continues until one crosses a crossing of the form σ−1i2−1.

Let q be the last appearance of the letter σ−1i2−1 in π(α) such that σ−1i2−1σ
−1
i2−2

. . . σ−13 σ
−1
2 σ

−1
1

is a subsequence of the suffix of π(α) that begins at q. The latter exists due to Lemma 2.6.
One continues traveling along the Seifert segment i2 of π(α). One smooths all crossings of the
forms σ−1i2−1 and σi2 and waits for the crossing corresponding to q. When this crossing appears,
one flips it and hence moves to the Seifert segment i2 − 1 of π(α).

Let q′ be the last appearance of the letter σ−1i2−2 in π(α) such that σ−1i2−2σ
−1
i2−3

. . . σ−13 σ
−1
2 σ

−1
1

is a subsequence of the suffix of π(α) that begins at q′. The latter exists due to Lemma 2.6.
One continues traveling along the Seifert segment i2 − 1 of π(α). One waits for the crossing
corresponding to q′. When this crossing appears, one flips it and hence moves to the Seifert
segment i2 − 2 of π(α). This process continues until one flips a crossing of the form σ−11 and
hence moves to the ending point of the first Seifert segment of π(α). The case i2 = 2 is similar.

If C1 is counterclockwise, the argument is the same after one replaces the descending algo-
rithm by the ascending one. The first case is complete.

Case 2. The first crossing one encounters is positive. This crossing has the form either σ1
or σ∥α∥−1 depending on the direction of C1. Suppose C1 is clockwise. Then the first crossing
has the form σ1. Recall that in this case, one has to follow the descending rule. One smooths
the first crossing and continues traveling along the first Seifert segment of π(α). Repeating
this process, one arrives at the end of the first Seifert segment of π(α) by smoothing all the
crossings of the form σ1.

If C1 is counterclockwise, then one has to follow the ascending rule. One smooths all
crossings of the form σ∥α∥−1 similarly. The second case is complete.

After the first arc α passed, one continues moving according to the orientation. If there
is another arc intersecting C1, one follows the same rules as above. Finally, one obtains a
leaf vertex U∗1 of T1. Recall that to obtain the second base point of U∗1 , one removes the link
component LC(U∗1 ;x1) of U∗1 containing x1 from consideration. Let U∗1 /LC(U∗1 ;x1) be the
resulting link diagram. Let π1 be the corresponding braid placement. By using Lemma 2.6, it
is easy to see that π1 is −solid. Thus, one can repeat the same process until the construction
of U∗ ends.

Note that in the construction of an X-coherent resolving tree, one visits each crossing of D
exactly twice (and hence at least once). By the definition of U∗, one smoothed all positive
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crossings one encountered. Therefore, one smoothed all positive crossings of D in obtaining U∗.
The first step is complete.

Step 2. Let U be a leaf vertex of T . Let P be a unique path from the root of T to U .
Given i ∈ {1,2, . . . , γ(U)}, let Ui be a unique leaf of P ∩ Ti. Let U0 ∶= D. Recall that Ui
contains i base points, which we denote by x1, x2, . . . , xi. By the construction of T , to ob-
tain Ui, one smooths all crossings of Ui−1 adjacent to LC(Ui;xi) and then flips several crossings
that LC(Ui;xi) intersects. Let

U i−1 ∶= Ui−1/(LC(Ui−1;x1) ∪ LC(Ui−1;x2) ∪ . . . ∪ LC(Ui−1;xi−1))

be the link diagram obtained from the diagram Ui−1 by removing the link compo-
nents LC(Ui−1;x1),LC(Ui−1;x2), . . . ,LC(Ui−1;xi−1). Let (Ci, xi) be the appropriate pair of the
diagram U i−1 that is used in the construction of T concerning Ui. Let Ki be the corresponding
castle. The link component LC(Ui;xi) of Ui determines a path on Ki. This path corresponds
to the natural travel through Ui starting at xi. During this travel, one eventually exits the
castle K for the first time through the endpoint of some floor of level Li. The following results
are Lemma 5.2 and Corollary 5.3 in [2], respectively.

Lemma 2.7. If the leaf vertex U contributes to the highest a-degree term a−ω(D)+s(D)−1, then
for each index i ∈ {1,2, . . . , γ(U)}, one has Li = 0.

Corollary 2.8. If the leaf vertex U contributes to the highest a-degree term a−ω(D)+s(D)−1,
then each link component of U represents a simple closed curve on R2.

The results above imply the following property of leaf vertices of T contributing to the
highest a-degree term.

Corollary 2.9. If the leaf vertex U contributes to the highest a-degree term a−ω(D)+s(D)−1,
then γ(U) = s(D) and ω(U) = 0.

Proof. By using Lemma 2.7, we see that for each i ∈ {1,2, . . . , γ(U)}, one has

s(U i) = s(U i−1) − 1.

Therefore, the number of link components of U is s(D).
Recall that the link components of U are stacked over each other. Thus, the contribu-

tion of crossings between any two distinct link components of U to the writhe ω(U) is zero.
By Corollary 2.8, no link component of U cross itself. Therefore, ω(U) = 0. The corollary is
proved. �

Suppose U contributes to the highest a-degree term a−ω(D)+s(D)−1. We need the following
auxiliary result.

Lemma 2.10. Suppose (C,A, ∥⋅∥) is reduced. Let i ∈ {1,2, . . . , γ(U)} and α ∈ A. Suppose
the link component LC(U ;xi) of U determines a strand s(α, i) on the braid diagram π(α).
Then the index of the input of s(α, i) equals to the index of the output of s(α, i).

Proof. First, suppose i = 1. Let (C1, x1) be the appropriate pair of the diagram U0 = D

that is used in the construction of T concerning U1. Let K1 be the corresponding castle.
Starting at x1 and following the orientation of C1, let us order the arcs of A intersecting C1

as α1, α2, . . . , αr.
Let d1 ∈ {1,2, . . . , ∥α1∥} be the index of the output of s(α1,1). We aim to prove that d1 = 1.
Assume the converse, that is, d1 > 1. Let p0 = x1 and q0 be the ends of the floor of level 0

of K1, see Figure 15. Note that p0, q0 ∈ LC(U ;x1). By Lemma 2.7, the part of LC(U ;x1)
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located from p0 to q0 contains within the castle K1. Let j ∈ {2,3, . . . , r} be the minimum num-
ber such that the Seifert circle C containing the second Seifert segment of π(α1) intersects αj.
Since K1 is free, j = 2. Let B be the disk bounded by C1, C, α1 and α2. Since K1 is free, B
represents a topological disk region in the complement of the connected component of the
system of weighted circles (C,A, ∥⋅∥) that has precisely four distinct sides. Thus, (C,A, ∥⋅∥) is
not reduced. This contradicts the assumption of the lemma. Therefore, d1 = 1.

Similar arguments show that for all α ∈ {α2, α3, . . . , αr}, the index of the input of s(α,1)
equals to the index of the output of s(α,1). Hence, if LC(U ;x1) intersects an arc α ∈ A,
then α ∈ {α1, α2, . . . , αr}. Thus, the case i = 1 is complete.

p0 q0

Figure 15. An illustration for Lemma 2.10.

Suppose i = 2. Let (C2, x2) be the appropriate pair of the diagram U1 = U1/LC(U1;x1) that
is used in the construction of T concerning U2. Let (C′,A′, ∥⋅∥) be the corresponding system of
weighted circles and π2 be the corresponding braid placement such that the link determined
by π2 is U1. Since (C,A, ∥⋅∥) is reduced, (C′,A′, ∥⋅∥) is reduced too (see Remark 2.5). Therefore,
one can apply the same arguments as above.

The case i > 2 is similar. The lemma is proved. �

We are in the position of proving the inequality t−(U) ≤ t−(U∗).
Let α ∈ A. Let r1, . . . , r∥α∥−1 ∈ {1,−1} be such that π(α) is (r1, . . . , r∥α∥−1)-homogeneous.

Let i1, i2, . . . , im ∈ {1,2, . . . , ∥α∥} be indexes such that 1 = i1 < i2 < . . . < im = ∥α∥ and for
all k ∈ {1,2, . . . ,m − 1}, one has rik = rik+1 = . . . = rik+1−1 and rik+1−1 ≠ rik+1 . By the definition
of −solid braids, for each k ∈ {1,2, . . . ,m − 1} such that rik = −1, the braid word obtained
from π(α) by deleting all letters except σ−1ik , σ

−1
ik+1

, . . . , σ−1ik+1−1 admits a decomposition of the

form vk,1vk,2vk,3 such that both vk,1 and vk,3 represent ∆−1
ik,ik+1

. See Figure 13 above.
Let πγ(U) be the braid placement corresponding to Uγ(U) = U . Given a braid word w, denote

by ∣w∣ the length of w.

Lemma 2.11. For each k ∈ {1,2, . . . ,m − 1} such that rik = −1, one neither smoothed nor
flipped at least 2∣vk,1∣ negative crossings of π(α) in obtaining πγ(U)(α).

Proof. Without loss of generality, r1 = −1. First, suppose k = 1.
Let i ∈ {1,2, . . . , γ(U)} be the index such that the input of the first Seifert segment of π(α)

lies on LC(U ;xi). The link component LC(U ;xi) of U containing xi determines a path P
on π(α). This path corresponds to the natural travel through πγ(U)(α) starting at the input
of the first Seifert segment of π(α). It is easy to see that P contains crossings of v1,1 of
the form σ−11 , σ

−1
2 , . . . , σ

−1
i2−1

(see Lemma 2.6). Due to Lemma 2.10, the path P exits π(α)
through the endpoint of the first Seifert segment of π(α). Therefore, P contains at least i2−1
additional crossings of π(α) of the form σ−1i2−1, σ

−1
i2−2

, . . . , σ−11 . Therefore, one neither smoothed
nor flipped at least 2(i2 − 1) negative crossings of π(α) in obtaining πγ(U)(α).

For each j ∈ {1,2, . . . , i2 − 1}, we apply similar arguments concerning the link component
of U containing the input of the index j Seifert segment of π(α). We see that one neither
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smoothed nor flipped at least

2(i2 − 1) + 2(i2 − 2) + . . . + 2 = 2i2(i2 − 1) = 2∣v1,1∣

negative crossings of π(α) in obtaining πγ(U)(α).
For k > 1 such that rik = −1, the argument is similar. The lemma is proved. �

Denote by t−(U∗;α) (resp. t−(U ;α)) the number of negative crossings of π(α) that one
smoothed in obtaining U∗ (resp. U). Denote by n(π(α)) the number of negative crossings
of π(α). One has

t−(U∗;α) + ∑
k∈{1,2,...,m−1}

rik=−1

2∣vk,1∣ = n(π(α)),(2.1)

see Figure 14. Lemma 2.11 implies that

∑
k∈{1,2,...,m−1}

rik=−1

2∣vk,1∣ ≤ n(π(α)) − t
−(U ;α).(2.2)

By combining (2.1) and (2.2), one has t−(U ;α) ≤ t−(U∗;α). Therefore,

t−(U) = ∑
a∈A

t−(U ;α) ≤ ∑
α∈A

t−(U∗;α) = t−(U∗).

The second step is complete.

Step 3. Let V be a leaf vertex of T . Recall that the contribution of V to P(D;a, z) is

(−1)t
−(V)zt(V)aω(V)−ω(D)((a − a−1)z−1)γ(V)−1,

see Remark 2.1. Therefore, the highest a-degree term that V contributes to P(D;a, z) is

(−1)t
−(V)zt(V)−γ(V)+1aω(V)−ω(D)+γ(V)−1.

In [2] (see the beginning of section 5), the authors showed that

ω(V) − ω(D) + γ(V) − 1 ≤ −ω(D) + s(D) − 1.

Recall that in the first step, we showed that there exits a leaf vertex U∗ of T that contributes
to the the highest a-degree term a−ω(D)+s(D)−1.

Let U be a leaf vertex of T that contributes to the the highest a-degree term a−ω(D)+s(D)−1.
Recall that in the second step, we showed that γ(U) = s(D), ω(U) = 0, and t−(U) ≤ t−(U∗).
It is easy to see that U contributes to the term

zt(U
∗)−s(D)+1a−ω(D)+s(D)−1(2.3)

if and only if t(U) = t(U∗).
Suppose t(U) = t(U∗). Denote by p(D) the number of positive crossings of D. Given a leaf

vertex V of T , denote by t+(V) the number of positive crossings of D that one smoothed in
obtaining V . Recall that in the first step, we showed that t+(U∗) = p(D). One has

t−(U∗) = t(U∗) − t+(U∗) = t(U) − p(D) ≤ t(U) − t+(U) = t−(U).

Hence, t−(U) = t−(U∗). Therefore, the contribution of U to the term (2.3) has the same
sign (−1)t

−(U∗) as of U∗. Thus, the term do not cancel. This shows that

E = −ω(D) + s(D) − 1.

The third step is complete. Theorem 1.4 is proved.
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3. Polynomial invariants of tangles and braids

In this section, we show that certain polynomial invariants of tangles provide lower bounds
on the crossing number.

In [51], J. Conway introduced an invariant ∇(L; z) ∈ Z[z±1] of links. The latter is referred
to as the Conway polynomial. This polynomial is a specialization of the skein polynomial.
Namely, ∇(L; z) = P(L,1, z). Following [40], we recall the definition of a polynomial invariant
of ordered tangles similar to the Conway polynomial.

We assume that all tangle diagrams are oriented. In this section, we treat braid diagrams
as tangle diagrams and treat braids as tangles.

Let D be a tangle diagram. A collection of m crossings of D is called an m-state of D.
A state S of D determines a new tangle diagram R(S) obtained from D by smoothing all
crossings lying in S. Suppose R(S) has no closed components. Choose an order on the set of
strands. One travels through R(S) by moving through each strand naturally. In this process,
one passes a neighborhood of each smoothed crossing c ∈ S twice. The state S is said to be
descending if, for each c ∈ S, one enters this neighborhood first time on the overpass of D.

Denote by H the union of inputs and outputs of all strands of D. A bijective function

τ ∶H Ð→ {1,2, . . . ,2n}

is called an ordering of D if τ(x) is odd whenever x is an input. A pair consisting of a tangle
diagram and its ordering τ is called a τ -ordered tangle diagram.

An ordering τ is said to be coherent if, for any strand of D with input x and output y, one
has τ(y) = τ(x) + 1. A state S of a τ -ordered tangle diagram is said to be coherent if R(S)
contains no closed components, and the ordering of R(S) induced by τ is coherent.

We order the strands according to images τ(x) of their inputs x ∈ H. A coherent state S
is said to be τ -descending if S is descending with respect to this order. Denote by t−(S) the
number of negative crossings of D lying in S.

Let D be a τ -ordered tangle diagram. By Sm(D, τ) we denote the set of all τ -descending m-
states of D. Define the Conway polynomial ∇(D, τ ; z) ∈ Z[z] of D as follows:

∇(D, τ ; z) =
∞

∑
m=0

⎛

⎝
∑

S∈Sm(D,τ)

(−1)t
−(S)

⎞

⎠
zm.

We emphasize that ∇(D, τ ; z) depends on the ordering τ . In [40], the author proved (see
Theorem 4.6) that if two τ -ordered tangle diagrams D and D′ represent the same tangle,
then ∇(D, τ ; z) = ∇(D′, τ ; z).

3.1. Proof of Proposition 1.12. Given a tangle diagram D, denote by ∣D∣ the number of
crossings of D. The diagram D is said to be minimal if D has the least possible number of
crossings among all diagrams representing the same tangle.

A τ -ordered tangle diagram D is said to be τ -special if S∣D∣(D, τ) is non-empty, that is, a
unique ∣D∣-state of D is τ -descending.

Lemma 3.1. Let D be a τ -ordered tangle diagram. One has

deg ∇(D, τ ; z) ≤ ∣D∣.(3.1)

The equality holds if and only if D is τ -special.

Proof. First, for m > ∣D∣, the set Sm(D, τ) is empty. Hence, the term of degree m in ∇(D, τ ; z)
is zero. Therefore, deg ∇(D, τ ; z) ≤ ∣D∣. Second, note that deg ∇(D, τ ; z) = ∣D∣ if and only if a
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term of degree ∣D∣ in ∇(D, τ ; z) is non-zero. The latter is equivalent to the fact that S∣D∣(D, τ)
is non-empty. The lemma is proved. �

Corollary 3.2. Let τ be an ordering. Assume a tangle T admits a τ -special diagram. A di-
agram D of T is minimal if and only if D is τ -special.

Proof. First, (3.1) implies that any τ -special diagram is minimal. Second, suppose D is mini-
mal. Let D′ be a τ -special diagram of T . One has

∣D∣ = ∣D′∣ = deg ∇(D′, τ ; z) = deg ∇(D, τ ; z).

Lemma 3.1 implies that D is τ -special. The corollary is proved. �
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Figure 16. An example of a special ordering.

Let D be a τ -ordered tangle diagram. Suppose D is τ -special, that is, a unique ∣D∣-state S
of D is τ -descending. Then R(S) has neither crossings nor closed components. Therefore, D
is a braid diagram.

Let D be a τ -ordered braid diagram. It is easy to see that a unique ∣D∣-state S of D
is coherent if and only if for each Seifert segment of D with input x and output y, one
has τ(y) = τ(x) + 1. In this case, if a unique ∣D∣-state S of D is τ -descending, then D is
homogeneous. Therefore, any special braid diagram is homogeneous.

It is easy to check that, for any homogeneous braid diagram D, there exists at least one
ordering τ such that D is τ -special (see Figure 16). Thus, a braid diagram D is special if and
only if D is homogeneous.

Suppose a braid β admits a (r1, r2, . . . , rn−1)-homogeneous diagram D. Let τ be an or-
dering of D such that D is τ -special. Then any τ -special diagram of β is (r1, r2, . . . , rn−1)-
homogeneous. Therefore, Corollary 3.2 implies Proposition 1.12.

3.2. Proof of Proposition 1.14. Following [41], we recall the definition of a three-variable
polynomial invariant I = I(a, z, t) of braids similar to the skein polynomial.

Let D be a braid diagram with n strands. We enumerate by indexes 1,2, . . . , n all the inputs
of strands of D naturally from the leftmost to the rightmost, respectively.
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Let U be a braid diagram and k ≥ 2. A surjective function

C ∶ {1,2, . . . , n} Ð→ {1,2, . . . , k}

is called a coloring of U with k colors. Roughly speaking, one paints each strand s of U in
color C(i(s)), where i(s) is the index of the input of s. A pair consisting of a braid diagram
and its coloring of strands C is called a C-colored braid diagram.

Let D be a braid diagram. Given m ≥ 0 and k ≥ 2, denote by [D,m, k] the set of all
pairs (S,C) consisting of an m-state S of D and a coloring C of R(S) with k colors such that

(1) any two strands of R(S) lying in the same link component of the Alexander closure
of R(S) have the same color;

(2) for any positive (resp. negative) crossing c ∈ S connecting two strands s1 (the left one)
and s2 (the right one) of R(S), the color of s1 is strictly more (reps. less) than that
of s2.

Given (S,C) ∈ [D,m, k], denote by R(S)i the braid diagram consisting of all strands of R(S)
colored by i. Given a braid diagram U , denote by U the Alexander closure of U .

Define a Laurent polynomial I(D;a, z, t) ∈ Z[a±1, z±1, t] as follows. Let

Ik(D;a, z) =
∞

∑
m=0

⎛

⎝
∑

(S,C)∈[D,m,k]

(−1)t
−(S) aω(R(S))

k

∏
i=1

P(R(S)i;a, z)
⎞

⎠
zm

and I(D;a, z, t) = ∑
∞
k=2 Ik(D;a, z)tk. In [41], the author proved (see Theorem 1) that if two

braid diagrams D and D′ represent conjugate elements of Bn, then I(D;a, z, t) = I(D′;a, z, t).
Note that for any (S,C) ∈ [D,m,n] and for any i ∈ {1,2, . . . , n}, the diagram R(S)i has

precisely one strand. It follows that In(D;a, z) ∈ Z[z].

Lemma 3.3. Let D be a braid diagram with n strands. One has

deg In(D;a, z) ≤ ∣D∣.

The equality holds if and only if D is homogeneous.

Proof. First, for m > ∣D∣, the set [D,m,n] is empty, thus, a term of degree m in In(D;a, z) is
zero. Therefore, deg In(D;a, z) ≤ ∣D∣. Second, note that

In(D;a, z) =
∣D∣

∑
m=0

⎛

⎝
∑

(S,C)∈[D,m,n]

(−1)t
−(S)

⎞

⎠
zm,

thus, the highest z-degree term of In(D;a, z) is

(−1)t
−(D) ⋅#[D, ∣D∣, n] ⋅ z∣D∣.

Therefore, deg In(D;a, z) = ∣D∣ if and only if [D, ∣D∣, n] is non-empty. It is easy to see that
if D is not homogeneous, then [D, ∣D∣, n] is empty. By using arguments similar to that of
proving Proposition 1.12, one can show that if D is homogeneous, then [D, ∣D∣, n] is non-
empty. The lemma is proved. �

Lemma 3.3 and invariance of I under conjugacy imply Proposition 1.14.
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4. Discussion

In this section, we describe a relation between geometric group theory and knot theory.
In geometric group theory, braid words corresponding to minimal braid diagrams are re-

ferred to as geodesic words (with respect to the standard Artin generators). The origin of the
present thesis is to study the language of geodesics for the braid groups.

There exists an explicit description of all geodesic words in B3 (see [42, 43]). The same
is true for minimal conjugacy length words in B3 (see Theorem 6.1 in [46]). The language
of geodesic words in B3 is regular and consists of 27 different cone types. It is an intriguing
open problem whether the language of geodesics for Bn is regular for some n ≥ 4, see [44].
Note that in [45], the authors proved that the language of geodesic words in Bn with respect
to the generating set of simple divisors of the Garside element is regular.

A problem due to J. Stallings (see Problem 1.8 in [19]) asks whether geodesic braid words
are closed under end extension (replacing a final letter s by sn for n ≥ 2). We present natural
generalizations of this conjecture.

Conjecture 4.1. Let w,u, v be braid words in Bn and s ∈ {σ1, . . . , σn−1, σ−11 , . . . , σ
−1
n−1}.

(1) If ws is geodesic, then wss is geodesic.
(2) If usv is geodesic, then ussv is geodesic.
(3) If ws is of minimal conjugacy length, then wss is of minimal conjugacy length.

For n = 2, the conjecture holds. For n = 3, we see that the conjecture holds because of an
explicit description of both geodesic and minimal conjugacy length words in B3. The third
part of Conjecture 4.1 is also known as Question 6.1 in [46]. Propositions 1.12 and 1.14 imply
the following result.

Corollary 4.2. Conjecture 4.1 holds for all homogeneous braid words.

There is a natural analog of Conjecture 4.1 for minimal link diagrams. The link diagram
transformation, similar to the extension described in Conjecture 4.1, is referred to as the
doubling of a crossing.

Conjecture 4.3. Let D be an oriented link diagram. Let D′ be a diagram obtained from D
by the doubling of a crossing. If D is minimal, then D′ is minimal too.

It is easy to check that Conjecture 4.3 holds for both all adequate and all GMM diagrams.
Corollary 1.6 implies the following result.

Corollary 4.4. Conjecture 4.3 holds for all solid homogeneous diagrams.

Denote by Γn(m) the number of all braids β with n strands such that the crossing number
of β is m. The limit

v(Bn) ∶= lim
m→∞

log Γn(m)

m

is referred to as the growth rate and the logarithmic volume of the braid group Bn. The com-
putations show that v(B3) = log 2.

One can define the growth rate for any group with a given finite generating set similarly
(see Definition 7 in [47]).

In [47] (see Theorem 1), the authors calculated the growth rate for a class of groups

LFn = ⟨a1, . . . , an−1 ∣ aiaj = ajai, ∣i − j∣ ≥ 2⟩,
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referred to as locally free groups. The latter are right–angled Artin groups. In particular, the
authors showed that the growth rate of LFn converges to log 7 as n tends to infinity. By using
this, they showed that

log
√

7 ≤ lim
n→∞

v(Bn) ≤ log 7,

see Theorem 10 in [47]. Similarly, they studied the growth rate of monoids with a given
finite generating set. In particular, they calculated the growth rate for an analogous class of
monoids LF+

n, referred to as locally free monoids. Also, the authors showed that the growth
rate of LF+

n converges to log 4 as n tends to infinity. By using this, below, we show how to
obtain a more accurate lower bound on the limit

lim
n→∞

v(Bn).

At the end of the 19th century, P. G. Tait made three conjectures, referred to as the
Tait conjectures, concerning alternating knots and links (see an expository note [53]):

(1) any reduced alternating diagram is minimal;
(2) any two reduced alternating diagrams representing the same link have the same writhe;
(3) any two reduced alternating diagrams representing the same link are related through

a sequence of diagram transformations, referred to as flypes (see Figure 17).

All the Tait conjectures hold. The first Tait conjecture was discussed in the introduc-
tion of the present thesis. The second Tait conjecture follows from the third one. In [52]
(see Main Theorem), W. Menasco and M. Thistlethwaite proved the third Tait conjecture,
referred to as the Tait flyping conjecture. The latter provides a classification of alternating
links.

Figure 17. Flypes.

By using the classification of alternating knots, in [54], the authors showed that the number
of knots grows at least exponentially as a function of the crossing number. We apply the same
idea for braids.

Let ABn be the submonoid of Bn generated by the set

{σ1, σ
−1
2 , σ3, . . . , σ

(−1)n

n−1 } .

This monoid is referred to as the monoid of alternating braids. By using the classification
theorem for alternating links and the Alexander closure construction, it is not hard to show
that the map from ABn to LF+

n given on generators by

σ
(−1)i+1

i z→ ai

is a monoid isomorphism. Thus, the growth rate of ABn is equal to that of LF+
n. Therefore,

log 4 ≤ lim
n→∞

v(Bn).
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