Санкт-Петербургский государственный университет

БОГДАНОВ Григорий Владимирович

Выпускная квалификационная работа

Минералогия бархана из района ущелья Олдувай, Нгоронгоро, Танзания

Направление 05.03.01 «Геология»

Основная образовательная программа СВ.5018.2016

Научный руководитель: Профессор кафедры минералогии, ИНоЗ, д.г.-м.н., профессор Зайцев Анатолий Николаевич

ABaunt

Рецензент:руководительгруппы,Германскийфедеральныйинститутгеологическихнаукиприродных ресурсов, к.г.-м.н.Ситникова Мария Александровна

Санкт-Петербург

2020

Содержание

Введение	3
Географический и геологический очерки	4
Географическое положение	4
Геологическая привязка	б
Пробоподготовка и методы анализа	8
Физико-литологический анализ песка	9
Минералогический анализ	1
Особенности химического состава перовскита18	8
Заключение 24	4
Список литературы	5

Введение

Барханы, являющие разновидностью дюн, – обычное явление для пустынных областей, но в то же время они отличаются друг от друга по происхождению переносимого вещества, а также по морфологии двигающегося песка. Состав вещества обычно зависит от геологии региона, где образуется бархан, а за его форму дюны отвечают «эквивалентная мощность осадков, содержащихся в дюне, и величина изменчивости направления движущего ветра. Сила ветра не оказывается важной, в то время как растительность играет крупную роль, а размер частиц составляющих материал дюны неважен» (Wasson & Hyde, 1983).

Объект исследования, из которого был отобран материал, относится к барханам (Scoon, 2018) и является частью природного памятника, который располагается вблизи хорошо известного ущелья Олдувай (область заповедника Нгоронгого) (Scoon, 2018). Предполагается, что материалом для бархана послужил пепел извержения вулкана Олдоиньо Ленгаи в период 1940-41 годов, длившееся около полугода, и которое было описано Дж. Ричард (J. Richard) в 1942 году (Dawson, 1962).

Исследование данных отложений прежде не производилось, соответственно, минеральный состав бархана неизвестен, и поэтому целью работы стали изучение физических характеристик песка (магнитность, насыпная плотность, размерность, блеск, раздавливаемость, цвет минерала в порошке, габитус форма зёрен, излом и окатанность) и минералогический анализ, с целью подтвердить или опровергнуть предположение о принадлежности песка к продуктам извержения вулкана Олдоиньо Ленгаи.

3

Географический и геологический очерки

Географическое положение

Объект расположен в Танзании близ озера Натрон и Кратерного Нагорья (рис. 1). Барханы протягиваются на много километров с северо-востока на ЮЗЗ вдоль подножия вулканов рифта Грегори (рис. 2). Барханы тянутся от северного склона Нгоронгоро на юго-запад на протяжении более чем 30 км и от западного склона Нгоронгоро на расстояние 20 км на запад вдоль ущелья Олдувай (рис.3). О подобном распространении пеплов свидетельствовал Барри Доусон в своем описании вулкана Олдоиньо Ленгаи (Dawson, 1962).

Рис. 1 Расположение объекта на карте Африки (выделено красным).

Снимок: Google Maps, 2020

Рис.2 Регион кратера Нгоронгоро и ущелья Олдувай, спутниковый снимок. Красным выделен объект исследования. ОЅ – Болота Олбалбал, LE – Кратер Лемагрут, ЅА - Кратер Садиман, OL – Кратер Олдеани, NC – Кратер Нгоронгоро, OC – Кратер Олмоти, ЕС – Кратер Эмпакааи, LO – Кратер Лулмалазин, КЕ – Кратер Керимаси, OD – Кратер Олдоиньо Ленгаи. Снимок: Google Maps, 2020 (Scoon, 2018)

Рис.3 Спутниковый снимок барханов, красным помечена точка отбора пробы. Снимок: Google Maps, 2020

Геологическая привязка

Движущиеся пески расположены к юго-западу от вулкана Олдоиньо Ленгаи, которому приписывают их извержение. Олдоиньо Ленгаи – карбонатитовый вулкан, расположенный в восточном ответвлении рифта Грегори, представлен активным стратовулканом, высотой 2962 м. Вулкан извергается с небольшими перерывами почти постоянно, первое задокументированное извержение датировано 1880 годом, а последнее 2013.

Размеры барханов в среднем составляют 3 метра в ширину, 3 метра в высоту и 9 метров в длину, по классификации дюн их следует относить к барханам (Wasson & Hyde, 1983). Самый большой бархан в форме полумесяца достигает 100 м в длину и 9 метров в высоту (рис. 4) (Scoon, 2018). Все барханы данного природного памятника мигрируют на расстояние до 20 м каждый год.

Рис. 4. Бархан вблизи ущелья Олдувай, объект исследования в данной работе. Фотография Е.О. Зайцевой (2009).

Окружение вулкана сложено неогеновыми щелочными вулканитами Кратерного нагорья, вулканов Китумбеин и Гелай. Лавы и туфы этих вулканических центров залегают на докембрийском фундаменте, который обнажается к западу от Кратерного нагорья и к востоку от Гелая и Китумбеина (Dawson, 1962). Эти комплексы сложены в основном различными разновидностями базальта, трахибазальта, оливинового базальта, трахита, фонолита, редко встречается мугеарит и нефелиновый базанит (Guest, 1956).

Территория долины рифта Грегори пересечена с юга на север серией разломов, приуроченных к рифтогенезу. С разломами связана и вулканическая активность. Шомболи, Мозоник, Керимаси и Олдоиньо Ленгаи (рис. 5) – поздние вулканы, связанные с поздней тектонической активностью, они ультращелочные и содержат в своем составе разнообразные карбонатиты.

Кратер Олдоиньо Ленгаи заполнен карбонатами натрия и калия (Richard, 1942), что делает его неустойчивым к термальному, водному и ветряному воздействиям. За счёт этого кратер вулкана неоднократно менялся за историю наблюдений и мог сместиться с одного края кальдеры на другой за считанные месяцы.

Рис. 5 Геологическое положение кратера Олдоиньо Ленгаи и движущихся дюн на участке геологической карты восточной Африки. (Scoon, 2018)

Пробоподготовка и методы анализа

Исходная проба – образец песка из крупного движущегося бархана, отобран на его передней, по направлению переноса, части. Песок тёмно-серого цвета со светлыми зернами в подчинённом количестве.

Изначально песок был взвешен и помещён в мерную колбу для измерения объёма. Таким образом, были получены весовая характеристика и насыпной объём. Впоследствии эти данные были пересчитаны в насыпную плотность песка.

Затем был процесс магнитной сепарации, произведённой вручную, с использование магнита Сочнева, так как приборы не позволяют произвести это без существенных потерь и с сохранением отношения фракций – более магнитные фракции будут сохранены лучше из-за особенностей машинной обработки пробы. Так были получены 5 фракций по очереди: сильномагнитная, среднемагнитная, слабомагнитная, очень слабомагнитная и немагнитная. Потом каждая фракция была взвешена – это позволило получить массовое содержание (в %) каждой фракции в пробе.

Следующим этапом стал минералогический анализ: Каждая фракция изучалась под бинакуляром для определения их минерального состава. Изучались: габитус, окатанность, размер, форма, раздавливаемость, цвет в порошке, блеск и излом минералов – эти данные позволили выявить минералогический состав пробы. В каждой фракции было просмотрено более 100 зёрен.

На электронном микроскопе JEOL с приставкой для энерголисперсионного анализа исследованы пять зёрен перовскита и вторичные изменения по одному из зёрен. Анализ проведён и предоставлен Джоном Спраттом (Музей естественной истории, Лондон).

8

Физико-литологический анализ песка

Macca

Масса пробы в пакетах m = 251,49 г; масса пакетов m_n = 4,02 г. m_{np} = 247,47 г.

Объём

Объём пробы в мерной колбе $V = 135 \text{ см}^3$

Плотность

Насыпная плотность песка (включающая поровое пространство): $\frac{m_{np}}{V} = 1,83 \text{ г/см}^3$

Подобная плотность характерна для базальтовых и диабазовых песков (Диспетчер-грунт: [сайт]. URL: http://gruntmsk.ru), такое сходство, вероятно, продиктовано преобладанием в пробе амфиболов и пироксенов.

Окатанность

Большая часть зёрен хорошо окатана со следами выветривания в виде каверн и борозд. Редко встречаются неокатанные зёрна и хорошо оформленные кристаллы, несколько более часто обломки кристаллов, частично окатанные. Степень окатанности не отличается в разных по магнитности фракциях.

Размер зёрен

Зёрна представлены кристаллами и песчинками от 0,5 мм до 1,5 мм за исключением малой глинистой составляющей, адсорбированной по поверхностям более крупных зёрен.

Магнитность

В пробе около 60% очень слабомагнитной фракции, между остальными фракциями отношение разделено примерно равномерно. То, что в немагнитной фракции только 8% массы, предположено, что связано с меньшей плотностью минералов этой части пробы. У слабомагнитной, средне- и сильномагнитной фракций примерно по 10 % массы всей пробы (Таблица 1).

Таблица 1. Содержание разных по магнитности фракций в пробе.

Фракция	Массовое содержание (в %)
Сильномагнитная фракция	9,3
Среднемагнитная фракция	9,6
Слабомагнитная фракция	11,0
Очень слабомагнитная фракция	62,1
Немагнитная фракция	8,0

Минералогический анализ

В ходе визуального и качественного (раздавливание) анализов определены различные минералы. Минералы, в порядке убывания их содержания в пробе представлены амфиболом, пироксеном, титанитом, перовскитом, кварцем, магнетитом, щелочным амфиболом, предполагается наличие монацита, визуально практически неотличимого от титанита и перовскита.

Анализ проводился с использованием стереомикроскопа Leica, на кафедре минералогии СПбГУ. В ходе изучения были просмотрены около 100 зёрен из каждой фракции магнитности, в немагнитной фракции просмотрено около 150 зёрен. Во всех фракциях в различной степени представлены вторичные глинистые минералы, не определяемые при визуальном анализе.

Немагнитная фракция

Песок жёлтого цвета с редкими чёрными зёрнами. Визуально равномернозернистый с зёрнами порядка 1 мм. Составляет 8,0 массовых % пробы

Определённые минералы: перовскит, титанит, роговая обманка, кварц, возможно в пробе присутствует монацит, но визуально его не отличить от перовскита и титанита (Таблица 2).

Минерал	Подсчитанное количество зёрен	Содержание минерала во
	во фракции	фракции, %
Перовскит	42	28,4
Титанит	56	37,8
Монацит	-	-
Амфибол	9	6,1
Пироксен	2	1,3
Кварц	39	26,4
$\Sigma =$	148	100

Таблица 2. Содержание минералов в немагнитной фракции

Перовскит CaTiO₃ – прозрачный минерал с блеском варьирующим от жирного и стеклянного до алмазного, полуметаллического на сколе, жёлтого цвета, иногда встречается в октаэдрах и в виде их обломков. Давится средне, цвет в порошке белый.

Титанит CaTi(SiO₄)O- прозрачный, окатанный, как и другие минералы в пробе, составляет её большую часть. Блеск на гранях стеклянный и жирный, давится трудно. Цвет жёлто-коричневый, в порошке белый. Среди окатанных встречаются вытянутые кристаллы.

Монацит Ce(PO₄)– прозрачный минерал жёлто-корчиневатого цвета, давящийся средне, возможно присутствует в пробе, но отличить его от титанита и перовскита не представляется возможным при помощи только бинокуляра.

Амфибол, предположительно керсутит (Na)(Ca₂)(Mg₃AlTi)(Al₂Si₆O₂₂)O₂, – обычно обладает магнитностью, возможно присутствует вследствие недостаточно хорошей сепарации или отсутствия магнитности. Чёрный матовый минерал как окатанный, так и в виде идиоморфных зёрен.

Пироксен, вероятно авгитового ряда, (Ca,Na)(Mg,Fe²⁺,Fe³⁺Ti,Al)(Si₂O₆), по свойствам идентичен амфиболу, за исключением более вытянутой формы кристаллов.

Кварц SiO₂– вероятнее всего смешался с пробой в ходе перемещения по пустыне, так как он не характерен для предполагаемого парагенезиса. Кварц – прозрачный бесцветный минерал со стеклянным блеском на гранях и жирным на изломе, в порошке белый.

Очень слабомагнитная фракция

Самая объёмная фракция, составляет 62,1% от массы пробы. Минералы во фракции в основном темноцветные (роговая обманка, щелочной амфибол, пироксен), мало светлых минералов (титанит, возможно перовскит и монацит) (Таблица 3).

Керсутит (Na)(Ca₂)(Mg₃AlTi)(Al₂Si₆O₂₂)O₂ – обладает формой схожей с керсутитом из региона Айфель, Гремания (рис. 6); был выявлен в кратере Олмоти в 35 км к юго-западу от Олдоиньо Ленгаи (Mollel et all, 2009). Минерал имеет матовый непрозрачный цвет, давится средне и при раздавливании прозрачный на сколе, излом раковистый. Порошок белый, осколки серо-зелёного цвета. Изредка встречаются прозрачные или зональные зёрна серо-зелёного цвета (рис. 7), возможно отличного состава, с повышенной щелочностью. Прозрачные зёрна давятся проще.

Минерал	Подсчитанное количество	Содержание минерала во
	зёрен во фракции	фракции, %
Керсутит	65	59,7
Пироксен	31	28,4
Титанит и перовскит	11	10,1
Кварц	2	1,8
$\Sigma =$	109	100

Таблица 3. Содержание минералов в очень слабомагнитной фракции

a)

б)

Рис.6 Керсутит, а) фото минерала в пробе, б) фото минерала из Германии, Айфель.

Фото: Г. Богданов (а), С. Schäfer (б).

Рис.7 Фото очень слабомагнитной фракции, прозрачный амфибол (предположительно с повышенной щёлочностью). Фото через приставку на бинокуляре Leica: Богданов Григорий.

Пироксен (Ca,Na)(Mg,Fe²⁺,Fe³⁺Ti,Al)(Si₂O₆) – обладает вытянутыми кристаллами, давится с тем же усилием, что и амфибол. Излом – раковистый, на нём минерал прозрачный тёмно-серо-зелёного цвета.

Титанит CaTi(SiO₄)O – аналогичен немагнитной фракции, в данной фракции возможно вследствие плохой сепарации или наличия наведённой магнитности.

Возможно, во фракции имеются перовскит и монацит, но найти их в общей массе довольно трудно, как и отличить их друг от друга. Так же присутствует в малых количествах кварц, как и в немагнитной фракции.

Слабомагнитная фракция

11,0 % массы пробы приходится на слабомагнитную фракцию, её составляют в основном амфибол и пироксен, не так сильно распространены перовскит, титанит и кварц (Таблица 4).

Минерал	Подсчитанное количество	Содержание минерала во
	зёрен во фракции	фракции, %
Керсутит	63	61,8
Пироксен	27	26,5
Титанит и перовскит	9	8,8
Кварц	3	2,9
$\Sigma =$	102	100

Таблица 4. Содержание минералов в слабомагнитной фракции

Амфибол и пироксен не отличаются от менее магнитных фракций, присутствуют как бесформенные зёрна, так и зёрна соответствующие кристаллографии идеальных кристаллов. Перовскит, титанит и кварц представлены в меньшей степени, чем амфиболы, их характеристики такие же, как в других фракциях.

Среднемагнитная фракция

Составляет 9,6% массы пробы. Представлена теми же минералами, что и слабомагнитная фракция, амфибола и пироксена в ней гораздо больше остальных минералов (Таблица 5). Зёрна светлых минералов встречаются реже чем в слабо- и очень слабомагнитной фракциях.

Минерал	Подсчитанное количество	Содержание минерала во
	зёрен во фракции	фракции, %
Керсутит	66	60
Пироксен	36	32.7
Титанит и перовскит	6	5.5
Кварц	2	1.8
$\Sigma =$	110	100

Таблица 5. Содержание минералов в среднемагнитной фракции

Сильномагнитная фракция

В ней содержится 9,3% песка, светлые минералы практически не наблюдаются, определены минералы магнетит, роговая обманка и титанит, иные, ранее представленные светлые минералы не были определены (Таблица 6). Во фракции практически не видно жёлтых зёрен встречавшихся ранее в пробе. На магните зёрна слипаются в нити, с разным направлением зёрен, что говорит о различном направлении их намагниченности.

Минерал	Подсчитанное количество	Содержание минерала во	
	зёрен во фракции	фракции, %	
Керсутит	59	51,3	
Пироксен	39	33,9	
Титанит и перовскит	4	3,5	
Магнетит	13	11,3	
$\Sigma =$	115	100	

Таблица 6. Содержание минералов в сильномагнитной фракции

Магнетит FeFe₂O₄- в песке присутствуют редкие октаэдры чёрного матового цвета, средней раздавливаемости. Зёрна прилипают к металлической игле, при раздавливании порошок чёрный.

Амфибол, пироксен и титанит не отличаются от остальных фракций.

Средний минеральный состав пробы

Суммарно в пробе было просмотрено 584, по которым, учитывая удельный вес каждой фракции был посчитан средний минеральный состав (табл. 7).

Минерал	Количество зерен,	Содержание минерала в	Плотность минерала,
	подсчитанное в пробе	пробе, % (с учётом	г/см ³
		удельного веса каждой	
		фракций)*	
Керсутит	262	54,9	~3,00

Таблица 7. Средний минеральный состав пробы

Пироксен	135	26,9	3,19 - 3,56
Титанит	72	7,4	3,48-3,6
Перовскит	56	6,0	3,98-4,26
Магнетит	13	1,1	5,175
Кварц	46	3,7	2,65 - 2,66
$\Sigma =$	584	100	

Формула расчёта содержания минерала в пробе:

$$C = \frac{C_{\text{мин,h}\phi} * C_{\text{h}\phi,\text{np}} + \dots + C_{\text{мин,cun}\phi} * C_{\text{сил}\phi,\text{np}}}{100}$$

где С – содержание минерала в пробе, С_{мин,нф}, С_{мин,силфр}– содержание минерала в % в соответствующей фракции (немагнитной, очень слабомагнитной, слабомагнитной, среднемагнитной, сильномагнитной), С_{нф,пр}, С_{силфр,пр} – содержание каждой фракции в % в пробе.

,

Особенности химического состава перовскита

Определение химического состава перовскита выполнено на электронном микроскопе JEOL с приставкой для энергодисперсионного анализа. Обработка спектров выполнялась с использованием программы INCA. Условия анализа: 20 kV, 1 нА, диаметр электронного пучка 1 мкм. Анализ провёл: Джон Спратт.

Перовскиты из пробы представлены как неизменёнными зёрнами (рис. 8), так и подверженными вторичным изменениям (рис. 9). Некоторые зёрна перовскита зональны (рис. 10).

Все расчёты формул выполнены для трёх формульных единиц кислорода.

Рис. 8 Неизменённый кристалл перовскита. Фотография в обратно-рассеянных электронах.

Рис. 9 Зональный кристалл перовскита подверженный вторичным изменениям. Фотография в обратно-рассеянных электронах.

Рис. 10 Неизменённый зональный кристалл перовскита.

Фотография в обратно-рассеянных электронах.

	Рис. 8 Рис. 9		Рис. 9		Рис	2. 10
	кристалл 1	кристалл 2	кристалл 3	кристалл 4	кристалл 5	
					светлый край	темный центр
	Spectrum 1	Spectrum 1	Spectrum 1	Spectrum 1	Spectrum 1	Spectrum 2
Na ₂ O	0,60	0,41	0,87	0,66	0,61	0,49
SiO ₂	0,28					
CaO	36,88	35,20	38,03	36,91	36,88	38,85
TiO ₂	55,16	53,71	52,70	52,77	57,47	55,87
MnO	0,51	0,22		0,52	0,20	
Fe ₂ O ₃	0,94	1,55	1,13	0,70	0,81	0,97
SrO	0,58			0,87		0,53
Nb ₂ O ₃	1,22	0,71	1,05	0,19	1,20	0,95
La ₂ O ₃	1,05	3,13	1,26	3,48	0,37	0,80
Ce ₂ O ₃	1,52	3,72	4,68	4,71	1,27	0,82
Nd ₂ O ₃	1,26	1,78	0,45		1,14	0,75
Total	100,00	100,43	100,17	100,81	99,95	100,03

Таблица 8. Предоставленные аналитические данные полученные при анализе перовскита.

Формула перовскита по данным анализа кристалла с рисунка 8:

 $(Ca_{0,92}Na_{0,03}Mn_{0.01}Fe_{0,01}Sr_{0,01}La_{0,01}Ce_{0,01}Nd_{0,01})_{1,01}(Ti_{0,97}Si_{0,01}Nb_{0,01})_{0,98}O_{3,00}$

Формулы перовскита рассчитанные по данным анализа кристалла с рисунка 9:

 $(Ca_{0,90}La_{0,03}Ce_{0,03}Na_{0,02} Nd_{0,02} Fe_{0,01})_{1,01}(Ti_{0,97}Nb_{0,01})_{0,98}O_{3,00}$

 $(Ca_{0,97}Na_{0,04} Ce_{0,04}Fe_{0,01}La_{0,01})_{1,07}(Ti_{0,97}Nb_{0,01})_{0,98}O_{3,00}$

 $(Ca_{0,95}Ce_{0,04}Na_{0,03}La_{0,03}Mn_{0,01}Fe_{0,01}Sr_{0,01}Nd_{0,01})_{1,09}Ti_{0,95}O_{3,00}$

Формулы перовскита рассчитанные по данным анализа кристалла с рисунка 10:

Светлая краевая зона:

 $(Ca_{0,91}Na_{0,03}Fe_{0,01}Ce_{0,01}Nd_{0,01})_{0,98}(Ti_{0,94}Nb_{0,01})_{0,95}O_{3,00}$

Тёмная центральная зона:

 $(Ca_{0,96}Na_{0,02}Fe_{0,01}Sr_{0,01}La_{0,01}Ce_{0,01}Nd_{0,01})_{1,03}(Ti_{0,97}Nb_{0,01})_{0,98}O_{3,00}$

Элемент	Среднее содержание	Среднее содержание
	элемента в перовскитах	элемента в перовскитах из
	исследованной пробы (шесть	Олдоиньо Ленгаи (шесть
	анализов), %	анализов), %
Na ₂ O	0,61	0,65
SiO ₂	0,05	0,03
CaO	37,04	38,41
TiO ₂	54,49	55,21
MnO	0,24	_
Fe ₂ O ₃	1,01	0,98
SrO	0,33	0,36
Nb ₂ O ₃	0,89	0,92
La ₂ O ₃	1,67	0,57
Ce ₂ O ₃	2,78	1,79
Nd ₂ O ₃	0,90	0,53

Таблица 9. Сравнение содержания различных элементов в исследованной пробе с данными по вулкану Олдоиньо Ленгаи (Dawson, 1994).

Помимо элементов определённых в исследованной пробе, в перовските из Олдоиньо Ленгаи присутствуют: ZrO_2 (Среднее содержание, % = 0,05), Al_2O_3 (Среднее содержание, % = 0,10), Pr_2O_3 (Среднее содержание, % = 0,13), Sm_2O_3 (Среднее содержание, % = 0,07), Gd_2O_3 (Среднее содержание, % = 0,05), Y_2O_3 (Среднее содержание, % = 0,05).

Из таблицы 9 по данным корреляционного анализа в программе Microsoft Excel, получается коэффициент ~ 0,99966. Корреляционный анализ указывает на родство групп значений и позволяет математически устанавливать степень связи составов пород. Такой результат говорит о том, что с очень большой вероятностью материал пробы является родственным с материалом вулкана Олдоиньо Ленгаи. Повышенное содержание лёгких TR, наличие Mn в изученной пробе, наличие Zr, Al, Pr, Sm, Gd, Y в пробах из Олдоиньо Ленгаи можно связать с различными факторами.

Первый из них – особенности использованного для анализа оборудования и параметров анализа. Этот фактор может объяснить незначительные отклонения и не противоречит результатам корреляции, предел обнаружения прибора объясняет наличие рассеянных элементов. Но этот фактор не объясняет разницу в значениях легких TR. Другой фактор –

эволюция состава магматического расплава, возможно, за период с 1940-ых годов, содержание некоторых примесных элементов в магматическом очаге поменялось, таким образом, в наши дни мы получаем иные результаты. К сожалению, точное время образования бархана, а так же и вулканического извержения, которое привело к выбросу пепла, неизвестно. Ещё один фактор – то, что исследованная проба является изверженным в атмосферу материалом, в процессе извержения мог незначительно поменяться примесный состав минералов, но это представляется маловероятным для перовскита.

Вторичные изменения по перовскиту

Вторичные изменения по кристаллам перовскита представлены высокотитанистыми соединениями, предположительно минералами группы рутила (рис. 11, таблица 10). Присутствие Са и Р, вероятно, связано с микровключениями апатита, или других минералов, размер которых менее 1 микрона.

Данные энергодисперсионной рентгеновской спектроскопии проанализированы и представлены в таблице 10.

Рис. 11 Спектр вторичных минералов образовавшихся на первоските.

	Рис. 9			
	Spectrum Spectrum Spectrum			
	1	2	1	
Al ₂ O ₃	5,09	5,68	5,76	
SiO ₂	0,97	1,40	0,73	
P_2O_5	1,25	1,51	1,88	
CaO	1,88	0,96	1,27	
TiO ₂	85,04	84,12	88,13	
Fe ₂ O ₃	5,77	6,34	2,23	
Сумма	100,00	100,01	100,00	

Таблица 10. Аналитические данные по изменённым зонам кристалла на рис. 9.

Данные нормализованы на 100 мас.%

Заключение

Итак, барханы близ кратера Нгоронгоро являются памятником природы и отличаются от других дюн происхождением своего материала. Дюны существовали ещё до 1960 года, когда их впервые описал Барри Доусон. А появились они по свидетельствам Дж. Ричарда во время серии извержений в начале 1940-ых годов.

В ходе работ было выяснено, что барханы представлены равномернозернистыми, хорошо окатанными песками и имеют плотность 1,83 г/см³, что схоже с базальтовыми или диабазовыми песками. В ходе исследования в пробе были определены такие минералы, как: керсутит, щелочной амфибол, пироксен авгитового ряда, титанит, кварц, перовскит, монацит и магнетит. Так же присутствует незначительное количество глинистого минерала адсорбированного по поверхности зерён остальных минералов.

Главными минералами бархана являются керсутит (54,9%), пироксен, предположительно авгитового ряда (26,9%), титанит (7,4%) и перовскит (6,0%).

Были рассчитаны формулы перовскита и по его минеральному составу был проведён корреляционный анализ с данными полученными Барри Доусоном в 1994 году. По результату анализа подтвердилась высокая степень близости минералогического состава пробы и пород вулкана Олдоиньо Ленгаи. Не объяснённой осталась причина различия проб по составу примесных элементов.

В заключение, стоит сказать, что минералы данной дюны ещё подлежат более доскональному изучению и классификации, а их связь щелочным вулканизмом Олдоиньо Ленгаи оставляет их интересным объектом для исследования щелочных пород.

24

Список литературы

Dawson J.B. 1962. The geology of Oldoinyo Lengai. Bulletin Volcanologique 24, 349–387.

Dawson J.B. 1994.Trace-element distribution between coexisting perovskite, apatite and titanite from Oldoinyo Lengai, Tanzania. Chemical Geology 117, 285-290.

Mollel G.F., Swisher III C.C., McHenry L.J., Feigenson M.D., Carr M. J. 2009. Petrogenesis of basalttrachyte lavas from Olmoti Crater. Journal of African Earth Sciences 54, 127-143.

Guest N. J. 1956. The volcanic activity of Oldoinyo Lengai, 1954 IV, 56-59.

Richard J. J. 1942. Volcanological observations in East Africa XVI, 9-108.

Scoon R.N. 2018.Geology of National Parksof Central/Southern Kenyaand Northern Tanzania. Springer, Grahamstown, 244 pp.

R. J. Wasson & R. Hyde. 1983. Factors determining desert dune type. Nature 304, 337–339.

Mindat.org [Электронный ресурс], mindat.org and the Hudson Institute of Mineralogy 1993-2020;

Google Maps [Электронный ресурс], google.com 1995-2020.

Диспетчер-грунт информационный сайт [Электронный ресурс], http://gruntmsk.ru 2013-2020.