SAINT-PETERSBURG STATE UNINERSITY

Department of Mathematical Games Theory and Statistical Decisions

«Admissible Forms of Cooperation in Multistage Games»

Master’s thesis

Kostetskaya Aleksandra Gennadievna

Specialization 01.04.02
Applied Mathematics and Control Processes

Game Theory and Operations Research

Scientific adviser:
Doctor of physical-mat.sciences’
Prof. Petrosyan L.A.

Reviewer:

Candidate of physical-mat.sciences’

Kolabutin N.V.

Saint-Petersburg
2019

https://timetable.spbu.ru/AMCP

Content

TNEFOAUCTION L.ttt e et e e st e e e e e e e snbe e e s nneeeas 3
Chapter 1. First game-theoretic model...........coccoviiiiiiiiiiii e 5
I L= (=T [PPSR 6
1.2 TIT FOr TAT SHrAtEOY. cvveecuieeiiie ettt e e e e nrae e 9
1.3 Ergodic distributions and strategy evaluation............cccooeeeiiiiiiieiin e 10
1.4 Stages of cooperation and puniShmentccccvvieiiiiie e 11
1.5 Three mental StALES ..o 14
Chapter 2. Second game-theoretic modelcoovvviiiiiiiiiiiii 16
N S =L =T 0 LTRSS 18
2.2 SucCesSTUl COOPETALIONvvieiiieiiie et 20
2.3 Non-cooperation many Stages IN @ FOWccveveereeieeieeesieeseeseeseesaeesseesseesees 23
2.4 The prisoner's Dilemma game, eXample........cccooviriiiiiiienin e 25
Chapter 3. Software Implementation............cocooveiiriiieese e 28
3.1 Software implementation Of firSt gamecccccvviiiiinii i 28
3.2 Software implementation of second Zame...........ccevieiriiieriieiiie e 36
007316 L1 5 T) o PO OO P RO PTOPRTOPP 44
LSt OF TEEIATUIE ... e 45
N o] 0] T | GRS 46
Appendix 1. Program implementation of the first model..............cccooovevviviiiiennnn, 46
Appendix 2. Program implementation of the second modelc..ccovvriinnnnn 51

Introduction

In this research, | will explore two games.

Both games consider the presence of the mental system of the players. The
problem with the introduction of mental systems and extraneous signals - it is still a
little studied problems. These problems are only gaining popularity.

The aim of this research is to study the influence of the mental system of the
players and receive signals from the outside, on the possibility of cooperation.

The first game was taken from the [1] article, where two players give each other
gifts. These gifts can have different values, and mood of players can be different at
different stages of the game. It depends on what value the gift will be presented to the
other player. Future interactions provide incentives for collaboration in a repeated
game. | have a model in which players achieve cooperation in an intuitively plausible
way. Players process information through the mental system-a set of psychological
states and the transition function between states depending on observations.
Observations are signals that each player receives at each stage of the game. Players
limit their attention to a relatively small set of simple strategies and can therefore learn
which ones work well.

There is a wealth of literature describing repetitive games and illustrating how
future interactions provide incentives for collaboration. Much of the earlier literature
suggests social control. The transition from public monitoring to private monitoring
that corporate the differences in the observations of the players can dramatically
complicate coordination and the provision of incentives, resulting in an equilibrium
with private monitoring often seem unrealistically complex or fragile. Here's a model
where players collaborate in an intuitively plausible way.

On the positive side, this model provides a simple and plausible theory of how

players manage to collaborate despite the signals being private [1]. Strategic options

are limited, but enough to highlight (and isolate) two key differences between public
and private monitoring games:

a) difficulty in providing incentives to start signal punishments: a player can ignore
a bad signal by betting that he is the only one who received a bad signal.

b) difficulties in coordinating cooperation after the start of the punishment stage, as
there is no longer a public signal that players could use to return to cooperation
at the same time.

With regard to question (a), it is considered that the creation of incentives for the
application of punishment requires significant costs for continued cooperation, while
other shortcomings are significant. With regard to question (b), mental systems that
generate forgiveness (i.e. respond to good signals) and some leniency (i.e. do not
respond too strongly to bad signals) facilitate cooperation [3].

The second model to be considered in my research is the prisoner's dilemma with
signals similar to the previous model of my research. In the prisoner's recurring
dilemma [7], players make decisions repeatedly, knowing the previous outcomes of the
game. | will consider the changed game, where each stage of each player will receive a
signal about the decision that the opponent has already made.

In this model, the signals are private. The most important problem of the game is
whether to believe the signals, and what is the probability that the signal is correct.
Also, | should understand whether player should always believe the signals. Should we
believe the signals, if the opponent does not cooperate several stages in a row. It is
necessary to understand how many stages in a row it is necessary that opponent not to

cooperate, so that the player stops listening to signals.

Chapter 1. First game-theoretic model

Gift exchange: There are two players who exchange gifts each period. Each of
them has two possible actions, one of which corresponds to the lack of effort when
choosing a gift, and the second-an expensive effort. Gifts may or may not be perceived
as “thoughtful," and most likely a gift is perceived as thoughtful when the other is
making an expensive effort.

Payoff structure: Actions are {C, D} with C presentation of costly efforts. The
expected payouts for players are as follows:

C D
Cc 1,1 -L, 1+L
D 1+L,-L 0,0
where L corresponds to the cost of effort.

Signal structure: Suppose that there are two possible private signals that a player
can receive, y; € Y; = {0, 1}, where the signal correlates with the actions of another
player.

Formally,

p = P{y; = 0|a; = D} = P{y; = 1|a; = C} (1)
| assume that in (1) p >1/2 so that one can refer to y; = 0 as a “bad” signal and

y; = 1 as “good”.
In addition to this private signal, | assume that at the beginning of each period

players receive a public signal z € Z = {0, 1}, and | let
q =P{z=1} (2)

1.1 Strategies

As mentioned above, the behavior of players in any period will depend on the
previous game, but in a more limited way than in traditional models. The player is
endowed with a mental system, which consists of a finite set of Si mental states in which
the player can be, and the transition function T; it describes what causes the movement
from one state to another: function T; determines the mental state of player i at the
beginning of period t depending on his state in the period t — 1, his choice of action in
period t — 1, and the results of this period and possibly previous periods. The restriction
that is introduced is that the player can only condition his behavior by his mental state,
not by the finer details of the story. Given this limitation, all comparisons between states
and actions are considered acceptable. The set of pure strategies of the player i’s is:

Ly ={03S; — A}

| will illustrate the basic ideas with an example in which the players can be in
one of two states U(pset) or N(ormal). The names of the two states are chosen in order
to show that at any time player i is called to play an action, he knows the mood in which
he is, which is a function of the story (own) of the game and the signals. Both S; and T;
are exogenously given, not a choice: a player who made an effort in his choice of gift,
did not receive a bad signal, may find it impossible not to get upset, thatisto be ina U
state.

The transition function for the example, which | will refer to as the leading

example below, is as in Fig.1

y;=0,z=0

z=1

Fig.1. Transition.

Fig.1 shows which combinations of actions and signals lead to the transition from
one state to another. If player i is in state N, he remains in this state until it receives
signals y; = 0 and z = 0, in which case he goes to state U. If i is in state U, he remains
in this state until the signal is received z = 0, at this point, it enters the N state
regardless of the signal y;. A mental system that defines how observations are
aggregated over time, hence how stories are combined: some stories lead to a state of
N, others lead to state U.

The simple form of the transition function is that, given the previous state and the
action taken, it depends only on the most recent signal — for simplicity. In principle, the
transition function may depend on more than this last signal, for example, whether two
of the last three signals were “bad” or they could also be stochastic.

Given the mental system above, our players behavior for each player i will be
next,

o;(N)=C

o;(U) =D.

That is, player i plays C as long as y; = 1 or when z = 1. He plays D otherwise.
Player 1 causes a “punishment stage” when he sees a bad signal y; = 0. This

punishment stage ends only when signal z = 1.

yi=0

O,

Fig.2. No “resetting”.

The public signal z gives the possibility of “reset” relations in cooperative mode.
If the signal z is ignored or absent and the thought process is determined by Fig.2, in
the end, since the signals are noisy, with a probability of 1 players will get to the state

U by the proposed strategy, and it will absorb: nothing will change in their behavior.

The signal z allows for possible recoordination back to state N (and possibly
cooperation).

In example, players simultaneously switch from U to N for exogenous reasons.
Alternatively, in a two-state mental system the players can move from state U back to

state N after seeing a good signal.

yi =0

yi=1
Fig.3. Forgiving transition.
Fig.3 describes the function of the transition. A player endowed with this
alternative mental process, that will cooperate in N and defect in U, will follow the

strategy a TIT for TAT strategy.

1.2 TIT for TAT strategy.

Tit for tat is a game theory mechanism subordinated to a payoff matrix similar to
a prisoner's dilemma. Anatoly Rapoport [9], who developed a strategy in which each
participant in the prisoner’s recurring dilemma follows a course of action consistent
with his opponent’s previous move, presented the eye for an eye. For example, if a
player is provoked, he responds with retribution; if not, he cooperates.

Tit for tat is a strategy that can be implemented in games with repeated moves or
in a series of similar games. The concept revolves around game theory, an economic
structure that explains how people interact with each other in a competitive
environment. There are two types of game theory: cooperative game theory and non-
cooperative game theory [7].

An eye for an eye claims that a person is more successful if he cooperates with
another person. The implementation of the tit for tat strategy occurs when one agent
collaborates with another agent in the very first interaction, and then simulates their
next stages. This strategy is based on the concepts of retribution and altruism. Faced
with a dilemma, an individual cooperates when another participant has a direct history
of cooperation and does not fulfill obligations when the counterparty has not previously
fulfilled obligations.

The most common example of this strategy is the prisoner's dilemma game. It

will be discussed in Chapter 2 of this research.

1.3 Ergodic distributions and strategy evaluation

For any pair of strategies players will be ergodic distribution of pairs of played
actions. The ergodic distribution gives the probability distribution of payoffs in a stage
game, and | take the payoff to the players as the expected value of their payoffs given
this distribution.

Formally define state profiles s as a pair of states (s,, s,,). Each strategy profile
o induces transition probabilities along the state profiles: under the assumption that
each state profile s induces an action profile o (s)which in turn generates a probability
distribution over the signals and therefore, taking into account the transition functions
T;, over next states of the period. | denote by ¢, the ergodic distribution over states
induced by . That is, ¢ (s) corresponds to the (long-term) probability that players are
in state s.

| associate with each strategy profile o the value induced by the ergodic
distribution. This corresponds to calculating the discounted expected payouts and
accepting the discount to 1. Denote by v(o) this value (vector). Thus,

v(0) = Xs9(0(s))Ps(s) 3)
where g(a(s)) is the payoff vector induced by the strategy profile o for state
profile s.

Equilibrium:

Definition. A profile o € Z is an equilibrium if for any player i and any strategy
g/ €%,

v;0{,0_;) < v;(0).

This is a weaker notion of equilibrium than traditionally used in repeated games

due to the limitation of the set of strategies to map from S; to A4;.

10

1.4 Stages of cooperation and punishment

| consider next the ergodic distribution induced by our candidate equilibrium
strategy o for p close to 1 and examine in turn possible deviations from that strategy.

The transition overstate profiles induced by o is illustrated in figure 4.

!
I
I
|
|
I

Cooperative
stage

Figure 4: Transition over state profiles under o.

When players follow our candidate equilibrium strategy, they alternate between
cooperation and punishment stages. The probability of switching from cooperation to a
punishment stage is = = (1 — q) (1 — p?) (since switching occurs when either player
receives a bad signal and z = 0).The probability of switching from punishment to
cooperation is g. Hence cooperative stages last on average 1/m periods, while
punishment stages last on average 1/q periods. When player i plays D at both N and

U, player j continues to alternate between stages of cooperation and defection. This is

illustrated in figure 5.

11

/
J cooperates ! J defects

I
9
|

S o —
(1-a)p

]
1
/
X4

Figure 5: i defects always

Player i receives a higher payoff in cooperation stages; however, those stages
are now much shorter, as his opponent switches to state U with probability (1 — q)p.
For p close to 1,a defection at N almost certainly generates a bad signal, which start
signals a punishment stage of expected length 1/q with probability 1 — g, hence an

expected cost

A=t (6)

corresponding to a per-period decrease in payoff of 1 for an expected number of
period equal to A in (6).

Deviation is deterred if L < A in (6).

When player i plays C at both N and U, he avoids start signaling some

punishment stages, illustrated in figure 6.

!
I
I
|
|
I

Punishment stage
(1-a)(1-p?) \
; g

Cooperative
stage

Cooperative
stage

Figure 6: i cooperates always

However, he remains cooperative while player j is in a punishment stage. So L
must be high enough for this option to be unattractive. More precisely, conditional on
both players be in g in state N, there are events where only player i receives a bad signal,
and events where only player j receives a bad signal. Under the first event, player i
initially receives linstead of 1 + L, however he avoids the punishment stage, hence he
makes a net gain of A — L. Under the second event, nothing changes in the first period
(because player i is still in state N), but he then receives - L instead of O as long as the
punishment stage continues, hence an expected cost equal to L(1/q — 1) = LA. Since
these two events have equal probability, playing C at N and U is not a profitable
deviation if

1/2(A— L) + 1/2(—=LA) < 0, that is

To summarize, for p close tol, there is a range of parameters (g, L) for which the

proposed strategy is an equilibrium strategy. This range of parameters is such that

A/1 1A <L<A, where A= 1/q _ 1 Itis easy to check that outside this range, the

only equilibrium entails both players defecting at both states. Similar analysis can be

performed for other values of p.

13

1.5 Three mental states

The players in example had two possible mental states and two possible (pure)
actions, which limited them to four pure strategies. This clearly limits them both in the
existence of strategies that can lead to cooperation and in the possible profitable
beneficial deviations. The addition of a state could allow for greater flexibility in
responding to signals that could allow for cooperation that would not be possible only
with two states. For example, when signals are not very informative and q is small, the
prescribed strategies in the example may not be an equilibrium. When there is
substantial chance that they got a bad signal when the other player chose C, | might
prefer not to start signaling a punishment phase that can last for a long time. Thus, a
combination of relatively inaccurate signals of enemy action and a low probability of
avoiding a punishment regime can impede the balance in which they cooperate. The
addition of a state could allow for cooperation that would be impossible only with two
states in some respects. Assume that there is a state B in addition to the states N and U,

and define transitions as follows:

inO,Z:O

TN
olilc
Py

Figure 7: “Slow” transition to state U

The interpretation of this is that if a player in state N receives a bad signal, he
goes to state B, not to the state U as in the example. If the first signal received a
player in state B is bad, it goes to state U, and if it is positive, it returns to state N as if
the bad signal that sent it to B has never been. Players remain in state U no matter

what action is played or private signal received, until signal z = 1 occurs.
14

Signal z = 1 always sends players back to state N. The additional state, along
with the transitional function amendments, allows the strategy to punish the opponent
if there is some evidence that he is not cooperating, but the evidence that the
punishment signals start can be either one bad signal (for example, the strategy plays
C in N only, which | denote by), or two consecutive bad signals (for example, the
strategy plays C in N and B, and D in U, which | denote by n). Computations as above
show that the strategy profile (n,n) that entails both players cooperating in states N
and B and punishing in state U is an equilibrium for some parameters for which
cooperation is impossible with two states. | have set the value g to 0.3. For the set of
parameters (p, L) in the shaded area, (n,1) is an equilibrium profile. For the
parameters (p, L) between the upper and lower curves (g, ¢) was an equilibrium
profile in our simple two states.

Adding a state is not uniquely good. As mentioned above, the additional state
allows not only more complex strategies to achieve cooperation, but also more
complex strategies of rejection. Although both (o, o) and (&, @) generate the same
behavior (under both profiles, as soon as the player observes a bad signal, he
continues the defect until the signal z = 1 occurs), there are parameters for which
(o, 0) is an equilibrium, but (&, @) is not. For (&, &) to be an equilibrium, players
must have an incentive to play D in M. This entails a strictly tighter restriction
because playing C in M is cheaper than playing C at U: in case the opponent is
already in U, the player will probably get a negative signal and switch from M to U
the next period. For example, for p close to 1 the cost of playing C in M will be only

one period, not corresponding to the duration of the punishment stage. Formally, the

stimulating restriction becomes: 1/2 (A—-L)+ 1/2 1-qg)(—-L) =0.

Rearranging the terms have L > -~ = —24_
2-q q(2-q)

a condition that is always more restrictive than L > ﬁ

:1—q

15

Chapter 2. Second game-theoretic model

The original version of the prisoner's dilemma game dealt with a situation in
which two prisoners — accomplices to a crime — were interrogated in separate rooms.
Each of the prisoners has a choice: either confess to the crime and thereby involve the
other, or deny their participation in the crime. If only one of the prisoners confessed, he
would be released and the charge would fall on the other prisoner, who would be
sentenced to B months in prison. If both prisoners deny their involvement in the crime,
both will be held in prison for C month due to formalities, and if both players confess,
both will be sentenced to A months in prison. The entries in each cell of the matrix
represent the usefulness attributed by each player to different prison terms, which we
will, for simplicity, consider the duration of their imprisonment.

Put yourself in the shoes of player 1. If player 2 decides to deny having committed
a crime, then of course you'd better confess, as then you'll be released. Similarly, if
player 2 admits, then you'd better confess, as in this case you will not be sentenced to
B months in prison, but only to A. Therefore, whatever player 2 does, it is more
profitable for player 1 to confess.

Prisoner's dilemma: Two players sit in different cameras. Each period, each of
them has two possible actions, one of which corresponds to confess to the crime, and
the second - to remain silent.

Payoff structure: Actions are {C, D} with C is keep silence. The expected payoffs
to the players are as follows:

C D
C AA B,0
D 0,B CC
Signal structure: Every period each player receives a signal about how his

opponent will act in this stage. | am guessing there are two possible private signals that

16

player i might receive, y; € Y; = {0, 1}, where a signal is correlated with the other
player’s action. Formally,

p=P{yi =O|a]- =D}=P{yi = 1|aj =C} (8)

| am guessing that p >1/2 so that one can refer to y; = 0 as a “bad” signal and

y; = 1 as “good”.

17

2.1 Strategies

The behavior of players in any period will depend on the previous game, but in a
more limited way than in traditional models. The player is endowed with a mental
system, which consists of a finite set of Si mental states in which the player can be, and
the transition function T; it describes what causes the movement from one state to
another: the function T; determines the mental state of player i at the beginning of
period t depending on his state in the period t — 1, his choice of action in period t — 1,
and the results of this period and possibly previous periods. The restriction that is
introduced is that the player can only condition his behavior by his mental state, not by
the finer details of the story. Given this limitation, all comparisons between states and
actions are considered acceptable. The set of pure strategies of the player i’s is:

Ly ={oixS; — A

As in the previous game, players can be in one of two states U(pset) or N(normal).
In example, players simultaneously move from U to N, in a two states of the mental

system, players can move from the state of U back to state N after seeing a good signal.

yi=0

y; =1
Fig.8. Forgiving transition.
Fig.8 corresponds to fig.3. in first game. It describes such a transition function,
which was not suitable for previous game.
However, in this game players endowed with mental process, who would
cooperate in N and defect in U, would be following a TIT for TAT strategy.
The simple form of the transition function is that, given the previous state and the

action taken, it depends only on the most recent signal — for simplicity. In principle, the

18

transition function may depend on more than this last signal, for example, whether two
of the last three signals were “bad” or they could also be stochastic.

Given the mental system above, our players behavior for each player i will be as

follows,
O'i(N) =C
O'l'(U) =D.

TIT for TAT strategy has been described in Chapter 1.2.

19

2.2 Successful cooperation

| am interested in balances in which the players cooperate at least some of the
time asymptotically. This requires players playing the strategy “play C in N and D in
U”.
Our question is, what is the probability that the signals (y;,y,) is correct, the
players have to cooperate.
C D
C AA B, 0 D
D 0,B CC 1-p
q 1-q
Probabilities:
The probability that the first player will choose a strategy C: u,(C) = p;
The probability that the first player will choose a strategy D: u; (D) = 1 — p;
The probability that the second player will choose a strategy C: u,(C) = q;
The probability that the second player will choose a strategy D: u,(D) = 1 — q.
Let's write down the average payoff of the 1st player from the use of the 1st
strategy:
i (€)=Aq+B(1—-q)=q(A—-B)+B
Similarly, the 2-nd strategy:
i (D) =Bq+C(1—q)=qB-C)+C

Now let's compare these payoffs with each other:

o S B B cC-B |
@) >wmD)p=1qA-B)+B>qB-0)+(=¢q< (A-2B+C)’
_ _ C-B

1 (C) <p(D):p=0;,qA-B)+B< qB-C)+C =q> (A_2B+C)’

—_ — C—-B
@) =mD)pel0l; qA-B)+B=qB-0O+C =q= "=

The first player's response (best response) to the second player's actions:

20

(C—B
La<a =m0
C-B
42 A=2B+0)

o].q o C=B
T a2+ 0)

Let's write down the average payoff of the 2nd player from using his 1st strategy:
(C)=Ap+B(1—-p)=p(A-B)+B

Similarly, the 2-nd strategy:
m(D)=Bp+C(1-p)=pB-0+C

The second player's response function (best response) to the actions of the first

Ri(@=p=4 0

player is similar:
(C—-B
LP<a=2+0
C—-B
P> A28+ 0)

o]y o C= 8
P T A =28+ 0)

For players the probabilities that opponent will choose a strategy C is p <

R,(p)=q=4 0

C-B , , : C-B
4-2510) for 1’st player and for 2’nd player is g < 42810

So the player suspects that his opponent can deviate with such probability: p =

q> %. Thus, the player has his own intuitive (private) signal that his opponent
will deviate from cooperation. And if this signal p = g > (A_CZ;BBJ@, the player does not

cooperate.
In that way, each stage of the game, to each player comes his private signal:
yi €Y, ={0,1}.
For the 1’st player: y; € Y; = {0, 1};
For the 2’nd player: y, € Y, = {0, 1}.

21

And each stage of the game, the player chooses whether to cooperate with his

C-B

opponent, if y; < A—2510)

22

2.3 Non-cooperation many stages in a row

In this game, players listen to signals, but is it reasonable to listen to signals if
the opponent does not cooperate several stages in a row. It is necessary to understand
how many stages in a row the opponent's refusal to cooperate is crucial for the player
to stop listening to the signals.

Firstly, need to calculate at what stage doesn't make sense to punish the
opponent who refused cooperation.

Suppose that our game has n stages.

Our players cooperate k — 1 stages and on k stage, one of players non-
cooperate.

k—1 k stage

"
Coop ... Coop Non-coop ...

Coop ... Coop Coop
Player 2 can select punishment phase, but he should understand, it will help to
make the opponent payoffs less than with cooperative phases:
A(k—1)+Bk+C(n—k) < An
k(A+B—C)<A—n(C—A4)

A—n(C—-A)
k <
(A+B—-0C)
If a stage k where the opponent has ceased to cooperate is: < % , player

can select punishment phase.
In our example, players listen signals. But if opponent are non-cooperate, how
long player should listen signal. It is necessary to count how many stages in a row the

refusal of cooperation of the opponent is acceptable that the player listened to a
signal.

23

k—1 m stages

AL
— ~

Coop ... Coop Non-coop ... Non-coop ...

Coop ... Coop Coop ... Coop
Alk—1)+Bm+Cn—k—m+1)<An
k(A—C)+m(B—-C)+n(C-A)<A-0)
mB-C)<(A—-C)—n(C—-A)—k(A-10C)

(A-CO)(1+n—k)
(B—0C)

(A-C)(1+n—k)

If the opponent does not cooperate more than m > 50

stages in a

row, then it makes no sense to listen to the signals, it is necessary to move into the

phase of punishment.

24

2.4 The prisoner's Dilemma game, example

G(t,T) - game G(T), arising after t — 1 repetitions of the game G.
Example. The prisoner's Dilemma game:
C D

cC 7,7 10,0

D 0,10 55
Probabilities:
The probability that the first player will choose a strategy C: u;(C) = p;
The probability that the first player will choose a strategy D: u; (D) = 1 — p;
The probability that the second player will choose a strategy C: u,(C) = q;
The probability that the second player will choose a strategy D: u,(D) =1 — q.
Let's write down the average payoff of the 1st player from the use of the 1st

strategy:
1 (€) =7q+10(1 —q) = (—3)q + 10
Similarly, the 2-nd strategy:
(D) =10q +5(1 —q) =59 +5

Now let's compare these payoffs with each other:

(C) >m(D):p=1 (-3)q + 10 > 5q+5=>q<§;

() <mD):p=0; (-3)q+10< 5¢+5=¢>2;

— _ 5
1 (C) =m(D):p€el01]; (=3)g+10= 59+5=¢q ==

The first player's response (best response) to the second player's actions:
(

1 <5
»q 3

5
Ri(q) =p =A 0, >3

5
k[oll]' q = §

25

Let's write down the average payoff of the 2nd player from using his 1st strategy:
pz(C) =7q+10(1 —q) = (—3)q + 10
Similarly, the 2-nd strategy:
u,(D) =10q+5(1—q)=5q+5
The second player's response function (best response) to the actions of the first
player is similar:

(1 <5
»q 3

5
R,(p) = q = 5 0,9 >3
5
1],qg = =
k[ol]’q 8

Based on the calculations, for players the probabilities that opponent will choose

astrategy Cisp < g for 1’st player and for 2°nd player is q < g.
So the player suspects that his opponent can deviate with such probability: = g >

g . Thus, the player has his own intuitive (private) signal that his opponent will deviate

from cooperation. And if this signal = g > g , the player does not cooperate.

In that way, each stage of the game, to each player comes his private signal:

yi €Y, ={0,1}.

For the 1’st player: y; € Y; = {0, 1};

For the 2°nd player: y, € Y, = {0, 1}.

And each stage of the game, the player chooses whether to cooperate with his
opponent, if y; < g

In this example 10 stages.

Our players cooperate k — 1 stages and on k stage, one of players non-
cooperate.

26

k—1 k stage

/—/H /—/\
Coop ... Coop Non-coop ...

Coop ... Coop Coop
Player 2 can select punishment phase, but he should understand, it will help to
make the opponent payoffs less than with cooperative phases:
7(k —1) 4+ 10k +5(10 — k) < 10 % 7

7 —10(5 — 7)
(7+ 10 — 5)

k < 27"’225
12— 7

If opponent start non-cooperate less than on 2’nd stage (k = 2,25), player can

select punishment phase.

k-1 m stages

AL AN
e N I

Coop ... Coop Non-coop ... Non-coop ...

Coop ... Coop Coop ... Coop
7(2,25—-1)+10m+5(10—-225—-m+1) <710
(7-5)(1+ 10— 2,25)

(10 —5)
17,5
m< T = 35

If the opponent does not cooperate more than m > 3,5 stages in a row, then it
makes no sense to listen to the signals, it is necessary to move into the phase of

punishment.

27

Chapter 3. Software implementation

3.1 Software implementation of first game

The c# programming language and Nisual Studio programming environment
were chosen to write the program.
At the first stage, the program asks you to enter the specified signal probability

z = 1 and the number of stages of the game:

Console.WriteLine("Probability z=1 is and number of stages");
string UserInput = Console.ReadLine();
List<float> inputs = Parselnput(UserInput);
uint stageNalue;

bool stagesNalueCorrect = false;
if(inputs.Count >= 2)
{

stagesNalueCorrect
out stageNalue);
}
while (!(inputs.Count >
>= 0 && inputs[@] <= 1))

uint.TryParse(inputs[1].ToString(),

2 && stagesNalueCorrect && inputs[0]

If the data format is incorrect, the program will inform you about it:

Console.WriteLine("Wrong format! Probability z=1 is and
number of stages");

UserInput = Console.ReadlLine();

inputs = Parselnput(UserInput);

if (inputs.Count >= 2)

{
stagesNalueCorrect =
uint.TryParse(inputs[1].ToString(), out stageNalue);
}

}
stagesNalueCorrect = uint.TryParse(inputs[1].ToString(), out

stageNalue);
if (stagesNalueCorrect)

{
Console.WriteLine("Entered numbers: q = {0}, S = {1} ",

inputs[@], stageNalue);

Next, the program offers to enter private signals at stage O for players. For the

next stages, the program generates them itself:
28

Console.WriteLine("\r\nEnter the first space-separated signals (y1l
=(0,1); y2 =(0,1)) received by player 1 and player 2");
string UserInputStrategies = Console.ReadLine();
List<char> inputsStrategies =
ParseInputStrategies(UserInputStrategies);
while(inputsStrategies.Count < 2)

If the data format is incorrect, the program will inform you about it:
Console.WriteLine("Wrong format! Enter the first space-separated signals
(yl =(0,1); y2 =(9,1)) received by player 1 and player 2");

UserInputStrategies = Console.ReadlLine();
inputsStrategies = ParselnputStrategies(UserInputStrategies);
In charter 1.4 and charter 1.5 restrictions were found for L:

| should put them on the program:

Random rd = new Random();
float q = inputs[9];
int leftSide = (int)Math.Round((1 - q) * 1000);
int rightSide = (int)Math.Round((1 - q) * 1000 / q);
float L = Convert.ToSingle(rd.Next(leftSide, rightSide)) / 1000;

Here is the calculation of L and the probability with which players believe
private signals is indicated:

while (stage < stageNalue)

{
L = Convert.ToSingle(rd.Next(leftSide, rightSide)) / 1000;

int threshold = 30;

ril
r2

rd.Next(0, 101) > threshold ? 1 : ©;
rd.Next(0, 101) > threshold ? 1 : ©;

N
Il

rd.Next(0, 2);

The model of the game was indicated in Charter 1.

Payoff structure: Actions are {C, D} with C representing costly effort. The

expected payoffs to the players are as follows:
29

C
D

C D
1,1 -L, 1+L
1+L,-L 0,0

where L corresponds to the cost of effort.

Introduce the structure of winnings:

static string GetMatrixResult(char CurrentPlayerlChoice, char
CurrentPlayer2Choice, float L, float[] result)

{
string matrixResult = "";
if (CurrentPlayerlChoice == '1")
{
if (CurrentPlayer2Choice == '1")
{
matrixResult = "1,1";
result[0] += 1;
result[1] += 1;
¥
else
{
matrixResult = (-L).ToString() + "; " + (1 +
L).ToString();
result[@] += -L;
result[1] += 1+L;
¥
¥
else
{
if (CurrentPlayer2Choice == '1")
{
matrixResult = (1 + L).ToString() + "; " + (-
L) .ToString();
result[@] += 1+L;
result[1] += -L;
}
else
{
matrixResult = "0,0";
result[@] += ©;
result[1] += ©;
¥

}

return matrixResult;

30

Thus, the number of game stages, the probability of the signal z=1, and private
signals at stage O are fed to the program input. The output receives data signals at each
stage and the winnings of the players.

Check the operation of the program on several examples.

Example 1.

In charter 1 it was considered that g = 0.3. Let's use this as an example.

Let's check the model for a small number of stages - 5.

Probability z=1 is and number of stages
9,35
Entered numbers: q = 0,3, S =5

The first private signals assume good (y; = 1,y, = 1):

Enter the first space-separated signals (yl =(0,1); y2 =(0,1)) received
by player 1 and player 2

11

Entered signals: 1 =1, 2 =1

The result of the program:

Stage 0: Playerl = C, Player2 = C
yl =1, y2 =1

1,1

Stage 1: Playerl = C, Player2 = C.
yl =1, y2 =1, z =1

1,1

Stage 2: Playerl = D, Player2 = D.
yl =0, y2 =0, z =0

9,0

Stage 3: Playerl = C, Player2 = C.
yl =90, y2=0, z=1

1,1

Stage 4: Playerl = C, Player2 = C.

J
yl =1, y2 =1, z =1
1,1

31

Stage 5: Playerl = C, Player2 = D.
yl =1, y2 =0, z =0
-2,084; 3,084

The outcome of the games: 1,916; 7,084

At each stage, you can see the strategies that the players have chosen, the signals
received and the winnings. At the end, the players ' winnings for the whole game are

calculated.

Example 2.
Let's use this as an example g = 0.5.

Let's check the model for a 10 number of stages.

Probability z=1 is and number of stages
90,5 10
Entered numbers: q = 0,5, S = 10

The first private signals assume good (y; = 1,y, = 1):

Enter the first space-separated signals (y1 =(0,1); y2 =(9,1)) received
by player 1 and player 2

11

Entered signals: 1 =1, 2 =1

The result of the program:

Stage 0: Playerl = C, Player2 = C
yl =1, y2 =1

1,1

Stage 1: Playerl = C, Player2 = D.
yl =1, y2 =0, z =0

-0,523; 1,523

Stage 2: Playerl = C, Player2 = C.

yl =0, y2 =0, z =1
1,1

32

Stage 3: Playerl = C, Player2 = C.
yl =1, y2 =1, z = 0
1,1

Stage 4: Playerl = C, Player2 = D.
yl =1, y2 =0, z = 0
-0,63; 1,63

Stage 5: Playerl = D,
yl =90, y2 =0, z =290
0,0

Player2 = D.

Stage 6: Playerl = C, Player2 = C.
yl =0, y2 =0, z =1
1,1

Stage 7: Playerl = D, Player2 = D.
yl =0, y2 =0, z =0
9,0

Stage 8: Playerl = C, Player2 = C.
yl =0, y2 =0, z =1
1,1

Stage 9: Playerl =D
yl =90, y2 =0, z =
0,0

Player2 = D.

|
[V RS

Stage 10: Playerl = C, Player2 = C.
yl =0, y2 =0, z 1
1,1

The outcome of the games: 4,847; 9,153

Example 3.
Let's use this as an example g = 0.1.

Let's check the model for a 8 number of stages.
33

Probability z=1 is and number of stages
0,1 8
Entered numbers: q = 0,1, S = 8

The first private signal for player 0 assume good and for player 1 assume bad

(y1 =0,y, = 1):

Enter the first space-separated signals (yl1 =(0,1); y2 =(9,1)) received
by player 1 and player 2

01

Entered signals: 1 =0, 2 =1

The result of the program:

Stage 0: Playerl
yl =0, y2 =1
4,726; -3,726

D, Player2 = C

Stage 1: Playerl = D, Player2 = D.
yl =90, y2 =0, z =0
0,0

Stage 2: Playerl = C,
yl =0, y2 =0, z =1
1,1

Player2 = C.

Stage 3: Playerl = C, Player2 = C.
vyl =1, y2 =1, z =1
1,1

Stage 4: Playerl = C, Player2 = D.
yl =1, y2 =0, z = 0
-1,419; 2,419

Stage 5: Playerl = C,
yl =90, y2=0, z=1
1,1

Player2 = C.

Stage 6: Playerl = C, Player2 = C.
yl =1, y2 =1, z =0
1,1

34

Stage 7: Playerl = C, Player2 = C.
yl =1, y2 =1, z =0

1,1

Stage 8: Playerl = C, Player2 = C.

yl =1, y2 =0, z =1
1,1

The outcome of the games: 9,306999; 4,693

35

3.2 Software implementation of second game

At the first stage, the program asks you to enter the number of stages of the game:

Console.WriteLine("Number of stages ");
string UserInput = Console.ReadlLine();
uint stages = ParselInput(UserInput);

while (stages == 0)

{
Console.WriteLine("Wrong format! Number of stages ");
UserInput = Console.ReadlLine();
stages = Parselnput(UserInput);
}
if (stages != 0)
{
Console.WriteLine("number of stages: S = {0} ", stages);
}
#endregion

Next, the program offers to enter payoffs for matrix (A, B, C):

Console.WriteLine("\r\n Enter A, B, C for the matrix: \r\n AA BO \r\n 0B
cc");
string UserInputMatrix = Console.ReadLine();
List<float> inputsMatrix = ParseInputMatrix(UserInputMatrix);
while (inputsMatrix.Count < 3)

{
Console.WriteLine("Wrong format! Enter A, B, C for the
matrix: \r\n AA BO \r\n @B CC");
UserInputMatrix = Console.ReadLine();
inputsMatrix = ParselInputMatrix(UserInputMatrix);
}
Console.WriteLine("Entered matrix: \r\n {0},{0} {1},0 \r\n
9,{1} {2},{2}", inputsMatrix[@], inputsMatrix[1], inputsMatrix[2]);
#endregion

Next, the program offers to enter private signals at stage O for players. For the

next stages, the program generates them itself:

Console.WriteLine("\r\nEnter the first space-separated signals (yl
=(0,1); y2 =(0,1)) received by player 1 and player 2");
string UserInputStrategies = Console.ReadlLine();
List<char> inputsStrategies =
ParseInputStrategies(UserInputStrategies);
while(inputsStrategies.Count < 2)

36

If the data format is incorrect, the program will inform you about it:
Console.WriteLine("Wrong format! Enter the first space-separated signals
(yl =(0,1); y2 =(0,1)) received by player 1 and player 2");

UserInputStrategies = Console.ReadlLine();

inputsStrategies = ParselnputStrategies(UserInputStrategies);

In charter 2.2 and charter 2.3 restrictions were found for p:

C-B
(A-2B+C)’

p <

| should put them on the program:
float A = inputsMatrix[0];

float B = inputsMatrix[1];
float C = inputsMatrix[2];
float r = (C-B) / (A -2*B + C);

The model of the game was indicated in Charter 2.
Payoff structure: Actions are {C, D} with C representing costly effort. The
expected payoffs to the players are as follows:
C D
C AA B,0
D 0,B CC
Introduce the structure of winnings:

static string GetMatrixResult(char CurrentPlayerlChoice, char
CurrentPlayer2Choice, float[] result)

{
string matrixResult = "";
if (CurrentPlayerlChoice == '1")
{

if (CurrentPlayer2Choice == '1")

{

matrixResult "1,1";

result[0] += A;
result[1l] += A;
}
else
{

matrixResult = (B).ToString() + "; " + (©).ToString();
result[@] += B;
37

result[1] += ©;

}
}
else
{
if (CurrentPlayer2Choice == '1")
{
matrixResult = (B).ToString() + "; " + (0).ToString();
result[@] += B;
result[1] += ©;
}
else
{
matrixResult = "C,C";
result[@] += C;
result[1l] += C;
}
}

return matrixResult;
}

Thus, the number of game stages and private signals at stage 0 are fed to the
program input. The output is the signal data at each stage and the winnings of the
players.

Check the operation of the program on several examples.

Example 1.

In charter 2.3 it was considered that A = 7,B = 10,C = 5. Let's use this as an
example.

Let's check the model for a small number of stages - 5.

Number of stages
10
Number of stages: S = 10

Enter the payoffs A, B, ¢ for matrix:
AA BO
@B CC
7 10 5
Matrix:
7,7 10
0,10 5

38

The first private signals assume good (y; = 1,y, = 1):

Enter the first space-separated signals (yl =(0,1); y2 =(9,1)) received
by player 1 and player 2

11

Entered signals: 1 =1, 2 =1

The result of the program:

Stage 0: Playerl
yl =1, y2 =1
7,7

C, Player2 = C

Stage 1: Playerl = C, Player2 = C.
yl =1, y2 =1
7,7

Stage 2: Playerl = D, Player2 = D.
yl =0, y2 =0
5,5

Stage 3: Playerl = C, Player2 = C.
yl =0, y2 =0
7,7

Stage 4: Playerl = C, Player2 = C.
yl =1, y2 =1
7,7

Stage 5: Playerl = C, Player2 = D.
yl =1, y2 = 0
190; ©

Stage 6: Playerl = C, Player2 = D.
yl =1, y2 =0
10; ©

Stage 7: Playerl = C, Player2 = D.
yl =1, y2 =0
10; ©

39

Stage 5: Playerl = C, Player2 = D.
yl =1, y2 =0

10; ©

Stage 5: Playerl = D, Player2 = D.
yl =1, y2 =0

5; 5

Stage 5: Playerl = D, Player2 = D.

yl =1, y2 = 0
5; 5

The outcome of the games: 83; 43

Example 2.
Let's use this as an example A =3,B =5,C = 2.

Let's check the model for a 10 number of stages.

Number of stages
10
Number of stages: S = 10

Enter the payoffs A, B, ¢ for matrix:
AA BO
@B CC
352
Matrix:
3,3 5,
0,5 2,

The first private signals assume good (y; = 1,y, = 1):

Enter the first space-separated signals (yl1 =(0,1); y2 =(9,1)) received
by player 1 and player 2

11

Entered signals: 1 =1, 2 =1

The result of the program:

Stage 0: Playerl = C, Player2 = C
yl =1, y2 =1
3,3

40

Stage 1: Playerl = C, Player2
yl =1, y2 =0

5; ©

Stage 2: Playerl = C, Player2
yl =0, y2 =0

3,3

Stage 3: Playerl = C, Player2
yl =1, y2 =1

3,3

Stage 4: Playerl = C, Player2
yl =1, y2 =0

5; ©

Stage 5: Playerl = D, Player2
yl =0, y2 =0

2,2

Stage 6: Playerl = C, Player2
yl =90, y2 =0

3,3

Stage 7: Playerl = D, Player2
yl =0, y2 =0

2,2

Stage 8: Playerl = C, Player2
yl =0, y2 =0

3,3

Stage 9: Playerl = D, Player2
yl =0, y2 =0

2,2

Stage 10: Playerl = C, Player2 = C.

41

The outcome of the games: 34; 24

Example 3.
Let's use this as an example A = 5,B = 20,C = 10.

Let's check the model for a 8 number of stages.

Number of stages
8
Number of stages: S = 8

Enter the payoffs A, B, C for matrix:
AA BO

@B CC

5 20 10

Matrix:

5,5 20,0

0,20 10,10

The first private signal for player 0 assume good and for player 1 assume bad

(1 =0,y, = 1):

Enter the first space-separated signals (yl =(0,1); y2 =(0,1)) received
by player 1 and player 2

01

Entered signals: 1 =0, 2 =1

The result of the program:

Stage 0: Playerl = D, Player2 = C
yl =0, y2 =1

9; 20

Stage 1: Playerl = D, Player2 = D.
yl =0, y2 =0

10,10

Stage 2: Playerl = C, Player2 = C.

yl =0, y2 =0
5,5

42

Stage 3: Playerl =
yl =1, y2 =1
5,5

Stage 4: Playerl =
yl =1, y2 =0
20;0

Stage 5: Playerl =
yl =0, y2 =0
5,5

Stage 6: Playerl =
yl =1, y2 =1
5,5

Stage 7: Playerl =
yl =1, y2 =1
5,5

Stage 8: Playerl =
yl =1, y2 =0
20,0

The outcome of the

C, Player2

C, Player2

C, Player2

C, Player2

C, Player2

C, Player2

games: 75;

43

Conclusion

The aim of this research was to study the impact of the mental system of players
and receive signals from the outside, on the possibility of cooperation. The goal was
achieved.

The objectives of this research were to study the literature on this problem, and
write software products that illustrate the behavior of players for the games studied.

As a result of this research, two games of game theory were considered.

In the first model, the game that two players give each other gifts was considered.
The game takes place with the participation of signals with two mental systems of
players. Restrictions on L in the matrix were found. After behavior of players with three
mental systems was considered and also restrictions on L in the matrix were found.

In the second model, the prisoners' dilemma is considered, but also with the
participation of signals (similar to the first game). In the general case was found - what
Is the probability that the signals (y;, y,) is correct, the players have to cooperate. One
numerical example of the prisoner's dilemma was solved.

Next, for each of the games were created software algorithms in C# in Nisual
Studio. Software algorithms automatically calculate all calculations performed for
existing games. Software algorithms were successfully tested on new and existing
examples.

The studied problems in the research are relevant, because the problem with the
introduction of mental systems and extraneous signals - it is still a little studied

problems. These problems are only gaining popularity.

44

9.

List of literature

Compte, O., Postlewaite, A. 2015. Plausible cooperation. Mimeo, University
of Pennsylvania.

Compte, O., Postlewaite, A. 2012. Strategy restrictions and limited
knowledge. Mimeo, University of Pennsylvania.

Compte, O., Postlewaite, A. 2013. Belief free balances. Mimeo, University of
Pennsylvania.

Hauser, C., Hopenhayn, H., 2008. Trading favors: optimal exchange and
forgiveness. Mimeo, UCLA.

Kandori, M. and H. Matsushima 1998, “Private Observation, Communication
and Collu-sion.”Econometrica, Nol. 66, 627-652.

Monte, D., 2007. Reputation and bounded memory: a theory of inertia and
skepticism. Mimeo.

Neumann J., Morgenstern O., 1947. Theory of games and economic behavior.
Princeton: Princeton Univ.

Piccione, M. 2002, The repeated prisoner’s dilemma with imperfect private
monitoring, Journal of Economic Theory102 , 70—83.

Romero, J., 2010. Bounded rationality in repeated games. Mimeo, Caltech.

10.Sainty, Barbara 1999, “Achieving Greater Cooperation in a Noisy Prisoner’s

Dilemma: An Experimental Investigation.” Journal of Economic Behavior
and Organization, 39(4), pp.421—35.

11.Wilson, A. 2004, "Bounded Memory and Biases in Information Processing,

University of Chicago.

45

Appendix

Appendix 1. Program implementation of the first model

using System;
using System.Collections.Generic;

namespace Alexandra

{

class Program

{

static void Main(string[] args)

{

#region CyuTbiBaHue q u S

Console.WriteLine("Probability z=1 is and number of stages");
string UserInput = Console.ReadlLine();

List<float> inputs = ParselInput(UserInput);

uint stageNalue;

bool stagesNalueCorrect = false;
if(inputs.Count >= 2)
{

}
while (!(inputs.Count >= 2 && stagesNalueCorrect && inputs[@] >= @ && inputs[0]

{

stagesNalueCorrect = uint.TryParse(inputs[1].ToString(), out stageNalue);

<= 1))

Console.WriteLine("Wrong format! Probability z=1 is and number of stages");
UserInput = Console.ReadlLine();
inputs = ParselInput(UserInput);
if (inputs.Count >= 2)
{
stagesNalueCorrect = uint.TryParse(inputs[1].ToString(), out
stageNalue);
}
}
stagesNalueCorrect = uint.TryParse(inputs[1].ToString(), out stageNalue);
if (stagesNalueCorrect)
{
Console.WriteLine("Entered numbers: q = {0}, S = {1} ", inputs[@],
stageNalue);
}

#endregion

#region CuyuTbiBaHMe ycunuii Playeros
Console.WriteLine("\r\nEnter the first space-separated signals (yl1l =(0,1); y2
=(0,1)) received by player 1 and player 2");
string UserInputStrategies = Console.ReadlLine();
List<char> inputsStrategies = ParseInputStrategies(UserInputStrategies);
while(inputsStrategies.Count < 2)
{
Console.WriteLine("Wrong format! Enter the first space-separated signals (yl
=(0,1); y2 =(0,1)) received by player 1 and player 2");
UserInputStrategies = Console.ReadlLine();
inputsStrategies = ParselInputStrategies(UserInputStrategies);

46

Console.WriteLine("Entered signals: 1 = {0}, 2 = {1} ", inputsStrategies[0],
inputsStrategies[1]);
#endregion

#region WHuumanusauma L

Random rd = new Random();

float q = inputs[@];

int leftSide = (int)Math.Round((1 - q) * 1000);

int rightSide = (int)Math.Round((1 - q) * 1000 / q);

float L = Convert.ToSingle(rd.Next(leftSide, rightSide)) / 1000;
#endregion

#region WHuumanusauma 1 Stagea
float[] result = new float[2] { @, @ };
int stage = 0;

int ri, r2, z;

inputsStrategies[0];
inputsStrategies[1];

char CurrentPlayerlChoice
char CurrentPlayer2Choice

string matrixResult = 5

//MNepBbii Stage
char y1 = CurrentPlayerilChoice;
char y2 = CurrentPlayer2Choice;

matrixResult = GetMatrixResult(CurrentPlayerlChoice, CurrentPlayer2Choice, L,
result);

Console.WriteLine("\r\n\r\nStage {0}: Playerl = {1}, Player2 = {2}", stage,
CurrentPlayerlChoice, CurrentPlayer2Choice);

Console.WriteLine("yl = {0}, y2 = {1}", y1, y2);

Console.WriteLine(matrixResult);

#endregion

#region 2 u cnepywwme Stageu
//BTOPOM N CNEAYWWMA STAGEM
while (stage < stageNalue)

{
L = Convert.ToSingle(rd.Next(leftSide, rightSide)) / 1000;

int threshold = 30; //30% - BepoATHOCTb, 4YTO NpumeT O, 70% - BEpPOATHOCTb,
4yTo npumeT 1. 3HayveHue threshold pacnonaraeTcs B AuanasoHe 0-100.

ri
r2

rd.Next(0, 101) > threshold ? 1 : 9;
rd.Next(0, 101) > threshold ? 1 : ©o;

z = rd.Next(9, 2);

//BNA PLAYERA 1 HA TEKYLEM STAGEE

if(CurrentPlayerilChoice == '1")
{

if(rl == 1)

{

yl = CurrentPlayer2Choice;
}

47

{
yl = CurrentPlayer2Choice == '1' ? '@’ 1,
Player Ha npeppiaywem Stagee HAOBOPOT
}
CurrentPlayerlChoice = (z == 0 && y1 == '9"') ? '@’
}
else
{
CurrentPlayeriChoice = (z == 1) ? '1' 'Q';
}
//0NA PLAYERA 2 HA TEKYIIEM STAGEE
if (CurrentPlayer2Choice == '1")
{
if (r2 == 1)
{
y2 = CurrentPlayerilChoice;
}
else //r2 = 0
{
y2 = CurrentPlayerlChoice == '1' ? '@’ 1,
Player Ha npeppiaywem Stagee HAOBOPOT
CurrentPlayer2Choice = (z == 0 && y2 == '9') ? '@’
}
else
{
CurrentPlayer2Choice = (z == 1) ? '1' 'e';
}
stage++;

L, result);

}

/17
/17
/17
/17
/17

else //r1 =0

//Lpyrow

//Bpyron

matrixResult = GetMatrixResult(CurrentPlayerlChoice, CurrentPlayer2Choice,

Console.WriteLine("\r\n\r\nStage {0}: Playerl = {1}, Player2 = {2}. ",
stage, CurrentPlayerlChoice, CurrentPlayer2Choice);
Console.WriteLine("yl = {@}, y2 = {1}, z = {2}", y1, y2, z);

Console.WriteLine(matrixResult);

¥

#endregion

Console.WriteLine("\r\n\r\ntor Urp: {0}; {1}", result[@], result[1]);

<summary>

Mapcum BBOA nonb3oBaTenem q M S. 3akupgpiBaem Bce B nuct float

</summary>
<param name="UserInput"></param>
<returns></returns>

static List<float> ParseInput(string UserInput)

{

UserInput = UserInput.TrimStart().TrimEnd();
List<float> result = new List<float>();
string[] inputs = UserInput.Split();

foreach (string input in inputs)

48

float value;
float.TryParse(input, out value);
if(value != 0)

{

}

result.Add(value);

}

return result;

}

/// <summary>

/// Napcum BBOA nonb3oBaTesieM cTpaTeruit (ycunuit) ana Playeros
/// </summary>

/// <param name="UserInput"></param>

/// <returns></returns>

static List<char> ParseInputStrategies(string UserInput)

{
UserInput = UserInput.TrimStart().TrimEnd().ToUpper();
List<char> result = new List<char>();
string[] inputs = UserInput.Split();
foreach (string input in inputs)
{
char value;
bool success = char.TryParse(input, out value);
if(success && (value == '1' || value == '@'))
{
result.Add(value);
}
}
return result;
}

/// <summary>

/// BbicHuTbiBaHMe pe3ynbTaTa Stagea

/// </summary>

/// <param name="CurrentPlayerlChoice"></param>

/// <param name="CurrentPlayer2Choice"></param>

/// <returns></returns>

static string GetMatrixResult(char CurrentPlayerilChoice, char CurrentPlayer2Choice,
float L, float[] result)

{
string matrixResult = "";
if (CurrentPlayerilChoice == '1'")
{
if (CurrentPlayer2Choice == '1'")
{
matrixResult = "1,1";
result[@] += 1;
result[1] += 1;
}
else
{
matrixResult = (-L).ToString() + "; " + (1 + L).ToString();
result[@] += -L;
result[1] += 1+L;
}

49

else

{
if (CurrentPlayer2Choice == '1")
{
matrixResult = (1 + L).ToString() + "; " + (-L).ToString();
result[@] += 1+L;
result[1] += -L;
¥
else
{
matrixResult = "0,0";
result[@] += 0;
result[1] += ©;
¥
}

return matrixResult;

50

Appendix 2. Program implementation of the second model

using System;
using System.Collections.Generic;

namespace Alexandra

{

class Program

{

static void Main(string[] args)

{

#region CyuTbiBaHME S

Console.WriteLine("BeeauTte KonuyecTBO waroB 4epes npoben");
string UserInput = Console.ReadlLine();

uint stages = ParselInput(UserInput);

while (stages == 0)

{
Console.WriteLine("HeBepHbiii ¢popmaT! BBeauTe KonuyecTBO waroB yepe3 npoben");
UserInput = Console.ReadlLine();
stages = ParseInput(UserInput);
}
if (stages != 9)
{
Console.WriteLine("KonuvecTtBo waroB: S = {0} ", stages);
}
#endregion

#region CuuTbiBaHuMe ycunuin PlayeroB
Console.WriteLine("\r\nEnter the first space-separated signals (yl =(0,1); y2
=(0,1)) received by player 1 and player 2");
string UserInputStrategies = Console.ReadLine();
List<char> inputsStrategies = ParseInputStrategies(UserInputStrategies);
while(inputsStrategies.Count < 2)
{
Console.WriteLine("Wrong format! Enter the first space-separated signals (yl
=(0,1); y2 =(0,1)) received by player 1 and player 2");
UserInputStrategies = Console.ReadLine();
inputsStrategies = ParseInputStrategies(UserInputStrategies);
}
Console.WriteLine("Entered signals: 1 = {0}, 2 = {1} ", inputsStrategies[9],
inputsStrategies[1]);
#endregion

#region CyuTbIBaHME MaTpuUUbl

Console.WriteLine("\r\nBeeauTte 4Yepes npoben A, B, C gns maTtpuupi: \r\n AA BO \r\n
@B CC");

string UserInputMatrix = Console.ReadlLine();

List<float> inputsMatrix = ParseInputMatrix(UserInputMatrix);

while (inputsMatrix.Count < 3)

{
Console.WriteLine("HeBepHblit ¢popmaT! BBeauTe yepes npoben A, B, C gnAa
maTpuubl: \r\n AA BO \r\n @B CC");
UserInputMatrix = Console.ReadLine();
inputsMatrix = ParseInputMatrix(UserInputMatrix);

51

Console.WriteLine("BBeaeHHas maTpuua: \r\n {0},{0}
{2},{2}", inputsMatrix[@], inputsMatrix[1], inputsMatrix[2]);
#endregion

#region WHCTaAHC knacca paHAoM
Random rd = new Random();
#endregion

#region WHuumanusauma 1 wara

int stage = 0;

{1},0 \r\n 0,{1}

// r - BepoATHOCTb CKOOMEepMpOoBaTbCHA. BbLICUUTHIBAETCA HA KAXAOM ware

float A = inputsMatrix[0];

float B = inputsMatrix[1];
float C = inputsMatrix[2];
float r = (C-B) / (A -2*B + C);

//MNepBbii war
if (rd.Next(@, 101) > r * 100)

{

Console.WriteLine("Coop = 1");
}
else
{

Console.WriteLine("Coop = 0");
}
#endregion

#region 2 u cnegywuue warm
//BTOPOW U CHELYHWAA WATU
while (stage < stages)

{
if (rd.Next(@, 101) > r * 100)

{
}

else

{
}

stage++;

Console.WriteLine("Coop = 1");

Console.WriteLine("Coop

0");

}

#endregion

}

/// <summary>

/// Napcum BBOA nonb3oBaTenem S

/// </summary>

/// <param name="UserInput"></param>

/// <returns></returns>

static uint ParseInput(string UserInput)

{
UserInput = UserInput.TrimStart().TrimEnd();
List<uint> result = new List<uint>();
string[] inputs = UserInput.Split();
foreach (string input in inputs)

52

uint value;
uint.TryParse(input, out value);
if(value != 0)

{
result.Add(value);
}
}
return result.Count != @ ? result[0] : 0;

/// <summary>
/// Napcum BBOA Nonb30OBaTesieM MaTpuupl
/// </summary>
/// <param name="UserInput"></param>
/// <returns></returns>
static List<float> ParseInputMatrix(string UserInput)
{
UserInput = UserInput.TrimStart().TrimEnd().ToUpper();
List<float> result = new List<float>();
string[] inputs = UserInput.Split();
foreach (string input in inputs)

{
float value;
bool success = float.TryParse(input, out value);
if (success)
{
result.Add(value);
}
}

return result;

53

