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Introduction

In a classical way for group N := 1, ..., n of agents the economic possi-
bilities of each subgroup are described by cooperative game (N, v), where N is
a set of players and v is a characteristic function. The characteristic function
shows the power of each coalition. In this paper, we assume the cooperative
game with transferable utility or TU-games.

Classically in this game, we assume that each subset of players can decide
to cooperate and the total payoff of this cooperation can be distributed among
the players. But in many practical situations, not all players can communicate
with each other due to some economic, technological or other reasons, thus some
coalitions cannot be created. It is the class of TU-games with limited coopera-
tion. The communication structure can be introduced by an undirected graph.
In this way, just players who have a link between them can cooperate. These
games were first studied in Myerson (1977)[1], he introduced games on a graph
and characterized the Shapley value[2]. Hereafter, games with communication
structure have received a lot of attention in cooperative game theory. Owen
(1986)[3] studied games where the communication structure is a tree. The po-
sition value for games where communication structure is given by a graph is
introduced by Meessen (1988)[4].

But generally, the communication structure can be given by a graph or
hypergraph. For example, it can be some companies or sports teams. Coopera-
tion between two organizations is only possible if they have at least one member
in both of them.

The TU-games on hypergraph were studied by Nouweland, Borm and
Tijs (1992)[6], they characterized the Mayerson value and the position value
for these games. The third value, which is called degree value for the games
with hypergraph communication structure was introduced in E.Shan G.Zhang
X.Shan (2018)[7]. Many allocation rules for TU-games with a hypergraph com-
munication structure can be proposed based on some different interpretations.
The Myerson value highlighting the role of the players, the position value focuses
on the role of communication. In this paper, we introduced a new allocation
rule for TU-games on the hypergraph.
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Chapter 1. Cooperative game without communication struc-
ture

In a cooperative game without communication structure, every coalition
of players can be made. In the classical cooperative game, we assume that
the conditions of the game allow joint actions of player and redistribution of
winnings. According to this for all coalitions, we can find the value of coalition,
based on some properties. In common the interpretation of this value is the
total payoff which coalition can guarantee to itself regardless of the actions of
other players who are not in this coalition. So we get the definition of the
cooperative TU-game, it is a pair (N, v) where N is a set of players and v is a
function that puts the value to each coalition of N .

Characteristic function of game with set of players N we will call a real-
valued function v : 2N → R and v(∅) = 0, defined on all coalitions S ⊆ N .
Properties of characteristic function:

Monotonicity: A ⊆ B ⇒ v(A) ≤ v(B). It means that the large coalition
get more. Superadditivity: S ∩ T = ∅ ⇒ v(A ∪ B) ≥ v(A) + v(B) for any
two coalitions A ⊂ N , B ⊂ N with no intersection the sum of their values
separately is not greater than the value of a union.

The main question in cooperative game is not choose the strategy for
each player, the question is how to distribute the total payoff between players.
Vector is called imputation ξ = (ξ1, . . . , ξn) if it satisfies the following conditions
where v(j) - is the value of characteristic function for coalition S = {j} :

ξj ≥ v(j), j ∈ N,

individual rationality, it means that each player gets no less than if he played
one without worrying about the actions of other players

n∑
j=1

ξj = v(N),

collective rationality, this means that the division exists and the players will
not share the nonexistent winnings and will share the total winnings as a whole.
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The imputation set for cooperative game (N, v) will denote as I(N, v).
From the definition of imputation, we get that vector ξ = (ξ1, . . . , ξn) is

an imputation then and only then

ξi = v(i) + θi, i ∈ N,

and
θi ≥ 0, i ∈ N,

∑
i∈N

θi = v(N)−
∑
i∈n

v(i).

If the following statement occurs:∑
i∈n

v(i) < v(N)

the cooperative game (N, v) is called essential. For nonessential game we have
just one imputation ξ = (v(1), v(2), . . . , v(n))

For example the cooperative game with four players where:

v(1) = v(2) = 0, v(3) = v(4) = 1,

v(1, 2) = v(1, 3) = v(1, 4) = v(2, 3) = v(2, 4) = 2

v(3, 4) = 3, v(1, 2, 3) = v(1, 2, 4) = v(1, 3, 4) = v(2, 3, 4) = 3,

v(1, 2, 3, 4) = 4

is essential because∑
i∈n

v(i) = v(1) + v(2) + v(3) + v(4) = 2

v(N) = 4

.
And the cooperative game with four players where:

v(1) = v(2) = 1, v(3) = v(4) = 2
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v(1, 2) = v(1, 3) = v(1, 4) = v(2, 3) = v(2, 4) = 2

v(3, 4) = 3, v(1, 2, 3) = v(1, 2, 4) = v(1, 3, 4) = v(2, 3, 4) = 4,

v(1, 2, 3, 4) = 6

is nonessential because∑
i∈n

v(i) = v(1) + v(2) + v(3) + v(4) = 6

v(N) = 6

.
An imputation ξ dominates an imputation θ in coalition S and we will

denote it as ξ �S θ if
ξi > θi, i ∈ S,

ξ ≤ v(S)

The first condition means that the imputation ξ is more profitable for
all members of coalition S as all members will receive more winnings than by
using imputation θ. The second condition means the ability of the coalition to
implement this imputation.

An imputation ξ dominates an imputation θ, we will denote as ξ � θ if
there are exist coalition S ⊆ N for which is performed ξ �S θ.

On coalition consisting of one player and coalition consisting of all players,
dominance is impossible.

There may be a situation where an imputation ξ dominates an imputation
θ in coalition A ⊆ N , but θ dominates ξ in coalition B ⊆ N and ξ 6= θ

We define the concept of non-dominated imputations. So if the players
came to such a imputation of the winning coalition N , that is, the imputation
ξ in which no other imputation dominates the imputation ξ. The distribution
of winnings of this kind will be stable, in the sense that no coalition A will
not be profitable to refuse to cooperate and distribute among themselves the
value v(A). This suggests considering as a principle of optimality the set of
non-dominated imputations.
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The set of non-dominated imputations is called C-core. This set can be
empty, if not and the game is essential then this set is infinite. The question of
which imputation to choose remains open, but no coalition will have any claims
to such an imputation since no matter what imputation we take from the core,
no coalition will be able to offer its participants a greater winnings.

For example for the game with three players with the following values of
characteristic function

v(1) = 6, v(2) = 7.5, v(3) = 9

v(1, 2) = 16, v(1, 3) = v(2, 3) = 18, v(1, 2, 3) = 27

C-core will be a set of imputations ξ = (ξ1, ξ2, ξ3) which satisfying the condi-
tions

ξ1 ≥ 6, ξ2 ≥ 7.5, ξ3 ≥ 9

ξ1 ≤ 9, ξ2 ≤ 9, ξ3 ≤ 11

ξ1 + ξ2 + ξ3 = 27

This set is non-empty.
The multiplicity of C-core in cooperative games and the strict conditions

for the existence of non-dominated imputations, do not solve the problem of
choosing the only one imputation in a cooperative game. One of the most well-
known cooperative principles of optimality in the game devoid of mentioned
disadvantages is the so-called Shapley value.

For the cooperative game (N, v) the vector φ(v) which defined as follows

φi(v) =
∑

S⊆N\i

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ i)− v(S))

is called Shapley value.
For example for the game with three players with the following values of

characteristic function

v(1) = 6, v(2) = 7.5, v(3) = 9
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v(1, 2) = 16, v(1, 3) = v(2, 3) = 18, v(1, 2, 3) = 27

the components of shapley value

φ1 =
47.5

6
;

φ2 =
52

6
;

φ3 =
62.5

6
.

Therefore, the Shapley value is φ(v) = (47.5
6 ; 52

6 ; 62.5
6 ) and for this example

belongs to the C-core.
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Chapter 2. Cooperative game on subclass of hypergraph

2.1 Preliminaries

In this section, we recall some notations and definitions about TU-games
and hypergraph. TU-game is a pair (N, v). Characteristic function v : 2NR

and v(∅) = 0. We will use |S| to show the cardinality of any S ∈ N .
Hypergraph is a pair (N,H), H ⊆ {H ∈ 2N

∣∣|H| > 2}. H is some set of
subsets of players N with cardinality more or equal two.

2.2 Definition of the game

Let N = {1, . . . , n − 1, c} be a player set. Communication possibilities
described by hypergraph (N,H) In this part we will consider a special commu-
nication structure which given by

H ⊆ {H ∈ 2N
∣∣|H| > 2, Hj ∩Hk = c; j 6= k ∀Hj, Hk ∈ H}.

The interpretation of this structure is there is just one player who included in all
hyperlinks and other players included just in one of them. The communication
is only possible between the players in hyperlinks. It can be also interpreted
as the central player has some companies with workers.An example of this
hypergraph shown in fig.1

Denote the numbers of hyperlink in communication structure by L. Also
denote the central-player by c. Let Γi be a set of players which included in
hyperlink Hi except player c and Ui — the set of their strategies. Also denote a
strategy of simple-player j as uj. A strategy of player c from his set of strategies
we will denote by uc ∈ Uc. We define the payoff function of simple-player j in
hyperlink Hi in this way

hj(Ui, uc) = Kj(Ui, uc)

where Kj — payoff of player j which is defined on hyperlink which include
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Figure 1: An example of this hypergraph.

player j. The payoff function of central-player c:

hc(U1, U2, . . . , UL, uc) = K1
c (U1, uc) +K2

c (U2, uc) + · · ·+KL
c (UL, uc)

2.3 Cooperation

Now consider the case when the players agree to cooperate. It means
that they will choose their strategies to maximize the sum of their payoffs

∑
k∈N

hk =
L∑
i=1

∑
m∈Hi

Km (Ui, uc) +
L∑

j=1

Kj
c (Uj, uc).

We suppose transferable payoffs. Thus the main question is how to allocate the
total payoff between players. We will do it in three steps. On the first one, we
construct a new cooperative game where we suppose hyperlinks as players. We
will create a characteristic function for all coalitions in this game. After that
we solve this game with some allocation rule, in this paper we used a solution
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with equal excess. So we get the payoff for all hyperlinks. The second step is to
allocate this payoff between the members in a hyperlink. To solve this problem
we will use the proportional solution. The last step is to find the total payoff
for the central player. It will be the sum of his payoffs from all hyperlinks.

2.3.1 First step

For now we consider the game where the players are hyperlinks from the
given communication structure.The set of hyperlinks which are the players in
this part we will denote as H. S ⊆ H is coalition from this set of links. We will
define the characteristic function which defined for all coalitions of this players
as follows:

V (S) =
∑

i: Hi∈S

∑
j∈Γi

Kj(Ũi, ûc) +
∑

i: Hi∈S

K i
c(Ũi, ûc),

where ûc the solution of this maximization problem:

max
uc

max
Ui

 ∑
i: Hi /∈S

∑
j∈Γi

Kj(Ui, uc) +
∑

i: Hi /∈S

K i
c(Ui, uc)

 =

=
∑

i: Hi /∈S

∑
j∈Γi

Kj(Ûi, ûc) +
∑

i: Hi /∈S

K i
c(Ûi, ûc),

and Ũi the solution of:

max
Ui

 ∑
i: Hi∈S

∑
j∈Γi

Kj(Ui, ûc) +
∑

i: Hi∈S

K i
c(Ui, ûc)

 =

=
∑

i: Hi∈S

∑
j∈Γi

Kj(Ũi, ûc) +
∑

i: Hi∈S

K i
c(Ũi, ûc)

V (H) = max
uc

max
Ui

 ∑
i: Hi∈H

∑
j∈Γi

Kj(Ui, uc) +
∑

i: Hi∈H

K i
c(Ui, uc)


This characteristic function can be interpreted as follows. The central
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player wants to maximize the total payoff of all players in hyperlinks which are
not in S. Based on this, the central player’s ûc strategy is chosen, assuming
that in the worst case the central player will play this strategy, players from S

seek to maximize their total payoff. Thus, we have determined the characteristic
function for all coalitions of the hyperlinks. The next step is to find the winnings
for each hyperlink. For this, we will use a solution with equal excess.

ξHj
= V (HJ) +

V (H)−
∑
i∈H

V (Hi)

L
, j = 1, L.

2.3.2 Second step

After the previous step the payoffs for each hyperlink have been received,
the next step will be the distribution of this payoff between the players in each
hyperlink. At this step, we get L cooperative games, for each we uniformly
define the characteristic function for coalitions of players and the optimality
principle. The characteristic function in these games will be determined in
accordance with the approach described in [9]. The idea is quite simple: the
characteristic function in this case shows the maximum gain that a coalition
can receive, provided that all other players play against it. As an optimality
principle, we take a proportional solution. Consider a game on the j hyperlink.
We denote the set of players on this hyperlink, including the central one, by
Nj. We assume that vj(Nj) = ξHj

. Let us define the value of the characteristic
function for each of the simple players on this j hyperlink as

vj(i) = max
ui

min
uc

⋃
Uj\ui

Ki(Uj, uc).

for central-player on the same hyperlink

vj(c) = max
uc

min
Uj

Kj
c (Uj, uc).
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Now we can define the payoff of each simple-player on the hyperlink j as:

E ji =
vj(i)∑

k∈Nj

vj(k)
v(Nj) =

vj(i)∑
k∈Nj

vj(k)
ξHi
.

The payoff of the central-player on the hyperlink j we will define by

E jc =
vj(c)∑

k∈Nj

vj(k)
v(Nj) =

vj(c)∑
k∈Nj

vj(k)
ξHi
.

2.3.3 Third step

Thus we already defined the payoffs of all simple-players. The payoff of
the central-player we will find as a sum of his payoffs on each hyperlink.

Ec =
L∑

j=1

E jc .

This is the main idea of this work.

2.4 Example

For better understanding we will use this solution on the example. Con-
sider the cooperative game with player set N = {1, 2, 3, 4, c} and hypergraph
H1 = {1, 2, c}, H2 = {3, 4, c} which is shown on fig.2 .

For this example we consider that in each hyperlink players have bimatrix
game between each other. It means that for simple-player j in hyperlink Hi

payoff function is

hj(Ui, uc) = Kj(Ui, uc) =
∑

k:uk∈Ui\uj

Kj(u
k, uj) +Kj(u

j, uc),

and for central player the payoff function

hc(U1, U2, . . . , UL, uc) = K1
c (U1, uc) +K2

c (U2, uc) + · · ·+KL
c (UL, uc)
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Figure 2: Communication structure

where
K i

c(U1, uc) =
∑

k:uk∈Ui

K i
c(u

k, uc)

Lets define the bimatrix game for each pair of linked players. We will
write a bimatrix 2× 2 for player i and j where i chooses the row and j chooses
column. We consider that all players have the set of strategies (A,B).

For players 1 and c (
4\8 3\6
1\3 5\6

)
For players 2 and c (

3\6 5\5
0\2 4\8

)
For players 1 and 2 (

6\8 6\0
4\3 0\6

)
For players 3 and c (

8\0 6\10

3\6 9\3

)
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For players 4 and c (
5\2 8\9
7\2 6\5

)
For players 3 and 4 (

0\1 10\4
7\0 3\8

)
First step. Firstly we will find the value of characteristic function for all

coalitions of hyperlinks.

V (H1) =
∑
j∈Γ1

Kj(Ũ1, ûc) +K1
c (Ũ1, ûc),

where ûc the solution of this maximization problem:

max
uc

max
U2

∑
j∈Γ2

Kj(U2, uc) +K2
c (U2, uc)

 =

=
∑
j∈Γ2

Kj(Û2, ûc) +K2
c (Û2, ûc) = 41

In this example ûc = B next we find Ũ1 it is the solution of:

max
U1

∑
j∈Γi

Kj(U1, B) +K1
c (U1, B)

 = 33

Thus V (H1) = 33

V (H2) =
∑
j∈Γ2

Kj(Ũ2, ûc) +K2
c (Ũ2, ûc),

where ûc the solution of this maximization problem:

max
uc

max
U1

∑
j∈Γ1

Kj(U1, uc) +K1
c (U1, uc)

 =
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=
∑
j∈Γ1

Kj(Û1, ûc) +K1
c (Û1, ûc) = 35

In this example ûc = A next we find Ũ2 it is the solution of:

max
U2

∑
j∈Γ2

Kj(U2, A) +K1
c (U2, A)

 = 31

Thus V (H2) = 31

V (H) = max
uc

max
Ui

 ∑
i: Hi∈H

∑
j∈Γi

Kj(Ui, uc) +
∑

i: Hi∈H

K i
c(Ui, uc)

 = 74

Now we use the solution with equal excess to get winnings for hyperlinks

ξHj
= V (Hi) +

V (H)−
∑
i∈H

V (Hi)

L
, j = 1, L.

ξH1
= V (H1) +

V (H)− (V (H1) + V (H2))

2
= 38

ξH2
= V (H2) +

V (H)− (V (H1) + V (H2))

2
= 36

Second step. Now we need to solve two cooperative game as an optimality
principle we will use proportional solution. For the game on hyperlink H1 a
characteristic function for players 1,2 and c

v1(1) = max
u1

min
uc

⋃
U1\u1

Ki(U1, uc) = max
u1

min
uc,u2

(K1(u
1, uc) +K1(u

1, u2)) = 10.

v1(2) = max
u2

min
uc

⋃
U1\u2

Ki(U1, uc) = max
u2

min
uc,u1

(K2(u
2, uc) +K2(u

1, u2)) = 6.

v1(c) = max
uc

min
U1

K1
c (U1, uc) = max

uc

min
u1,u2

(K1
c (u2, uc) +K1

c (u1, uc)) = 11

v1(N1) = ξH1
= 38

E1
1 =

v1(1)

v1(1) + v1(2) + v1(c)
v1(N1) =

380

27

16



E2
1 =

v1(2)

v1(1) + v1(2) + v1(c)
v1(N1) =

228

27

Ec1 =
v1(c)

v1(1) + v1(2) + v1(c)
v1(N1) =

418

27

For the game on hyperlink H2 a characteristic function for players 3,4 and c

v2(3) = max
u3

min
uc

⋃
U2\u3

Ki(U2, uc) = max
u3

min
uc,u4

(K3(u
3, uc) +K3(u

3, u4)) = 15.

v2(4) = max
u4

min
uc

⋃
U2\u4

Ki(U2, uc) = max
u2

min
uc,u3

(K4(u
4, uc) +K4(u

3, u4)) = 11.

v2(c) = max
uc

min
U2

K2
c (U2, uc) = max

uc

min
u1,u2

(K2
c (u3, uc) +Ki(u

4, uc)) = 8

v2(N2) = ξH2
= 36

E3
2 =

v2(3)

v2(3) + v2(4) + v2(c)
v2(N2) =

540

34

E4
2 =

v2(4)

v1(3) + v2(4) + v2(c)
v2(N2) =

396

34

Ec2 =
v2(c)

v1(3) + v2(4) + v2(c)
v2(N2) =

288

34

Third step. Now we need to sum the payoffs of central player from each hyper-
link

Ec =
L∑

j=1

E jc = Ec1 + Ec2 =
288

34
+

418

27
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Chapter 3. Generalization of the game

3.1 Preliminaries

We already construct the TU-game where communication structure is
given by hypergraph with special properties. In this part we will generalize this
game. Now we need to refresh some information about hypergraph.

The reduction of hypergraph (N,H) is called hypergraph (N,H
′
) which

is obtained from the original by removing all hyperlinks that are completely
contained in other hyperlinks. Hypergraph is called reduced if it is equivalent
to its reduction, that is, it does not have a hyperlink inside other hyperlinks.

Figure 3: An example of not reduced hypergraph.

Figure 4: Reduction of hypergraph on figure 3.
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A simple cycle with length s in hypergraph (N,H) is a sequence

(H0, n0, H1, . . . , Hs1, ns1, Hs),

whereH0, . . . , Hs1 different hyperlinks, hyperlinkHs coincides withH0, n0, . . . , ns−1

different vertexes, and ni ∈ Hi ∩Hi+1 for all i = 0, . . . , s− 1.

Figure 5: An a simple cycle on hypergraph.

A first definition of acyclicity for hypergraphs was given by Claude Berge[11]
a hypergraph is acyclic if its incidence graph is acyclic.

Figure 6: A hypergraph with a cycle.
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Figure 7: Incidence graph of hypergraph on fig.6.

3.2 Definition of the game

In this part, we will construct the game where communication structure
defined by acyclic reduced hypergraph (N,H). An interpretation of this com-
munication structure can be that there are some managers who work with some
companies and each company has workers who work just on them. An example
of this communication is given on pic.2.

Let N := {1, . . . , n − m, c1, . . . , cm} be a set of players. Denote the
numbers of hyperlinks in communication structure by L as before. The players
which included just in one hyperlink we will call simple-players, other will be
called complex-players. To construct the game we need to enter some new
notations.

Let ui is strategy of simple-player i from the set of his strategies Ui. Also
denote as ucj a strategy of complex-player j from the set of his strategies Ucj .
The set of simple-players strategies in hyperlink Hi we will denote as Ui and the
set of complex-players strategies in this hyperlink as U c

i . The payoff function for
simple-player j in hyperlink Hi denote as Kj(Ui, U

c
i ), and the payoff function

for complex-player j in hyperlink Hi denote by K
cj
i (Ui, U

c
i ). Now we can define

the total payoff function of each player. For all simple-players for example j
which included in hyperlink the total payoff will be

hj = Kj(Ui, U
c
i )
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the total payoff function of complex-player j we define as

hcj =
∑

i:cj∈Hi

K
cj
i (Ui, U

c
i )

3.3 Cooperation

As before we consider a cooperative game where the players agree to
choose their strategies together to maximize the total sum of theirs payoffs.
The total sum is equal:

n−m∑
i=1

hi +
m∑
i=1

hci =
L∑
i=1

∑
j∈Hi

Kj(Ui, U
c
i ) +

L∑
i=1

∑
j:cj∈Hi

K
cj
i (Ui, U

c
i )

Now we will do the same as before. Firstly we consider the cooperation
game where players are hyperlinks. We will define a characteristic function for
any coalition of hyperlinks, after that we will use an allocation rule and get
payoff for each hyperlink. Next step is consider L cooperation games and get
payoff for each player. Finally we will find a total payoffs for any complex-player
as a sum from his payoffs from each hyperlink in which he exist.

3.3.1 First step

We consider the cooperative game with hyperlinks as players. To de-
fine the characteristic function for all coalitions we need to denote some new
notations. Let Γi be a set of simple-players in hyperlink Hi, Γc

i is a set of
complex-players in hyperlink Hi. Also denote a set of hyperlinks which include
complex-player j as Bcj . For any coalition S we will make a partition on each
hyperlink in s of complex-players set in this hyperlink. The set of strategies
in hyperlink Hi of complex-players who have all the edges in which they are
included in the coalition we denote as U cf

i others by U cn

i , U cf

i
cn

i = U c
i . The set

of hyperlinks which are the players in this part we will denote as H. S ⊆ H is
coalition from this set of links. Now we can define the characteristic function
for all coalitions of hyperlinks as follows
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V (S) =
∑

i:Hi∈S

∑
j∈Γi

Kj(Ũi, Ũ
cf

i , Û
cn

i ) +
∑

i:Hi∈S

∑
j∈Γc

i

K
cj
i (Ũi, Ũ

cf

i , Û
cn

i )

where Û cn

i the solution of this maximization problem:

max
U cn
i

max
Ui

 ∑
i:Hi /∈S

∑
j∈Γi

Kj(Ui, U
cn

i ) +
∑

i:Hi /∈S

∑
j∈Γc

i

K
cj
i (Ui, U

cn

i )

 =

=
∑

i:Hi /∈S

∑
j∈Γi

Kj(Ûi, Û
cn

i ) +
∑

i:Hi /∈S

∑
j∈Γc

i

K
cj
i (Ûi, Û

cn

i )

and Ũi and Ũ cf

i the solution of:

max
U cf
i

max
Ui

 ∑
i:Hi∈S

∑
j∈Γi

Kj(Ui, U
cf

i , Û
cn

i ) +
∑

i:Hi∈S

∑
j∈Γc

i

K
cj
i (Ui, U

cf

i , Û
cn

i )

 =

=
∑

i:Hi∈S

∑
j∈Γi

Kj(Ũi, Ũ
cf

i , Û
cn

i ) +
∑

i:Hi∈S

∑
j∈Γc

i

K
cj
i (Ũi, Ũ

cf

i , Û
cn

i )

for the grand coalition we have:

V (H) = max
U c
i

max
Ui

 ∑
i:Hi∈H

∑
j∈Γi

Kj(Ui, U
c
i , ) +

∑
i:Hi∈H

∑
j∈Γc

i

K
cj
i (Ui, U

c
i )


As allocation rule here we will use Shapley value. Notice that in this step

we can use any allocation rule from classic cooperative theory.

φHi
(V ) =

∑
S⊆H\Hi

|S|!(|N | − |S| − 1)!

N !
(V (S ∪Hi)− V (S))
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3.3.2 Second step

From the previous step we get winnings for each hyperlink in our hyper-
graph. Now we consider a cooperation game on each hyperlink with players
which included in it. It means that now we have L independent cooperative
games. As an optimality principle we will use proportional solution. We denote
the set of players on this hyperlink by Nj. We assume that vj(Nj) = φHj

. Let
is define the value of the characteristic function for each of the simple players
on this j hyperlink as

vj(i) = max
ui

min
U c
j

⋃
Uj\ui

K i(Uj, U
c
j ).

for complex-player i on the same hyperlink

vj(ci) = max
uci

min
U c
j \uci

⋃
Uj

Kci
j (Uj, U

c
j ).

Now we can define the payoff of each simple-player on the hyperlink j as:

E ji =
vj(i)∑

k∈Nj

vj(k)
vj(Nj) =

vj(i)∑
k∈Nj

vj(k)
φHi

.

The payoff of complex-player i on the hyperlink j we will define by

E jci =
vj(ci)∑

k∈Nj

vj(k)
vj(Nj) =

vj(ci)∑
k∈Nj

vj(k)
φHi

.

3.3.3 Third step

Now we get total payoffs for each simple-player. The total payoff for
each complex-player is the sum of his payoffs from each hyperlink in which it
is included.

Eci =
∑

j:Hj∈Bci

E jci
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3.4 Example

Consider the cooperative game with player set N = {1, 2, 3, 4, c1, c2} and
hypergraph H1 = {1, 2, c1}, H2 = {3, c1, c2}, H3 = {c2, 4} which is shown on
fig.8.

Figure 8: Communication structure

For this example we consider that in each hyperlink players have bimatrix
game between each other. It means that for simple-player i in hyperlink Hj

payoff function is

hi(Uj, U
c
j ) = K i(Uj, U

c
j ) =

∑
k:uk∈Uj\ui

K i(uk, ui) +
∑

k:uck∈U c
j

K i(ui, uck),

and for central player the payoff function

hcj =
∑

i:cj∈Hi

K
cj
i (Ui, U

c
i )
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where
Kci

j (Uj, U
c
j ) =

∑
k:uk∈Uj

K i(uk, uci) +
∑

k:uck∈U c
j \uci

K i(uci, uck)

Let’s define the bimatrix game for each pair of linked players. We will
write a bimatrix 2× 2 for player i and j where i chooses the row and j chooses
column. We consider that all players have a set of strategies (A,B).

For players 1 and c1 (
4\8 3\6
1\3 5\6

)
For players 2 and c1 (

3\6 5\5
0\2 4\8

)
For players 1 and 2 (

6\8 6\0
4\3 0\6

)
For players 3 and c1 (

8\0 6\10

3\6 9\3

)
For players c2 and c1 (

5\2 8\9
7\2 6\5

)
For players 3 and c2 (

0\1 10\4
7\0 3\8

)
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For players 4 and c2 (
1\4 2\7
4\0 3\5

)
First step. Firstly we will find the value of the characteristic function for

all coalitions of hyperlinks. In coalition S = {H1}, U cn
1 = U c

1 = (uc1) then the
value of characteristic function of this coalition is equal

V (H1) =
∑
j∈Γ1

Kj(Ũ1, Û
cn

1 ) +
∑
j∈Γc

1

K
cj
1 (Ũ1, Û

cn

1 )

max
U cn
i

max
Ui

 ∑
i:Hi /∈S

∑
j∈Γi

Kj(Ui, U
cn

i ) +
∑

i:Hi /∈S

∑
j∈Γc

i

K
cj
i (Ui, U

cn

i )

 =

=
∑

i:Hi /∈S

∑
j∈Γi

Kj(Ûi, Û
cn

i ) +
∑

i:Hi /∈S

∑
j∈Γc

i

K
cj
i (Ûi, Û

cn

i ) = 50

from this we get Û cn
1 = (ûc1) = B

max
U1

∑
j∈Γ1

Kj(U1, Û
cn

1 ) +
∑
j∈Γc

1

K
cj
1 (U1, Û

cn

1 )

 =

=
∑
j∈Γ1

Kj(Ũ1, Û
cn

1 ) +
∑
j∈Γc

1

K
cj
1 (Ũ1, Û

cn

1 ) = 33

Thus we get V (H1) = 33.
In coalition S = {H2}, U cn

2 = U c
2 = (uc1, uc2) then the value of charac-

teristic function of this coalition is equal

V (H2) =
∑
j∈Γ2

Kj(Ũ2, Û
cn

2 ) +
∑
j∈Γc

2

K
cj
2 (Ũ2, Û

cn

2 )

max
U cn
i

max
Ui

 ∑
i:Hi /∈S

∑
j∈Γi

Kj(Ui, U
cn

i ) +
∑

i:Hi /∈S

∑
j∈Γc

i

K
cj
i (Ui, U

cn

i )

 =
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=
∑

i:Hi /∈S

∑
j∈Γi

Kj(Ûi, Û
cn

i ) +
∑

i:Hi /∈S

∑
j∈Γc

i

K
cj
i (Ûi, Û

cn

i ) = 44

from this we get Û cn
2 = (ûc1, ûc2) = (A,B)

max
U2

∑
j∈Γ2

Kj(U2, Û
cn

2 ) +
∑
j∈Γc

2

K
cj
2 (U2, Û

cn

2 )

 =

=
∑
j∈Γ2

Kj(Ũ2, Û
cn

2 ) +
∑
j∈Γc

2

K
cj
i (Ũ2, Û

cn

2 ) = 31

Thus we get V (H2) = 31.
In coalition S = {H3}, U cn

3 = U c
3 = (uc2) then the value of characteristic

function of this coalition is equal

V (H3) =
∑
j∈Γ3

Kj(Ũ3, Û
cn

3 ) +
∑
j∈Γc

3

K
cj
3 (Ũ3, Û

cn

3 )

max
U cn
i

max
Ui

 ∑
i:Hi /∈S

∑
j∈Γi

Kj(Ui, U
cn

i ) +
∑

i:Hi /∈S

∑
j∈Γc

i

K
cj
i (Ui, U

cn

i )

 =

=
∑

i:Hi /∈S

∑
j∈Γi

Kj(Ûi, Û
cn

i ) +
∑

i:Hi /∈S

∑
j∈Γc

i

K
cj
i (Ûi, Û

cn

i ) = 74

from this we get Û cn
3 = (ûc2) = (B)

max
U3

∑
j∈Γ3

Kj(U3, Û
cn

3 ) +
∑
j∈Γc

3

K
cj
3 (U3, Û

cn

3 )

 =

=
∑
j∈Γ3

Kj(Ũ3, Û
cn

3 ) +
∑
j∈Γc

3

K
cj
i (Ũ3, Û

cn

3 ) = 9

Thus we get V (H3) = 9.
In coalition S = {H1, H2}, U cf

1 = U c
1 = (uc1), U cn

2 = (uc2), U cf
2 = (uc1)

then the value of characteristic function of this coalition is equal
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V (S) = V ({H1, H2}) =
∑

i:Hi∈S

∑
j∈Γi

Kj(Ũi, Ũ
cf

i , Û
cn

i )+
∑

i:Hi∈S

∑
j∈Γc

i

K
cj
i (Ũi, Ũ

cf

i , Û
cn

i )

max
U cn
i

max
Ui

 ∑
i:Hi /∈S

∑
j∈Γi

Kj(Ui, U
cn

i ) +
∑

i:Hi /∈S

∑
j∈Γc

i

K
cj
i (Ui, U

cn

i )

 =

=
∑

i:Hi /∈S

∑
j∈Γi

Kj(Ûi, Û
cn

i ) +
∑

i:Hi /∈S

∑
j∈Γc

i

K
cj
i (Ûi, Û

cn

i ) =

From this we get Û cn
2 = (uc2) = B

max
U cf
i

max
Ui

 ∑
i:Hi∈S

∑
j∈Γi

Kj(Ui, U
cf

i , Û
cn

i ) +
∑

i:Hi∈S

∑
j∈Γc

i

K
cj
i (Ui, U

cf

i , Û
cn

i )

 =

=
∑

i:Hi∈S

∑
j∈Γi

Kj(Ũi, Ũ
cf

i , Û
cn

i ) +
∑

i:Hi∈S

∑
j∈Γc

i

K
cj
i (Ũi, Ũ

cf

i , Û
cn

i ) = 74

Thus we get V ({H1, H2}) = 74.
In coalition S = {H2, H3}, U cf

3 = U c
3 = (uc3), U cn

2 = (uc1), U cf
2 = (uc2)

then the value of characteristic function of this coalition is equal

V (S) = V ({H2, H3}) =
∑

i:Hi∈S

∑
j∈Γi

Kj(Ũi, Ũ
cf

i , Û
cn

i )+
∑

i:Hi∈S

∑
j∈Γc

i

K
cj
i (Ũi, Ũ

cf

i , Û
cn

i )

max
U cn
i

max
Ui

 ∑
i:Hi /∈S

∑
j∈Γi

Kj(Ui, U
cn

i ) +
∑

i:Hi /∈S

∑
j∈Γc

i

K
cj
i (Ui, U

cn

i )

 =

=
∑

i:Hi /∈S

∑
j∈Γi

Kj(Ûi, Û
cn

i ) +
∑

i:Hi /∈S

∑
j∈Γc

i

K
cj
i (Ûi, Û

cn

i ) =
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From this we get Û cn
2 = (uc1) = A

max
U cf
i

max
Ui

 ∑
i:Hi∈S

∑
j∈Γi

Kj(Ui, U
cf

i , Û
cn

i ) +
∑

i:Hi∈S

∑
j∈Γc

i

K
cj
i (Ui, U

cf

i , Û
cn

i )

 =

=
∑

i:Hi∈S

∑
j∈Γi

Kj(Ũi, Ũ
cf

i , Û
cn

i ) +
∑

i:Hi∈S

∑
j∈Γc

i

K
cj
i (Ũi, Ũ

cf

i , Û
cn

i ) = 40

Thus we get V ({H2, H3}) = 40.
In coalition S = {H1, H3}, U cn

1 = U c
1 = (uc1), U cn

3 = U c
3 = (uc2) then the

value of characteristic function of this coalition is equal

V (S) = V ({H1, H3}) =
∑

i:Hi∈S

∑
j∈Γi

Kj(Ũi, Ũ
cf

i , Û
cn

i )+
∑

i:Hi∈S

∑
j∈Γc

i

K
cj
i (Ũi, Ũ

cf

i , Û
cn

i )

max
U cn
i

max
Ui

 ∑
i:Hi /∈S

∑
j∈Γi

Kj(Ui, U
cn

i ) +
∑

i:Hi /∈S

∑
j∈Γc

i

K
cj
i (Ui, U

cn

i )

 =

=
∑

i:Hi /∈S

∑
j∈Γi

Kj(Ûi, Û
cn

i ) +
∑

i:Hi /∈S

∑
j∈Γc

i

K
cj
i (Ûi, Û

cn

i ) =

From this we get Û cn
3 = (uc2) = B, and Û cn

1 = (uc1) = B

max
U cf
i

max
Ui

 ∑
i:Hi∈S

∑
j∈Γi

Kj(Ui, U
cf

i , Û
cn

i ) +
∑

i:Hi∈S

∑
j∈Γc

i

K
cj
i (Ui, U

cf

i , Û
cn

i )

 =

=
∑

i:Hi∈S

∑
j∈Γi

Kj(Ũi, Ũ
cf

i , Û
cn

i ) +
∑

i:Hi∈S

∑
j∈Γc

i

K
cj
i (Ũi, Ũ

cf

i , Û
cn

i ) = 42

Thus we get V ({H1, H3}) = 42.
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For the grand coalition H the value of characteristic function is equal

V (H) = max
U c
i

max
Ui

 ∑
i:Hi∈H

∑
j∈Γi

Kj(Ui, U
c
i , ) +

∑
i:Hi∈H

∑
j∈Γc

i

K
cj
i (Ui, U

c
i )

 = 83

In this example at this step we will use the solution with equal excess as
an optimality principle.

ξHj
= V (Hi) +

V (H)−
∑
i∈H

V (Hi)

L
, j = 1, L.

ξH1
= V (H1) +

V (H)− (V (H1) + V (H2) + V (H3))

3
= 36.(3)

ξH2
= V (H2) +

V (H)− (V (H1) + V (H2) + V (H3))

3
= 34.(3)

ξH3
= V (H3) +

V (H)− (V (H1) + V (H2) + V (H3))

3
= 12.(3)

Second step. Now we need to solve three cooperative game as an opti-
mality principle we will use proportional solution. For the game on hyperlink
H1 a characteristic function for players 1,2 and c1

vj(i) = max
ui

min
U c
j

⋃
Uj\ui

K i(Uj, U
c
j ).

vj(ci) = max
uci

min
U c
j \uci

⋃
Uj

Kci
j (Uj, U

c
j ).

v1(1) = 10, v1(2) = 6, v1(c1) = 11

v1(N1) = ξH1
= 36.(3)

E1
1 =

v1(1)

v1(1) + v1(2) + v1(c1)
v1(N1) =

363.(3)

27

E1
2 =

v1(2)

v1(1) + v1(2) + v1(c)
v1(N1) =

218

27

E1
c1

=
v1(c)

v1(1) + v1(2) + v1(c)
v1(N1) =

399.(6)

27

30



For the game on hyperlink H2 a characteristic function for players 3, c1

and c2

v2(3) = 15, v2(c1) = 8, v2(c2) = 11

v2(N2) = ξH2
= 34.(3)

E2
3 =

v1(1)

v1(1) + v1(2) + v1(c1)
v1(N1) =

515

34

E2
c1

=
v1(2)

v1(1) + v1(2) + v1(c)
v1(N1) =

274.(6)

34

E2
c2

=
v1(c)

v1(1) + v1(2) + v1(c)
v1(N1) =

377.(6)

34

For the game on hyperlink H3 a characteristic function for players 4 and
c2

v3(4) = 3, v3(c2) = 5

v3(N3) = ξH3
= 12.(3)

E3
4 =

v1(1)

v1(1) + v1(2) + v1(c1)
v1(N1) =

37

8

E3
c2

=
v1(2)

v1(1) + v1(2) + v1(c)
v1(N1) =

61.(6)

8

Third step. Now we need to sum the payoffs of players c1 and c2

Ec1 =
∑

j:Hj∈Bc1

E jc1 = E1
c1

+ E2
c1

=
399.(6)

27
+

274.(6)

34

Ec2 =
∑

j:Hj∈Bc2

E jc2 = E2
c2

+ E3
c2

=
377.(6)

34
+

61.(6)

8

So we get the imputation

E1 =
363.(3)

27
, E2 =

218

27
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E3 =
515

34
, E4 =

37

8

Ec1 =
399.(6)

27
+

274.(6)

34
, Ec2 =

377.(6)

34
+

61.(6)

8
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Chapter 4. Software implementation

Finding the solution of the cooperative game is not easy and takes a lot
of time. Because of that, I made a program to solve it. As an environment was
chosen in Python 3. Python is a dynamically typed and high-level programming
language. It is very useful for prototyping. Firstly it needed to create a class
for hypergraphs.

class HyperGraph:

""""Undirected HyperGraph for game"""

def __init__(self, nodes: set, hyperlinks: dict):

"""

Create new HyperGraph

:param nodes: list of nodes

:param hyperlinks: dict hyperlinks by name

"""

self._nodes = nodes

self._hyperlinks = hyperlinks

self._incidence_graph = None

self._check_correct_hyperlink()

if self._incidence_graph is None:

self._create_incidence_graph()

The initializer of this class takes as an input set of nodes and a dictionary
of hyperlinks. Example of input:

graph = HyperGraph(

{’v1’, ’v2’, ’v3’, ’v4’, ’vc’},

{

’h1’: {’v1’, ’v2’, ’vc’},

’h2’: {’v3’, ’v4’, ’vc’},

}

We already assume that hypergraph is should be acyclic and reduced. We
automatically check these properties and is the hypergraph correctly defined.

def _check_correct_hyperlink(self):

self._check_node_existence()

self._check_cardinality()

self._check_external_nodes()

self._check_reduced()

self._check_acycling()

33



For checking acyclicity it needs to create an incidence graph and check it
for acyclicity. The incidence graph is a bipartite graph and to construct it and
check we can use existing module NetworkX. Also, it will be useful to show this
incidence graph by using module matplotlib.

def _create_incidence_graph(self):

g = nx.Graph()

for player in self._nodes:

g.add_node(player, bipartite=0)

for name, hyperlink in self._hyperlinks.items():

g.add_node(name, bipartite=1)

for player in hyperlink:

g.add_edge(name, player)

self._incidence_graph = g

We suppose a special case of an original game where are all linked players
have a bimatrix game between each other. Thus we defined a class of 2 × 2

bimatrix for each pair (i, j) in each hyperlink Hj, i, j ∈ Hj with some methods.

class Bimatrix:

"""Bimaxtrix 2*2 for game"""

def __init__(self, values: list):

"""

Create new bimatrix

:param values: [[(4, 8), (3, 6)], [(1, 3), (5, 6)]]

"""

self._matrix = values

In docstrings shows the example of input. It is a list with two lists
consisting payoffs for players (i, j).

Next step is define a class for calculating the values of characteristic func-
tion for any coalition (_get_ch_function_hyperlinks) of hyperlinks and impu-
tation for them using the solution with equal excess (_get_imputation_hyperlinks)
and the values of characteristic function for any players in each hyperlink
(_get_ch_functions_players) and the total imputation for any players (cal-
culate_imputations) using proportional solution.

In the output, we want to get the values of the characteristic function for
any coalition of hyperlinks, imputation for them, the values of the characteristic
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function for any player in each hyperlink, the total imputation for them and
runtime.

Now we will test this program with already calculated examples. The
input for example in chapter 2

graph = HyperGraph(

{’v1’, ’v2’, ’v3’, ’v4’, ’vc’},

{

’h1’: {’v1’, ’v2’, ’vc’},

’h2’: {’v3’, ’v4’, ’vc’},

}

)

game = SimpleGame(

graph,

{

(’v1’, ’vc’): Bimatrix([[(4, 8), (3, 6)], [(1, 3), (5, 6)]]),

(’v1’, ’v2’): Bimatrix([[(6, 8), (6, 0)], [(4, 3), (0, 6)]]),

(’v2’, ’vc’): Bimatrix([[(3, 6), (5, 5)], [(0, 2), (4, 8)]]),

(’v3’, ’vc’): Bimatrix([[(8, 0), (6, 10)], [(3, 6), (9, 3)]]),

(’v4’, ’vc’): Bimatrix([[(5, 2), (8, 9)], [(7, 2), (6, 5)]]),

(’v3’, ’v4’): Bimatrix([[(0, 1), (10, 4)], [(7, 0), (3, 8)]]),

}

)

And the output is

v(’h1’,) = 33 (strategy: {’v1’: 0, ’v2’: 0, ’vc’: 1})

v(’h2’,) = 31 (strategy: {’v3’: 0, ’v4’: 1, ’vc’: 0})

v(’h1’, ’h2’) = 74 (strategy: {’v1’: 0, ’v2’: 0, ’v3’: 0, ’v4’: 1, ’vc’: 1})

ksi(’h1’) = 38.0

ksi(’h2’) = 36.0

v(’v1’ in h1) = 10

v(’v2’ in h1) = 6

v(’vc’ in h1) = 11

v(’v3’ in h2) = 15

v(’v4’ in h2) = 11

v(’vc’ in h2) = 8

eps(’v1’) = 14.074074074074074

eps(’v2’) = 8.444444444444445

eps(’v3’) = 15.882352941176471

eps(’v4’) = 11.647058823529411
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eps(’vc’) = 23.952069716775597

Run time: 0.001001119613647461 seconds

The input for example in chapter 3

graph = HyperGraph(

{’v1’, ’v2’, ’v3’, ’v4’, ’vc1’, ’vc2’},

{

’h1’: {’v1’, ’v2’, ’vc1’},

’h2’: {’v3’, ’vc1’, ’vc2’},

’h3’: {’v4’, ’vc2’},

}

)

game = SimpleGame(

graph,

{

(’v1’, ’vc1’): Bimatrix([[(4, 8), (3, 6)], [(1, 3), (5, 6)]]),

(’v1’, ’v2’): Bimatrix([[(6, 8), (6, 0)], [(4, 3), (0, 6)]]),

(’v2’, ’vc1’): Bimatrix([[(3, 6), (5, 5)], [(0, 2), (4, 8)]]),

(’v3’, ’vc1’): Bimatrix([[(8, 0), (6, 10)], [(3, 6), (9, 3)]]),

(’v3’, ’vc2’): Bimatrix([[(0, 1), (10, 4)], [(7, 0), (3, 8)]]),

(’vc1’, ’vc2’): Bimatrix([[(2, 5), (2, 7)], [(9, 8), (5, 6)]]),

(’v4’, ’vc2’): Bimatrix([[(1, 4), (2, 7)], [(4, 0), (3, 5)]]),

}

)
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And the output is

v(’h1’,) = 33 (strategy: {’v1’: 0, ’v2’: 0, ’vc1’: 1})

v(’h2’,) = 31 (strategy: {’v3’: 0, ’vc1’: 0, ’vc2’: 1})

v(’h3’,) = 9 (strategy: {’v4’: 0, ’vc2’: 1})

v(’h1’, ’h2’) = 74 (strategy: {’v1’: 0, ’v2’: 0, ’v3’: 0, ’vc1’: 1, ’vc2’: 1})

v(’h1’, ’h3’) = 42 (strategy: {’v1’: 0, ’v2’: 0, ’v4’: 0, ’vc1’: 1, ’vc2’: 1})

v(’h2’, ’h3’) = 40 (strategy: {’v3’: 0, ’v4’: 0, ’vc1’: 0, ’vc2’: 1})

v(’h1’, ’h2’, ’h3’) = 83 (strategy: {’v1’: 0, ’v2’: 0, ’v3’: 0, ’v4’: 0, ’vc1’: 1, ’vc2’: 1})

ksi(’h1’) = 36.333333333333336

ksi(’h2’) = 34.333333333333336

ksi(’h3’) = 12.333333333333334

v(’v1’ in h1) = 10

v(’v2’ in h1) = 6

v(’vc1’ in h1) = 11

v(’v3’ in h2) = 15

v(’vc1’ in h2) = 8

v(’vc2’ in h2) = 11

v(’v4’ in h3) = 3

v(’vc2’ in h3) = 5

eps(’v1’) = 13.456790123456791

eps(’v2’) = 8.074074074074074

eps(’v3’) = 15.147058823529411

eps(’v4’) = 4.625

eps(’vc1’) = 22.880900508351488

eps(’vc2’) = 18.81617647058824

Run time: 0.003995418548583984 seconds

As we see the output coincided with the obtained results. Now we will
construct and solve by using the program two games with more complex com-
munication structure.

Example 1. The first game we will construct based on theory from chapter
two. Communication structure is given by a hypergraph with just 1 complex-
player which included in all hyperlinks. The hypergraph is shown on fig. 9.
Bimatrixes for all pairs of linked players were randomly generated and represent
in output.

Output
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Figure 9

bimatrix[v01, v02] = [[(10, 0), (8, 7)], [(3, 7), (8, 5)]]
bimatrix[v01, vc] = [[(0, 0), (3, 8)], [(10, 2), (2, 8)]]
bimatrix[v02, vc] = [[(5, 9), (7, 9)], [(10, 8), (1, 7)]]
bimatrix[v03, v04] = [[(4, 1), (3, 10)], [(10, 4), (7, 8)]]
bimatrix[v03, vc] = [[(6, 10), (9, 3)], [(0, 5), (3, 4)]]
bimatrix[v04, vc] = [[(9, 3), (0, 9)], [(10, 6), (8, 3)]]
bimatrix[v05, v06] = [[(6, 3), (2, 3)], [(0, 6), (4, 3)]]
bimatrix[v05, vc] = [[(9, 7), (9, 2)], [(7, 10), (2, 3)]]
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bimatrix[v06, vc] = [[(8, 4), (4, 6)], [(5, 0), (10, 8)]]
bimatrix[v07, v08] = [[(3, 1), (7, 5)], [(3, 0), (10, 9)]]
bimatrix[v07, vc] = [[(5, 2), (0, 10)], [(4, 0), (10, 10)]]
bimatrix[v08, vc] = [[(9, 1), (4, 3)], [(10, 4), (1, 0)]]
bimatrix[v09, v10] = [[(2, 0), (3, 6)], [(2, 8), (2, 7)]]
bimatrix[v09, vc] = [[(5, 0), (4, 6)], [(10, 10), (9, 3)]]
bimatrix[v10, vc] = [[(6, 9), (4, 0)], [(0, 10), (2, 4)]]
bimatrix[v11, v12] = [[(6, 9), (8, 0)], [(0, 4), (2, 1)]]
bimatrix[v11, vc] = [[(2, 6), (0, 4)], [(2, 0), (5, 0)]]
bimatrix[v12, vc] = [[(7, 8), (6, 3)], [(7, 1), (8, 10)]]
bimatrix[v13, v14] = [[(4, 7), (10, 9)], [(0, 4), (8, 3)]]
bimatrix[v13, vc] = [[(9, 5), (7, 6)], [(1, 2), (3, 4)]]
bimatrix[v14, vc] = [[(3, 4), (3, 5)], [(4, 8), (10, 6)]]
bimatrix[v15, v16] = [[(2, 4), (7, 8)], [(8, 1), (1, 7)]]
bimatrix[v15, vc] = [[(4, 3), (1, 1)], [(10, 4), (0, 9)]]
bimatrix[v16, vc] = [[(9, 0), (8, 9)], [(9, 3), (4, 10)]]

ksi(’h1’) = 43.0
ksi(’h2’) = 45.0
ksi(’h3’) = 37.0
ksi(’h4’) = 37.0
ksi(’h5’) = 45.0
ksi(’h6’) = 38.0
ksi(’h7’) = 45.0
ksi(’h8’) = 34.0

v(’v01’ in h1) = 10
v(’v02’ in h1) = 14
v(’vc’ in h1) = 16
v(’v03’ in h2) = 13
v(’v04’ in h2) = 16
v(’vc’ in h2) = 11
v(’v05’ in h3) = 11
v(’v06’ in h3) = 8
v(’vc’ in h3) = 13
v(’v07’ in h4) = 7
v(’v08’ in h4) = 9
v(’vc’ in h4) = 11
v(’v09’ in h5) = 11
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v(’v10’ in h5) = 10
v(’vc’ in h5) = 15
v(’v11’ in h6) = 8
v(’v12’ in h6) = 11
v(’vc’ in h6) = 3
v(’v13’ in h7) = 11
v(’v14’ in h7) = 8
v(’vc’ in h7) = 9
v(’v15’ in h8) = 8
v(’v16’ in h8) = 15
v(’vc’ in h8) = 12

eps(’v01’) = 10.75
eps(’v02’) = 15.05
eps(’v03’) = 14.625
eps(’v04’) = 18.0
eps(’v05’) = 12.71875
eps(’v06’) = 9.25
eps(’v07’) = 9.592592592592593
eps(’v08’) = 12.333333333333334
eps(’v09’) = 13.75
eps(’v10’) = 12.5
eps(’v11’) = 13.818181818181818
eps(’v12’) = 19.0
eps(’v13’) = 17.678571428571427
eps(’v14’) = 12.857142857142858
eps(’v15’) = 7.771428571428571
eps(’v16’) = 14.571428571428571
eps(’vc’) = 109.73357082732083

Run time: 18.112125396728516 seconds

Values of characteristic function for all coalitions of hyperlinks added to
the appendix.

Example 2. The second game we will construct based on theory from
chapter three. The communication structure is given by the hypergraph which
is shown on fig. 10. Bimatrixes for all pairs of linked players were randomly
generated and represent in output.
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Figure 10

Output

bimatrix[v1, vc1] = [[(6, 2), (10, 7)], [(6, 10), (2, 9)]]
bimatrix[v2, vc1] = [[(10, 5), (6, 9)], [(4, 6), (1, 6)]]
bimatrix[v2, vc2] = [[(0, 4), (7, 7)], [(3, 3), (10, 5)]]
bimatrix[vc1, vc2] = [[(7, 3), (5, 2)], [(9, 4), (2, 10)]]
bimatrix[v3, vc2] = [[(10, 2), (5, 6)], [(0, 0), (6, 4)]]
bimatrix[vc2, vc3] = [[(8, 4), (5, 6)], [(2, 6), (4, 5)]]
bimatrix[vc3, vc4] = [[(7, 1), (3, 8)], [(3, 4), (2, 5)]]
bimatrix[v4, vc4] = [[(9, 3), (3, 2)], [(3, 7), (10, 9)]]
bimatrix[v5, vc4] = [[(6, 5), (8, 2)], [(5, 4), (0, 10)]]
bimatrix[v5, vc5] = [[(5, 2), (5, 1)], [(3, 2), (7, 0)]]
bimatrix[vc4, vc5] = [[(4, 4), (8, 1)], [(3, 6), (0, 9)]]
bimatrix[v6, vc5] = [[(2, 7), (8, 10)], [(8, 8), (4, 5)]]
bimatrix[v9, vc5] = [[(3, 5), (2, 8)], [(8, 6), (10, 9)]]
bimatrix[v9, vc6] = [[(8, 9), (1, 4)], [(7, 2), (9, 2)]]
bimatrix[vc5, vc6] = [[(7, 3), (1, 10)], [(3, 9), (6, 6)]]
bimatrix[v7, v8] = [[(3, 10), (10, 9)], [(1, 0), (10, 5)]]
bimatrix[v7, vc6] = [[(8, 7), (0, 4)], [(8, 7), (5, 7)]]
bimatrix[v8, vc6] = [[(1, 7), (0, 7)], [(8, 4), (2, 0)]]

ksi(’h01’) = 20.0
ksi(’h02’) = 35.0
ksi(’h03’) = 14.0
ksi(’h04’) = 11.0
ksi(’h05’) = 10.0
ksi(’h06’) = 22.0
ksi(’h07’) = 29.0
ksi(’h08’) = 21.0
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ksi(’h09’) = 43.0
ksi(’h10’) = 32.0

v(’v1’ in h01) = 6
v(’vc1’ in h01) = 7
v(’v2’ in h02) = 9
v(’vc1’ in h02) = 11
v(’vc2’ in h02) = 8
v(’v3’ in h03) = 5
v(’vc2’ in h03) = 4
v(’vc2’ in h04) = 5
v(’vc3’ in h04) = 6
v(’vc3’ in h05) = 3
v(’vc4’ in h05) = 5
v(’v4’ in h06) = 9
v(’vc4’ in h06) = 3
v(’v5’ in h07) = 11
v(’vc4’ in h07) = 9
v(’vc5’ in h07) = 6
v(’v6’ in h08) = 8
v(’vc5’ in h08) = 8
v(’v9’ in h09) = 15
v(’vc5’ in h09) = 14
v(’vc6’ in h09) = 8
v(’v7’ in h10) = 8
v(’v8’ in h10) = 7
v(’vc6’ in h10) = 11

eps(’v1’) = 9.23076923076923
eps(’v2’) = 11.25
eps(’v3’) = 7.777777777777778
eps(’v4’) = 16.5
eps(’v5’) = 12.26923076923077
eps(’v6’) = 10.5
eps(’v7’) = 9.846153846153847
eps(’v8’) = 8.615384615384615
eps(’v9’) = 17.43243243243243
eps(’vc1’) = 24.51923076923077
eps(’vc2’) = 21.22222222222222
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eps(’vc3’) = 9.75
eps(’vc4’) = 21.78846153846154
eps(’vc5’) = 33.46257796257797
eps(’vc6’) = 22.835758835758835

Run time: 26.648218154907227 seconds
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Conclusion

As a result of the work carried out, a game-theoretic model of a cooper-
ative game with a hypergraph as a communication structure. A new charac-
teristic function for coalitions consisting of hyperlinks was introduced. A new
allocation rule for this class of games was proposed.

A program algorithm in Python is created that provides a search for the
values of the characteristic function for hyperlinks and their imputations using
a solution with equal excess. Also, there are search and output values of the
characteristic function for players in each hyperlink. The end result of the
program is an imputation for all players of the original game. The program
was successfully tested on new and already calculated examples.

In the future, it is planned to study other allocation rules for solving
cooperative games with a communication structure given by a hypergraph.
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Appendix
Source code Python 3.

1 import matplotlib.pyplot as plt

2 import networkx as nx

3 import warnings

4

5 from time import time

6 from itertools import combinations, product

7

8

9 class HyperGraph:

10 """"Undirected HyperGraph for game"""

11 def __init__(self, nodes: set, hyperlinks: dict):

12 """

13 Create new HyperGraph

14 :param nodes: list of nodes

15 :param hyperlinks: dict hyperlinks by name

16 """

17 self._nodes = nodes

18 self._hyperlinks = hyperlinks

19 self._incidence_graph = None

20 self._check_correct_hyperlink()

21 if self._incidence_graph is None:

22 self._create_incidence_graph()

23

24 def get_nodes(self):

25 return self._nodes

26

27 def get_hyperlink_names(self):

28 return self._hyperlinks.keys()

29

30 def get_hyperlink(self, name: str):

31 return self._hyperlinks[name]

32

33 def _create_incidence_graph(self):

34 g = nx.Graph()

35 for player in self._nodes:

36 g.add_node(player, bipartite=0)

37 for name, hyperlink in self._hyperlinks.items():

38 g.add_node(name, bipartite=1)

39 for player in hyperlink:

40 g.add_edge(name, player)

41 self._incidence_graph = g

42

43 def show(self):
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44 warnings.filterwarnings(’ignore’)

45 players, hyperlinks = nx.bipartite.sets(self._incidence_graph)

46 pos = {}

47 pos.update(

48 (node, (1, index))

49 for index, node in enumerate(sorted(players, reverse=True))

50 )

51 pos.update(

52 (node, (2, index))

53 for index, node in enumerate(sorted(hyperlinks, reverse=True))

54 )

55 nx.draw(

56 self._incidence_graph, pos=pos,

57 with_labels=True, font_weight=’bold’,

58 node_color=’#AAAAAA’, node_size=800,

59 width=2

60 )

61 plt.show()

62

63 def _check_correct_hyperlink(self):

64 self._check_node_existence()

65 self._check_cardinality()

66 self._check_external_nodes()

67 self._check_reduced()

68 self._check_acycling()

69

70 def _check_node_existence(self):

71 for hyperlink in self._hyperlinks.values():

72 for node in hyperlink:

73 if node not in self._nodes:

74 raise ValueError("{} doesn’t exist".format(node))

75

76 def _check_cardinality(self):

77 for name, hyperlink in self._hyperlinks.items():

78 if len(hyperlink) < 2:

79 raise ValueError(’{} cardinality less than 2’.format(name))

80

81 def _check_external_nodes(self):

82 all_nodes_in_hyperlinks = set()

83 for hyperlink in self._hyperlinks.values():

84 all_nodes_in_hyperlinks.update(hyperlink)

85 external_nodes = self._nodes.difference(all_nodes_in_hyperlinks)

86 if external_nodes:

87 raise ValueError(’{} is/are external’.format(external_nodes))

88

89 def _check_reduced(self):
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90 for name1, hyperlink1 in self._hyperlinks.items():

91 for name2, hyperlink2 in self._hyperlinks.items():

92 if name1 != name2:

93 if hyperlink1.issubset(hyperlink2):

94 raise ValueError(

95 ’{} include {}’.format(name2, name1)

96 )

97

98 def _check_acycling(self):

99 if self._incidence_graph is None:

100 self._create_incidence_graph()

101 cycles = nx.cycle_basis(self._incidence_graph)

102 if cycles:

103 raise ValueError(

104 ’incidence_graph has cycle: {}’.format(cycles[0])

105 )

106

107

108 class Bimatrix:

109 """Bimaxtrix 2*2 for game"""

110 def __init__(self, values: list):

111 """

112 Create new bimatrix

113 :param values: [[(4, 8), (3, 6)], [(1, 3), (5, 6)]]

114 """

115 self._matrix = values

116

117 def __getitem__(self, item):

118 """Get element of matrix by [(i, j)] instead of [i][j]"""

119 return self._matrix[item[0]][item[1]]

120

121 def transpose(self):

122 """Transpose matrix and swap payoffs"""

123 matrix_T = [

124 [(j, i) for i, j in row]

125 for row in self._matrix

126 ]

127 matrix_T[1][0], matrix_T[0][1] = matrix_T[0][1], matrix_T[1][0]

128 return Bimatrix(matrix_T)

129

130 def maxmin_minmax(self):

131 """Get the payoff using max min"""

132 rows = [

133 [i[0] for i in row]

134 for row in self._matrix

135 ]
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136 row = 0 if min(rows[0]) >= min(rows[1]) else 1

137 cols = [

138 [col[i] for col in rows]

139 for i in range(len(rows[0]))

140 ]

141 col = 0 if max(cols[0]) <= max(cols[1]) else 1

142 return rows[row][col]

143

144

145 class SimpleGame:

146 def __init__(self, graph: HyperGraph, bimatrix: dict):

147 """

148 Create new SimpleGame

149 :param graph: Undirected HyperGraph

150 :param bimatrix: Bimatrix 2*2

151 """

152 self._graph = graph

153 self._bimatrix = bimatrix

154 self._check_correct_bimatrix()

155

156 def _check_correct_bimatrix(self):

157 for name in self._graph.get_hyperlink_names():

158 hyperlink = sorted(self._graph.get_hyperlink(name))

159 for node1, node2 in combinations(hyperlink, 2):

160 if (node1, node2) not in self._bimatrix:

161 raise ValueError(

162 "Bimatrix for ({}, {}) doesn’t exist".format(

163 node1, node2

164 )

165 )

166

167 def get_all_coalitions(self):

168 all_s = []

169 hyperlink_names = self._graph.get_hyperlink_names()

170 for i in range(1, len(hyperlink_names) + 1):

171 all_s.extend(combinations(hyperlink_names, i))

172 return all_s

173

174 def get_complement(self, coalition: tuple):

175 return set(self._graph.get_hyperlink_names()).difference(

176 set(coalition)

177 )

178

179 def _get_max_function_complement(self):

180 result = {}

181 for s in self.get_all_coalitions():
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182 n_s = self.get_complement(s)

183 all_pairs = set()

184 all_players = set()

185

186 for some_n_s in n_s:

187 for players in combinations(

188 sorted(self._graph.get_hyperlink(some_n_s)), 2

189 ):

190 all_pairs.add(players)

191 all_players.update(players)

192 all_players = {

193 i: j

194 for i, j in zip(sorted(all_players), range(len(all_players)))

195 }

196

197 max_value = -float(’inf’)

198 max_strategy = None

199 for strategy in product(range(2), repeat=len(all_players)):

200 current_value = 0

201 for player1, player2 in all_pairs:

202 index1 = strategy[all_players[player1]]

203 index2 = strategy[all_players[player2]]

204 current_value += sum(

205 self._bimatrix[(player1, player2)][index1, index2]

206 )

207 if current_value > max_value:

208 max_value = current_value

209 max_strategy = strategy

210

211 result[s] = {

212 i: j

213 for i, j in zip(sorted(all_players), max_strategy)

214 }

215

216 return result

217

218 def _get_ch_function_hyperlinks(self, strategies_by_coalition):

219 result = {}

220 for s in self.get_all_coalitions():

221 fixed_strategy = strategies_by_coalition[s]

222 all_pairs = set()

223 all_players = set()

224

225 for some_s in s:

226 for players in combinations(

227 sorted(self._graph.get_hyperlink(some_s)), 2
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228 ):

229 all_pairs.add(players)

230 all_players.update(players)

231 all_players = {

232 i: j

233 for i, j in zip(sorted(all_players), range(len(all_players)))

234 }

235

236 max_value = -float(’inf’)

237 max_strategy = None

238 for strategy in product(range(2), repeat=len(all_players)):

239

240 check_good_strategy = True

241 for player, player_position in all_players.items():

242 if player in fixed_strategy \

243 and fixed_strategy[player] != strategy[player_position]:

244 check_good_strategy = False

245 break

246 if not check_good_strategy:

247 continue

248

249 current_value = 0

250 for player1, player2 in all_pairs:

251 index1 = strategy[all_players[player1]]

252 index2 = strategy[all_players[player2]]

253 current_value += sum(

254 self._bimatrix[(player1, player2)][index1, index2]

255 )

256 if current_value > max_value:

257 max_value = current_value

258 max_strategy = strategy

259

260 result[s] = (

261 max_value,

262 {

263 i: j

264 for i, j in zip(sorted(all_players), max_strategy)

265 }

266 )

267 return result

268

269 def _get_imputation_hyperlinks(self, ch_functions):

270 fraction = ch_functions[

271 tuple(sorted(self._graph.get_hyperlink_names()))

272 ][0]

273 v_s = {}
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274 for s, (value, _) in ch_functions.items():

275 if len(s) == 1:

276 v_s[s[0]] = value

277 fraction -= sum(v_s.values())

278 fraction /= len(v_s)

279 return {

280 s: ksi + fraction

281 for s, ksi in v_s.items()

282 }

283

284 def _get_ch_functions_players(self):

285 result = {}

286 for hyperlink in self._graph.get_hyperlink_names():

287 result[hyperlink] = {}

288 pairs_by_player = {}

289

290 for player1, player2 in combinations(

291 sorted(self._graph.get_hyperlink(hyperlink)), 2

292 ):

293 if player1 not in pairs_by_player:

294 pairs_by_player[player1] = set()

295 if player2 not in pairs_by_player:

296 pairs_by_player[player2] = set()

297 pairs_by_player[player1].add((player1, player2))

298 pairs_by_player[player2].add((player1, player2))

299

300 for player, pairs in pairs_by_player.items():

301 result[hyperlink][player] = 0

302 for player1, player2 in pairs:

303 bimatrix = self._bimatrix[(player1, player2)]

304 if player == player2:

305 bimatrix = bimatrix.transpose()

306 result[hyperlink][player] += bimatrix.maxmin_minmax()

307

308 return result

309

310 def _get_imputation_players(self, ch_functions, ksi):

311 result = {}

312 for hyperlink_name, chis in ch_functions.items():

313 sum_chi = sum(

314 chis.values()

315 )

316 for player, chi in chis.items():

317 if player not in result:

318 result[player] = 0

319 result[player] += chi * ksi[hyperlink_name] / sum_chi
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320 return result

321

322 def calculate_imputations(self):

323 fixed_strategies = self._get_max_function_complement()

324 ch_functions_hyperlinks = self._get_ch_function_hyperlinks(

325 fixed_strategies

326 )

327 ksi = self._get_imputation_hyperlinks(ch_functions_hyperlinks)

328 ch_functions_players = self._get_ch_functions_players()

329 eps = self._get_imputation_players(ch_functions_players, ksi)

330 return ch_functions_hyperlinks, ksi, ch_functions_players, eps

331

332 def calculate_and_print_report(self):

333 start_time = time()

334 (

335 ch_functions_hyperlinks, imputations_hyperlinks,

336 ch_functions_players, imputations_players

337 ) = self.calculate_imputations()

338

339 for coalition, (value, strategies) in ch_functions_hyperlinks.items():

340 print(

341 ’v{} = {} (strategy: {})’.format(coalition, value, strategies))

342 print()

343 for s, ksi in imputations_hyperlinks.items():

344 print("ksi(’{}’) = {}".format(s, ksi))

345 print()

346 for coalition, info in ch_functions_players.items():

347 for player, value in info.items():

348 print("v(’{}’ in {}) = {}".format(player, coalition, value))

349 print()

350 for player, eps in sorted(imputations_players.items()):

351 print("eps(’{}’) = {}".format(player, eps))

352 print(’\nRun time: {} seconds’.format(time() - start_time))

353

354

355 if __name__ == ’__main__’:

356 graph = HyperGraph(

357 {’v1’, ’v2’, ’v3’, ’v4’, ’vc’},

358 {

359 ’h1’: {’v1’, ’v2’, ’vc’},

360 ’h2’: {’v3’, ’v4’, ’vc’},

361 }

362 )

363 game = SimpleGame(

364 graph,

365 {
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366 (’v1’, ’vc’): Bimatrix([[(4, 8), (3, 6)], [(1, 3), (5, 6)]]),

367 (’v1’, ’v2’): Bimatrix([[(6, 8), (6, 0)], [(4, 3), (0, 6)]]),

368 (’v2’, ’vc’): Bimatrix([[(3, 6), (5, 5)], [(0, 2), (4, 8)]]),

369

370 (’v3’, ’vc’): Bimatrix([[(8, 0), (6, 10)], [(3, 6), (9, 3)]]),

371 (’v4’, ’vc’): Bimatrix([[(5, 2), (8, 9)], [(7, 2), (6, 5)]]),

372 (’v3’, ’v4’): Bimatrix([[(0, 1), (10, 4)], [(7, 0), (3, 8)]]),

373 }

374 )

375

376 # graph = HyperGraph(

377 # {’v1’, ’v2’, ’v3’, ’v4’, ’vc1’, ’vc2’},

378 # {

379 # ’h1’: {’v1’, ’v2’, ’vc1’},

380 # ’h2’: {’v3’, ’vc1’, ’vc2’},

381 # ’h3’: {’v4’, ’vc2’},

382 # }

383 # )

384 # game = SimpleGame(

385 # graph,

386 # {

387 # (’v1’, ’vc1’): Bimatrix([[(4, 8), (3, 6)], [(1, 3), (5, 6)]]),

388 # (’v1’, ’v2’): Bimatrix([[(6, 8), (6, 0)], [(4, 3), (0, 6)]]),

389 # (’v2’, ’vc1’): Bimatrix([[(3, 6), (5, 5)], [(0, 2), (4, 8)]]),

390 #

391 # (’v3’, ’vc1’): Bimatrix([[(8, 0), (6, 10)], [(3, 6), (9, 3)]]),

392 # (’v3’, ’vc2’): Bimatrix([[(0, 1), (10, 4)], [(7, 0), (3, 8)]]),

393 # (’vc1’, ’vc2’): Bimatrix([[(2, 5), (2, 7)], [(9, 8), (5, 6)]]),

394 #

395 # (’v4’, ’vc2’): Bimatrix([[(1, 4), (2, 7)], [(4, 0), (3, 5)]]),

396 # }

397 # )

398

399 graph.show()

400 game.calculate_and_print_report()

Values of characteristic function for all coalitions of hyperlinks for example 1.

v(’h1’,) = 43

v(’h2’,) = 45

v(’h3’,) = 37

v(’h4’,) = 37

v(’h5’,) = 45

v(’h6’,) = 38

v(’h7’,) = 45

v(’h8’,) = 34
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v(’h1’, ’h2’) = 88

v(’h1’, ’h3’) = 80

v(’h1’, ’h4’) = 80

v(’h1’, ’h5’) = 88

v(’h1’, ’h6’) = 81

v(’h1’, ’h7’) = 88

v(’h1’, ’h8’) = 77

v(’h2’, ’h3’) = 82

v(’h2’, ’h4’) = 82

v(’h2’, ’h5’) = 90

v(’h2’, ’h6’) = 83

v(’h2’, ’h7’) = 90

v(’h2’, ’h8’) = 79

v(’h3’, ’h4’) = 74

v(’h3’, ’h5’) = 82

v(’h3’, ’h6’) = 75

v(’h3’, ’h7’) = 82

v(’h3’, ’h8’) = 71

v(’h4’, ’h5’) = 82

v(’h4’, ’h6’) = 75

v(’h4’, ’h7’) = 82

v(’h4’, ’h8’) = 71

v(’h5’, ’h6’) = 83

v(’h5’, ’h7’) = 90

v(’h5’, ’h8’) = 79

v(’h6’, ’h7’) = 83

v(’h6’, ’h8’) = 72

v(’h7’, ’h8’) = 79

v(’h1’, ’h2’, ’h3’) = 125

v(’h1’, ’h2’, ’h4’) = 125

v(’h1’, ’h2’, ’h5’) = 133

v(’h1’, ’h2’, ’h6’) = 126

v(’h1’, ’h2’, ’h7’) = 133

v(’h1’, ’h2’, ’h8’) = 122

v(’h1’, ’h3’, ’h4’) = 117

v(’h1’, ’h3’, ’h5’) = 125

v(’h1’, ’h3’, ’h6’) = 118

v(’h1’, ’h3’, ’h7’) = 125

v(’h1’, ’h3’, ’h8’) = 114

v(’h1’, ’h4’, ’h5’) = 125

v(’h1’, ’h4’, ’h6’) = 118

v(’h1’, ’h4’, ’h7’) = 125

v(’h1’, ’h4’, ’h8’) = 114

v(’h1’, ’h5’, ’h6’) = 126

v(’h1’, ’h5’, ’h7’) = 133

v(’h1’, ’h5’, ’h8’) = 122
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v(’h1’, ’h6’, ’h7’) = 126

v(’h1’, ’h6’, ’h8’) = 115

v(’h1’, ’h7’, ’h8’) = 122

v(’h2’, ’h3’, ’h4’) = 119

v(’h2’, ’h3’, ’h5’) = 127

v(’h2’, ’h3’, ’h6’) = 120

v(’h2’, ’h3’, ’h7’) = 127

v(’h2’, ’h3’, ’h8’) = 116

v(’h2’, ’h4’, ’h5’) = 127

v(’h2’, ’h4’, ’h6’) = 120

v(’h2’, ’h4’, ’h7’) = 127

v(’h2’, ’h4’, ’h8’) = 116

v(’h2’, ’h5’, ’h6’) = 128

v(’h2’, ’h5’, ’h7’) = 135

v(’h2’, ’h5’, ’h8’) = 124

v(’h2’, ’h6’, ’h7’) = 128

v(’h2’, ’h6’, ’h8’) = 117

v(’h2’, ’h7’, ’h8’) = 124

v(’h3’, ’h4’, ’h5’) = 119

v(’h3’, ’h4’, ’h6’) = 112

v(’h3’, ’h4’, ’h7’) = 119

v(’h3’, ’h4’, ’h8’) = 108

v(’h3’, ’h5’, ’h6’) = 120

v(’h3’, ’h5’, ’h7’) = 127

v(’h3’, ’h5’, ’h8’) = 116

v(’h3’, ’h6’, ’h7’) = 120

v(’h3’, ’h6’, ’h8’) = 109

v(’h3’, ’h7’, ’h8’) = 116

v(’h4’, ’h5’, ’h6’) = 120

v(’h4’, ’h5’, ’h7’) = 127

v(’h4’, ’h5’, ’h8’) = 116

v(’h4’, ’h6’, ’h7’) = 120

v(’h4’, ’h6’, ’h8’) = 109

v(’h4’, ’h7’, ’h8’) = 116

v(’h5’, ’h6’, ’h7’) = 128

v(’h5’, ’h6’, ’h8’) = 117

v(’h5’, ’h7’, ’h8’) = 124

v(’h6’, ’h7’, ’h8’) = 117

v(’h1’, ’h2’, ’h3’, ’h4’) = 162

v(’h1’, ’h2’, ’h3’, ’h5’) = 170

v(’h1’, ’h2’, ’h3’, ’h6’) = 163

v(’h1’, ’h2’, ’h3’, ’h7’) = 170

v(’h1’, ’h2’, ’h3’, ’h8’) = 159

v(’h1’, ’h2’, ’h4’, ’h5’) = 170

v(’h1’, ’h2’, ’h4’, ’h6’) = 163

v(’h1’, ’h2’, ’h4’, ’h7’) = 170
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v(’h1’, ’h2’, ’h4’, ’h8’) = 159

v(’h1’, ’h2’, ’h5’, ’h6’) = 130

v(’h1’, ’h2’, ’h5’, ’h7’) = 178

v(’h1’, ’h2’, ’h5’, ’h8’) = 167

v(’h1’, ’h2’, ’h6’, ’h7’) = 171

v(’h1’, ’h2’, ’h6’, ’h8’) = 160

v(’h1’, ’h2’, ’h7’, ’h8’) = 167

v(’h1’, ’h3’, ’h4’, ’h5’) = 162

v(’h1’, ’h3’, ’h4’, ’h6’) = 155

v(’h1’, ’h3’, ’h4’, ’h7’) = 162

v(’h1’, ’h3’, ’h4’, ’h8’) = 151

v(’h1’, ’h3’, ’h5’, ’h6’) = 163

v(’h1’, ’h3’, ’h5’, ’h7’) = 170

v(’h1’, ’h3’, ’h5’, ’h8’) = 159

v(’h1’, ’h3’, ’h6’, ’h7’) = 163

v(’h1’, ’h3’, ’h6’, ’h8’) = 152

v(’h1’, ’h3’, ’h7’, ’h8’) = 159

v(’h1’, ’h4’, ’h5’, ’h6’) = 163

v(’h1’, ’h4’, ’h5’, ’h7’) = 170

v(’h1’, ’h4’, ’h5’, ’h8’) = 159

v(’h1’, ’h4’, ’h6’, ’h7’) = 163

v(’h1’, ’h4’, ’h6’, ’h8’) = 152

v(’h1’, ’h4’, ’h7’, ’h8’) = 159

v(’h1’, ’h5’, ’h6’, ’h7’) = 171

v(’h1’, ’h5’, ’h6’, ’h8’) = 160

v(’h1’, ’h5’, ’h7’, ’h8’) = 167

v(’h1’, ’h6’, ’h7’, ’h8’) = 160

v(’h2’, ’h3’, ’h4’, ’h5’) = 164

v(’h2’, ’h3’, ’h4’, ’h6’) = 157

v(’h2’, ’h3’, ’h4’, ’h7’) = 164

v(’h2’, ’h3’, ’h4’, ’h8’) = 153

v(’h2’, ’h3’, ’h5’, ’h6’) = 127

v(’h2’, ’h3’, ’h5’, ’h7’) = 172

v(’h2’, ’h3’, ’h5’, ’h8’) = 161

v(’h2’, ’h3’, ’h6’, ’h7’) = 165

v(’h2’, ’h3’, ’h6’, ’h8’) = 154

v(’h2’, ’h3’, ’h7’, ’h8’) = 161

v(’h2’, ’h4’, ’h5’, ’h6’) = 165

v(’h2’, ’h4’, ’h5’, ’h7’) = 172

v(’h2’, ’h4’, ’h5’, ’h8’) = 161

v(’h2’, ’h4’, ’h6’, ’h7’) = 165

v(’h2’, ’h4’, ’h6’, ’h8’) = 154

v(’h2’, ’h4’, ’h7’, ’h8’) = 161

v(’h2’, ’h5’, ’h6’, ’h7’) = 173

v(’h2’, ’h5’, ’h6’, ’h8’) = 162

v(’h2’, ’h5’, ’h7’, ’h8’) = 169
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v(’h2’, ’h6’, ’h7’, ’h8’) = 162

v(’h3’, ’h4’, ’h5’, ’h6’) = 157

v(’h3’, ’h4’, ’h5’, ’h7’) = 164

v(’h3’, ’h4’, ’h5’, ’h8’) = 153

v(’h3’, ’h4’, ’h6’, ’h7’) = 157

v(’h3’, ’h4’, ’h6’, ’h8’) = 146

v(’h3’, ’h4’, ’h7’, ’h8’) = 153

v(’h3’, ’h5’, ’h6’, ’h7’) = 165

v(’h3’, ’h5’, ’h6’, ’h8’) = 154

v(’h3’, ’h5’, ’h7’, ’h8’) = 161

v(’h3’, ’h6’, ’h7’, ’h8’) = 154

v(’h4’, ’h5’, ’h6’, ’h7’) = 165

v(’h4’, ’h5’, ’h6’, ’h8’) = 154

v(’h4’, ’h5’, ’h7’, ’h8’) = 161

v(’h4’, ’h6’, ’h7’, ’h8’) = 154

v(’h5’, ’h6’, ’h7’, ’h8’) = 162

v(’h1’, ’h2’, ’h3’, ’h4’, ’h5’) = 207

v(’h1’, ’h2’, ’h3’, ’h4’, ’h6’) = 200

v(’h1’, ’h2’, ’h3’, ’h4’, ’h7’) = 207

v(’h1’, ’h2’, ’h3’, ’h4’, ’h8’) = 196

v(’h1’, ’h2’, ’h3’, ’h5’, ’h6’) = 164

v(’h1’, ’h2’, ’h3’, ’h5’, ’h7’) = 215

v(’h1’, ’h2’, ’h3’, ’h5’, ’h8’) = 204

v(’h1’, ’h2’, ’h3’, ’h6’, ’h7’) = 208

v(’h1’, ’h2’, ’h3’, ’h6’, ’h8’) = 197

v(’h1’, ’h2’, ’h3’, ’h7’, ’h8’) = 204

v(’h1’, ’h2’, ’h4’, ’h5’, ’h6’) = 170

v(’h1’, ’h2’, ’h4’, ’h5’, ’h7’) = 215

v(’h1’, ’h2’, ’h4’, ’h5’, ’h8’) = 204

v(’h1’, ’h2’, ’h4’, ’h6’, ’h7’) = 208

v(’h1’, ’h2’, ’h4’, ’h6’, ’h8’) = 197

v(’h1’, ’h2’, ’h4’, ’h7’, ’h8’) = 204

v(’h1’, ’h2’, ’h5’, ’h6’, ’h7’) = 178

v(’h1’, ’h2’, ’h5’, ’h6’, ’h8’) = 165

v(’h1’, ’h2’, ’h5’, ’h7’, ’h8’) = 212

v(’h1’, ’h2’, ’h6’, ’h7’, ’h8’) = 205

v(’h1’, ’h3’, ’h4’, ’h5’, ’h6’) = 200

v(’h1’, ’h3’, ’h4’, ’h5’, ’h7’) = 207

v(’h1’, ’h3’, ’h4’, ’h5’, ’h8’) = 196

v(’h1’, ’h3’, ’h4’, ’h6’, ’h7’) = 200

v(’h1’, ’h3’, ’h4’, ’h6’, ’h8’) = 189

v(’h1’, ’h3’, ’h4’, ’h7’, ’h8’) = 196

v(’h1’, ’h3’, ’h5’, ’h6’, ’h7’) = 208

v(’h1’, ’h3’, ’h5’, ’h6’, ’h8’) = 197

v(’h1’, ’h3’, ’h5’, ’h7’, ’h8’) = 204

v(’h1’, ’h3’, ’h6’, ’h7’, ’h8’) = 197
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v(’h1’, ’h4’, ’h5’, ’h6’, ’h7’) = 208

v(’h1’, ’h4’, ’h5’, ’h6’, ’h8’) = 197

v(’h1’, ’h4’, ’h5’, ’h7’, ’h8’) = 204

v(’h1’, ’h4’, ’h6’, ’h7’, ’h8’) = 197

v(’h1’, ’h5’, ’h6’, ’h7’, ’h8’) = 205

v(’h2’, ’h3’, ’h4’, ’h5’, ’h6’) = 202

v(’h2’, ’h3’, ’h4’, ’h5’, ’h7’) = 209

v(’h2’, ’h3’, ’h4’, ’h5’, ’h8’) = 198

v(’h2’, ’h3’, ’h4’, ’h6’, ’h7’) = 202

v(’h2’, ’h3’, ’h4’, ’h6’, ’h8’) = 191

v(’h2’, ’h3’, ’h4’, ’h7’, ’h8’) = 198

v(’h2’, ’h3’, ’h5’, ’h6’, ’h7’) = 210

v(’h2’, ’h3’, ’h5’, ’h6’, ’h8’) = 162

v(’h2’, ’h3’, ’h5’, ’h7’, ’h8’) = 206

v(’h2’, ’h3’, ’h6’, ’h7’, ’h8’) = 199

v(’h2’, ’h4’, ’h5’, ’h6’, ’h7’) = 210

v(’h2’, ’h4’, ’h5’, ’h6’, ’h8’) = 199

v(’h2’, ’h4’, ’h5’, ’h7’, ’h8’) = 206

v(’h2’, ’h4’, ’h6’, ’h7’, ’h8’) = 199

v(’h2’, ’h5’, ’h6’, ’h7’, ’h8’) = 207

v(’h3’, ’h4’, ’h5’, ’h6’, ’h7’) = 202

v(’h3’, ’h4’, ’h5’, ’h6’, ’h8’) = 191

v(’h3’, ’h4’, ’h5’, ’h7’, ’h8’) = 198

v(’h3’, ’h4’, ’h6’, ’h7’, ’h8’) = 191

v(’h3’, ’h5’, ’h6’, ’h7’, ’h8’) = 199

v(’h4’, ’h5’, ’h6’, ’h7’, ’h8’) = 199

v(’h1’, ’h2’, ’h3’, ’h4’, ’h5’, ’h6’) = 204

v(’h1’, ’h2’, ’h3’, ’h4’, ’h5’, ’h7’) = 252

v(’h1’, ’h2’, ’h3’, ’h4’, ’h5’, ’h8’) = 241

v(’h1’, ’h2’, ’h3’, ’h4’, ’h6’, ’h7’) = 245

v(’h1’, ’h2’, ’h3’, ’h4’, ’h6’, ’h8’) = 234

v(’h1’, ’h2’, ’h3’, ’h4’, ’h7’, ’h8’) = 241

v(’h1’, ’h2’, ’h3’, ’h5’, ’h6’, ’h7’) = 212

v(’h1’, ’h2’, ’h3’, ’h5’, ’h6’, ’h8’) = 199

v(’h1’, ’h2’, ’h3’, ’h5’, ’h7’, ’h8’) = 249

v(’h1’, ’h2’, ’h3’, ’h6’, ’h7’, ’h8’) = 242

v(’h1’, ’h2’, ’h4’, ’h5’, ’h6’, ’h7’) = 253

v(’h1’, ’h2’, ’h4’, ’h5’, ’h6’, ’h8’) = 242

v(’h1’, ’h2’, ’h4’, ’h5’, ’h7’, ’h8’) = 249

v(’h1’, ’h2’, ’h4’, ’h6’, ’h7’, ’h8’) = 242

v(’h1’, ’h2’, ’h5’, ’h6’, ’h7’, ’h8’) = 250

v(’h1’, ’h3’, ’h4’, ’h5’, ’h6’, ’h7’) = 245

v(’h1’, ’h3’, ’h4’, ’h5’, ’h6’, ’h8’) = 234

v(’h1’, ’h3’, ’h4’, ’h5’, ’h7’, ’h8’) = 241

v(’h1’, ’h3’, ’h4’, ’h6’, ’h7’, ’h8’) = 234

v(’h1’, ’h3’, ’h5’, ’h6’, ’h7’, ’h8’) = 242
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v(’h1’, ’h4’, ’h5’, ’h6’, ’h7’, ’h8’) = 242

v(’h2’, ’h3’, ’h4’, ’h5’, ’h6’, ’h7’) = 247

v(’h2’, ’h3’, ’h4’, ’h5’, ’h6’, ’h8’) = 236

v(’h2’, ’h3’, ’h4’, ’h5’, ’h7’, ’h8’) = 243

v(’h2’, ’h3’, ’h4’, ’h6’, ’h7’, ’h8’) = 236

v(’h2’, ’h3’, ’h5’, ’h6’, ’h7’, ’h8’) = 244

v(’h2’, ’h4’, ’h5’, ’h6’, ’h7’, ’h8’) = 244

v(’h3’, ’h4’, ’h5’, ’h6’, ’h7’, ’h8’) = 236

v(’h1’, ’h2’, ’h3’, ’h4’, ’h5’, ’h6’, ’h7’) = 252

v(’h1’, ’h2’, ’h3’, ’h4’, ’h5’, ’h6’, ’h8’) = 239

v(’h1’, ’h2’, ’h3’, ’h4’, ’h5’, ’h7’, ’h8’) = 286

v(’h1’, ’h2’, ’h3’, ’h4’, ’h6’, ’h7’, ’h8’) = 279

v(’h1’, ’h2’, ’h3’, ’h5’, ’h6’, ’h7’, ’h8’) = 247

v(’h1’, ’h2’, ’h4’, ’h5’, ’h6’, ’h7’, ’h8’) = 287

v(’h1’, ’h3’, ’h4’, ’h5’, ’h6’, ’h7’, ’h8’) = 279

v(’h2’, ’h3’, ’h4’, ’h5’, ’h6’, ’h7’, ’h8’) = 281

v(’h1’, ’h2’, ’h3’, ’h4’, ’h5’, ’h6’, ’h7’, ’h8’) = 324
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