ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Институт наук о Земле

Кафедра геохимии

Геохимия акцессорной минерализации литий-фтористых гранитов Тургинского массива в Восточном Забайкалье

и ее генетическое значение

Борисова Евгения Борисовна

 \mathbb{N}

-05

Выпускная квалификационная работа по направлению 05.03.01 "Геология" по геофизико-геохимической группе профилей

Научный руководитель:

К-г.м.н., доц, Баданина Е.В.

(подпись руководителя)

Заведующий кафедрой:

Д-г.м.н., проф. Чарыкова М.В.

(подпись заведующего)

САНКТ-ПЕТЕРБУРГ

	1
1.1.	
1.2.	5
1.3.	
	2
2.1.	
2.2.	
2.3.	
	3
3.1.	
3.2.	
3.3.	
3.4.	
3.5.	
3.6.	REE-Y-Th-U-Zr
3.7.	
2	4

•

• Li-F ,

, :) ((,

),

:

,

Hitachi TM-

					-
3000				Hitachi	S-3400N
*	»	*	»		

1. 1.1. , 250 (. 1). ó . (10), (50), / _ (), , ; , . 650 ó 750 (. 2). -20°, -+21°. 300 ó 400 . , • 8.2, 167), ((1032). 96 . 2, -. ., 2012). (: , ().

1.

Earth.

Google

2.

Google Earth.

.

1.2.

(.3).

,

, 2002).

(

:

ó

1 — область протерозойской складчатости; 2 — область каледонской складчатости Западного и Северо-Западного Забайкалья; 3 — молибденовозолотой пояс в области каледонской складчатости; 4 — область герцинской складчатости (оловянно-вольфрамовый пояс Центрального и Восточного Забайкалья); 5 — глубинные разломы; 6 — границы структурно-формационных зон; цифры на схеме — структурно-формационные подзоны Аргунской зоны: 1 — Пришилкинская; 2 — Газимурская; 3 — Урулюнгуевская.

1977).

í , 2001)

(M-50-IX) (.4)

(

3.

ó

1980-

ó

_

: ó , ó , ó - .

1.3. .

, , , , 80 2. -

, (., 1983). 5.

4.

1: 200 000 (M-50-IX) «

).

5.

. ., 1983; . ., 1988, 2009.

•••,

(-829, (-841, -842, -844) (-826, -834, -492, -438), 436, -495).

2.1.

2.

6)

494,

6).							,	
			(Qu é 30%	%),		(K	Xfs = 20-30%),	(Pl
= 25-35%),					(Bt é5%).			:
Fe-Mn-	,	,	,	,	,	,		

,

10

(

7.

2.2.

3-5),

(. 8).

.

(

8.

-842.

, (1) 40%),

(Kfs = 20-30%),

(é5%).

(. 9).

9.

.

«snowball»

An10 An0.

,

(.11).

_

•

11.

_

3.

,

,

,

,

,

,

,

(, 2004).

Hitachi TM-3000 Hitachi S-3400N « « **» »** . (Fe-Mn)-• , ó Fe-, , Fe-, , , , ó (Y), , Fe-, • ,

.

,

,

,		LREE:		ó
(La,Ce)	F ₃ , LREE ó	(Ca, Ce, La) ₂ (Al, Fe) ₃ (SiO4) ₃ (OH),		-
-	-(Ce) Ca(Ce, La) ₂ (CO ₃) ₃ F ₂	(Ce,La,Y)CO ₃ F.		
		« »	-	,

(, 2013).

•

, BSE-

,

. .

,

,

,

(. 12, 13).

,

HfO2 1,2 2,5

3/25 10:09 N D6.2 x200 500 um

•

13. ó

; ó

(. 14, 15).

(, 2015). BSE-

(.13).

.

- : U, Th REE, 2-5 .% HfO₂, 7 .% -. ThO₂ 1-3%, UO₂ ó 2-6%, 18%,

14.

15.

BSE-

(.16).

•

Hf

U A

Hf ó Th+U ó

Y+REE (. 17).						U+Th (~	. 35%).
						Y+REE	40 .%,	
,		,	Th+U (45	.%)		Y+REE.	,

Eu- Ce-

(Fe,Mn)₃(Al,Fe)₂[SiO₄]₃

(. 20).

,

ó

(. 20).

19. Fe-Mn

,	(II)	·					,	
	-							63
68%,		ó	22,2	27%,	ó	2,2	4%	4,7
6 60/								

6,6%.

,

(. 23),

(. 24).

Ta W,

(

0.17 (

TiO₂ (

0.53 (

 $(0.42 \text{ Sc}_2\text{O}_3),$

23

(

(

U, Nb-

(Y,REE,U,Th)-(Nb,Ta,Ti)

A- I- (Ercit 2006).

(Ercit, 2006) (. 26). (Ercit, 2006) (. 2

;

(

. 27).

ó

25

. .

(*Nb*, *Ta*, *Ti*) . . (*Hogarth*, 1961).

		,			
-		,		Na	Si ó
Ta (, 1970).	-			
	Nb,				,
	Na				

3.4.

(Förster, 1998).

 $ABO_4, \quad A = REE, Y, Th, U, Ca, Pb \quad B = P, Si. \qquad 3 \qquad : \qquad -Ce$ $(CePO_4), \qquad (CaTh(PO4)_2), \qquad (ThSiO_4), \qquad \qquad \delta \qquad ,$

1. $[Th^{4+}, U^{4+}, Ca^{2+}] = 2 \text{ REE}^{3+}$ 2. $[Th^{4+}, U^{4+}, (SiO4)^{4-}] = [REE^{3+}, (PO4)^{3-}].$

•

,

26

:

•

2 CePO₄ - CaTh(PO4)₂
$$\acute{o}$$
 2 ThSiO₄ (. . 28).

Erzgebirge Fichtelgebirge Förster, 1998. -Ce type huttonite huttonite Amasonurobue граниты Турги Amasonurobue граниты Турги Amasonurobue граниты Турги

Erzgebirge Fichtelgebirge ().

LREE (light rare earth elements)

(Eu)

HREE (heavy rare earth elements).

,

SiO₂, CaO P₂O₅,

.

LREE Th,

(Förster, 1998).

Li-F

REE

U Th (. 29).

Li-

.

. % Y₂O₃).

(5

•

(. 31).

 $(31.22\text{-}45.63 \qquad .\ \% \quad Ce_2O_3, \ 9.06\text{-}27.44 \qquad .\ \% \\ La_2O_3, \ 8.16\text{-}18.58 \qquad .\ \% \ \ Nd_2O_3, \ 2.57\text{-}4.79 \qquad .\ \% \ \ Pr_2O_3).$

(, 1973),

•

(. 32).

32. a ó ; b ó ; Flc ó fluocerite, Bn ó bastnaesite, All ó allanite

.

. 34) (

24. : a ó ; b ó ; Tht ó , Zrn ó , Hem ó .

(60-90%)

Th LREE

(Förster, 2006),

Zr, Th, U, , Y

Th, Y (HREE), Zr / U,

(

,

), -

•

(Förster, 2006). Бт граниты (829)

Рисунок 35.

 $Th+U \circ Y+REE \circ Zr+Hf ($ Förster, 2006).

F,

,

(

•

Bt, Qu,

Y REE,

(. 37).

.

3.7.

Fsp.

MnO 4-7	.%.		
3	.% ZnO,		
		1-5%	15% MnO,
Nb ₂ O ₅ 9	.%,		
2	Zn-		

2016, Procházka 2010).

38.

 $\frac{\log(Tizrn) = \frac{(6.01 \pm 0.03) - (5080 \pm 30)}{T(K)}$

1.

«Ti ».

•

•

Zr - (Na+K+2Ca)/(Al*Si)

•

(700-820 C , 750-870 C

	Ty-835	Э-522							
Ti, ppm	22,04	4, 43 9,18 1,86							
Т, К	1088	947	947 1006						
T, ⁰C	815	675 730 610							
		Сред	Средняя Т°С 671±50						

ICP-MS ().

.

3,

(.22).

(é830	C).	
(0000)	C),	

(700-740 C),

,

,

γ	

(Na+K+2Ca)/(Al*Si)

	Бт граниты		Прт граниты		Амаз граниты			Амаз граниты Этыки			
Компонент	Ту- 829	Ту- 483	Ту- 470	Ту- 466	Ту- 474	Ту- 494	Ту- 543	Ty- 437	Э- 493	Э- 1683	Э- 1684
SiO2	75,3	75	75,3	76,1	75,2	75,9	77,6	71	71,3	76	65,3
Al2O3	13,4	13,9	13,6	12,8	12,6	12,8	12,7	16,1	16,6	13,3	15,4
CaO	1,05	0,98	1,01	0,93	1,09	0,92	0,9	0,91	0,94	0,94	1,63
Na2O	3,97	3,71	3,85	3,46	3,99	4,56	5,99	5,85	6,18	3,48	4,17
K2O	4,65	4,99	4,83	5,24	4,91	4,22	1,29	4,57	4,1	4,79	4,69
Na2O+K2O	8,62	8,7	8,68	8,7	8,9	8,78	7,28	10,42	10,28	8,27	8,86
K/Na	0,77	0,89	0,83	1,00	0,81	0,61	0,14	0,51	0,44	0,91	0,74
A/CNK	0,99	1,05	1,02	0,98	0,91	0,93	0,99	0,99	1,02	1,05	1,03
K/(K+Na)	0,44	0,47	0,45	0,50	0,45	0,38	0,12	0,34	0,30	0,48	0,43
(Na+K)/Al	0,86	0,83	0,85	0,89	0,94	0,94	0,89	0,90	0,88	0,82	0,77
(Na+K+2Ca)/(Al*Si)	1,49	1,43	1,46	1,51	1,63	1,60	1,47	1,62	1,57	1,40	1,60
Zr, ppm	100	71,9	92,9	279	332	129	74,3	278	143	424	167

).

(

3400N

,

400°,

Gd,

«

»

(Gratz R., Henrich W., 1998):

 $D_{Gd}(T) = -0.5886 + 1.591 * 10^{-3} * T (°C,$

 $D_{Gd} = \frac{X_{Gd}monazite}{X_{Gd}xenotime},$

Hitachi S-

ó Na

$$T (^{\circ}C = \frac{D_{Gd} + 0.5886}{1.59 * 10^{-3}}$$

,

:

•

	Бт граниты Турги					Прт граниты	
D_{Gd}	1,1383	0,7101	0,5399	0,4816	0,5312	0,7313	1,8632
T ⁰C	1085	815	710	675	700	830	1540
Т	I.		800±14	40.			

•

, . .

3.

C°.

.

,

«Ti » (Ferry, 2006)			810	670±50
Zr (Watson, Harrison, 1983)	720±20	820±20	750±50	
- (Gratz, Heinrich, 1998)	800±140	1540 (?)		
()	400-450	400-410	400-430	400-410

(, 1979; , 2002)

•

.

Li-F

,

,

 $600-650^{\circ}$.

,

,

,

17 LREE, U, F-(, -(Ce), Li-F -(Ce),), , ó , , . LREE, U, , Th F.). U, (Nb, Fe, Y, ó , **»** « , ~ **»** , Mn Ta. , Li-F (, 1998). (800-1500 C) (720-800 C) , (750-815 C), , (?) • , Li-F ,

: 1. . ., . ., . . .// _ , 2013, CXLII, 3, .1-27. . // 2. , . ., , . . • •, , 1972, 272 . : 3. , 2009, 17, 1, . 28-50. . // 4. . () .// , .CXLVII, 6, .1-21. 5. . . // 3PMO. 2004, 6, . 1-7. 6. . .,, . .,). . 1:1000000 (-49 ó -// .: . -• , 2012, . 3-4; 7. . . .// ., 2008. . 43. . . 37-44. 8. . . • . ., 1965, .49- 60. 9. . . . - , 2002. 357 . .// .: _ .-10., • •, .// : , 1983, 182 . 11. • •, . ., . . . // , 1973. . 22, . 143-157. . . . 12. ZnTiO3 • •, . . , . // XXXIII

, 2016. . 153-155.

- Ercit T.S. Identification and alteration trends of granitic-pegmatite-hosted (Y, REE, U, Th) 6 (Nb, Ta, Ti) oxide minerals: a statistical approach. // The Canadian Mineralogist. 2005, Vol. 43, p. 1291 6 1303.
- Ferry, J.M. New thermodynamic analysis and calibration of the Ti-in-zircon and Zr-in- rutile thermometers / J.M. Ferry, E.B. Watson // Geological Society of America Abstracts with Programs. ó 2006. ó V. 38. ó 6. ó P. 243.
- Foerster H.-J. The chemical composition of REE-Y-Th-U rich accessory minerals from peraluminous granites of the Erzgebierge-Fichtelgebirge region, Germany. Part I: The monazite (Ce) ó barbantite solid solution series. // American Mineralogist, 1998: Vol. 83. p. 259-272.
- Foerster H.-J. The chemical composition of REE-Y-Th-U rich accessory minerals from peraluminous granites of the Erzgebierge-Fichtelgebirge region, Germany. Part II: The xenotime. // American Mineralogist. 1998, Vol. 83, p. 1302-1315.
- Förster H.-J. Composition and origin of intermediate solid solutions in the system thorite-xenotimezircon-coffinite // Lithos, 2006, Vol. 88, p. 35655.
- Gratz R., Henrich W. Monazite-xenotime thermometry. Experimental calibration of the partitioning of gadolinium between monazite and xenotime. // Mineral. 1998, Vol. 10, p. 579-588.
- Pelleter E., Cheillets A., Gasquet D. Hydrothermal zircons: A tool for ion microprobe U-Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit ó Morocco). // Chem. Geol. 2007. Vol. 245, p. 135-161.
- Procházka, V., Uher, P., & Mat jka, D. Zn-rich ilmenite and pseudorutile: subsolidus products in peraluminous granites of the Melechov Massif, Moldanubian Batholith, Czech Republic. // Neues Jahrbuch Für Mineralogie - Abhandlungen, 2010, 187(3), p. 2496263.
- 21. Watson E.B. Harrison T.M. Zircon saturation revisited: temperature and composition effects in a variety of crystal magma types // Earth Planet Sci. Lett. 1983, Vol. 64, p. 295-304.
- Watson E.B. Wark D.A., Thomas J.B. Crystallization thermometers for zircon and rutile. // Contrib Mineral Petrol, 2006, 151, p. 4136433.

: 1. . . , 2011 . (2. . . (). », 2015, 149 . «

:

41

)

1.		M-50-IX // geolkarta.ru		
2.		, M-50-IX ().	:
	-	, 2001, 159 . // geokniga.ru		
	:			
	1.	«Ti ».		
	2.	(Na+K+2Ca)/(Al*Si)		

3. C°.

1.					Google Earth.
2.					
Goog	le Earth.				
3.	-			(,	, 1977).
4.		1: 200 000 (M-50-IX) «	» ().
5.					• •,
,	1983;	• •,	, 1988	8, 2009.	
6.	-829.				
7.					
8.	-842.	-			
9.					
		•			
10.	-494.	-			•
11.	-				-
12.					
13. ó				; ó	
14.					
15.				BSE-	
16.				BSE-	
17.					Th+U, Hf,
Y+RI	EE (., 2013).			
18.					SmN/Lan ó
Ce/Ce	e*,				
(Pelle	ter et al.,2007)		: -1 ó		, -2 ó
	, -3 ó	;		: -522, -2250 ó	
19. Fe-M	n				
20. ó			, Ó		,
		,	ó		
		(BSE-).		
21.			,	. Alm	пó
	, Sps ó	, Prp+0	Grs ó		

22.	().			
23.			(556)		
24.		(?)(Nb,W,Ta,Fe,Mn)2O4 .				
25.					-	
	-					
	Ta/(Ta+N	(b) ó Mn/(Mn+Fe)).	:1 ó		
	, 2 ó	; 3 ó			;	
	: 4	ó	,	5 ó	;	
	:66	ò	, 7 ó			
26.		(Y, F	REE, U, Th)-(Nb,	Ta, Ti)	. CV1, CV2	
					1 2	
27.						
	(Nb	, Ta, Ti)	(Hogarth,	1961).		
28.						
		Erzgebirge Fichtel	gebirge ().		
29.		(RE)	E+Y+P) (Th+U	J+Si)		
((16)				(Th, U)	
	Si REE ₋₁ P-1	Ca(Th, U)R	EE-2			
((Förster, 1998).					
30.	H	Er/Gd Er/Dy				
31.		:	,			
32. a	a ó		; b ó		; Flc ó	
1	fluocerite. Bn ó bastnaesi	te, All ó allanite				
33.	,	,				
				,		
34.		: a ó		: b ó	: Tht ó	
0.11	Zrn ó He	mó		,	, 110 0	
35	, 2111 0 , 110					
20.	Th+U ó Y+	, ,	, Förster 2006)	,		
36			1 ofster, 2000).			
50.	$\mathbf{T}\mathbf{h} \mid \mathbf{U} \land \mathbf{V}$, PEE ☆ 7r ⊨ Hf (, , Förster 2006)			
37	11170 0 1 1		1013101, 2000).			
51.	$\mathbf{T}\mathbf{h} \mid \mathbf{U} \prec \mathbf{V}$, ₽FF δ 7r⊥⊔f(, , Förster 2006)			
20	111+0 0 1 +		1 015101, 2000).			
50.			•			

,

Ab ó
An ó
BSE ó
Bt -
CL ó
Pl ó
Qu ó
Zw -
ó
ó
ó
ó
-
ó
, REE ó
ó