Санкт-Петербургский государственный университет

Усова Ольга Александровна

Выпускная квалификационная работа

Одномерные математические модели течения крови в вязкопластичном приближении

Уровень образования: магистратура Направление 01.04.02 Прикладная математика и информатика Прикладная математика и информатика в задачах медицинской диагностики

Научный руководитель:

кандидат физ.— мат. наук,

доцент, Кривовичев Г. В.

Рецензент: специалист по системной биологии ЗАО «Биокад», Марнопольская Е. С.

Санкт-Петербург 2020

Оглавление

Введение	2
Обзор литературы	4
Объект исследования	4
Механические свойства крови	6
Математическая модель кровотока	9
Выводы	13
Математическая модель течения крови в вязкопластич-	-
ном приближении	14
Математическая модель	14
Разностная схема	20
Результаты	22
Вычислительный эксперимент	23
Одиночный сосуд	23
Сосуд с бифуркацией	27
Сонная артерия	30
Модель артериальной части сердечно-сосудистой системы	33
Результаты	38
Заключение	39
Список литературы	40

Введение

Согласно статистике, сердечно-сосудистые заболевания на сегодняшний день являются одной из основных причин инвалидности и смертности во всем мире [1]. По данным Всемирной организации здравоохранения в 2016 году от сердечно-сосудистых заболеваний умерло 17,9 миллиона человек, что составило 31% всех случаев смерти в мире. Большая часть — 85% этих смертей произошло в результате инфаркта миокарда и инсульта. В частности, по России на 2018 год 18% всех болезней — это болезни системы кровообращения [2].

Одну из лидирующих позиций среди всех заболеваний сердечно-сосудистой системы занимает атеросклероз. В результате болезни часто поражаются сразу несколько артерий, поэтому влияние и развитие патологического процесса необходимо рассматривать в сети сосудов. Современные методы исследования в области хирургии позволяют эффективно лечить подобные заболевания. Например, установкой стентов пораженных коронарных сосудов сердца, заменой клапана сердца. Требуют хирургического вмешательства и другие патологии, например, аневризмы и стенозы.

Таким образом, важной проблемой современной медицины является создание эффективных методов лечения и профилактики сердечно-сосудистых заболеваний. Огромную роль в их разработке играет математическое моделирование. Методы которого, без предварительного вмешательства в организм, позволяют прогнозировать последствия хирургических операций и патологий, оптимизировать форму имплантатов, исследовать их влияния на гемодинамику.

В данной работе рассмотрено построение одномерной математической модели течения крови как вязкопластичной жидкости. Рассмотрен использу-

 $\mathbf{2}$

емый математический аппарат. Описан численный метод решения полученной системы одномерных уравнений. Описаны и решены тестовые задачи, результаты сравниваются с данными статей.

В первой главе приводится обзор литературы, в коротом рассказывается про сердечно-сосудистую систему человека, состав и структуру крови и анатомию сосудов. Описываются физические и механические свойства крови. Показан один из наиболее известных подходов к моделированию течения крови в сосудах. Представлена математическая модель течения крови в общем виде, с учетом предполагаемых допущений. Во второй главе вводится реологическая модель для моделирования поведения крови, с учетом которой выводится часть уравнений, отвечающая за вязкие свойства крови, профиль скорости и коэффициент Буссинеска. Далее представлена одномерная математическая модель, учитывающая вязкие и неньютоновские свойства крови. Затем проводится анализ полученной модели и описывается разностная схема Лакса — Вендроффа. В третьей главе описаны тестовые нелинейные задачи, такие как течение крови в одиночном сосуде и сосуде с бифуркацией. Рассматриваются задачи о моделировании течений в реальных сосудах: в сонной артерии и в модели артериальной части сердечно-сосудистой системы. Описаны необходимые для решения начальные и граничные условия. Представлены полученные графики решения и выводы. В заключении приведены результаты и выводы работы.

Обзор литературы

Объект исследования

Как известно, кровь — жидкая подвижная соединительная ткань внутренней среды организма, которая состоит из жидкой среды — плазмы и взвешенных в ней клеток — форменных элементов: лейкоцитов, постклеточных структур (эритроцитов) и тромбоцитов (кровяные пластинки). У взрослого человека форменные элементы крови составляют около 40-48%, а плазма — 52-60%. Соотношение суммарного объема всех форменных элементов клеток к общему объему плазмы крови называется гематокритным числом [3].

Кровь движется по сосудам, представляющим из себя замкнутую систему, циркуляция по которой происходит от сердца и обратно. Кровеносная система человека — сложная, разветвленная сеть, состоящая из вен, артерий и капилляров (рис. 1). Капилляры соединяют артерии и вены, общее их число варьируется от 10¹¹ до 16 · 10¹⁰. В длину кровеносные сосуды человеческого тела составляют приблизительно 10⁵ километров [4].

Рис. 1: Кровеносные сосуды человека [5].

Сложным и разнообразным является и строение стенок сосудов. В зависимости от расположения и исполняемой функции, артерии, вены и микроциркуляторные сосуды имеют различную анатомию (рис. 2). Подробнее о классификации сосудов, движении крови по различным сосудам, а так же о составе и основных функциях крови можно прочитать в [3].

Рис. 2: Строение стенок сосудов [6].

Механические свойства крови

В настоящий момент используются различные подходы к моделированию кровообращения. В данной работе будет рассмотрен гидродинамический подход, в рамках которого кровь считается вязкой несжимаемой неньютоновской жидкостью, протекающей по сети эластичных трубок.

Жидкость считают несжимаемой, если скорость движения частиц среды мала по сравнению со скоростью звука. А поскольку максимальная скорость кровотока равна 1,2 м/с [8], то можно считать кровь несжимаемой жидкостью.

Установлено, что плазма крови — раствор крупных молекул, но при масштабах движения и при скоростях сдвига, обычно встречающихся в кровеносных сосудах, ее можно считать однородной ньютоновской жидкостью [8]. А так как большую часть форменных элементов составляют эритроциты, именно они определяют механические свойства крови.

Однако кровь является типичной неньютоновской жидкостью, поскольку вязкость крови не одинакова в различных участках сосудистой системы и зависит от гематокритного числа и от величины градиентов скоростей, реализующихся при ее движении. Связано это с тем, что в неподвижной крови или же при малых скоростях течения эритроциты склонны к агрегации (слипанию) и образуют крупные структуры — «монетные столбики» (рис. 3), что приводит к возрастанию вязкости. При увеличении скорости движения крови «монетные столбики» разрушаются, и вязкость крови снижается.

Кроме того, при течении в крупных сосудах, наблюдается «уплощение» профиля скорости крови (рис. 4). Это происходит по нескольким причинам. У стенки сосуда возникают большие градиенты скорости и, следовательно, большие деформации сдвига, которые «выталкивают» эритроциты в область меньших сдвиговых деформаций, т. е. к центру сосуда, где градиент скорости

 $\mathbf{6}$

Рис. 3: Монетные столбики [9].

значительно меньше. Концентрация эритроцитов и, соответственно, вязкость крови возрастают к центру сосуда, что и приводит к «уплощению» профиля скорости. Одновременно у стенок сосуда образуется тонкий пристеночный слой плазмы крови, не содержащий эритроцитов и поэтому обладающий низкой вязкостью. В итоге, эритроциты продвигаются по сосуду как бы в оболочке из плазмы, что уменьшает трение крови о стенки и облегчает ее движение по сосудам.

Рис. 4: Профиль скорости ньютоновской и неньютоновской жидкости [10].

Необходимо отметить, что течение крови имеет свои особенности: в мелких кровеносных сосудах кровь нельзя полагать однородной жидкостью, поскольку диаметры эритроцита и капилляра сравнимы по величине. Исходя из этого, кровь как жидкость можно рассматривать в крупных кровеносных сосудах. Поэтому, для описания течения крови в венах и артериях, используются различные модели течения жидкости. В данной работе кровь рассматривается как вязкая несжимаемая неньютоновская жидкость.

Математическая модель кровотока

Для описания движения жидкости в каждом сосуде используются уравнения гидродинамики. Общие законы течения жидкости, изучаемые гидродинамикой, установлены в рамках классической физики и являются основой для описания гемодинамических процессов в живом организме [7].

Течение крови в системе кровообращения описывается трехмерными уравнениями:

$$\operatorname{div} \boldsymbol{v} = 0, \tag{1}$$

$$\rho \frac{d\boldsymbol{v}}{dt} = \rho \mathbf{f} + \operatorname{div} \boldsymbol{\Sigma},\tag{2}$$

где \boldsymbol{v} — вектор скорости, ρ — плотность крови ($\rho = const$), t — время, \mathbf{f} — вектор плотности массовых сил (будем полагать $\mathbf{f} = \mathbf{0}$), $\boldsymbol{\Sigma}$ — тензор напряжений.

Уравнение (1) называют уравнением неразрывности, а уравнение (2) — уравнением количества движения.

Как известно, все рассматриваемые компоненты тензора напряжений принимаются состоящими из двух частей:

$$\boldsymbol{\Sigma} = -p\mathbf{I} + \mathbf{T},$$

где p — давление, **I** — единичный тензор, **T** — тензор касательных напряжений. В свою очередь тензор касательных напряжений является функцией тензора скоростей деформации: T = T(D), где D — тензор скоростей деформаций:

$$\mathbf{D} = \frac{1}{2} (\nabla \boldsymbol{v} + (\nabla \boldsymbol{v})^T).$$

В зависимости от требуемой детализации и сложности исследуемого процесса используются модели разных размерностей. Например, в данной ра-

боте мы будем использовать одномерные модели [11], позволяющие делать гемодинамические расчеты во всей сосудистой сети. Для этого в работе используется ряд допущений [12]:

1. Сосуд представляется как круговой цилиндр с переменным поперечным сечением. Целесообразно в дальнейшем использовать цилиндрические координаты (*r*, *φ*, *z*). И подразумевается осевая симметрия, т. е. все величины не зависят от угла *φ*.

2. Ось цилиндра не смещается во времени. И имеют место только радиальные смещения стенок сосуда (нет смещения по z).

3. Давление постоянно вдоль каждого поперечного сечения p = p(t, z).

4. Считаем, что радиальная компонента вектора скорости v_r пренебрежимо мала по сравнению с осевой компонентой v_z , т. о. $\boldsymbol{v} = (0, 0, v_z)^T$.

5. Предполагаем, что осевая компонента скорости имеет вид:

$$\upsilon_z(t,r,z) = U(t,z)s\left(\frac{r}{R(t,z)}\right),\tag{3}$$

где U(t,z) — средняя скорость (по поперечному сечению), s — заданный безразмерный профиль скорости, R(t,z) — радиус сосуда в деформированном состоянии.

Необходимо отметить, что на функцию *s* налагаются некоторые ограничения, исходя из определения средней скорости:

$$U(t,z) = \frac{\iint \upsilon_z d\gamma}{A(t,z)},$$

где Π — поперечное сечение сосуда и $A(t,z) = \pi R^2(t,z).$

Вычисляя интеграл, введя замену $y = \frac{r}{R}$ и преобразуя уравнение получаем условие на s:

$$\int_{0}^{1} ys(y)dy = \frac{1}{2}.$$

6. Выполняется условие прилипания на стенке сосуда (граничное условие на границе сосуда и жидкости: $\boldsymbol{v} = \boldsymbol{\dot{\eta}} = \boldsymbol{\dot{\eta}} \mathbf{e_r}$, где $\mathbf{e_r}$ – орт, отвечающий координате $r, \eta = R - R_0$, где R и R_0 – радиус сосуда в деформированном и недеформированном состоянии соответственно).

Вдобавок необходимо упомянуть про такую важную характеристику течения, как коэффициент Буссинеска. Это отношение количества движения жидкости, протекающего в единицу времени через поперечное сечение, к количеству движения, вычисленному по средней скорости. По определению и при данных предположениях он имеет вид:

$$\alpha = \frac{\int v_z^2 d\gamma}{AU^2} = \frac{\int U^2 s^2 d\gamma}{AU^2} = \frac{\int \int s^2 d\gamma}{A(t,z)}.$$
(4)

Введем дополнительно еще одну величину *Q* — объемный расход, который представляет собой объем жидкости, протекающей через поперечное сечение за единицу времени:

$$Q(t,z) = \iint_{\Pi} \upsilon_z d\gamma = A(t,z)U(t,z).$$

После осреднения трехмерных уравнений получается следующая одномерная система [12]:

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial z} = 0, \tag{5}$$

$$\frac{\partial Q}{\partial t} + \alpha \frac{\partial}{\partial z} \left(\frac{Q^2}{A}\right) + \frac{A}{\rho} \frac{\partial p}{\partial z} = f(A, Q), \tag{6}$$

где f(A,Q) отвечает за вязкие свойства крови.

Уравнение (5) является следствием условия несжимаемости, а (6) — следствием уравнения движения. Полученные уравнения не зависят от физиологических свойств конкретного сосуда. В качестве замыкающего третьего уравнения обычно используют соотношение, связывающее площадь поперечного сечения сосуда и трансмуральное давление в сосуде:

$$A = A(p). \tag{7}$$

Именно в этом уравнении, которое называют уравнением состояния, учитываются все свойства, присущие данному типу сосуда.

Выводы

1. Поскольку для моделирования крови необходимо рассматривать сложную биологическую систему, на работу которой влияет множество различных факторов, не удивительно, что общая модель течения крови в сердечнососудистой системы так до сих пор и не реализована. В исследованиях чаще используют одномерные модели, поскольку для трехмерного моделирования необходима более сложная реализация решения и вычисления.

2. В настоящее время, используя распространенный подходу к моделированию в гемодинамике, кровь рассматривается как однородная несжимаемая ньютоновская среда. Довольно часто встречается несоответствие модели течения крови, профиля скорости и коэффициента Буссинеска. Поэтому актуально рассмотреть корректную модель течения крови как вязкой несжимаемой неньютоновской жидкости.

С учетом всего выше сказанного определим цель работы: математическое моделирование течения крови как неньютоновской вязкопластичной жидкости.

В связи с этим поставим следующие задачи:

1. Построение одномерной математической модели в вязкопластичном приближении.

2. Программная реализация алгоритмов численных методов.

3. Решение задач о численном моделировании кровотока в одиночных сосудах и их системах.

4. Анализ полученных результатов.

13

Математическая модель течения крови в вязкопластичном приближении

Математическая модель

Известно множество различных реологических моделей для моделирования поведения крови [13]. Ведь именно реология позволяет установить связь между тензором касательных напряжений и тензором скоростей деформации: T = T(D). Для ньютоновских жидкостей эта зависимость определяется обобщенной формулой Ньютона:

$$T = 2\mu D$$
,

где μ — динамическая вязкость.

Для некоторых неньютоновских жидкостей величину напряжений, зависящих от вязкости, тоже можно выразить в виде:

$$\boldsymbol{T} = 2\mu_a \boldsymbol{D},\tag{8}$$

где μ_a — кажущаяся вязкость.

К группе вязких жидкостей относятся все жидкости, для которых справедливо реологическое уравнение вида $\dot{\gamma} = f(\tau)$, где $\dot{\gamma}$ — скорость деформаций сдвига, τ — напряжение сдвига. Из этого реологического соотношения следует, что скорость сдвига в любой точке такой жидкости является однозначной функцией напряжений в этой точке. К вязким жидкостям относятся и вязкопластичные жидкости.

Кривые течения вязкопластичных жидкостей (см. рис. 5) не проходят через начало координат, а отсекают на оси напряжений сдвига отрезок, равный τ_0 — пределу текучести при сдвиге.

Предел текучести вязкопластичных жидкостей при сдвиге характеризует пластические свойства материала. Поведение этих жидкостей обычно объ-

Рис. 5: Кривые течения чистовязких жидкостей: 1 — ньютоновская, 2 — вязкопластичная Шведова-Бингама, 3 — вязкопластичная с нелинейной кривой течения, 4 — псевдопластичная, 5 — дилатантная [13].

ясняют внутренней пространственной структурой, которая способна предотвращать течение до тех пор, пока приложенные сдвиговые напряжения меньше предела текучести, если они превышают предел текучести, то внутренняя структура полностью разрушается и материал ведет себя как жидкость. Структура вновь восстанавливается, когда сдвиговые напряжения становятся меньше предела текучести.

Реологическое уравнение для линейных вязкопластичных жидкостей можно записать следующим образом:

$$\tau_{yx} = \tau_0 + \mu_p \dot{\gamma},\tag{9}$$

где μ_p — пластическая вязкость.

Исходя из (9) определяется конкретный вид функциональной зависимости (8). И выражение для кажущейся вязкости линейной вязкопластичной жидкости при пространственном течении таких жидкостей имеет вид:

$$\mu_a = \frac{\tau_0}{\sqrt{I_2}} + \mu_p,$$

где $I_2 = \dot{\gamma}_{ij}\dot{\gamma}_{ji} = 2(\dot{\gamma}_{xx}^2 + \dot{\gamma}_{yy}^2 + \dot{\gamma}_{zz}^2) + \dot{\gamma}_{xy}^2 + \dot{\gamma}_{yz}^2 + \dot{\gamma}_{xz}^2 -$ второй инвариант тензора

скоростей деформации.

Теперь тензор напряжений перепишется ввиде:

$$T = 2(rac{ au_0}{\sqrt{I_2}} + \mu_p)D.$$

Таким образом, с учетом введенных в предыдущей главе допущений система (1), (2) принимает вид:

$$\frac{\partial v_z}{\partial z} = 0,$$

$$\frac{\partial v_z}{\partial t} + \operatorname{div}\left(v_z \boldsymbol{v}\right) = \frac{1}{\rho} \operatorname{div} \boldsymbol{\sigma_z},\tag{10}$$

где $\boldsymbol{\sigma_z}$ — напряжения. $\boldsymbol{\sigma_z} = (\sigma_{zr}, \sigma_{z\varphi}, \sigma_{zz})^T$.

Для вывода правой части f(A, Q) уравнения (6), отвечающей за вязкие свойства крови, необходимо рассмотреть правый член уравнения (10), который и отвечает за вязкость. Осредняя правую часть уравнения по пространству, рассматривая бесконечно малый цилиндрический объем:

$$\Omega = \{ (r, \varphi, z) | r \in [0, R], \varphi \in [0, 2\pi], z \in [z^* - \frac{dz}{2}, z^* + \frac{dz}{2}] \},\$$

где z^* — произвольная точка. Считаем, что dz настолько мал, что R на участке $[z^* - \frac{dz}{2}, z^* + \frac{dz}{2}]$ не зависит от z. И с учетом допущений, вводимых для построения одномерной модели при интегрировании получим:

$$\frac{1}{\rho} \iiint_{\Omega} \operatorname{div} \boldsymbol{\sigma}_{\boldsymbol{z}} dV = -\frac{1}{\rho} \iiint_{\Omega} \frac{\partial p}{\partial z} dV + \frac{1}{\rho} \iiint_{\Omega} \operatorname{div} \boldsymbol{\tau}_{\boldsymbol{z}} dV,$$

где $\boldsymbol{\tau_z} = (\tau_{zr}, 0, 0)^T$ — касательные напряжения.

Преобразуем первое слагаемое:

$$-\frac{1}{\rho} \iiint_{\Omega} \frac{\partial p}{\partial z} dV = -\frac{A}{\rho} \frac{\partial p}{\partial z} dz + o(dz)$$

Второе слагаемое по формуле Гаусса-Остроградского запишется в виде:

$$\frac{1}{\rho} \iiint_{\Omega} \operatorname{div} \boldsymbol{\tau_z} dV = \frac{1}{\rho} \iint_{\Gamma} \boldsymbol{\tau_{zr}} d\sigma,$$

где $\Gamma = \{(x, y, z) | x = Rcos\varphi, y = Rsin\varphi, z = z, \varphi \in [0, 2\pi], z \in [z^* - \frac{dz}{2}, z^* + \frac{dz}{2}]\}.$ С учетом формулы (3):

$$\begin{split} \frac{1}{\rho} \iint_{\Gamma} \tau_{zr} d\sigma &= \frac{1}{\rho} \int_{0}^{2\pi} \int_{z^{*} - \frac{dz}{2}}^{z^{*} + \frac{dz}{2}} \tau_{zr} R d\varphi dz = \frac{2\pi R}{\rho} \int_{z^{*} - \frac{dz}{2}}^{z^{*} + \frac{dz}{2}} \tau_{zr} \Big|_{r=R} dz = \\ &= \frac{2\pi R}{\rho} \Big(\int_{z^{*} - \frac{dz}{2}}^{z^{*} + \frac{dz}{2}} \mu_{p} \frac{\partial \upsilon_{z}}{\partial r} \Big|_{r=R} dz + \int_{z^{*} - \frac{dz}{2}}^{z^{*} + \frac{dz}{2}} \frac{\tau_{0}}{|\frac{\partial \upsilon_{z}}{\partial r}|_{r=R}|} \frac{\partial \upsilon_{z}}{\partial r} \Big|_{r=R} dz \Big) = \\ &= \frac{2\pi}{\rho} \Big(\int_{z^{*} - \frac{dz}{2}}^{z^{*} + \frac{dz}{2}} \mu_{p} U(t, z) s'(1) dz + R\tau_{0} \int_{z^{*} - \frac{dz}{2}}^{z^{*} + \frac{dz}{2}} \frac{Us'(1)}{|Us'(1)|} dz \Big) = \\ &= 2\pi \mu_{p} s'(1) \frac{1}{\rho} \frac{Q}{A} dz + 2\sqrt{\pi A} \tau_{0} \frac{1}{\rho} sign(Us'(1)) dz + o(dz). \end{split}$$

Получим безразмерный профиль, рассмотрев ламинарное течение линейной вязкопластичной жидкости в цилиндрической круглой трубке [13]. Учитывая, что сдвиговое течение наблюдается только при радиусах больших r_0 , а внутри r_0 жидкость движется как твердый стержень, и используя замены $y = \frac{r}{R}$ и $y_0 = \frac{r_0}{R}$:

$$s(y) = \begin{cases} \frac{2(1-y^2) - 4y_0(1-y)}{1 - \frac{4}{3}y_0 + \frac{1}{3}y_0^4}, & y > y_0, \\ \frac{2(1-y_0)^2}{1 - \frac{4}{3}y_0 + \frac{1}{3}y_0^4}, & y \in [0, y_0] \end{cases}$$

В большом количестве статей значение коэффициента Буссинеска не согласуется с используемым профилем скорости. Часто в работах, где кровь рассматривается как ньютоновская жидкость, берется $\alpha = 1$. Однако такое значение α характерно для случая идеальной жидкости, а для ньютоновской жидкости $\alpha = \frac{4}{3}$. Поэтому для рассматриваемой неньютоновской модели найдем корректный коэффициент Буссинеска по формуле (4):

$$\alpha = \frac{1}{\pi R^2} \int_{0}^{R} \int_{0}^{2\pi} s^2(\frac{r}{R}) r dr d\varphi.$$

Используя замену переменных $t = \frac{r}{R}$ и предполагая $t_0 = \frac{r_0}{R}$ получаем:

$$\alpha = 2 \int_{0}^{1} ts^{2}(t)dt = 2 \Big(\int_{0}^{t_{0}} ts^{2}(t)dt + \int_{t_{0}}^{1} ts^{2}(t)dt \Big).$$

Вычисляя интеграл, получим:

$$\alpha = \frac{12(4t_0^2 + 6t_0 + 5)}{5(t_0^2 + 2t_0 + 3)^2}.$$

Как уже говорилось выше, для замыкания системы из двух уравнений относительно трех неизвестных используется уравнение состояния (7). В большинстве работ для артерий используется зависимость:

$$p(A) = \xi \frac{\sqrt{A} - \sqrt{A_{\min}}}{A_{\min}} + p_{\min},$$

где $\xi = \frac{\sqrt{\pi}hE}{1-\nu^2}$, h — толщина стенки, E — модуль Юнга, ν — коэффициент Пуассона, A_{\min} — наименьшая площадь, p_{\min} — наименьшее давление. Важной характерной особенностью зависимости сечения от давления является возрастание сечения с ростом давления, то есть выполнения условия [11]:

$$\frac{dA}{dp}(p) \ge 0$$

В результате, построенная математическая модель учитывающая вязкие и неньютоновские свойства крови имеет следующий вид:

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial z} = 0, \tag{11}$$

$$\frac{\partial Q}{\partial t} + \alpha \frac{\partial}{\partial z} \left(\frac{Q^2}{A}\right) + \frac{A}{\rho} \frac{\partial p}{\partial z} - K_1 \frac{Q}{A} - K_2 \sqrt{A} sign(\frac{Q}{A}s'(1)) = 0, \quad (12)$$

где

$$K_{1} = \frac{2\pi\mu_{p}s'(1)}{\rho}, \quad K_{2} = \frac{2\sqrt{\pi}\tau_{0}}{\rho}, \quad s'(1) = \frac{4y_{0} - 4}{1 - \frac{4}{3}y_{0} + \frac{1}{3}y_{0}^{4}},$$
$$p(A) = \xi \frac{\sqrt{A} - \sqrt{A_{\min}}}{A_{\min}} + p_{\min}, \quad (13)$$

где A(t,z) — площадь поперечного сечения, Q(t,z) — объемный расход, α — коэффициент Буссинеска, ρ — плотность крови, μ_p — пластическая вязкость, τ_0 — предел текучести, L — длина сосуда.

Систему уравнений (11), (12) можно переписать в квазилинейной форме:

$$\frac{\partial \mathbf{U}}{\partial t} + \mathbf{H}(\mathbf{U})\frac{\partial \mathbf{U}}{\partial z} = \mathbf{f}(\mathbf{U}),$$

$$\mathbf{U} = \begin{pmatrix} A \\ Q \end{pmatrix}, \quad \mathbf{H} = \begin{pmatrix} 0 & 1 \\ \frac{A}{\rho} \frac{dp}{dA} - \alpha \left(\frac{Q}{A}\right)^2 & 2\alpha \frac{Q}{A} \end{pmatrix}, \quad \mathbf{f} = \begin{pmatrix} 0 \\ K_1 \frac{Q}{A} + K_2 \sqrt{A} sign(\frac{Q}{A} s'(1)) \end{pmatrix}$$

Собственные значения матрицы Н имеют вид:

$$\lambda_{1,2} = \alpha \frac{Q}{A} \mp \sqrt{c_s^2 + \frac{Q^2}{A^2}(\alpha^2 - \alpha)},$$

где

$$c_s = \sqrt{\frac{A}{\rho} \frac{dp}{dA}},$$

$$\lambda_1 < 0, \quad \lambda_2 > 0.$$

Получили вещественные и различные собственные значения, следовательно, можно сделать вывод, что эта система нелинейных уравнений гиперболического типа, решение представляется в виде волн. И для решения системы можно применять различные численные методы.

Разностная схема

Большое число численных методов предложено для системы в дивергентной форме, поэтому перепишем систему уравнений (11), (12) в дивергентной форме:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{U})}{\partial z} = \mathbf{f}(\mathbf{U}),$$

$$\mathbf{F}(\mathbf{U}) = \begin{pmatrix} Q\\ \alpha \frac{Q^2}{A} + \varphi(A) \end{pmatrix},$$
$$\varphi(A) = \int_{A_{\min}}^{A} \psi(\tau) d\tau,$$
$$\tau dn$$

$$\psi(\tau) = \frac{\tau}{\rho} \frac{dp}{dA}(\tau).$$

Надо отметить, что все существующие работы в области гемодинамики, помимо построения и разработки собственно моделей, требуют определенных усилий по созданию численных методов решения соответствующих задач. Одной из широко используемых схем для решения гиперболической системы уравнений является схема Лакса — Вендроффа. Она достаточно проста для реализации и имеет второй порядок точности по временным и пространственным переменным.

Схема состоит из двух этапов. На первом этапе вычисляются значения в полуцелых узлах:

$$\mathbf{U}_{j+\frac{1}{2}}^{s+\frac{1}{2}} = \frac{1}{2} \left(\mathbf{U}_{j}^{s} + \mathbf{U}_{j+1}^{s} \right) - \frac{\Delta t}{2h} \left(\mathbf{F}(\mathbf{U}_{j+1}^{s}) - \mathbf{F}(\mathbf{U}_{j}^{s}) \right) + \frac{\Delta t}{2} \mathbf{f}(\mathbf{U}_{j+\frac{1}{2}}^{s}).$$

На втором этапе вычисляется окончательное решение в целых узлах:

$$\mathbf{U}_{j}^{s+1} = \mathbf{U}_{j}^{s} - \frac{\Delta t}{h} \left(\mathbf{F}(\mathbf{U}_{j+\frac{1}{2}}^{s+\frac{1}{2}}) - \mathbf{F}(\mathbf{U}_{j-\frac{1}{2}}^{s+\frac{1}{2}}) \right) + \Delta t \mathbf{f}(\mathbf{U}_{j}^{s+\frac{1}{2}}).$$

Программа расчета течений на графе сосудов по одномерной модели (11) — (13) была реализована в пакете Matlab. Matlab — пакет прикладных программ для решения различных задач и обработки данных. Широкие возможности и удобный интерфейс программы позволяет создавать понятные и быстро компилируемые проекты.

Для корректной работы программы сначала объявляются все необходимые модельные параметры, задаются начальные условия и сетка по времени. Затем, в цикле по времени, для каждого сосуда вызывается основная функция — BloodVessel, для расчета A и Q по схеме Лакса — Вендроффа в кровеносном сосуде с заданными параметрами. В ней задается необходимая сетка разбиения по пространству для конкретного сосуда, реализована численная схема Лакса — Вендроффа для решения системы (11) — (13) в дивергентной форме. В зависимости от того рассматривается один сосуд или сосуд с бифуркацией, ставятся различные граничные условия, которые определяются в той же функции BloodVessel. При бифуркации (ветвления сосудов) условия совместности преобразуются в систему нелинейных алгебраических уравнений, которая решается методом Ньютона. В результате работы BloodVessel для одного сосуда получаем массивы для А, Q, p, набор узлов сетки по пространству и шаг по пространству. По которым в итоге строим необходимые графики. Также можно построить графики изменения искомых параметров во времени.

Результаты

1. Выбрана реологическая модель течения жидкости, которая описывает поведение крови в сосуде. С учетом этого было получено выражение для вязкого члена f(A, Q) уравнения (10), что позволило получить полную одномерную математическую модель течения крови (11) — (13), в рамках которой она описывается вязкопластичной жидкостью.

2. Кроме того, исходя из реологической модели, было получено выражение для коэффициента Буссинеска.

3. В результате произведенного анализа получившейся системы (11), (12), был сделан вывод, что система является гиперболической и для решения подобных систем можно применять различные численные методы.

4. Для численного решения системы была выбрана схема Лакса — Вендроффа, из-за достаточной простоты ее реализации и второго порядка точности по пространственным и временным переменным.

Вычислительный эксперимент

Одиночный сосуд

Рассматривается задача о течении крови в одиночном сосуде (рис. 6). Необходимые характеристики взяты из статьи [11], приведем их в системе СГС:

Длина сосуда:	$L = 10^3$ см
Толщина стенки сосуда:	h = 0.15 см
Плотность крови:	$ ho = 1.05$ г/см 3
Модуль Юнга:	$E=4\cdot 10^{6}$ дин/см 2
Коэффициент Буссинеска:	$\alpha = 1$ и $\alpha = \frac{4}{3}$
Начальная площадь поперечного сечения:	$A_0=\pi~{ m cm}^2$

$$\begin{array}{c} \lambda_1 < 0 \\ \swarrow \\ z = 0 \end{array} \qquad \qquad \begin{array}{c} \lambda_2 > 0 \\ \swarrow \\ z = L \end{array}$$

Рис. 6: Одиночный сосуд.

Система решалась с начальными условиями: $A(0, z) = A_0$, Q(0, z) = 0. Граничные условия на левом конце имеют вид: $Q(t, 0) = Q_{in}(t) (Q_{in}(t)$ получена также из [11]) — расход как функция времени и условие совместности (изменение решения вдоль характеристики системы, покидающей область):

$$\mathbf{I_1} \Big(\frac{\partial \mathbf{U}}{\partial t} + \mathbf{H} \frac{\partial \mathbf{U}}{\partial z} \Big) = \mathbf{I_1} \mathbf{f}, \Leftrightarrow \mathbf{I_1} \frac{\partial \mathbf{U}}{\partial t} + \lambda_1 \mathbf{I_1} \frac{\partial \mathbf{U}}{\partial z} = \mathbf{I_1} \mathbf{f},$$

где $\mathbf{I_1} = \mathbf{I_1}(\mathbf{U})$ — левый собственный вектор, отвечающий $\lambda_1(\mathbf{U})$.

На правом конце задается условие совместности:

$$\mathbf{I_2}\left(\frac{\partial \mathbf{U}}{\partial t} + \mathbf{H}\frac{\partial \mathbf{U}}{\partial z}\right) = \mathbf{I_2}\mathbf{f}, \Leftrightarrow \mathbf{I_2}\frac{\partial \mathbf{U}}{\partial t} + \lambda_2\mathbf{I_2}\frac{\partial \mathbf{U}}{\partial z} = \mathbf{I_2}\mathbf{f},$$

где $\mathbf{I_2} = \mathbf{I_2}(\mathbf{U})$ — левый собственный вектор, отвечающий $\lambda_2(\mathbf{U})$, и неотражающее условие, гарантирующее выход возмущения за границу области:

$$\mathbf{I}_1 \left(\frac{\partial \mathbf{U}}{\partial t} - \mathbf{f} \right) = 0.$$

Для программной реализации граничных условий сначала производится дискретизация производных на левом и правом концах соответственно:

$$\frac{\partial \mathbf{U}}{\partial t} \Big(t_{n+1}, z_0 \Big) \approx \frac{\mathbf{U}_0^{n+1} - \mathbf{U}_0^n}{\Delta t}, \quad \frac{\partial \mathbf{U}}{\partial z} \Big(t_{n+1}, z_0 \Big) \approx \frac{\mathbf{U}_1^{n+1} - \mathbf{U}_0^n}{h},$$
$$\frac{\partial \mathbf{U}}{\partial t} \Big(t_{n+1}, z_N \Big) \approx \frac{\mathbf{U}_N^{n+1} - \mathbf{U}_N^n}{\Delta t}, \quad \frac{\partial \mathbf{U}}{\partial z} \Big(t_{n+1}, z_N \Big) \approx \frac{\mathbf{U}_N^{n+1} - \mathbf{U}_{N-1}^{n+1}}{h},$$

где t_i — узел по времени, где i = 1, ..., m, Δt — шаг по времени, z_i — узел по пространству, i = 1, ..., N, h — шаг по пространству. Введем следующие упрощения:

$$\begin{split} \mathbf{I}_1(\mathbf{U}_0^{n+1}) &\approx \mathbf{I}_1(\mathbf{U}_0^n), \quad \lambda_1(\mathbf{U}_0^{n+1}) \approx \lambda_1(\mathbf{U}_0^n), \quad \mathbf{f}(\mathbf{U}_0^{n+1}) \approx \mathbf{f}(\mathbf{U}_0^n), \\ \mathbf{I}_2(\mathbf{U}_N^{n+1}) &\approx \mathbf{I}_2(\mathbf{U}_N^n), \quad \lambda_2(\mathbf{U}_N^{n+1}) \approx \lambda_2(\mathbf{U}_N^n), \quad \mathbf{f}(\mathbf{U}_N^{n+1}) \approx \mathbf{f}(\mathbf{U}_N^n), \\ \mathbf{I}_1(\mathbf{U}_N^{n+1}) &\approx \mathbf{I}_1(\mathbf{U}_N^n). \end{split}$$

В результате имеем:

$$\mathbf{I}_{1}(\mathbf{U}_{0}^{n})\left(\mathbf{U}_{0}^{n+1}-\mathbf{U}_{0}^{n}+\frac{\Delta t}{h}\lambda_{1}(\mathbf{U}_{0}^{n})(\mathbf{U}_{1}^{n+1}-\mathbf{U}_{0}^{n+1})-\Delta t\mathbf{f}(\mathbf{U}_{N}^{n})\right)=0,$$

$$\mathbf{I}_{2}(\mathbf{U}_{N}^{n})\left(\mathbf{U}_{N}^{n+1}-\mathbf{U}_{N}^{n}+\frac{\Delta t}{h}\lambda_{2}(\mathbf{U}_{N}^{n})(\mathbf{U}_{N}^{n+1}-\mathbf{U}_{N-1}^{n+1})-\Delta t\mathbf{f}(\mathbf{U}_{N}^{n})\right)=0,$$

$$\mathbf{I}_{1}(\mathbf{U}_{N}^{n})\left(\mathbf{U}_{N}^{n+1}-\mathbf{U}_{N}^{n}-\Delta t\mathbf{f}(\mathbf{U}_{N}^{n})\right)=0.$$

Затем на правом конце формируется система линейных алгебраических уравнений относительно компонент вектора **U**. На левом конце получаем одно уравнения и подставляя необходимое значение *Q* из граничного условия, получаем уравнение для *A*. Результаты работы программы представлены на рис. 7. На графике показаны давление в случае отсутствия вязкости и в случае ньютоновской жидкости в избранные моменты времени. Это решение сравнивалось с графиком из статьи [11], изображенном на рис. 8. Как можно заметить, результаты работы программы с параметрами, представленными в статье, и график идеальной и ньютоновской жидкости из статьи хорошо согласованы друг с другом.

Рис. 7: График давления, отнесенного к максимальному значению p_{peak} в фиксированные моменты времени: 0.1 с., 0.3 с., 0.5 с., 0.7 с., 0.9 с., 1.1 с., 1.3 с., 1.5 с.

Аналогичная задача решалась для случая неньютоновской модели и ньютоновской при правильном значении $\alpha = \frac{4}{3}$. На рис. 9 представлены графики приведенного давления в избранные моменты времени. Как можно видеть, для модельного сосуда такой протяженности неньютоновские эффекты играют существенную роль и их необходимо учитывать при моделировании.

Рис. 8: Сравнение с результатами статьи [11]. Сплошная кривая — случай нулевой вязкости; пунктирные линии — с вязкостью.

Рис. 9: Сравнение ньютоновской и неньютоновской моделей. Синяя кривая — случай линейной вязкости; красная кривая — случай нелинейной вязкости.

Для возможности моделирования многокомпонентной сети сосудов необходимо рассмотреть соединение нескольких сосудов. Поэтому далее была рассмотрена задача о течении в сосуде с бифуркацией (рис. 10). В рамках этой задачи рассматривается родительский сосуд и два дочерних.

Необходимые характеристики для модели взяты из статьи [14], приведем их в системе СГС:

Длина родительского сосуда: Длина дочерних сосудов: Плотность крови: ξ из (13) для родительского сосуда: $\xi_1 = 25.52 \ r/(c^2 \cdot cm^2)$ ξ из (13) для дочерних сосудов: $\xi_2 = \xi_3 = 10.42 \ r/(c^2 \cdot cm^2)$ Коэффициент Буссинеска: Начальная площадь поперечного сечения для родительского сосуда: Начальная площадь поперечного сечения

для родительского сосуда:

 $L_1 = 20 \text{ cm}$ $L_2 = L_3 = 20$ см ho = 1г/см³ $\alpha = 1$ и $\alpha = \frac{4}{3}$ $A_1 = \frac{\pi}{4} \operatorname{cM}^2$

$$A_2 = A_3 = \frac{\pi}{24} \ \mathrm{cm}^2$$

Граничные условия на левом и правом концах аналогичны предыдущей задачи, но в точке ветвления ставятся условия сопряжения (постоянство расхода и непрерывность давления) и условия совместности:

$$\begin{aligned} Q_1 &= Q_2 + Q_3, \\ P_2 &= P_1, P_3 = P_1, \\ \mathbf{I}_2(\mathbf{U}_1) \frac{\partial \mathbf{U}_1}{\partial t} + \lambda_2(\mathbf{U}_1) \mathbf{I}_2(\mathbf{U}_1) \frac{\partial \mathbf{U}_1}{\partial z} = \mathbf{I}_2(\mathbf{U}_1) \mathbf{f}(\mathbf{U}_1), \\ \mathbf{I}_1(\mathbf{U}_2) \frac{\partial \mathbf{U}_2}{\partial t} + \lambda_1(\mathbf{U}_2) \mathbf{I}_1(\mathbf{U}_2) \frac{\partial \mathbf{U}_2}{\partial z} = \mathbf{I}_1(\mathbf{U}_2) \mathbf{f}(\mathbf{U}_2), \\ \mathbf{I}_1(\mathbf{U}_3) \frac{\partial \mathbf{U}_3}{\partial t} + \lambda_1(\mathbf{U}_3) \mathbf{I}_1(\mathbf{U}_3) \frac{\partial \mathbf{U}_3}{\partial z} = \mathbf{I}_1(\mathbf{U}_3) \mathbf{f}(\mathbf{U}_3). \end{aligned}$$

После дискретизации производных и упрощений формируется система нелинейных алгебраических уравнений относительно компонент векторов **U**₁, **U**₂, **U**₃, которая решается методом Ньютона.

Рис. 11: График давления в середине родительского сосуда и график с результатами статьи [14].

В результате был получен верхний график на рис. 11 изменения давления во времени в центре родительского сосуда для жидкости без учета

Рис. 12: Сравнение ньютоновской жидкости и неньютоновской в точке бифуркации и на выходе дочерних сосудов.

вязкости. На нижнем рис. 11 график давления в центре родительского сосуда, представленный в статье [14]. Как можно видеть, результаты хорошо согласованы.

В свою очередь, были получены графики давления в точке бифуркации и на выходе из дочерних сосудов (рис. 12) с учетом неньютоновости. В результате чего становится очевидным тот факт, что для вязких жидкостей характерно затухание решения, связанное с влиянием вязкости. При этом видно, что учет неньютоновости в модели оказывает существенное влияние на результаты. Как показано выше, программа работает корректно для решения нелинейных тестовых задач. Теперь рассмотрим задачи моделирования течения крови в реальных сосудах, поскольку ранее решались задачи с нефизиологическим неотражающим граничным условием, которое ставилось на выходе из сосуда.

Рассматривается сонная артерия с физиологическим граничным условием на входе (рис. 13).

Рис. 13: Модель сонной артерии и график расхода на левом конце [15].

Необходимые параметры представлены в статье [15], приведем их в СГС:

Длина сосуда:	L = 12.6 см
Толщина стенки сосуда:	h = 0.03 см
Плотность крови:	$ ho = 1.05$ г/см 3
Модуль Юнга:	$E=7\cdot 10^6$ дин/см 2
Плотность крови:	$ ho = 1.03$ г/см 3
Начальный расход:	$Q_{in}=6.52~\mathrm{cm}^3/\mathrm{c}$
Начальная площадь поперечного сечения:	$A_0=0.22~\mathrm{cm}^2$
Систолическое давление:	$p_c = 16.7 \cdot 10^4$ дин/см 2
Диастолическое давление:	$p_d = 10.9 \cdot 10^4$ дин/см 2
Емкость:	$C = 1.7529 \cdot 10^{-5} \; \mathrm{cm}^5/\mathrm{дин}$
Сопротивление:	$R_1 = 2.4875 \cdot 10^3$ дин $\cdot { m c/cm^5}$
	$R_2 = 1.8697 \cdot 10^4$ дин $\cdot \mathrm{c/cm}^5$

Для решения системы, задаются начальные условия: $A(0, z) = \pi$, $Q(0, z) = Q_{in}$. Граничные условия на левом конце имеют вид: $Q(t, 0) = Q_0(t)$ — расход как функция времени и условие совместности. На правом конце: условие совместности и физиологическое (учитывает способность сосудов запасать определенный объем крови и оказывать гидравлическое сопротивление) условие вида [15]:

$$Q\left(1+\frac{R_1}{R_2}\right) + CR_1\frac{\partial Q}{\partial t} = \frac{P}{R_2} + C\frac{\partial P}{\partial t}$$

где C — «емкость» сосуда, R_1 — «сопротивление» сосуда, R_2 — «сопротивление» периферийной части.

Функция начального расхода бралась из графика, представленного в статье [11] (рис. 13), оцифровывалась и аппроксимировалась сглаживающим сплайном.

Рис. 14: График расхода на выходе из сонной артерии и графики модулей разностей численных решений.

Рис. 15: Графики относительной погрешности расхода на выходе из сосуда.

В результате получено решение в виде графиков расхода и абсолютной погрешности расхода на выходе из сонной артерии — рис. 14, для идеальной и вязких моделей. Как можно видеть, результаты, полученные при различных моделях весьма близки, причем относительная погрешность моделей составляют 2,5% (рис. 15). То есть для такой задачи влияние вязкости несущественно.

Модель артериальной части сердечно-сосудистой системы

Для моделирования течения в сети сосудов, рассмотрим известную из [16] задачу о течении в модели артериальной части сердечно-сосудистой системы. В статье представлена численная модель, основанная на нелинейных одномерных уравнениях. Она проверяется на экспериментальной модели артериального дерева человека.

Рис. 16: (а) Схема экспериментальной установки. (b) Схема системы из 37 сосудов. (c) Фото экспериментальной установки [16].

Система состоит из 37 податливых пластиковых трубочек и моделирует артериальное дерево (рис. 16), включающее в себя самые большие центральные артерии человека, включая аорту, сонные артерии и артерии, которые пронизывают верхние и нижние конечности и основные органы брюшной полости. Трубки соединенны с пульсирующим насосом, обеспечивающим периодическую мощность, подобную потоку в аорте. Концевые ветви представляют собой жесткие капиллярные трубки. Для имитации вязких свойств крови и необходимой плотности жидкости используется 65–35% водно-глицериновая смесь. В статье сравниваются экспериментальные и численные результаты давления и расхода. Подобная модель сердечно-сосудистого дерева рассмотрена и в статье [11].

Модельные параметры для системы взяты из [16]. На выходе концевых сосудов ставится следующее физиологическое условие:

$$Q = \frac{p - p_{out}}{R_p}$$

где Q — скорость потока в сосуде, p — давление на выходе сосуда, p_{out} — постоянное гидростатическое давление, R_p — периферическое сопротивление потоку.

Рис. 17: График давления в середине правой локтевой артерии и график с результатами статьи [11].

Посмотрим как влияет неньютоновость на получаемое решение в этом дереве сосудов. Рассмотрим значения давления в серединах некоторых сосудов и сравним с данными, полученными в работе [11], которые хорошо согласуются с результатами из [16].

Рис. 18: График давления в середине левой подключичной артерии и график с результатами статьи [11].

Рис. 19: График давления в середине селезеночной артерии и график с результатами статьи [11].

Рис. 20: График давления в середине передней большеберцовой артерии и график с результатами статьи [11].

Будем рассматривать сосуды, находящиеся в руке, около сердца, в брюшной полости и ноге.

Как можно видеть, относительная погрешность в правой локтевой ар-

Рис. 21: Абсолютная и относительная погрешность: a), b) — правая локтевая артерия, c), d) — левая подключичная артерия, e), f) — селезеночная артерия, g), h) — передняя большеберцовая артерия.

терии и селезеночной артерии составляет менее 1% (рис. 21 b и f), однако в передней большеберцовой артерии она составляет менее 4% (рис. 21 h), что позволяет предположить, что при удалении от насоса, имитирующего сердце, неньютоновость оказывает влияние на результаты. Зато в левой подключичной артерии (рис. 21 d) наблюдается достаточно хорошее соответствие вязкопластичной жидкости и ньютоновской, погрешность менее 1.3%.

Результаты

Таким образом, в результате тестирования программы, была показана корректность ее работы. Также были решены задачи моделирования течения крови в реальных сосудах с физиологическими условиями. И моделирование течения крови в модели из 37-ми сосудов, показывающее что и на разветвленной сети сосудов получаются достаточно близкие результаты.

В результате были получены схожие результаты для модели с ньютоновской жидкостью и вязкопластичной. Из этого можно сделать вывод, что неньютоновость незначительно влияет на результаты. По всей видимости, это связано с тем, что рассмотренная модель слабо отличается от ньютоновской и зависит от тензора скоростей деформации тоже линейно.

Заключение

В результате магистерской диссертации рассмотрена предложенная одномерная модель кровотока, учитывающая неньютоновские свойства крови, на основе которой написана программа, позволяющая моделировать течение крови в системе сосудов.

Следовательно, получены следующие результаты:

1. Предложена одномерная математическая модель течения крови с учетом неньютоновских эффектов.

Написана программа, реализующая расчеты по предложенной модели
 с помощью схемы Лакса — Вендроффа.

3. Решены и проанализированы тестовые задачи, предложенные в литературе.

4. Проведено моделирование течения крови на участках крупных сосудов.

По полученным результатам можно сделать соответствующие выводы:

1. Одномерное моделирование способно достаточно точно предсказать поведение крови. И разработанная программа позволяет получать корректные результаты.

2. Применение квазиодномерного приближения позволяет ставить и численно решать гемодинамические задачи на достаточно разветвленной сети сосудов системы кровообращения.

3. Неньютоновские эффекты при определенных условиях оказывают влияние на получившиеся результаты.

39

Список литературы

- [1] https://www.who.int/ru/news-room/fact-sheets/detail/cardiovasculardiseases-(cvds)
- [2] https://www.gks.ru/
- [3] Физиология человека: учебник под ред. В. М. Покровского, Г.Ф. Коротько. М.:Медицина, 2003. — 656 с.
- [4] https://densegodnya.ru/zdorove/article_post/obshchaya-dlinakrovenosnykh-sosudov-v-organizme-cheloveka-100-000-km
- [5] https://placefun.ru/83525-kak-sozdayut-tochnuyu-model-krovenosnoysistemy-cheloveka.html
- 6 http://feel-feet.ru/chto-takoe-angiografiya-sosudov-nog.html
- [7] Валландер С. В. Лекции по гидроаэромеханике. Л.: Изд. ЛГУ, 1978. 296 с.
- [8] Педли Т. Гидродинамика крупных кровеносных сосудов: Пер. с англ. —
 М.: Мир, 1983. 400 с.
- [9] https://mexamoll.ru/erythrocytes-are-produced-in-what-are-red-blood-cells/
- [10] Ильич Г.К. Физические основы гидро- и гемодинамики. Методическое пособие. — 35 с.
- [11] Boileau E. et al A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling // Int. J. Numer. Meth. Biomed. Engng. 2015.
- [12] Formaggia L, Lamponi D and Quarteroni A. One-dimensional models for blood flow in arteries // J. of Eng. Math. 2003. 47.: P. 251-276

- [13] Артюшков Л. С. Динамика неньютоновских жидкостей. СПб.: Изд. Центр СПбГМТУ. 1997
- [14] Xiu D. et al Parametric uncertainty analysis of pulse wave propagation in a model of a human arterial network // Journal of Computational Physics 226 (2007) 1385–1407
- [15] Xiao N. et al. A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models // Int. J. Numer. Meth. Biomed. Engng. 2014.
 30: P. 204–231
- [16] Matthys K. S. et al. Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements // Journal of Biomechanics 40 (2007) 3476–3486