ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (СПбГУ) Институт наук о Земле Кафедра минералогии

Пашкова Ирина Сергеевна Минералы группы аксинита из месторождений Урала и Казахстана: особенности химического состава, спектроскопические характеристики

> Дипломная работа по направлению 05.03.01 «Геология»

> > Научный руководитель: Ассистент кафедры минералогии, к.г.-м.н., О.С. Верещагин <u>« 27 » апреля 2020</u>

Санкт-Петербург 2020

СОДЕРЖАНИН	E:
------------	----

ВВЕДІ	ЕНИЕ	
1 Л	ИТЕРАТУРНЫЙ ОБЗОР	5
1.1	Минералы группы аксинита	5
1.	1.1 Номенклатура и изоморфизм	5
1.	1.2 Кристаллическая структура	
1.	1.3 Геологические условия нахождения	
2 Ol	БЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ	
2.1	Объекты исследования	
2.2	Оптическая микроскопия	
2.3	Рентгенофазовый анализ	
2.4	Электронная микроскопия и рентгеноспектральный микроанал	1из 23
2.5	Спектроскопия комбинационного рассеивания	(Рамановская
спектроскоп	ия)	
3 PI	ЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ	
3.1	Оптическая микроскопия	
3.2	Определение фазового состава образцов	
3.3	Электронная микроскопия и химический состав минералов	
3.4	Рамановская спектроскопия	
4 ДІ	ИСКУССИЯ	
5 3A	АКЛЮЧЕНИЕ	
СПИС	ОК ЛИТЕРАТУРЫ	

введение

Минералы группы аксинита – одни из самых распространенных боросиликатов, они встречаются в разнообразных геологических условиях и в различных по составу и возрасту породах и рудных телах. История изучения аксинита насчитывает более 200 лет: первый минерал из группы аксинита был описан Роме де Лилем во Франции в 1783 г.

Аксиниты часто сложны для диагностирования как в оптической микроскопии (в шлифах они схожи со многими ассоциирующими минералами, например, родонитом), так и при использовании электронной микроскопии и зондового микроанализа (из-за сходства рутинных нормированных анализов с гранатом И эпидотом). Спектроскопия комбинационного рассеяния (Рамановская спектроскопия) является экспрессным и легкодоступным методом и может позволить диагностировать аксиниты, а также оценить его состав. Несмотря на большое количество экспериментальных работ, посвященных аксинитам, в литературе практически отсутствуют данные о связи их Рамановских спектров с химическим составом.

В настоящей работе помощью современных методов исследования (оптическая и электронная микроскопия, рентгенофазовый анализ, Рамановская спектроскопия) исследованы аксиниты из различных месторождений России (Кызыл-Таш, Кожаевское, Парнокское, Учалинское) и мира (Ушкатын-III, Казахстан).

Целью настоящей работы является получение новых сведений о связях между химическим составом, кристаллической структурой и колебательными спектрами минералов группы аксинита.

Задачи:

- Собрать и обобщить информацию о геологических условиях нахождения аксинитов;
- Создать коллекцию образцов аксинитов из различных месторождений России и мира;
- Изучить парагенетическую ассоциацию аксинитов;
- Исследовать химический состав аксинитов;
- Получить Рамановские спектры аксинитов различного состава;
- Выявить зависимости между химическим составом и структурой аксинита.

Практическая часть работы была выполнена на кафедре минералогии СПбГУ, а также с использованием оборудования ресурсных центров СПбГУ «Геомодель», «Микроскопия и микроанализ», «Рентгендифракционные методы исследования».

Автор выражает благодарность научному руководителю к.г.-м.н., ассистенту кафедры минералогии О. С. Верещагину за неоценимую помощь в написании работы и бесконечное терпение. Образцы для исследования предоставлены д.г.-м.н., профессором

кафедры минералогии А. И. Брусницыным и к.г.-м.н., доцентом кафедры минералогии Е. Н. Перовой. Автор работы также выражает признательность Е. Н. Перовой за помощь в расчете формул аксинитов, Н. С. Власенко и к.х.н. В. В. Шиловских (РЦ «Геомодель») за помощь в определении элементного состава аксинитов, В. Н. Бочарову (РЦ «Геомодель») за помощь в получении Рамановских спектров аксинитов.

1 ЛИТЕРАТУРНЫЙ ОБЗОР

1.1 Минералы группы аксинита

1.1.1 Номенклатура и изоморфизм

Исторически собственно аксинитом был назван в 1783 г. Роме де Лилем минерал из Бург д'Уазона во Франции буро-фиолетового цвета, существенно железистый, с соотношением FeO: MnO = 1:0.16 (Romé de L'Isle, 1783). Название характеризует форму кристаллов и происходит от греческого «axina», что означает топор (Haüy, 1799; Dana, 1892).

Обшая минералов группы аксинита (Back формула et al.. 2017): $X_4Y_2Z_4(B_2T_8O_{30})(OH)_2$, где X=Ca, Mn, Na, K; Y=Mg, Mn, Fe²⁺; Z= Al, Fe³⁺, Ti; T= Si, Al. Согласно утвержденному международной минералогической ассоциацией (ММА) списку минералов (The IMA List of Minerals) в группе аксинита выделяют четыре минеральных вида (Таблица 1). Они классифицируются в соответствии с доминирующим двухвалентным катионом, расположенным в позициях X и Y: аксинит-(Fe), аксинит-(Mn) и аксинит-(Mg) – имеют четыре атома Ca на единицу формулы и доминирующие Fe, Mn или Mg соответственно в позиции Y; тинценит с 2 ≤ Ca ≤ 4 на единицу формулы, и Mn, частично занимающим позиции Ca и преобладающем в позиции Y (Filip et al., 2006).

В связи с тем, что минералы группы аксинита характеризуются сложным изоморфизмом в нескольких кристаллографических позициях, а также присутствием в структуре бора, к середине XX века возникла путаница в названиях, которая была устранена только в 1968 (Sanero et al., 1968). Предложенная Sanero и Gottardi (1968) номенклатура исключила двойные названия, в результате чего открытые в СССР севергинит и мангансевергинит потеряли право называться самостоятельными минеральными видами.

Название	Формула	Первое упоминание
Аксинит-(Fe)	$Ca_4Fe^{2+}_2Al_4 [B_2Si_8O_{30}](OH)_2$	Schaller, 1911
Аксинит-(Мд)	$Ca_4Mg_2Al_4 [B_2Si_8O_{30}](OH)_2$	Jobbins, 1975
Аксинит-(Mn)	$Ca_4Mn^{2+}_2Al_4 [B_2Si_8O_{30}](OH)_2$	Fromme, 1909
Тинценит	$Ca_2Mn^{2+}_4Al_4[B_2Si_8O_{30}](OH)_2$	Jakob,1923

Таблица 1. Названия и идеальные формулы минералов группы аксинита (Back et al., 2017).

Аксинит-(Mn) был открыт был Fromme в 1909 году. Schaller (1911), изучив доступные аналитические данные, отметил изоморфизм Mn↔Fe²⁺ и предложил конечный состав Al₂BHCa₂FeSi₄O₁₆ – для ферроаксинита и Al₂BHCa₂MnSi₄O₁₆ – для манганаксинита. Им же было предположено, что содержание Са в минералах группы аксинита постоянно.

Тинценит, известный сейчас как член группы аксинитов, изначально был описан Jakob (1923) как отдельный от группы минеральный вид, но тогда в составе минерала не был обнаружен бор. Повторно этот минерал был описан в 1951 году Г.П. Барсановым как

«севергенит» в Учалинском месторождении на Южном Урале. Г.П. Барсанов подробно рассмотрел изоморфизм в этом минерале и пришел к выводу, что подобные минералы ранее не были описаны в литературе, однако при создании номеклатуры приоритет был отдан работе Jakob (1923). Сходства кристаллографических и оптических свойств тинценита и аксинита были отмечены Parker (1948) и Waldmann (1948).

Используя большое количество химических анализов и данных рентгеновской дифракции, в начале Барсанов (1951), а потом Милтон с соавторами (Milton et al., 1953) установили наличие изоморфного ряда между аксинитом и тинценитом. В монографии А.И. Брусницына (2013) тинценит относится к манганаксиниту, так как автор считает неполный изоморфизм Ca²⁺↔Mn²⁺ недостаточным основанием для выделения нового минерального вида (Брусницын, 2013).

Аксинит-(Mg), впервые описанный Джоббинс с соавторами (Jobbins et al., 1975), содержит только 0.4 вес. % оксида марганца и не содержит железо. При исследовании образцов аксинита из Девоншира, Англия, Чодри и Хауи (Chaudry и Howie, 1969) обнаружили наличие изоморфного замещения Mg \leftrightarrow Mn. Кроме того, в некоторых из анализов они отметили недостаток Si и избыток Al+Ti+Fe³⁺ и предположили, что алюминий может замещать кремний в тетраэдрических позициях. Касседан с соавторами (Cassedanne et al., 1977) проанализировали богатые железом аксиниты из Бразилии и также обнаружили избыток алюминия (более 0.5 атомов на единицу формулы), который они изначально поместили позицию Y^{2+} . Этот аксинит имел дефицит OH анионов, что указывает на зарядсбалансированное замещение Al³⁺+O²⁻ $\leftrightarrow Y^{2+}$ +OH⁻, где Y – Fe, Mn, Mg. C помощью Мёссбауэровской спектроскопии Астахов и др. (1976) исследовали спектры железа в аксините и обнаружили две степени окисления Fe. Lumpkin and Ribbe (1979) подсчитали, что 5 % железа было трехвалентным и предположили, что оно замещает Al³⁺ в октаэдрических позициях.

Свойства минералов группы аксинита представлены в Таблица 2.

		Аксинит-(Fe)	Аксинит-(Мд)	Аксинит-(Mn)	Тинценит									
Формула (IMA	A)	$Ca_4Fe^{2+}_2Al_4[B_2Si_8O_{30}](OH)_2$	$Ca_4Mg_2Al_4[B_2Si_8O_{30}](OH)_2$	$Ca_4Mn^{2+}{}_2Al_4[B_2Si_8O_{30}](OH)_2$	$Ca_2Mn^{2+}_4Al_4[B_2Si_8O_{30}](OH)_2$									
Форма выделения		Кристаллы пластинчатые, остроко	габлитчатые, клиновидные, онечные	Кристаллы пластинчатые, таблитчатые, клиновидные, остроконечные, зернистые агрегаты, включения	Кристаллы пластинчатые, таблитчатые, клиновидные, остроконечные									
Твердость (по шкале Мооса)			6.5-7										
Блеск			Стеклянный											
Прозрачности	Б		Полупрозрачный											
Hbet		Коричневый, голубой,	Блелно-голубой	Коричневый, золотисто-	Лимонно-желтый, оранжевый,									
цьет		жемчужно-серый	красный											
Спайность			Хорол Несовершенная	шая по {100} 1 по {001} {110} {011}										
Излом			Неровни	ый, раковистый										
Плотность, г/с	м ³	3.25 - 3.28	3.27 - 3.29	3.31 - 3.36	3.29									
Сингония		Триклинная												
Пр. группа		<u> </u>												
Z				2										
Первое упоминан	ние	Schaller, 1911	Jobbins, 1975	Fromme, 1909	Jakob,1923									
Параметры	а	7.144	7.121	7.161	7.14									
элементарнои ячейки Å	b	9.190	9.155	9.190	9.17									
(<i>a</i> < <i>c</i>)	С	8.953	8.933	8.978	8.98									
	α	91.86	102.59	88.26	102.90									
Углы, °	β	98.19	98.28	82.80	98.10									
	γ	77.35	88.09	77.26	88.00									
Структурная раб	ота	Filip et al., 2006	Andreozzi et al., 2000	Andreozzi et al., 2004	Grew, 2018									

Таблица 2. Свойства минералов группы аксинита (mindat.org).

1.1.2 Кристаллическая структура

Минералы группы аксинита – кольцевые боросиликаты. Кристаллическая структура минералов группы аксинита была впервые описана в 1952 году (Ito et al., 1952) и впоследствии пересмотрена в статьях Ито с соавторами (Ito et al., 1969) и Такеучи с соавторами (Takéuchi et al., 1974). Детальные кристаллохимические исследования проведены рядом российских и зарубежных исследователей (Basso et al., 1973; Swinnea et al., 1981; Andreozzi et al., 2000а; Белоконева и др., 1997, 2001)

Кристаллическая структура аксинита (пространственная группа Рī) описывается как последовательность слоев, приблизительно параллельных к (ī21), содержащая катионы в тетраэдрической и октаэдрической координации. Слой тетраэдров состоит из искаженных плоских шестичленных колец B₂Si₈O₃₀ (*Puc. 1*), тогда как слой октаэдров представляет собой сплошной каркас шестичленных цепей *Y-Z-Z-Z-Y* латерально связанных с сильно искаженными октаэдрами XO_6 и $XO_5(OH)$ (*Puc. 2*). Для слоя тетраэдров характерно шестичленное искривленное кольцо, состоящее из двух групп T_2O_7 , связанных двумя тетраэдрами BO₄ (Takechi et al., 1974). Тетраэдры BO₄ располагаются друг напротив друга (*Puc. 1*). Вершины всех тетраэдров в кольце разнонаправлены относительно друг друга. Наблюдается почти линейное увеличение объема элементарных ячеек в ряду аксинит-(Mg)–аксинит-(Fe)–аксинит-(Mn) (Andreozzi, 2004, 2000; Salviulo et al., 2000).

Отсутствие полных изоморфных рядов между минералами группы аксинита, предположительно, вызвано как петрологическими (недостаток соответствующих элементов в горных породах), так и структурными факторами (Andreozzi et al., 2000).

Рис. 1. Тетраэдрические позиции в структуре аксинита; проекционная плоскость близкая к (121). Слева кластер [B₂Si₈O₃₀], справа прерванная цепь тетраэдрического слоя.

Рис. 2. Октаэдрические позиции в структуре аксинита; проекционная плоскость близкая к (121). Слева цепь *Y-Z-Z-Z-Y* с соседними октаэдрами *X*. Справа октаэдрический слой.

1.1.3 Геологические условия нахождения

Минералы группы аксинита – аксинит-(Fe), аксинит-(Mn), аксинит-(Mg) и тинценит распространены в различных породах, характеризующихся высоким содержанием кальция и бора. Минералы этой группы встречаются в различных геологических средах – гидротермальных жилах, зеленосланцевых и эпидот-амфиболитовых фациях регионального метаморфизма и контактовых метаморфических породах, скарнах, жилах альпийского типа, метаморфизованных Mn-отложениях и в качестве позднего гидротермального минерала гранитных пегматитов (Novák et al., 2002).

Аксинит-(Mg). Наименее распространенный в природе член группы. Его находки известны только в нескольких месторождениях: в кальциево-силикатных породах месторождения Мерелани Хиллс, Танзания (Jobbins et al. 1975); альбит-эпидотовых роговиках в Лондонском Мосте, Новый Южный Уэльс, Австралия (Vallance, 1966); в скарнах недалеко от города Лунинг, штат Невада, США (Lumpkin & Ribbe 1979, Dunn et al. 1980); в экзоконтактовой зоне эльбаитового пегматита и доломит-кальцитового мрамора в Блине, Южная Чехия, Чешская Республика (Novák et al. 1997а).

Моравия, Чехия. Аксинит-(Mg), найденный близ деревни Лажани, встречается с клиноцоизитом и актинолитом в гидротермальных жилах, пересекающих измененный метадиорит батолита в городе Брно, Чехия. Аксинит-(Mg)-содержащие гидротермальные жилы были обнаружены в старых карьерах, расположенных к северо-востоку от Лажани, примерно в 15 км к северу от Брно (Jaroš, 1932). В центральной части жил встречаются маленькие пустоты, выстланные прозрачными или полупрозрачными, от светло-серых до розовато-серых таблитчатых кристаллов аксинита-(Mg) размером до 5 мм. Данные жилы секут метадиорит, находящийся в зоне метаморфизованных основных пород в гранодиоритовом батолите. Зона сложена в основном различными роговообманково-биотитовыми диоритами, метаморфизованными в фации зеленых сланцев и впоследствии гидротермально измененными. На ряду с жилами, содержащими аксинит-(Mg) в центральной и южной части батолита встречаются несколько участков с гидротермальными жилами, содержащими турмалин и секущих метаморфизованные основные породы (Novák et al., 2002).

Аксинит-(Fe). Минерал широко распространен и встречается в ряде условий, включая метаморфические/метасоматические зоны, жилы альпийского типа, кварцкальцитовые жилы и реже пегматиты. Многие месторождения обнаруживают крупные кристаллы аксинита-(Fe) (Lauf, 2007). Именно этот минерал был впервые найден в природе и дал название всей группе.

Квебек, Канада. Обнаруженный недалеко от города Шибугамо на руднике Кук аксинит-(Fe), образован гидротермальными растворами, циркулирующими в зонах хрупких деформаций. Предполагается что обогащение растворов бором и кальцием происходило путем выщелачивания вулканических и осадочных пород. Изучение флюидных включений показало недостаток CO₂ во время образования аксинита-(Fe). Значительное количество Са объединялось с В, присутствующим в гидротермальном растворе, с образованием аксинита-(Fe). Текстурные взаимоотношения между минералами позволяют предположить, что аксинит-(Fe) образовывался приблизительно в одно время с образованием золота. Кроме того, изучение структур минерализованных жил и поздних хрупких разломов говорит о том, что обе они сформировались за относительно короткий промежуток времени. Поскольку разломы образовались позднее рудоносной минерализации, то ферроаксинит в зонах данных разломов скорее всего связан с деформацией аксинита, образованного одновременно с золотом (Dube et al., 1993).

Гилгит-Балтистан, Пакистан. Аксинит-(Fe) встречается в метаморфических породах зеленосланцевой и эпидот-амфиболитовой фации в долине Шигар, Пакистан. Цвет аксинита колеблется от светло-розового до коричневого. Химические анализы показали, что исследованные кристаллы содержат Ca>1.5 и Fe>Mn в связи с чем их можно классифицировать как аксинит-(Fe). Ассоциация здесь представлена цоизитом, клиноцоизитом. В данном месторождении аксинит, цоизит и клиноцоизит имеют более поздний парагенезис, нежели остальные минералы месторождения. В районах Хашупа и Алчури Шигарской долины, где расположены места находок аксинита, цоизита и клиноцоизита, отсутствуют пегматитовые интрузии. Минералы кристаллизуются вдоль стыков и разломов в пределах зеленосланцевых или эпидот-амфиболитовых фаций метаморфических пород массива Баума-Хареля. Активная тектоническая деятельность в этом районе сыграла важную роль в деформации горных пород, что способствовало образованию каналов для взаимодействия горячих растворов с вмещающей породой с образованием аксинита, цоизита и клиноцоизита (Agheem et al., 2013).

Провинция Цинхай, Китай. Железо-платиновое скарновое месторождение пояса Циман-Таг находится на западе Китая. Здесь аксинит находится в известковых скарнах, распространенных в зоне разломов, в местах экзоконтактов карбонатных пород и гранитных интрузий. Большую роль в образовании аксинита сыграли компоненты вмещающих горных пород. Ассоциация здесь представлена гранатом, пренитом, турмалином, эпидотом, актинолитом, магнетитом и сульфидами. В большинстве случаев аксинит представляет собой вторичный минерал, который образуется путем замещения раннего эпидота, турмалина, амфибола, граната, клинопироксена и полевого шпата при относительно низких

температурах. Ассоциация аксинита и эпидота в месторождении предполагает умеренно окислительную среду, близкую к интрузии. В этом случае наличие аксинит-эпидотпироксеновых гидротермальных комплексов указывает на диапазон температур между 350 и 500°С для ранних образований месторождения Галинг. Считается что кристаллизация аксинита в этом месторождении генетически и временно связана с внедрениями гранодиоритных интрузий (Yu et al., 2017).

Нижнесилезское воеводство, Польша. Аксинит-(Fe) найден в пегматитах гранитного карьера Грабина недалеко от города Стшегома в Польше. Он занимает центральную часть миаролового пегматита, заполненного кальцитом. Многочисленные мелкие кристаллы аксинита обнаружены в срастании с кальцитом или дымчатым кварцем, полевым шпатом и эпидотом. Аксинит здесь прозрачный, коричневатого цвета со стеклянным блеском. Он представляет собой довольно распространенный Fe-Mn аксинит - разновидность этого минерала с низким содержанием Mg, Zn и Ti (Wacławska et al., 1998).

Аксинит-(Мп). На ряду с аксинитом-(Fe), марганцевая разновидность широко распространена в различных типах пород. В настоящее время минерал найден в метасоматических, метаморфизованных осадочных горных породах, гидротермальных жилах.

Появление аксинита-(Mn) В метаморфизованных марганцевых породах обуславливается наличием двух факторов. Первый – это низкие температуры и давления кристаллизации (метаморфизация в условиях, не превышающих пренит-пумпеллиитовой или пренит-актинолитовой фации). Второй – присутствие в химическом составе рудоносных отложений Ca, Al, Si и главным образом В. Вероятно, бор имеет два источника. Он мог изначально присутствовать в составе рудоносных отложений, либо поступать в них позднее, на этапах метаморфизма, захоронения или дальнейших тектонических деформаций марганцевых залежей. Скорее всего, аксиниты образовались из обогащенных бором гидротермальных растворов, проходивших внутри вулканогенно-осадочной толщи на поздних стадиях развития магматогенного комплекса. Взаимодействие этих растворов с базальтами и андезитами привело к образованию аксинита-(Fe). Попадание тех же растворов в обогащенные марганцем пачки привело к формированию аксинита-(Mn) (Брусницын, 2013).

Дальний Восток, Россия. Аксинит-(Mn) известен во всех месторождениях Дальнегорского горнодобывающего района – как в свинцово-цинковых, так и в боросиликатных. В некоторых месторождениях скарны могут содержать до 90 % аксинита. Минерал образует острые пурпурно-коричневые кристаллы длиной до 10 см в различного размера полостях и жилах с кварцем и эпидотом. Основная масса аксинита составляет

диффузионные скарны. На Партизанском месторождении часто встречаются друзы аксинита-(Mn) длиной до 6 см в сочетании с кальцитом и мусковитом. Во всех месторождениях аксинит-(Mn) был изменен с развитием мусковита, иногда стильпномелана и клинохлора. В боросиликатном месторождении аксинит-(Mn) встречается в скарнах, образованных по терригенным породам. Он ассоциирует с эпидотом, ортоклазом и кварцем в скарноидах и с гранатом и геденбергитом в скарнах. В редких случаях в крупных полостях встречаются сростки аксинита-(Mn) (до 5—10 см) и кварца (Moroshkin et al., 2001).

Эгейский регион, Турция. Одно из месторождений аксинита-(Mn) – это Эфемчукуру в провинции Измир, Эгейский район, Турция. Минерал здесь образуется в богатых бором эпитермальных золотоносных жилах. В найденном минерале отмечается высокое содержание Mn – состав аксинита приближается к тинцениту – конечному члену серии твердых растворов аксинит-(Mn)-тинценит. Ассоциация представлена родонитом, родохрозитом, кварцем, пиритом, кальцитом и сульфидами. В данном месте аксинит содержится в основном в штокверках, чередуясь с кварцем и родонитом, а так же в гидротермальных жилах с чередованием аксинит-(Mn)-тинценитовых, родонитовых, родохрозитовых, кварцевых и кальцитовых участков с образованием кокардовых текстур (Oyman et al., 2003).

Фес-Мекнес, Марокко. Известно так же о находках аксинита в скарнах месторождения Эль Хаммам в Марокко. Аксинит здесь встречается в ассоциации с датолитом, кальцитом, кварцем и эпидотом. В зависимости от химического состава и цвета различают три типа аксинита данного месторождения: темно-фиолетовый (богатый железом), розовато-кремовый (богатый марганцем). зеленовато-голубоватый (оловосодержащий). Последний содержит 1,7 мас. % SnO₂ и на треугольной диаграмме располагается ближе к аксиниту-(Mn). По данным Мёссбауэровской спектроскопии предполагается что Sn⁴⁺ входит в позицию Al³⁺ с механизмом компенсации заряда, замещающим трехвалентное железо двухвалентным. Скарны подвержены вторичным изменениям, и в некоторых случаях аксинит может частично замещаться хлоритом. Аксинит-содержащие скарны являются наиболее поздними, после шеелит-содержащих и малайяит-содержащих. Об этом говорит наличие тектонических деформаций. Так, скарны с аксинитом контролируются разломами, что не характерно для шеелитовых и малайяитовых скарнов (Sonnet et al., 1989).

Остров Пирси, Новая Зеландия. Аксинит-(Mn) встречается в скарнах месторождения Мотукокако, Новая Зеландия. Ассоциация представления эпидотом, геденбергитом, андрадитом, кальцитом и кварцем. Аксинит-(Mn) имеет зональное строение, в зависимости от содержания железа и марганца, причем содержание железа выше на краях кристалла. Но в

целом минерал относится к аксиниту-(Mn). Края некоторых кристаллов аксинита обогащены цинком (до 5 вес.% ZnO). Различия между зонами в минерале отражают колебания состава гидротермальной жидкости и/или степени окисления (Brathwaite et al., 1990).

Ушкатын-III, Казахстан. Месторождение располагается в 15 км к востоку от пос. Жайрем в Центральном Казахстане. Оно было открыто в 1962 году и в последующем изучалось В.Я. Середой, М.М. Каюповой, Н.М. Митряевой и другими.

Ушкатын-Ш расположен в западной части Жаильминской мульды. Она сложена вулканогенно-терригенными отложениями, вулканитами и вулканогенно-осадочным комплексом. Рудоносные отложения в данный момент лучше вскрыты в действующем карьере месторождения. Карбонатные породы здесь слагают крупную синклинальную складку, имеющую крутые углы падения крыльев и меридиональное простирание. В красных известняках западного крыла складки развито Fe-Mn оруденение. Железные руды представлены чередованием слоев, обогащенных кварцем или гематитом. Марганцевые руды исследованы более подробно. К породообразующим минералам марганцевых руд относятся: кварц, гаусманнит, браунит, тефроит, сонолит, аллеганит, фриделит, кальцит и родохрозит. Кроме того, руды содержат еще 68 второстепенных и акцессорных минералов (Брусницын и др., 2018).

Марганцевые руды по набору минералов делят на два типа: 1) браунитовые (браунит, кальцит, кварц, альбит); 2) гаусманнитовые (гаусманит, кальцит, родохрозит, фриделит, тефроит) (Каюпова, 1974). В восточном направлении железомарганцевое оруденение постепенно выклинивается. Восточное крыло складки слагают рифогенные известняки в которых сосредоточено галенит-баритовое оруденение. Кроме того, на месторождении развита зона окисления сульфидных руд, откуда добываются церруситовые руды. Отличительной чертой руд месторождения Ушкатын-3 является присутствие в их составе арсенатов (Брусницын и др., 2018).

Кызыл-Таш, Урал, Россия. Месторождение располагается в 40 км на юго-запад от города Магнитогорск, на 7 км севернее поселка Аскарово. Разведка месторождения была выполнена группой геологов под руководством П. М. Постнова, К. П. Сопиной и В. Н. Разумовской в 30-40-х годах прошлого века (Брусницын, 2013).

Месторождение Кызыл-Таш расположено в пределах Магнитогорской зоны Урала и является частью восточного фланга Ирендыкской палеоостровной дуги. Вмещающими породами здесь выступает верхняя толща улутауской свиты, представленная вулканомиктовыми отложениями. Породы на территории месторождения смяты в антиклинальную складку с шарниром, погружающимся на юго-запад. Западное крыло

складки опущено субвертикальным сбросом, проходящим вдоль осевой плоскости. Амплитуда сброса оценивается в несколько десятков метров (Брусницын, 2013).

В восточном крыле складки обнажается рудоносная залежь. Она представляет собой часть пологого холмообразного тела, протяженностью около 350 м и мощностью до 50 м. Залежь сложена гематит-кварцевыми и гематит-андрадит-кварцевыми джасперитами. В кровельной части холма присутствуют прослои яшм. Марганцевая минерализация сосредоточена в кровле силицитовой постройки. Богатые марганцем породы представляют собой деформированные линзовидные тела, локализующиеся в прогибах рельефа. На месторождении выделяются три участка: полностью выработанные южный и центральный участки и северный участок. На последнем вскрыты три линзы марганцевых пород мощностью от 0.5 до 2 м и протяженностью до 60 м. Линзы разделяют слои массивных джасперитов и яшм (Брусницын, 2013).

В составе марганцевых пород месторождения установлено 23 минерала. К главным минералам марганцевых пород месторождения относятся родонит, тефроит, кариопилит, андрадит, родохрозит, кальцит, кварц и гематит. По набору главных минералов выделяются несколько разновидностей пород: а) кариопилит-карбонат-тефроитовые; б) кариопилит-родонит-тефроитовые; в) кариопилитовые; г) родонит-гроссуляр-кариопилитовые; д) родонитовые; е) кальцит-родонит-кварцевые; ж) андрадит-родонитовые; з) родонит-гематитандрадитовые; и) эпидот-родонитовые. Самыми распространенными на месторождении являются разновидности а, д, е, ж (Брусницын, 2013).

Первая рудная линза северного участка образована породами разновидностей а и в. Вторая и третья линзы имеют латеральную зональность в распределении минеральных агрегатов: наблюдается смена кариопилит-карбонат-тефроитовых пород на родонитовые и затем кальцит-родонит-кварцевыми, а также вверх по разрезу уменьшается содержание железа и растет содержание алюминия, титана и других элементов-индикаторов литогенного вещества. Таким образом третье рудное тело образуют породы, содержащие эпидот, гроссуляр, *манганаксинит* и др. (Брусницын, 2013).

Парнокское, Урал, Россия. Месторождение расположено в южной части Полярного Урала, на его западном склоне в 75 км восточнее г. Инты. Месторождение было открыто в 1987 г. под руководством М. А. Шишкина (Брусницын, 2015).

Данное месторождение располагается в пределах Западно-Уральской мегазоны на стыке Елецкой и Лемвинской зон. Отложения здесь представлены осадочными породами, сформированными в условиях пассивной континентальной окраины: для Елецкой – это преимущественно мелководные карбонатные осадки, для Лемвинской – более глинистые отложения глубоководного шельфа и континентального склона. Область месторождения

сложена такими породами как: известняки, песчаники, алевролиты, глинисто-кремнистые сланцы (Брусницын, 2015).

Структура месторождения представляется в виде опрокинутой синклинальной складки с падением запад. Марганцевые руды сосредоточены в крыльев на среднеордовикском востоке месторождения среднедевонском на И на западе стратиграфических уровнях (Брусницын, 2015).

Рудоносные отложения представлены пелитоморфными известняками, известковистыми алевролитами и углеродистыми сланцами мощностью от 10 до 100 м. Большую роль в составе так же играет углеродистая составляющая. Отмечается локализация марганцевых залежей вблизи контакта с черносланцевыми отложениями. Кроме того, некоторые углеродистые осадки содержат в себе богатые марганцем прослои. Чаще всего рудные залежи встречаются среди пелитоморфных известняков. Руды образуют лентовидные тела и пласты, залегающие согласно с вмещающими толщами. Мощность рудных тел составляет от 0.5-2 до 20 м в сближенных пластах при протяженности от 100 до 400 м по простиранию и падении на 800 м в глубину. Толщи смяты в складки и разбиты разрывными нарушениями (Брусницын, 2015).

В составе руд Парнокского месторождения установлено 63 минеральных вида. Породообразующими являются лишь 13: магнетит, гриналит, ильваит в железных рудах и кварц, гаусманнит, пирохроит, тефроит, гумиты, спессартин, родонит, кариопилит, кальцит, родохрозит в марганцевых (Брусницын, 2015).

Железные руды состоят преимущественно из магнетита (до 98 об. %), гриналита и ильваита. Марганцевые руды представляют собой микро- и мелкозернистые породы слоистой, линзовидно-полосчатой текстуры с чередованием минерального состава. По набору основных минералов выделяют руды: 1) оксидно-карбонатные (гаусманнит, пирохроит, родохрозит, Мп-кальцит), 2) карбонатные (на 95% сложены родохрозитом, один из второстепенных минералов - *манганаксинит*), 3) карбонатно-силикатные (тефроит, риббеит, аллеганит, сонолит, спессартин, кариопилит, родонит и как второстепенный - *манганаксинит*) (Брусницын, 2015).

Кожаевское, Урал, Россия. Месторождение находится в 35 км на север от города Учалы. Оно было открыто в 80-х годах 19-го века и было изучено П. М. Постновым в 1936 г. и М. Н. Клюшниковым в 1944 г.

Кожаевское месторождение расположено в зоне Магнитогорского палеовулканического пояса на стыке Западно- и Восточно-Магнитогорской палеоостровных дуг и Сибайского муждугового палеобассейна. Район имеет сложное тектоническое строение и является одним из наиболее дислоцированных (Брусницын, 2013).

Вмещающие породы представлены светло-желтыми, серыми, буровато-зелеными вулканомиктовыми песчаниками, туффитами и алевролитами с прослоями аргиллитов и кремнистых сланцев. Главную роль в их минеральном составе играют кварц, альбит, мусковит, клинохлор, клиноцоизит, гематит, амфибол актинолит-рихтеритового ряда (Брусницын, 2013).

Марганцевые породы, как и на месторождении Кызыл-Таш, тесно связаны с джасперитами. Четко прослеживается вертикальная зональность месторождения (снизувверх): 1) серые, светло-зеленые аргиллиты и алевролиты с прослоями кремней, 2) джаспериты, 3) марганцевые породы, 4) массивные сургучно-красные яшмы. Мощность продуктивной пачки варьирует от 2 до 9 м при протяженности до 650 м и глубины до 80 м (Брусницын, 2013).

Руды представляют собой несколько изогнутых линзовидных тел, сосредоточенных в кровле джасперитов. Линзы находятся на одном стратиграфическом уровне и имеют протяженность до 100 м при вариациях мощности до 2.5 м. В марганцевых породах всего установлен 31 минерал. По набору основных минералов выделяются такие разновидности пород: а) родохрозит-тефроит-гаусманнитовая (родохрозит, гаусманнит, тефроит, спессартин, родонит, кариопилит, кальцит, кутнагорит), б) родонитовая (родонит, кварц, гематит, *манганаксинит*, спессартин, родохрозит), в) андрадит-родонитовая (кварц, гематит, гаусманнит, андрадит, родонит, кальцит, кутнагорит), г) альбит-гематит-гроссуляровая (альбит, гематит, кварц, гроссуляр, титанит, родонит, актинолит, пьемонтит) (Брусницын, 2013).

Учалинское, Урал, Россия. Месторождение находится в 6 км от города Учалы, Учалинского района Республики Башкортостан. Оно было открыто в 1939 г. Л. А. Баженовым, И. М. Гариповым, А. И. Демчуком и др. (Прокин, 1977).

Учалинское месторождение расположено в северной части Мало-Учалинской атниклинали Магнитогорской зоны Урала среди вулканогенных отложений карамалыташской свиты (Прокин, 1977).

Геологический разрез месторождения представляет собой следующую последовательность (снизу-вверх): 1) миндалекаменные базальтовые порфириты, 2) слоистые кислые и основные туфы с прослоями вулканомиктовых песчаников и алевролитов, 3) базальтовые порфириты с прослоями брекчий и гиалокластитов, 4) шлаковые брекчии базальтовых порфиритов. Выше по разрезу отложения перекрываются породами улутауской свиты. Далее с несогласием залегают кремнистые сланцы, полимиктовые песчаники и конгломераты верхнего девона (Прокин, 1977).

Мало-Учалинская антиклиналь в районе месторождения имеет асимметричное строение: восточное крыло имеет более крутые углы падения (до 70°) в отличие от западного (30-50°). Структура осложнена Учалинским разломом субмеридионального простирания с углом падения сместителя 80° в западном направлении. Амплитуда смещения по разлому составляет до 2000 м (Прокин, 1977).

Рудная залежь локализована у контакта субвулканического тела липаритовых порфиров с миндалекаменными базальтовыми порфиритами. Форма рудного тела отличается в различных частях месторождения: в северной и южной части -жиловидная, в центальной части – сундукообразная форма. На месторождении установлено 80 минералов. Основными минералами месторождения являются пирит, халькопирит, сфалерит. К второстепенным относятся блеклые руды, галенит, магнетит, гематит, борнит (Прокин, 1977).

Колчеданное оруденение на данном месторождении пространственно сопряжено с марганцевой минерализацией. Она разделена на три типа пород: 1) родонитовые, 2) браунитовые, 3) пьемонтитовые. *Манганаксинит* проявлен в родонитовых и пьемонтитовых породах и представлен тремя морфологическими типами (Пирожок и др. 2012).

Тинценит. Минерал назван по месту его первой находки: в Тинцене, Валь-д'Эрр, Швейцария. Его кристаллы имеют тенденцию быть несколько меньше, чем у других минералов группы, обычно около 5 мм, но они по-прежнему имеют типичную форму клина. Тинценит не так широко распространен, как аксинит-(Fe) или аксинит-(Mn), и встречается в основном в метаморфизованных марганцевых отложениях (Lauf, 2007).

Лигурия, Италия. Необычные экземпляры тинценита встречаются в рудниках Кассанья, Гамбатеза, Молинелло и Монте Боссе, в жилах мощностью до 20 см и длиной в несколько метров. В руднике Гамбатеза тинценит от желтого до розового цвета ассоциирует с желтовато-зеленым или коричневым аксинитом-(Mn), пьемонитом и спессартином в осадочной марганцевой руде (Deer et al., 1986). В шахте Молинелло яркие оранжевые лопастные агрегаты в срастании с кварцем образуют привлекательные образцы. То же наблюдается и на руднике Монте Боссе. Тинценит часто полностью заполняет жилы, а также встречаются пустоты с кристаллами, особенно в крупных жилах и в зонах разломов. Кристаллы обычно образуют розетки и кистевидные агрегаты. Цвет варьируется от кремовожелтого до оранжево-красного. Встречается в ассоциации с кристаллами кварца, сурсассита, родохрозита, кальцита и иногда с халькоцитом, оксидами марганца и гармотомом (Marchesini et al., 2001).

Граубюнден, Швейцария. Высокомарганцевый тинценит развит в метаморфогенных кварцевых жилах, секущих метаморфизованные марганцовистые породы (гондиты) пренитпумпеллитовой и зеленосланцевой фаций месторождения Фалотта, Швейцария. Минерал представлен уплощенными буровато-желтыми и буровато-оранжевыми кристаллами в кварце (Belokoneva et al., 2001).

Атасуйский район, Казахстан. Тинценит для Казахстана впервые описан на месторождении Камыс (Каюпова, 1961). Выделяют две разновидности тинценита: светлооранжевый в ассоциации с кальцитом и фриделитом и лимонно-желтый в ассоциации с кальцитом, баритом, кварцем. Обе разновидности образуют прожилки, секущие марганцевую браунитовую руду. В этой же руде кроме тинценита широко развиты жилы фриделита мощностью до 10 см. Тинценит образует крупно- и мелкокристаллические чешуйчатые агрегаты, а кроме того можно увидеть характерные копьевидные кристаллы и их сростки, имеющие гребенчатый облик (Каюпова, 1974).

2 ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

2.1 Объекты исследования

Основной акцент в работе был сделан на аксинитах, обогащенных марганцем. В работе исследованы образцы из 4 российских (Кызыл-Таш, Кожаевское, Парнокское, Учалинское) и 1 казахстанского (Ушкатын-III) месторождений (*Puc. 3*). Всего в работе было изучено 13 образцов аксинитов (*Таблица 3*). На рисунке 4 показаны образцы с аксинитом оранжевого и желтого цвета месторождения Ушкатын-III.

Рис. З. Расположение месторождений на карте (источник: Яндекс.Карты).

Рис. 4. Аксиниты различной окраски: (а) розово-оранжевый (Образец *US-318-215*), (б) желто-бежевый (Образец *US-318-218*). Обозначения: Ах – аксинит, Cal – кальцит, Fr – фриделит, Gem – гематит.

	Месторождение		Ушкатын-Ш	[Кожаевское Па			окское	K	Сызыл-Таш
	Образец	R-US-3-10	US-318-215	US-318-218		KZ-1	[PR	-2(2)		KT-41-96
А оп	ссоциация по данным пической микроскопии	Кальцит	Кальцит	Кальцит, гематит фриделит	т,	Родонит,	кварц Ка.		Кальцит		онит, кальцит
L	Цвет	Оранжевый	Розовый	Желтовато-бежеви	ый	Желть	ый	Же	птый		Розовый
ксини	Форма кристаллов	В	ытянутые, клинов		Вытянутые, клиновидные кристаллы, радиально-лучи аггрегаты					ьно-лучистые	
A	Размер кристаллов		До 0.5 см		1 см 0.5 см					0.5 см	
	Месторождение		Учалинское								
	Образец	50P-91	60P-91	2PP-79-1	2	2PP-00 2PP-79		79 1P-93		2P-93	
А	ссоциация по данным тической микроскопии	Родонит, кальцит, Родонит, хлорит, кальцит, эпидот пироксен		Кварц, кальцит	Э	Опидот	Кварц, эпі	хлорит, идот	Кварц эпидо	, Г	Кварц, кальцит
инит	Цвет	Розоватый	Желтый	Грязно- коричневый	Рс	Розовый Гр кори		ізно- іневый	Желтова бежевь	то- ій	Грязно- розовый
AKCF	Форма кристаллов		В	ытянутые кристалл	лы, р	адиально-лу	чистые а	грегаты			
A	Размер кристаллов	1-1.5 см									

Таблица 3. Объекты исследования и их краткое описание.

2.2 Оптическая микроскопия

Шлифы были изучены в проходящем поляризационном и отраженном свете и скрещенных николях с увеличением 2.5х, 10х и 20х. Изучение проводилось на кафедре минералогии СПбГУ с использованием поляризационного микроскопа Leica DM2500P. Фотографии шлифов получены с использованием цветной цифровой камеры Leica DFC295.

2.3 Рентгенофазовый анализ

Рентгеновские исследования проводили в РЦ СПбГУ «Рентгенодифракционные методы исследования» на дифрактометре Rigaku Miniflex II (СиКα – излучение), скорость съемки 2° в минуту при интервале съемки 5-130°. Результаты анализа были обработаны в программном пакете PDXL II. Фазы идентифицировали с использованием базы данных PDF-2.

2.4 Электронная микроскопия и рентгеноспектральный микроанализ

Для исследования пространственных взаимоотношений минералов и изучения их элементного состава использовались электронная микроскопия и рентгеноспектральный зондовый микроанализ. Предварительные исследования проводились в ресурсном центре (РЦ) СПбГУ «Микроскопия и микроанализ» с использованием настольного сканирующего электронного микроскопа Hitachi TM3000 с приставкой энерго-дисперсионного микроанализа OXFORD, детальные исследования – в РЦ «Геомодель» с использованием сканирующего электронного микроскопа Hitachi S-3400N с аналитической приставкой для количественного энерго-дисперсионного микроанализа EDX-AzTecEnergy 350.

Формула аксинита рассчитывалась на 18 катионов (X+Y+Z+T=18), учитывая, что бор и гидроксил ион не определялись. Трехвалентное железо и марганец рассчитывались исходя из электронейтральности формулы. Катионы распределялись по позициям в следующем порядке: 1. При нехватке Са, позиция X заполнялась Mn^{2+} до 4 формульных коэффициентов (ф. к.); 2. Позиция Y заполнялась оставшимся Mn^{2+} , затем Mg, Fe²⁺. Недостаток компенсировался частью Mn^{3+} ; 3. Позиция T заполнялась Si, а его недостаток компенсировался Al; 4. Позиция Z заполнялась сначала оставшимся Al, затем Fe³⁺ или Mn³⁺.

2.5 Спектроскопия комбинационного рассеивания (Рамановская спектроскопия)

Для изучения колебательных спектров образцов был применен метод Рамановской спектроскопии. Исследование проводили в РЦ СПбГУ «Геомодель» с использованием спектрометра Horiba Jobin-Yvon LabRam HR 800 (Ar⁺ лазер) совмещенного с оптическим микроскопом Olympus BX41. Спетры получены в интервале 50-3500 см⁻¹ и точность 2 см⁻¹. Разложение спектров проводили в программном пакете LabSpec 5.

3 РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

3.1 Оптическая микроскопия

Аксинит в шлифах представлен бесцветными клиновидными вытянутыми кристаллами с хорошей спайностью в двух направлениях. Рельеф высокий, косое погасание. Слабое двупреломление (серые цвета интерференции). Кристаллы аксинита образуют сноповидные и шестоватые агрегаты, пустоты между кристаллами заполняет кальцит (*Puc. 5*, a-e).

Схожий с аксинитом родонит (*Puc. 5*, ж, з) также имеет бесцветные кристаллы таблитчатой, призматической и клиновидной формы с высоким рельефом, косым погасанием и слабым двупреломлением (серые, до желтоватых цвета интерференции). Местами кристаллы подвержены вторичным изменениям.

Кальцит в шлифе имеет крупные бесцветные зерна неправильной формы, заполняющие пространство между другими минералами. Отчетливо видна пересекающаяся спайность. Широко развиты полисинтетические двойники кристаллов. В скрещенных николях у кальцита очень сильное двупреломление (перламутровые цвета интерференции). Кроме того, у зерен наблюдается явление псевдоабсорбции.

Рис. 5. Минералы в шлифах месторождений Учалинского (6OP-91: а, б, в, г) и Кызыл-Таш (КТ-41-96: д, е, ж, з) в проходящем свете (слева) и в скрещенных николях (справа) при различных увеличениях. Обозначения: Ах – аксинит, Cal – кальцит, Qz- кварц, Rdn – родонит, Rds – родохрозит.

3.2 Определение фазового состава образцов

Рентгенофазовый анализ подтвердил наличие в образце аксинита, а кроме того, кальцита и клинохлора, находящихся с ним в ассоциации. Типичная рентгенограмма аксинита приведена на рисунке 6. В *Таблице 4* приведены значения углов 2-theta, d и соответствующие им интенсивности.

Рис. 6. Спектр образца US-318-218.

	Ođ	бразец US-318-21:	5	Образец US-318-218						
N⁰	2-theta, °	d, Å	Интенсивность	N⁰	2-theta, °	d, Å	Интенсивность			
			(относ. ед.)				(относ. ед.)			
1	9.95(3)	8.88(2)	2	1	6.22(2)	14.20(4)	11			
2	12.33(4)	7.17(2)	1	2	9.97(4)	8.86(4)	3			
3	14.081(4)	6.284(2)	16	3	12.266(3)	7.210(2)	71			
4	17.35(3)	5.106(9)	2	4	14.071(11)	6.289(5)	20			
5	17.89(2)	4.954(7)	3	5	18 65(2)	4 755(6)	5			
6	17.07(2) 18.52(5)	4.786(13)	1	6	10.05(2)	4.735(0)	1/			
7	10.52(5)	4.780(13)	1 0	7	19.330(11)	4.550(5)	2			
0	19.010(3)	4.3219(11)	8	0	22.31(12) 22.10(10)	3.30(2)	2			
0	19.64(6)	4.470(18)	2	0	23.19(10)	3.833(13)	3			
9	20.47(4)	4.330(9)	2	9	24.22(3)	3.672(4)	7			
10	20.6(9)	4.30(17)	1	10	24.693(16)	3.602(2)	26			
11	22.38(2)	3.970(4)	3	11	24.7(5)	3.60(8)	4			
12	22.79(4)	3.899(7)	3	12	25.05(3)	3.552(4)	6			
13	23.55(5)	3.774(8)	1	13	25.781(4)	3.4529(5)	55			
14	24.220(8)	3.6716(12)	10	14	26.01(2)	3.423(3)	14			
15	24.93(4)	3.568(5)	2	15	27.264(12)	3.2682(14)	19			
16	25.801(3)	3.4501(5)	40	16	28.387(2)	3.1415(3)	95			
17	26.012(4)	3.4227(5)	41	17	29.08(3)	3.068(3)	8			
18	26.922(9)	3.3090(11)	5	18	29.668(2)	3.0087(2)	100			
19	27.269(6)	3.2677(7)	25	19	30.153(3)	2.9614(3)	26			
20	28.366(3)	3.1437(3)	78	20	31.093(8)	2.8739(7)	20			
21	29.037(5)	3.0726(5)	11	21	31.883(3)	2.8045(3)	64			
22	29.647(6)	3.0107(6)	40	22	32.19(3)	2.778(2)	10			
23	29.979(15)	2.9781(15)	31	23	33.647(11)	2.6615(9)	9			
24	30.170(16)	2.9598(15)	23	24	33.861(14)	2.6451(10)	8			
25	30 54(3)	2.925(2)	4	25	34 35(9)	2.609(7)	2			
26	30.974(5)	2.923(2) 2.8847(5)	35	26	35 151(10)	2.509(7)	21			
20	31,912(5)	2.807(3)	100	20	36 394(17)	2.5569(1)	8			
27	32 58(10)	2.0020(4)	2	27	37.492(15)	2.4000(11)	12			
20	32.30(10)	2.740(0) 2.7204(10)	6	20	37.472(13) 38.15(2)	2.3500(10) 2.3571(13)	6			
29	32.79(2)	2.7294(19)	0	29	30.13(2)	2.3571(13)	0			
21	33.27(7)	2.091(3)	2	21	39.813(10)	2.2025(9)	9			
20	33.71(3)	2.030(2)	9	20	40.557(16)	2.2225(8)	3			
32	34.183(14)	2.6209(10)	4	32	40.99(4)	2.200(2)	4			
33	34.889(15)	2.5694(11)	/	33	41.493(17)	2.1745(8)	12			
34	35.155(7)	2.5506(5)	21	34	41.974(9)	2.1507(5)	19			
35	35.640(14)	2.5170(9)	7	35	42.55(2)	2.1231(11)	5			
36	36.354(19)	2.4692(12)	9	36	43.47(2)	2.0801(9)	5			
37	36.96(3)	2.4298(16)	10	37	44.01(2)	2.0558(9)	6			
38	37.311(13)	2.4080(8)	18	38	44.63(2)	2.0287(10)	6			
39	38.143(19)	2.3574(11)	8	39	45.311(7)	1.9997(3)	23			
40	38.86(3)	2.3155(15)	2	40	46.296(13)	1.9595(5)	4			
41	40.006(11)	2.2518(6)	9	41	47.387(17)	1.9169(7)	9			
42	40.351(17)	2.2334(9)	5	42	47.932(14)	1.8964(5)	10			
43	40.79(2)	2.2106(12)	5	43	48.94(2)	1.8598(8)	6			
44	41.023(15)	2.1983(8)	4							
45	41.324(6)	2.1830(3)	14							
46	41.914(5)	2.1536(3)	23							
47	42.582(10)	2.1214(5)	9	1						
48	43.06(2)	2.0987(9)	4	1						
49	43.989(6)	2.0567(3)	12	1						
50	44,592(8)	2.0303(3)	9	1						
51	45 340(12)	1 9985(5)	24							
52	45 444(11)	1.99/2(5)	<u>ک</u> ت لا	+						
52	45 620(7)	1.77+2(3) 1.0866(3)	0 19							
53	45.029(7)	1.5000(5)	10							
54	40.400(14)	1.9329(3)	0							
55	47.590(4)	1.910/3(17)	15							
50	47.85(3)	1.8995(12)	2							
57	1 49 103(19)	1 8538(7)	I I	1	1					

Таблица 4. Результаты рентгенофазового анализа.

3.3 Электронная микроскопия и химический состав минералов

Аксинит во всех образцах представляет собой крупно- и гигантозернистые агрегаты (кристаллы 0.5-1 см в длину). Исследованные аксиниты относятся к аксиниту-(Mn), аксиниту-(Mg), аксиниту-(Fe) и тинцениту.

По химическому составу минерал близок к аксиниту-(Mn) в следующих образцах: R-US-3-10, US-318-215, KT-41-96, 5OP-91, 2PP-00, 2P-93 (*Таблица 5*). В пяти образцах (US-318-218, KZ-1, PR-2(2), 6OP-91, 1P-93) минерал группы аксинита представляет собой полный изоморфный ряд от аксинита-(Mn) до тинценита (содержания MnO до 24 масс. %), кристаллы имеют зональность по содержанию марганца. Еще в двух образцах (2PP-79-1 и 2PP-79) обнаружены аксинит-(Mg) и аксинит-(Fe).

Минеральная ассоциация аксинита различных образцов отображена в *Таблице 6*. Вариативность составов минералов группы аксинита представлена на тройной диаграмме с вершинами Mn-Fe²⁺-Mg. Для ее построения были использованы 140 анализов по всем 13 исследованным образцам. В образцах Учалинского месторождения встречаются все четыре минеральных вида группы аксинита. Образцы месторождений Ушкатын-III, Парнокское, Кожаевское и Кызыл-Таш содержат в себе аксиниты, которые на треугольной диаграмме (*Puc. 7*) расположены на линии Mg-Mn состава. Тинценит встречается в образцах месторождений Ушкатын-III, Парнокское, Учалинское (*Puc. 8*). Аксинит-(Mn) представлен во всех исследуемых месторождениях. Аксинит-(Fe) и аксинит-(Mg) встречается только в образцах Учалинского месторождения.

На месторождении Ушкатын-III аксинит-(Mn) встречается в ассоциации с кальцитом, фриделитом, баритом, а тинценит - с кальцитом, фриделитом, клинохлором, гематитом, баритом, фторапатитом. В образце месторождения Кожаевское аксинит-(Mn) находится в ассоциации с родонитом, альбитом, кварцем, голландитом. Ассоциация аксинита-(Mn)-тинценита образца Парнокского месторождения представлена кальцитом. Аксинит-(Mn) месторождения Кызыл-Таш встречается в ассоциации с родонитом и кальцитом.

Наиболее разнообразен минеральный состав образцов месторождения Учалинское. Аксинит-(Mn) здесь представлен в ассоциации с такими минералами как кальцит, родонит, пьемонтит, тилазит, барит, хлорит, брандит, джонбаумит, диопсид, йохансенит, родохрозит, эпидот, титанит, фторапатит. Ассоциаци аксинита-(Mg) и аксинита-(Fe) данного месторождения представлена кальцитом, кварцем, голландитом, титанитом, эпидотом, хлоритом, ортоклазом, альбитом, фторапатитом, оксидами титана.

					УI	шкатын	·III				Ко	эжаевск	oe	П	арнокско	be	Кызыл-Таш		
Ко	мпоненты	R	R-US-3-1	10	U	S-318-2	15	U	S-318-2	18		KZ-1			PR-2(2)		ŀ	KT-41-96	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	CaO	16.62	12.91	15.15	16.29	18.14	18.27	11.26	13.71	14.05	17.14	14.60	18.27	14.54	19.39	14.84	17.09	18.84	19.84
	MnO	15.32	19.97	16.99	18.52	16.41	16.19	24.41	20.94	21.01	14.66	18.97	13.87	21.76	16.23	21.13	20.49	17.73	16.83
	MgO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.42	0.00	0.40	0.35	0.41	0.23	0.00	0.53	0.00	0.00	0.00
	FeO	1.35	0.78	0.66	0.00	0.00	0.00	1.08	0.87	2.15	1.25	1.61	1.17	0.84	0.64	0.00	0.00	0.00	0.00
	Al_2O_3	15.97	16.54	16.70	17.18	17.53	17.47	16.43	16.98	16.31	15.76	15.53	16.15	18.46	18.86	18.56	18.31	18.70	18.23
	SiO ₂	40.89	40.57	40.56	42.01	42.25	41.62	41.03	42.16	41.33	40.38	40.28	40.54	44.11	45.14	44.13	45.09	45.34	44.93
	TiO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Сумма	90.15	90.77	90.06	94.00	94.33	93.55	94.21	95.08	94.85	89.59	91.34	90.41	99.94	100.26	99.19	100.98	100.61	99.83
							Коэф	фициен	нты расо	считаны	ны на 18 катионов								
	Ca	3.49	2.71	3.19	3.28	3.62	3.68	2.30	2.75	2.84	3.62	3.06	3.81	2.78	3.65	2.85	3.22	3.54	3.75
X	Mn^{2+}	0.54	1.32	0.82	0.72	0.38	0.32	1.70	1.25	1.16	0.38	0.94	0.19	1.22	0.35	1.15	0.78	0.46	0.25
	Сумма	4.03	4.03	4.01	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
	Mn^{2+}	2.00	2.00	2.00	1.90	1.87	1.78	1.66	1.65	1.48	1.86	1.77	1.77	1.84	1.93	1.76	1.93	1.99	1.90
	Mg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.00	0.12	0.10	0.12	0.06	0.00	0.14	0.00	0.00	0.00
Y	Fe ²⁺	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Mn ³⁺	0.00	0.00	0.00	0.10	0.13	0.21	0.34	0.24	0.53	0.00	0.13	0.11	0.10	0.07	0.10	0.07	0.00	0.10
	Сумма	2.00	2.00	2.00	2.00	2.00	1.99	2.00	2.01	2.01	1.98	2.00	2.00	1.90	1.93	1.90	2.00	1.99	2.00
	Al	3.75	3.89	3.93	3.77	3.79	3.74	3.59	3.69	3.48	3.61	3.44	3.59	3.75	3.84	3.81	3.73	3.83	3.72
	Fe ³⁺	0.20	0.12	0.10	0.00	0.00	0.00	0.17	0.14	0.34	0.21	0.26	0.19	0.13	0.09	0.00	0.00	0.00	0.00
Ζ	Mn^{3+}	0.00	0.00	0.00	0.23	0.21	0.26	0.24	0.17	0.18	0.21	0.30	0.22	0.13	0.07	0.19	0.27	0.19	0.27
	Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Сумма	3.95	4.01	4.03	4.00	4.00	4.00	4.00	4.00	4.00	4.03	4.00	4.00	4.01	4.00	4.00	4.00	4.02	3.99
	Si	8.01	7.96	7.96	7.90	7.87	7.81	7.83	7.88	7.79	7.95	7.87	7.89	7.87	7.93	7.90	7.93	7.96	7.93
Т	Al	0.00	0.00	0.00	0.10	0.13	0.19	0.17	0.12	0.21	0.05	0.13	0.11	0.13	0.07	0.10	0.07	0.04	0.07
	Сумма	8.01	7.96	7.96	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00

Таблица 5. Репрезантивные химические анализы (масс. %) и коэффициенты в кристаллохимических формулах (ф.к.) минералов группы аксинита.

										,	Учали	нское	/								
Ко	мпоненты		50P-91		601	P-91		2PP-79-	1		2PP-00			2PP-79			1P-93			2P-93	
		19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
	CaO	16.09	20.07	17.32	19.29	15.57	20.18	19.49	20.59	17.25	19.44	15.42	20.55	20.30	20.53	13.42	16.76	17.75	20.02	19.14	17.40
	MnO	17.95	14.36	17.92	15.30	20.41	4.05	4.97	2.98	15.21	12.84	17.12	0.67	2.11	1.75	21.83	16.59	15.46	13.73	13.94	15.12
	MgO	2.01	0.00	0.00	0.35	0.44	1.44	0.96	1.70	0.51	0.73	0.53	4.35	2.61	2.80	0.24	0.32	0.22	0.63	0.57	0.53
	FeO	1.84	0.00	1.90	1.70	1.89	6.88	6.74	7.66	0.95	0.65	1.36	4.69	6.21	6.42	0.50	0.67	0.62	1.25	1.15	1.55
	Al_2O_3	15.16	18.01	16.78	17.46	16.59	18.16	16.69	18.28	17.29	17.47	17.28	17.82	17.63	17.96	17.04	17.14	17.04	18.09	18.22	17.43
	SiO ₂	43.87	43.25	43.57	43.74	44.17	43.53	41.55	44.11	41.95	42.58	41.84	43.44	43.50	43.95	42.30	42.42	41.51	45.03	43.76	42.69
	TiO ₂	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Сумма	96.92	95.69	97.49	98.04	99.07	94.24	90.40	95.32	93.16	93.83	93.55	91.52	92.36	93.41	95.33	93.90	92.60	98.75	96.78	94.72
								Коэфф	рициент	ы рассч	итаны н	а 18 кал	гионов								
	Ca	3.14	3.94	3.39	3.72	3.00	3.98	4.03	4.00	3.49	3.88	3.13	4.07	4.04	4.03	2.70	3.38	3.62	3.82	3.73	3.49
X	Mn^{2+}	0.86	0.06	0.61	0.28	1.00	0.00	0.00	0.00	0.51	0.12	0.87	0.00	0.00	0.00	1.30	0.62	0.38	0.18	0.27	0.51
	Сумма	4.00	4.00	4.00	4.00	4.00	3.98	4.03	4.00	4.00	4.00	4.00	4.07	4.04	4.03	4.00	4.00	4.00	4.00	4.00	4.00
	Mn^{2+}	1.45	1.90	1.98	1.81	1.81	0.63	0.81	0.46	1.76	1.75	1.76	0.10	0.33	0.27	1.89	1.89	1.81	1.89	1.88	1.88
	Mg	0.55	0.00	0.00	0.09	0.12	0.39	0.28	0.46	0.14	0.20	0.15	1.20	0.72	0.77	0.07	0.09	0.06	0.17	0.15	0.15
Y	Fe ²⁺	0.00	0.00	0.00	0.00	0.00	1.00	0.90	1.08	0.00	0.00	0.00	0.65	0.96	0.98	0.00	0.00	0.00	0.00	0.00	0.00
	Mn ³⁺	0.00	0.10	0.00	0.10	0.07	0.00	0.00	0.00	0.10	0.05	0.09	0.00	0.00	0.00	0.04	0.00	0.13	0.00	0.00	0.00
	Сумма	2.00	2.00	1.98	2.00	2.00	2.02	1.99	2.00	2.00	2.00	2.00	1.95	2.01	2.02	2.00	1.98	2.00	2.06	2.03	2.03
	Al	3.26	3.82	3.56	3.57	3.48	3.94	3.79	3.91	3.78	3.77	3.76	3.88	3.86	3.88	3.69	3.78	3.72	3.80	3.87	3.84
	Fe ³⁺	0.28	0.00	0.29	0.26	0.28	0.05	0.19	0.08	0.15	0.10	0.22	0.07	0.00	0.00	0.08	0.11	0.10	0.19	0.18	0.24
Ζ	Mn ³⁺	0.46	0.17	0.18	0.14	0.23	0.00	0.00	0.00	0.06	0.11	0.02	0.00	0.00	0.00	0.24	0.13	0.17	0.00	0.00	0.00
	Ti	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Сумма	4.00	3.99	4.03	4.00	3.99	3.99	3.98	3.99	3.99	4.00	4.00	3.95	3.86	3.88	4.01	4.02	3.99	3.99	4.05	4.08
	Si	8.00	7.93	7.95	7.87	7.96	8.00	8.01	8.01	7.93	7.93	7.91	8.03	8.08	8.06	7.93	7.98	7.90	8.03	7.96	7.98
Т	Al	0.00	0.07	0.05	0.13	0.04	0.00	0.00	0.00	0.07	0.07	0.09	0.00	0.00	0.00	0.07	0.02	0.10	0.00	0.04	0.00
	Сумма	8.00	8.00	8.00	8.00	8.00	8.00	8.01	8.01	8.00	8.00	8.00	8.03	8.08	8.06	8.00	8.00	8.00	8.03	8.00	7.98

Таблица 5. (продолжение).

Таблица 6. Минеральная ассоциация аксинита исследуемых месторождений по данным

Месторождение		Ушкатын-Ш		Кожаевское	Парнокское	Кызыл-Таш		
Образец	R-US-3-10	US-318- 215	US-318-218	KZ-1	PR-2(2)	кт	-41-96	
Минеральная ассоциация аксинита	Кальцит, фриделит	Кальцит, барит фриделит	Кальцит, барит, фриделит, гематит, клинохлор, фторапатит, циркон	Голландит, альбит, родонит, кварц	Кальцит	Кальци	п, родонит	
Месторождение			y	чалинское				
Образец	50P-91	60P-91	2PP-79-1	2PP-00	2PP-79	1P-93	2P-93	
Минеральная ассоциация аксинита	Кальцит, родонит, пьемонтит, тилазит, барит, хлорит, брандит, джонбаумит, диопсид, йохансенит	Родонит, кальцит, пьемонтит, родохрозит	Кальцит, кварц, голландит, титанит, эпидот, хлорит, ортоклаз, альбит	Эпидот, фторапатит	Кварц, хлорит, титанит, эпидот, фторапатит, оксиды титана	Кварц, эпидот, титанит	Кварц, кальцит, эпидот, фторапатит	

рентгеноспектрального микроанализа.

Рис. 7. Треугольная Mg-Fe²⁺-Mn диаграмма состава исследованных аксинитов по позиции Y.

Рис. 8. Треугольная Na-Ca-Mn диаграмма состава исследованных аксинитов по позиции X.

Минералы группы хлорита. Слагает агрегаты красновато-коричневого и зеленоватого цвета с размером кристаллов до 2 мм. Обнаружен в сростках с фриделитом, аксинитом-(Mn), тинценитом. По составу близок к клинохлору (Mg,Fe²⁺)₅Al(Si₃Al)O₁₀(OH)₈ (*Таблица 7*), однако содержит значительное количество марганца, поэтому может быть рассмотрен как промежуточный член ряда пеннантит (Mn²⁺₅Al(Si₃Al)O₁₀(OH)₈)-клинохлор.

Таблица 7. Химический состав (мас. %) и коэффициенты в кристаллохимических формулах минералов группы хлорита различных месторождений.

Месторождение	Уш	икатын-	·III			Ут	алинск	oe		
	1	2	3	4	5	7	8	9	10	11
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.33	0.24
MnO	18.87	11.13	17.70	9.56	8.73	0.00	0.44	0.00	0.36	0.47
FeO	1.55	1.44	1.54	3.32	1.97	22.45	24.65	19.27	20.74	23.38
MgO	19.13	25.69	20.83	25.23	28.01	16.73	14.16	18.93	17.20	17.16
NiO	0.00	0.00	0.00	2.73	1.11	0.00	0.00	0.00	0.00	0.00
Al_2O_3	18.18	17.03	18.84	17.72	17.85	17.76	19.48	17.79	17.85	19.41
TiO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.72	0.34
SiO ₂	26.52	29.61	28.12	30.51	31.36	28.24	24.80	27.93	28.20	27.51
Сумма	84.25	84.90	87.03	89.07	89.03	85.18	83.53	83.92	87.40	88.51
		Форм	ульные	коэффи	циенть	і рассчи	таны на	а 10 кат	ионов	
Mg	3.05	3.88	3.18	3.67	4.00	2.67	2.34	3.01	2.68	2.64
Fe ²⁺	0.14	0.12	0.13	0.27	0.16	2.01	2.28	1.72	1.81	2.02
Mn	1.71	0.96	1.53	0.79	0.71	0.00	0.04	0.00	0.03	0.04
Ni	0.00	0.00	0.00	0.21	0.09	0.00	0.00	0.00	0.00	0.00
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.15	0.03
Al	2.29	2.03	2.27	2.07	2.05	2.28	2.59	2.28	2.24	2.40
Si	2.84	3.00	2.88	2.98	3.00	3.03	2.75	2.98	2.95	2.84
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.03
Сумма	10.03	9.99	9.99	10.00	10.00	10.00	10.00	10.00	10.00	10.00

Минералы группы родонита. По составу минерал близок к родониту CaMn₄[Si₅O₁₅] (*Таблица 8*). Он образует сплошные массы и кристаллические агрегаты с клиновидными кристаллами до 1 см в длину.

Маата		У	чалинско	be		Кызыл-Таш			
Meen-e			50P-91			KT-4	1-96		
Компоненты	1	2	3	4	5	6	7		
CaO	8.03	8.74	7.98	8.62	9.01	6.45	8.22		
MnO	44.91	45.17	45.16	44.86	45.77	46.38	45.53		
MgO	0.55	0.65	0.85	0.47	0.35	0.00	0.00		
Al ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
SiO ₂	46.88	46.42	46.43	46.28	47.02	48.14	47.12		
Сумма	100.37	100.98	100.42	100.23	102.15	100.97	100.87		
	Коэффі	ициенты	В						
Ca	0.91	0.99	0.90	0.98	1.01	0.73	0.93		
Mn	4.03	4.03	4.05	4.03	4.04	4.16	4.08		
Mg	0.09	0.10	0.13	0.07	0.05	0.00	0.00		
Al	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Si	4.97	4.89	4.91	4.91	4.90	5.10	4.99		
Сумма	10.00	10.00	10.00	10.00	10.00	10.00	10.00		

Таблица 8. Химический состав (мас. %) и коэффициенты в кристаллохимических формулах

родонита различных месторождений.

Минералы группы эпидота. Минералы данной группы были найдены только в образцах месторождения Учалинское. Они представлены такими минеральными видами, как эпидот $Ca_2Al_2(Fe^{3+},Al)(SiO_4)(Si_2O_7)O(OH)$ (No 3-7; *Таблица 9*) и пьемонтит $Ca_2(Al,Mn^{3+},Fe^{3+})_3(SiO_4)(Si_2O_7)O(OH)$ (No 1, 2; *Таблица 9*). Последний обнаружен в срастании с родонитом (Mn²⁺)SiO₃, аксинитом-(Mn), тинценитом, кальцитом CaCO₃. Эпидот встречается в ассоциации с аксинитом-(Fe), аксинитом-(Mn), тинценитом.

Месторождение	Учалинское											
Компоненты	1	2	3	4	5	6	7					
CaO	16.98	17.87	21.90	23.26	23.86	23.04	22.30					
MgO	0.00	0.12	0.00	0.00	0.00	0.18	0.39					
MnO	24.98	24.24	10.96	6.97	0.29	1.98	1.82					
FeO	1.14	0.90	5.95	2.70	11.71	9.86	9.55					
Al ₂ O ₃	19.98	19.78	20.40	26.20	22.24	24.98	24.21					
V_2O_3	0.00	0.00	0.00	0.00	0.31	0.00	0.00					
TiO ₂	0.00	0.00	0.28	0.00	0.35	0.00	0.12					
SiO ₂	35.43	35.63	37.49	38.29	36.83	38.67	37.06					
Сумма	98.50	98.52	96.98	97.44	95.59	98.69	95.44					
Коэ	ффицие	енты рас	считан	ы на 8 к	атионон	3						
Ca	1.46	1.53	1.88	1.94	2.05	1.91	1.91					
Mg	0.00	0.01	0.00	0.00	0.00	0.02	0.05					
Mn	1.70	1.64	0.74	0.46	0.02	0.13	0.12					
Fe	0.08	0.06	0.40	0.18	0.79	0.64	0.64					
Al	1.92	1.90	1.96	2.45	2.14	2.32	2.32					
V	0.00	0.00	0.00	0.00	0.02	0.00	0.00					
Ti	0.00	0.00	0.02	0.00	0.02	0.00	0.01					
Si	2.84	2.85	3.00	2.98	2.96	2.99	2.96					
Сумма	8.00	8.00	8.00	8.00	8.00	8.00	8.00					

Таблица 9. Химический состав (мас. %) и коэффициенты в кристаллохимических формулах эпидота различных месторождений.

Кальцит. Минерал встречается в 10 из 13 шлифах (исключая образец Кожаевского месторождения и образцы 2PP-00, 1P-93 Учалинского месторождения). Кальцит имеет крупные зерна неправильной формы, заполняющие пространство между другими минералами. Химический состав и рассчитанные формульные коэффициенты для некоторых месторождений приведены в *Таблице 10*. В образце месторождения Кызыл-Таш кальцит является высокомарганцевым и очень близок к границе с родохрозитом.

Таблица 10. Содержание главных катионов (мас. %) и коэффициенты в кристаллохимических формулах кальцита различных месторождений.

Месторождение	Ушкат	ын-III	Учалинское				Кызыл-Таш			
CaO	45.6	43.2	53.56	35.31	41.44	49.33	47.59	53.48	29.29	34.08
MnO	7.82	9.29	1.01	23.00	16.88	4.01	7.52	0.00	32.78	27.24
FeO	0	0	0.00	0.00	0.00	0.25	0.14	0.00	0.00	0.00
MgO	0	0	0.00	0.62	0.00	0.45	0.08	0.00	0.00	0.18
Сумма	53.4	52.5	54.57	58.93	58.32	54.04	55.33	53.48	62.07	61.50
Формульные коэффициенты										
Ca	0.88	0.85	0.99	0.65	0.76	0.93	0.89	1.00	0.53	0.61
Mn	0.12	0.15	0.01	0.33	0.24	0.06	0.11	0.00	0.47	0.39
Fe	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mg	0	0	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.00
Сумма	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Полевые шпаты. Представлены двумя минеральными видами: альбитом и калиевым полевым шпатом (согласно рентгеновской дифракции – ортоклазом). Альбит NaAlSi₃O₈ (No 1-5; *Таблица 11*) встречается с аксинитом-(Mn) в образце KZ-1 Кожаевского и с аксинитом-(Fe) в образце 2PP-79-1 Учалинского месторождений. Помимо аксинита, с ним в ассоциации находятся голландит Ba(Mn⁴⁺,Mn³⁺)₈O₁₆, кварц, эпидот и клинохлор. Ортоклаз KAlSi₃O₈ (No 6; *Таблица 11*) обнаружен только в Учалинском месторождении в ассоциации с эпидотом, клинохлором и аксинитом-(Fe).

Месторождение	Ка	жаевск	oe	Учалинское			
Компоненты	1	2	3	4	5	6	
K ₂ O	0.00	0.00	0.00	0.00	0.00	17.12	
Na ₂ O	12.19	12.38	12.54	12.05	12.33	0.00	
Al ₂ O ₃	19.39	19.31	19.65	19.24	19.43	18.10	
SiO ₂	68.44	68.10	69.49	67.66	68.53	63.98	
Сумма	100.02	99.79	101.68	98.95	100.29	99.20	
Коэффициенты рассчитаны на 5 катионов							
K	0.00	0.00	0.00	0.00	0.00	1.02	
Na	1.02	1.04	1.04	1.02	1.03	0.00	
Al	1.01	1.00	1.00	1.01	1.01	1.01	
Si	2.97	2.95	2.96	2.96	2.96	2.97	
Сумма	5.00	5.00	5.00	5.00	5.00	5.00	

Таблица 11. Химический состав (мас. %) и коэффициенты в кристаллохимических формулах К-Na полевых шпатов различных месторождений.

Кроме того в образцах обнаружены такие минералы как: барит Ba(SO₄), фриделит $Mn^{2+}_8Si_6O_{15}(OH,Cl)_{10}$, гематит Fe₂O₃, фторапатит Ca₅(PO₄)₃F, циркон Zr(SiO₄), голландит Ba(Mn⁴⁺6Mn³⁺₂)O₁₆, тилазит CaMg(AsO₄)F, брандит Ca₂Mn²⁺(AsO₄)₂·2H₂O, джонбаумит Ca₅(AsO₄)₃(OH), оксиды титана.

Рис. 9. Аксинит-(Mn) и его минеральная ассоциация месторождения Ушкатын-III (*US-318-215*: а, б; *US-318-218*: в, г) в разных увеличениях. Примечание. Фотографии шлифов в обратноотраженных электронах. Обозначения: Ах – аксинит-(Mn), Cal – кальцит, Fr – фриделит, Brt – барит, Gem – гематит, Fap – фторапатит, Zrc – циркон.

Рис. 10. Минеральная ассоциация аксинита месторождений Кызыл-Таш (*КТ-41-96*: аксинит-(Mn) – а, г) и Учалинского (*2PP-79*: аксинит-(Fe)-аксинит-(Mg) – б; *6OP-91*: аксинит-(Mn)-тинценит – в) в разных увеличениях. Примечание: фотографии шлифов в обратно-отраженных электронах. Обозначения: Ах – аксинит, Cal – кальцит, Ер – эпидот, Qz- кварц, Rdn – родонит, Rds – родохрозит.

Рис. 11. Аксинит и его минеральная ассоциация Учалинского (50Р-91: аксинит-(Mn) – а, б, в, е; 60Р-91: аксинит-(Mn)-тинценит – г) и Кожаевского месторождения (KZ-1: аксинит-(Mn) – д) в разных увеличениях. Примечание: фотографии шлифов в обратно-отраженных электронах. Обозначения: Ах – аксинит, Brd – брандит, Cal – кальцит, Di – диопсид, Jbm – джонбаумит, Jhn – йохансенит, Pmt – пьемонтит, Til – тилазит, Qz- кварц, Rdn – родонит.

3.4 Рамановская спектроскопия

В ходе настоящей работы были получены Рамановские спектры аксинитов с различным содержанием марганца, магния и железа. Было изучено более 30 кристаллов с известным химическим составом.

Полученные спектры, в целом, согласуются с литературными данных и подтверждают, что исследуемые минералы относятся к группе аксинита (Frost et al., 2007).

При сравнении спектров аксинита (наши данные, образец US-318-215:), спессартина (RRUFF ID: R060451), эпидота (RRUFF ID: R110129), пьемонтита (RRUFF ID: R061119), родонита (RRUFF ID: R100038) четко видны различия (*Puc. 12*). На спектрах схожих минералов отсутствуют интенсивные пики в районе 320-340 см⁻¹, 680-730 см⁻¹, у эпидота и пьемонтита присутствуют пики в области 424-643 см⁻¹. В спектре аксинита отсутствуют интенсивные пики в 913-916 см⁻¹.

Рис. 12. Сравнение спектров схожих с акснинитом минералов: а) родонит; б) эпидот; в) пьемонтит; г) спессартин; д) аксинит-(Mn).

Типичный спектр комбинационного рассеяния аксинита-(Mn) представлен на рисунке 13. В нем можно выделить 33 основные линии. На рисунке 13 они обозначены арабскими цифрами, а их положения отмечены в *Таблице 12*. Римскими цифрами отмечены области, отвечающие колебаниям различных структурных группировок. Так, область I в целом отвечает за колебания октаэдров YO_6 . За колебания кольца тетраэдров отвечают следующие области: тетраэдры SiO₄ – II, V, тетраэдры BO₄ – III, VI. Область IV обусловлена деформациями октаэдров, содержащих гидроксильную группу и двух валентный катион позиции *Y* (Frost et al., 2007).

Рис. 13. Спектр комбинационного рассеяния аксинита-(Mn) (образец КТ-41-96) с пронумерованными пиками и обозначенными зонами колебаний структуры минерала.

Несмотря на общее сходство спектров, наблюдаются изменения в положении линий по мере изменения химического состава. Помимо этого, наблюдается сильная анизотропия Рамановских спектров в зависимости от ориентировки кристаллов.

Таблица 12. Положение линий спектра комбинационного рассеяния аксинита-(Mn) (образец КТ-41-96), рисунок 13.

№ Пика	Положение пика, см ⁻¹	№ Пика	Положение пика, см ⁻¹	№ Пика	Положение пика, см ⁻¹
1	108	12	321	23	677
2	129	13	340	24	715
3	141	14	386	25	768
4	157	15	414	26	816
5	172	16	443	27	897
6	192	17	482	28	961
7	209	18	504	29	977
8	244	19	548	30	1000
9	254	20	586	31	1023
10	275	21	618	32	1056
11	305	22	639	33	1083

4 ДИСКУССИЯ

Вариативность составов минералов группы аксинита представлена на тройной диаграмме с вершинами Mn-Fe²⁺-Mg в сравнении с опубликованными данными (*Puc. 14, 15*). Аксинит-(Mg) из Учалинского месторождения имеет большее содержание магния относительно железа и выходит за пределы выделенной области литературных данных. Кроме того, впервые получен данные по ряду аксинит-(Mg)-аксинит (Mn) (около четверти позиции *Y* занято магнием) Точки составов этих аксинитов близко расположены к анализу, взятому у Каюповой (1974) и даже превосходят его по содержанию магния.

Рис. 14. Треугольная Mg-Fe²⁺-Mn диаграмма состава аксинитов по позиции *Y*.

Рис. 15. Треугольная Na-Ca-Mn диаграмма состава аксинитов по позиции X.

На графике Рамановских спектров (*Puc. 16*) отчетливо виден сдвиг линий в районе 714 см⁻¹. Исследования показали зависимость сдвига линии от содержания марганца в кристаллах аксинита. На рисунке 16 представлены участки спектров образцов в порядке увеличения содержания марганца в позиции *X*.

Построенные графики зависимости положения линии от содержания различных компонентов аксинита показали, что сдвиг коррелирует с вхождением марганца в позицию кальция (*Puc. 17*). Коэффициент корреляции для зависимости от количества формульных коэффициентов Са и от долей занимаемых марганцем октаэдров *X* составляет 0.9, что говорит о сильной корреляционной связи. Кроме того, связь наблюдается и на графиках зависимости от содержания (мас. %) MnO (коэффициент корреляции r = 0.87), CaO (r = 0.77), MnO+MgO+FeO (r = 0.82). Для остальных компонентов сильной связи не наблюдается.

Данная информация позволяет судить не только об изменениях структуры минералов, но и может давать представление о содержании марганца в образцах уже на стадии проведения рамановской спектроскопии.

Рис. 16. График сдвига линии №24 полученных Рамановских спектров (34 шт.) марганцевых аксинитов, расположенных в порядке увеличения марганца в позиции *X*.

Рис. 17. Графики зависимости положения линии №24 от: а) содержания Мп в формульных коэффициентах; б) доли занимаемых октаэдров *X* марганцем; в) содержания Са в формульных коэффициентах; д) суммы оксидов Мп, Мg и Fe в мас. %.

5 ЗАКЛЮЧЕНИЕ

В работе с помощью рентгенофазового анализа, ретгеноспектрального микроанализа и Рамановской спектроскопии было изучено 13 образцов, содержащих минералы группы аксинита, из 5 месторождений: Ушкатын-III (Казахстан), Кожаевское, Парнокское, Кызыл-Таш и Учалинское (Урал, Россия). Изучены все представители группы аксинита (аксинит-(Mg), аксинит-(Fe), аксинит-(Mn) и тинценит).

На месторождении Ушкатын-III аксинит-(Mn)-тинценит встречается в ассоциации с кальцитом, фриделитом, клинохлором, баритом и гематитом. В образце Кожаевского месторождения аксинит-(Mn) обнаружен в сростках с родонитом, кварцем, голландитом и альбитом. На месторождении Парнокское аксинит-(Mn)-тинценит срастается с кальцитом. В образце с месторождения Кызыл-Таш аксинит-(Mn) находится в ассоциации с родонитом и кальцитом. Учалинское месторождение наиболее разнообразно с точки зрения минералогии: в исследованных образцах установлены все виды группы аксинита (аксинит-(Mg), аксинит-(Fe), аксинит-(Mn) и тинценит). Аксинит-(Mg) и аксинит-(Fe) ассоциируют с такими минералами, как голландит, эпидот, хлорит, ортоклаз, альбит, кварц и кальцит. Аксинит-(Mn) Учалинского месторождения ассоциирует с кальцитом, пьемонтитом, тилазитом, баритом, хлоритом, диопсидом, йохансенитом и эпидотом. Тинценит данного месторождения установлен в сростках с кварцем, эпидотом, родонитом, кальцитом, родохрозитом и пьемонтитом.

Изучены изоморфные ряды минералов группы аксинита. Образцы Учалинского, Парнокского и Кожаевского месторождений располагаются на линии Mg-Mn состава, ранее слабо изученной. Аксиниты месторождений Ушкатын-Ш и Кызыл-Таш по своему составу являются наиболее Mn-обогащенными. Изучены составы аксинитов изоморфного ряда аксинит-(Fe)-аксинит-(Mg). Кроме того, изучен практически полный изоморфный ряд от аксинита.

При помощи Рамановской спектроскопии изучены образцы всех разновидностей аксинита. Для изоморфного ряда аксинит-(Mn)-тинценита получен полный набор спектров комбинационного рассеяния. Установлена линия, чувствительная к содержанию марганца в позиции *X*.

Рамановская спектроскопия может быть использована в качестве экспрессного метода для диагностики минералов группы аксинита. Помимо этого, данные Рамановских спектров могут быть использованы для оценки содержания марганца (и других двухвалентных катионов) в аксинитах, а также для предварительной идентификации минерального вида внутри группы.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Барсанов, Г. П.*, 1951. О изоморфном ряде аксинита и новом минеральном виде севергените. Труды Минер. музея АН СССР, вып. 3, с. 33-39
- Белоконева, Е. Л., Плетнев, П. А., Спиридонов, Э. М., 1997. Кристаллическая структура низкомарганцовистого тинценита (севергинита). Москва. Кристаллография, т. 42, № 6, с. 1010-1013.
- 3. *Брусницын, А. И.*, 2013. Минералогия марганцевоносных метаосадков Южного Урала. СПб: С.-Петерб. гос. ун-т, 160 с.
- 4. *Брусницын, А. И.*, 2015. Парнокское марганцевое месторождение, Полярный Урал: минералогия, геохимия и генезис руд. СПб: С.-Петерб. гос. ун-т, 116 с.
- Брусницын, А. И., Перова, Е. Н., Верещагин, О. С., Бритвин, С. Н., Летникова, Е. Ф., Школьник, С. И., Иванов, А. В., 2018. Барит-свинцово-цинковые и железомарганцевые месторождения жайремского рудного узла: геологическая экскурсия в Центральный Казахстан. Миасс: Минералогия, т. 4, № 3, с. 82-92.
- Каюпова, М., 1974. Минералогия железных и марганцевых руд Западного Атасу (Центральный Казахстан). Алма-Ата; Наука.
- Пирожок, П. И., Перова, Е. Н., Орлов, М. П., 2012. К вопросу о марганцевой минерализации на Учалинском месторождении (Южный Урал) // Геология, полезные ископаемые и проблемы геоэкологии Башкортостана, Урала и сопредельных территорий: Материалы, 9-я межрегиональная научно-практическая конференция. Уфа: Дизайн-Пресс, 288 с.
- 8. *Прокин, В. А.*, 1977. Закономерности размещения колчеданных месторождений на Южном Урале. Москва: Недра, 176 с.
- Agheem, M.H., Shah, M.T., Khan, T., Murata, M., Arif, M., Dars, H., 2013. Shigar valley gemstones, their chemical composition and origin, skardu, Gilgit-Baltistan, Pakistan. Arab. J. Geosci. 7, p. 3801–3814.
- 10. Andreozzi, G.B., Lucchesi, S., Graziani, G., 2000a. Structural study of magnesioaxinite and its crystal-chemical relations with axinite-group minerals. Eur. J. Mineral. 12, p. 1185–1194.
- 11. Andreozzi, G.B., Lucchesi, S., Graziani, G., Russo, U., 2004. Site distribution of Fe²⁺ and Fe³⁺ in the axinite mineral group: New crystal-chemical formula. Am. Mineral. 89, p. 1763–1771.
- 12. Andreozzi, G.B., Ottolini, L., Lucchesi, S., Graziani, G., Russo, U., 2000b. Crystal chemistry of the axinite-group minerals : A multi-analytical approach. Am. Mineral. 85, p. 698–706.
- 13. Astakhov, A. V., Voitkovskii, Yu. B., Generalov, O. N., Sidorov, S. V., 1976. NGR investigation of some lamellar and boron-containing silicates. Sov. Phys. Crystallogr., 20, p.

417-474.

- Back, M., Birch, W.D., Carter, J., Ciriotti, M.E., Downs, R.T., Grew, E.S., Fascio, L., Ferraris, C., Ferraris, G., Martins, T., Nickolay, D., Oberti, R., Ostrooumov, M., Peters, G.A., Vighetto, I., Weissman, J., 2017. The New IMA List of Minerals – A Work in Progress 189.
- 15. Basso, R., Della Guista, A., Vlaic, G., 1973. The crystal structure of tinzenite. Per. Mineral., 42, p. 369-379.
- Belokoneva, E.L., Goryunova, A.N., Pletnev, P.A., Spiridonov, É.M., 2001. Crystal structure of high-manganese tinzenite from the Falotta deposit in Switzerland. Crystallogr. Reports 46, p. 30–32.
- Brathwaite, R.L., Isaac, M.J., Challis, G.A., Brook, F.J., Isaac, M.J., Challis, G.A., Tertiary, F.J.B., Brathwaite, R.L., Isaac, M.J., Challis, G.A., Brook, F.J., 1990. Tertiary limestone and Zn-Pb mineralised skarn at Motukokako, Cape Brett, Northern New Zealand. J. R. Soc. New Zeal. 20, p. 427–438.
- Cassedanne, J. P., Cassedanne, J. O., Estrada, N., 1977. Le gîte d'axinite de Santa Rosa (municipalité de Condéuba, Etat de Bahia, Brésil). Bulletin Société Française de Minéralogie et Cristallographie, 100, p. 191-197.
- 19. *Chaudry, M. N., Howie, R. A.*, 1969. Axinites from the contact skarns of the Meldon aplite, Devonshire, England. Mineralogical Magazine, 37, p. 45-48.
- 20. Dana, E. S., 1982. System of mineralogy. New York, 6th ed.
- 21. *Deer, W. A., Howie, R. A., Zussmann, J.*, 1986. Axinite. In Rock-forming minerals. Disilicates and ring silicates. London: Longmans, Green and Co., 2nd ed., p. 629.
- Dube, B., Guha, J., 1993. Factors controling the occurrence of ferro-axinite within archean gold-copper-rich quartz veins: Cooke mine, Chibougamau area, Abitibi Greenstone Belt. Can. Mineral. 31, p. 905–916.
- 23. *Dunn, P. J., Leavens, P. B., Barnes, C.,* 1980. Magnesioaxinite from Luning, Nevada, and some nomenclature designations for the axinite group. Miner. Record 11, 1, p. 13-16.
- Filip, J., Kolitsch, U., Novák, M., Schneeweiss, O., 2006. The crystal structure of near-endmember ferroaxinite from an iron-contaminated pegmatite at Malešov, Czech Republic. Can. Mineral. 44, p. 1159–1170.
- Filip, J., Dachs, E., Tuček, J., Novák, M., Bezdička, P., 2008. Low-temperature calorimetric and magnetic data for natural end - members of the axinite group. Am. Mineral 93, p. 548– 557.
- Fromme, J., 1909. Chemish-mineralogische Notizen aus dem Radautale. Tschermarks Mineral. Petrogr. Mitt., 28, 2, p.306-328.

- 27. *Frost, R., Bouzaid, J., Martens, W.,* 2007. Raman Spectroscopy of Nanostructures and Nanosized Materials. J. Raman Spectrosc., 38, p. 135–141.
- 28. Fuchs, Y., Linares, J., Robert, J. L., 1997. Mössbauer and FTIR characterization of a ferroaxinite. Hyperfine Interactions, 108, 4, p. 527-533.
- Gatta, G. D., Redhammer, G. J., Guastonit, A., Guastella, G., Meven, M., Pavese, A., 2016. H-bonding scheme and cation partitioning in axinite: a single-crystal neutron diffraction and Mössbauer spectroscopic study. Phys. Chem. Minerals, 43, p. 341-352.
- Grew, E.S., 2018. Tinzenite, a member of the axinite group with formula revised to Ca₂Mn²⁺₄Al₄[B₂Si₈O₃₀](OH)₂. Eur. J. Mineral., 30, p. 177–182.
- 31. Haüy, R. J., 1799. Euclase (N.N.), c'est-à-dire, facile à briser. J. Mines, 5, p. 258.
- 32. Ito, T., Takéuchi, Y., 1952. The crystal structure of axinite. Acta Crystallogr., 5, p. 202–208.
- 33. Ito, T., Takéuchi, Y., Ozawa, T., Ariki, T., Zoltai, T., Finnet, S. S., 1969. The crystal structure of axinite revised. Proc. Jap. Acad., 45, p. 490-494.
- Jakob, J., 1923. Vier Mangansilikate aus dem Val d'Err (Graubünden). Schweiz. Mineral. Petrog. Mitt., 6, p. 200-202.
- 35. Jaroš, Z., 1932. About Moravian axinites. Brno, Příroda, 25, 4.
- 36. Jobbins, E. A., Tresham, A., Young, B. R., 1975. Pale blue axinite from East Africa. J. Gemmology, 14, p. 368-375.
- 37. *Kayupova, M. M.*, 1961. Manganese silicates from the Dzhumart and Kamys deposits in central Kazakhstan. Izv. Akad. Nauk Kaz. SSR Ser. Geol., 43, p. 45-69.
- Kurshakova, L. D., Tikhomirova, V. I., 1974. Axinite and its paragenesis with hedenbergite. International Geology Review, 16, 12, p. 1360-1369.
- 39. Lauf, R.J., 2007. Collector's guide to the axinite group. Rocks Miner. 82, p. 216-220.
- 40. Lumpkin, G., Ribbe, P., 1979. Chemistry and physical properties of axinites 64, p. 635-645.
- 41. *Marchesini, M., Pagano, R.,* 2001. The Val Graveglia Manganese District, Liguria, Italy. Mineral. Rec. 32, p. 349–415.
- 42. *Milton, C., Hildebrand, F. A., Sherwood, A. M.*, 1953. The identity of tinzenite with manganoan axinite. Am. Mineral., 38, p. 1148-1158.
- 43. Moroshkin, V., Frishman, N., 2001. Dalnegorsk. Moscow: Mineralogical almanac, Ocean Pict. ed.
- 44. *Mozgova, N. N.*, 1964. Axinite and datolite from polymetal skarn deposits in the Far East. International Geology Review, 6, 4, p. 682-689.
- 45. Novák, M., Selway, J. B., Korbel, P., Šarbach, M., 1997a. Locality No. 4: Bližná near Černá v Pošumaví, elbaite subtype pegmatite-penetrating marble with exomorphic tourmaline. Field Trip Guidebook, International Symposium Tourmaline, Nové Město na Moravě, p.

55–70.

- Novák, M., Filip, J., 2002. Ferroan magnesioaxinite from hydrothermal veins at Lažany, Brno Batholith, Czech Republic. Neues Jahrb. für Mineral. - Monatshefte 2002, p. 385–399.
- 47. Ottolini, L., Cámara, F., Hawthorne, F. C., Stirling, J., 2002. SIMS matrix effects in the analysis of light elements in silicate minerals: comparison with SREF and EMPA data. Amer. Miner., 87, p. 1477-1485.
- 48. *Oyman, T., Minareci, F., Pişkin, Ö.,* 2003. Efemçukuru B-rich epithermal gold deposit (İzmir, Turkey). Ore Geol. Rev. 23, p. 35–53.
- 49. *Parker, R. L.*, 1948. Zur Kristallographie von Tinzenit. Schweiz. Mineral. Petrog. Mitt., 28, 475-492.
- 50. *Romé de L'Isle, J. B. L.*, 1783. Crystallography or Description of Forms Essential to all Bodies in Mineral Kingdom. Paris: Imprimerie de Monsieur, 2. ed.
- 51. *Salviulo, G., Andreozzi, G.B., Graziani, G.,* 2000. X-ray characterization of Mg, Fe, and Mn natural end-members of the axinite group. Powder Diffr., 15, p. 180–188.
- 52. Sanero, E., Gottardi, G., 1968. Nomenclature and crystal-chemistry of axinites. Am. Mineral. 53, p. 1407–1411.
- Schaller, W. T., 1911. Mineralogical notes, Series I, Axinite from California. U. S. Geol. Surv. Bull., 490, 37.
- 54. *Sonnet, P., Verkaeren, J.*, 1989. Scheelite-, Malayaite-, and Axinite-Bearing Skarns from El Hammam, Central Morocco. Econ. Geol. 84, p. 575–590.
- 55. Swinnea, J. S., Steinfink, H., Rendon-Diaz Miron, L. E., Enciso de la Vega, S., 1981. The crystal structure of a Mexican axinite. Am. Mineral., 66, p. 428-431.
- 56. *Takechi, Y., Ozawa, T., Ito, T.,* 1974. The $B_2O_8O_{30}$ groups of tetrahedral in axinite and comments on the deformation of Si tetrahedra in silicates. Z. Krist. Bd., 140, p. 289–312.
- 57. *Vallance, T. G.*, 1966. A contact metamorphic axinite paragenesis at London Bridge near Queanbeyan, N. S. W. J. Proc. Roy Soc. New South Wales, 99, p. 57-67.
- 58. Wacławska, I., Pieczka, A., Olkiewicz, S., Zabinski, W., 1998. Thermal decomposition of axinite. J. Therm. Anal., 52, p. 413–423.
- Waldmann, H., 1948. Über die Kristalloptik von Tinzenit. Schweiz. Mineral. Petrogr. Mill., 28, p. 493–501.
- 60. Yu, M., Feng, C.Y., Mao, J.W., Zhao, Y.M., Li, D.X., Zhu, Y.F., 2017. Multistage skarnrelated tourmaline from the galinge deposit, Qiman Tagh, Western China: A fluid evolution perspective. Can. Mineral., 55, p. 3–19.
- 61. Zagorsky, V. Ye., Peretyazhko, I.S., Dmitrieva, A.S., 2015. Axinite-(Mn) from miarolitic granitic pegmatites of the Malkhan gem-tourmaline deposit (Transbaikalia, Russia):

composition, paragenesis and conditions of formation. Eur. J. Mineral., 28, p. 811-824.