ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (СПбГУ)

Институт Наук о Земле

Кафедра минералогии

Недайвода Ксения Сергеевна

Минералогическая характеристика глин как источник сырья для изготовления керамики позднего бронзового – раннего железного веков (Северная Молдавия)

Выпускная магистерская работа по направлению «Геология»

Профиль «Геммология и экспертиза камня»

Научный руководитель:

доктор г.-м. наук Брусницын А.И.

«___» ____ 2019

Заведующий кафедрой:

доктор г.-м. наук Брусницын А.И.

«___»_____2019

Санкт-Петербург

2019

Содержание

Введение	3
1. Описание участка работ	4
1.1. Археология	4
1.2. Геоморфология	5
1.3. Климат	6
1.4. Гидрография	7
1.5.Стратиграфия	7
1.6.Тектоника	11
2. Методы исследования	14
3. Результаты	21
3.1.Петрографический анализ	21
3.2. Рентгенофлюорисцентная спектроскопия	
3.3. Рентгеновская порошковая дифракция	
3.4. Сканирующая электронная микроскопия	
3.5. Дифракционный термогравиметрический анализ	46
3.6. Инженерно-геологические испытания	49
3.7. Рентгеновская микротомография и порометрический анализ	
Заключение	59
Список литературы	61
Приложение 1. Геологическая карта четвертичных образований	62
Приложение 2. Геологическая карта дочетвертичных образований	63
Приложение 3. Геологическая карта домеловых образований	64

Введение

В конце 2 – начале 1 тысячелетия до н.э. в Северном Причерноморье происходили культурные изменения, связанные с массовыми миграциями различных племен Восточной Европы. Это все нашло отражение в морфологии и технологии производства керамики.

Задача нашего исследования заключается в выявлении источников сырья для изготовления древней керамики и изучение изменения физико-механических характеристик глин в зависимости от их минерального состава. Материал был отобран из коренных выходов горных пород, расположенных вблизи археологических памятников Сахарна, Шолданештъ, Хлиджень (Северная Молдавия).

Исследование включало в себя следующие методы: оптическую микроскопию (OM), рентгенофлюоресцентный анализ (XRF), сканирующую электронную микроскопию (SEM), рентгеновскую порошковую дифракцию (XRD), определение гранулометрического состава и числа пластичности, дифракционный термогравиметрический анализ (DTA-TG), рентгеновскую микротомографию (µ-CT) и порометрический анализ. Так же была изготовлена экспериментальная керамика. Глинистый материал был сформирован в цилиндры и обожжен в диапазоне температур от 400 до 900°С.

Глава 1. Описание участка работ

1.1. Археология

В начале первых веков I тыс. до н.э. происходят изменения в укладе жизни степных племен юга Восточной Европы. Происходит смена оседлого образа жизни на другой, более подвижный – кочевой. В связи с этими переменами, племена все реже используют хрупкую глиняную посуду. Керамические изделия перестают входить в основной инвентарь таких племен. При этом находки археологических раскопок говорят обратное: из года в год количество найденных глиняных изделий только растет.

Изучением данной проблематики многие годы занимались такие исследователи как А.И. Тереножкин, А.И. Мелюкова, С.А. Скорый и др. Каждый из авторов предлагал свою классификацию и типологию керамики. Было выяснено, что керамика, найденная в северопричерноморских погребениях, имеет как местные, так и заимствованные компоненты из «киммерийской» культуры. Геометрические узоры на керамике были схожи с соседними культурами, что могло бы свидетельствовать о тесном контакте двух различных зон и культур. В свою очередь, С.А. Скорый предположил, что посуда могла была быть оставлена оседлым земледельческим поселением.

Многие исследователи начали поиск и сравнение орнамента посуды северопричерноморских находок с орнаментом других соседних культур, таких как причерноморско-балканская, кавказско-крымская и др.

Рис. 1.1. Погребения ранних кочевников Северного Причерноморья с лощеными сосудами, сопоставимыми с керамикой культур Сахарна и Басарабь-Шолдэнешть. Условные обозначения: а – керамика, сопоставимая с посудой культуры Сахарна; б — керамика, сопоставимая с посудой культуры Басарабь-Шолдэнешть (по Кайзер и др., 2017)

В изучении лощенной керамики из Северного Причерноморья остаются актуальными следующие вопросы:

- Пользовались ли кочевники своей посудой, которую археологи относят к «степной» группе?
- 2) Пользовались ли кочевники лесостепной посудой и з Среднего Поднепровья?
- Была ли в использовании «чужая» посуда? Вопрос об использовании посуды других временных и пространственных рамок.
- Каковы были отношения между кочевниками и людьми, ведущими оседлый образ жизни?

Для нашего исследования весьма важно понять, изготавливалась ли посуда «на месте» из локального сырья, но с привнесением орнамента другой культуры, либо это были импортные сосуды, которые кочевники перевезли при смене места проживания.

1.2. Геоморфология

Изучаемая территория расположена в 110 км к северу от Кишинёва на правом берегу реки Днестр.

По форме возвышенность вытянута с северо-запада на юго-восток. Высоты от 380— 320 м на северо-западе до 220—130 м на юго-востоке. Территория расположена на юговосточной окраине Волынско-Подольской возвышенности.

Подольская возвышенность расположена на левом берегу Днестра.

В Подольской возвышенности сочетаются обширные плоские междуречья и глубокие каньонообразные долины (Днестр и его притоки). Северный край возвышенности имеет холмистый характер, приобретенный в результате интенсивной эрозии.

Часть Подольской возвышенности, граничащая с Днестром, представляет собой ступенчатообразную равнину, образованную террасами Днестра. Первичная равнина (плато) расчленено густой гидрографической сетью. Описываемая площадь относится к эрозионно-денудационной равнине (В.Г. Бондарчук). В долине Днестра наблюдаются самые низкие абсолютные отметки (13-14 м). Выделено 8 надпойменных плиоценовых и четвертичных террас.

На данной территории выделяются следующие основные геоморфологические элементы: аккумулятивная равнина (плато), водно-эрозионные врезы долин рек и балок (делювиальные суглинки и дочетвертичные породы); водно-аккумулятивные формы - террасы рек, сложенные аллювиальными отложениями.

Днестр является самой древней и самой крупной рекой на данной территории, с хорошо разработанной долиной шириной до 10 км. Русло реки на территории сильно меандрирует.

Гравитационные формы рельефа представлены древними и современными оползнями на склонах долин.

1.3. Климат

Климат исследуемой территории умеренно континентальный. Атмосферная циркуляция характеризуется западными тёплыми воздушными массами, в меньшей степени влажными атлантическими. Средняя скорость ветра за год небольшая — 2—4 м/с. При прохождении циклонов часто образуются вихревые процессы и сильные штормовые ветры со скоростью 10—15 м/с.

Отрицательные среднесуточные температуры наблюдаются только в зимний период. Средняя температура января –5 °C, июля +21 °C. Абсолютный минимум –36 °C, максимум +41 °C.

Годовое количество осадков 350-460 мм. Таким образом, территория относится к зоне недостаточного увлажнения. Осадки выпадают неравномерно по годам и сезонам. Около 70 % годовых осадков приходится на период с апреля по октябрь.

Зима мягкая и непродолжительная с частым и резким колебанием температуры воздуха. Среднемесячная январская температура равна -5 °С. В отдельные годы температура снижается до -30—36 °С. Снежный покров маломощный и держится от двух с половиной месяцев. Весной восточная циркуляция воздушных масс становится западной. Устанавливаются положительные среднесуточные температуры. [13]

Лето солнечное, теплое и засушливое, с большим количеством ясных дней. Среднесуточная температура июля составляет +21 °C. Временами с юга проникают тропические воздушные массы, которые приводят к сухой и жаркой погоде с температурами 35 °C. Летом до нередко наступают засухи, которые сопровождаются суховеями. Осадки выпадают в виде ливней с грозами и градом. Растительный покров типичен для переходной зоны между лесостепью и степью. Осень характеризуется тёплой и солнечной погодой. Воздушные массы приходят с северовостока и востока с понижением температуры воздуха. С запада проникают влажные циклоны, способствующих увеличению дождливых и пасмурных дней, так же наблюдается туман.

1.4. Гидрография

6

На описываемой территории протекает река Днестр, которая относится к бассейну Чёрного моря.

Первичная равнина (плато) расчленено густой гидрографической сетью.

Питание Днестра происходит за счет осадков и таяния снега, а также за счет фильтрации из поверхностных водотоков. Для реки свойственны внезапные подъёмы уровня воды, нередки наводнения.

Территория относится в основном к Причерноморской впадине- артезианскому бассейну первого порядка.

Минерализация Днестра возрастает вниз по течению от 300 до 450 мг/дм3. Освоенные резервы воды приходятся на долину Днестра, в других районах подземные воды часто имеют высокую минерализацию (так как проходят через толщи известняка), и не пригодны для питья. По составу воды гидрокарбонатно-сульфатные магниево-кальциево-натриевые.

1.5. Стратиграфия

Территория современной Молдавии имеет сложное геологическое строение, связанное с непосредственной близостью сочленения Восточно-Европейской платформы и Скифской плиты. Отложения изучаемого региона представлены двумя крупными структурными комплексами – кристаллическим фундаментом и осадочным чехлом. Графический материал представлен в Приложениях 1, 2, 3.

К породам кристаллического фундамента относятся образования архейского и ранне-протерозоского возраста. Наиболее древними породами архея являются кристаллические сланцы и биотитовые гнейсы *Днепрово-бургской серии*, моложе их – *Подольский чарнокитовый комплекс* грантитов и плагиогранитов с интрузиями основного состава (габбро, габбро-нориты). (Гидрогеология СССР)

Днепровский комплекс (руАRdb) представлен плагиогранитами и плагиомигматитами невыдержанного состава и образует куполовидные структуры.

Бердичевский комплекс (уРR1b) сложен аплитоидными и аплито-пегматоидными гранитами, гранитами и мигматитами с апатитом, магнетитом и голубым кварцем. Данный комплекс представляет собой продукт ультраметаморфической переработки пород немировского комплекса.

Протерозойская акротема

Верхняя эонотема

Вендская система

Волынская серия

Вендские отложения *волынской серии (Vvl)* представлены аркозовыми косослоистыми песчаниками, конгломератами, гравелитами и базальтами. Мощность толщ в некоторых местах может достигать 61 м.

Могилёв-подольская серия

Ярышевская свита (Vjar) сложена аргиллитами, алевролитами, песчаниками, туфами и туффитами. Нагорянская свита (Vng) состоит из песчаников, аргиллитов и алевролитов.

Каниловская серия

В состав *каниловской свиты (Vkn)* входят песчаники, алевролиты и аргиллиты. Суммарная мощность могилёв-подольской и каниловской серий может достигать 200 м.

Фанерозойская эонотема Палеозойская эратема Ордовикская система Средний-верхний отделы Молодовская серия

Отложения *молодовской серии* (*O*₂₋₃*m*) принято подразделять на две свиты: нижнюю – *гораевскую* и верхнюю – *субочскую*. На карте их не разделяют. Гораевская свита представлена песчаниками кварцевыми мелкозернистыми серого и темно-серого цвета с прослоями конгломератов. Мощность пород составляет достигает 7 м. Субочская свита сложена органогенно-обломочными массивными известняками мощностью до 9 м.

Силурийская система

Нижний отдел

Лландоверийский ярус

Лландоверийский ярус (S₁l) представлен отложениями болотинской свиты, которая подразделяется на две свиты – морошештскую и степь-сочскую. Морошештская представлена доломитизированными известняками, песчаниками с прослоями мергелей и глинистых известняков. Средняя мощность свиты составляет около 15 м. Степь-сочская

8

свита состоит из аргиллитов с прослойками пелитоморфных известняков. Мощность – до 12 м.

Венлокский ярус

Китайгородский надгоризонт входит в состав *венлокского яруса (S₁v)*. Надгоризонт включает в себя бельцкую свиту, состоящую из темно-серных органогенных известняков. Мощности могут достигать 32-75 м.

Верхний отдел

Лудловский ярус

Лудловский ярус (S₂ld) включает в себя пугойскую и малиновецкую свиты. Породы представлены доломитами с прослоями доломитовых мергелей, аргиллитов. Мощность обеих свит может достигать 200 м.

Меловая система

Верхний отдел

Сеноманский ярус

Сеноманский ярус (K₂s) подразделяется на два подъяруса: нижний и верхний. Нижний сеноман сложен кварцево-глауконитовыми песками, песчано-глауконитовыми известняками, опоками, базальными конгломератами. Мощность отложений может достигать 45 м. Верхний подъярус представлен глауконито-кварцевыми песками и алевролитами. Мощность на севере может достигать 15-20 м.

Неогеновая система

Нижний отдел

Сарматский ярус

Сарматский ярус (N₁s) на территории исследования включает в себя нижнесарматский, среднесарматский и верхнесарматский подъярусы. Нижнесарматский подъярус (N₁s₁) сложен известняками и песчаниками в нижней части и мергелями, глинами с прослоями известняков – в верхней. Мощность составляет до 60 м.

*Среднесарматский подъярус (N*1*s*2) сложен глинами карбонатными с небольшими прослоями известняков, выше – глинами слабо алевритистыми. Мощность – до 300-400 м.

Верхнесарматский подъярус – мэотический ярус (N₁s₁-m) сложен континентальными речными, дельтовыми и озерными отложениями. Породы представлены глинами с прослоями алевритов и песков. Максимальная мощность может достигать 300 м.

Верхний отдел

Киммерийский ярус

Киммерийский ярус (N₂k) слагает надпойменные плиоценовые террасы Днестра и представлен гауренской древнеаллювиальной толщей. Она сложена ржаво-бурыми и желтовато-серыми песками с примесью гравия и гальки, общей мощностью до 7 м.

Акчагыльский ярус

Акчагыльский ярус (N2a) объединяет отложения двенадцатых, одиннадцатых и нижних частей десятых аллювиальных террас. Двенадцатые террасы сложены чередованием пачек глин и песчаника, одиннадцатые – разнозернистыми песками с прослоями конгломератов, десятые – пески, гравий, галька песчаников, алевролитов, карпатских яшм. Мощность яруса достигает 14 м.

Апшеронский ярус

Апшеронский ярус (N₂ap) представлены песчано-гравийно-галечными отложениями надпойменных террас и достигают мощности 20 м.

Четвертичная система

Нижнее звено

Породы раннего плейстоцена представлены песчано-гравийным-галечным материалом и относятся к восьмой и седьмой аллювиальным надпойменным террасам р. Днестр и р. Прут. Мощности толщ достигают 20 м. Широко распространены отложения шестой аллювиальной террасы. Нередко все три террасы (al) оказываются нерасчлененными и представлены как одна.

Нижнее-средние звенья

В приустьевой части р. Прут распространены лиманно-озерные отложения. Четвертые-восьмые аллювиальные надпойменные террасы (al-II) представлены мелкозернистыми песками, глинистыми алевритами и глинами мощностью до 2,2 м.

Нижнее-верхнее звенья

10

Аллювиальные объединенные террасы (al-III) представлены песчано-гравийногалечными отложениями.

Эолово-делювиальные и элювиальные отложения (vd,el-III) сложены серо-зелеными оглееными суглинками и глинами с гидроморфными ископаемыми почвами.

Эолово-делювиальные отложения (vdI-III) состоят из отложений субаэральных толщ вторых-восьмых надпойменных террас и водораздельных пространств. Террасы сложены буровато- и серовато-желтыми тяжелыми суглинками, а водоразделы – светло-желтыми легкими и тяжелыми суглинками, лессовидными. Мощность может достигать 50 м.

Верхнее звено

Аллювиальные и аллювиально-морские (дельтовые) отложения первых-третьих надпойменных террас (aIII) сложены разнозернистыми песками, галечниками с прослоями супесей, суглинков и гидроморфных почв мощностью до 10-20 м.

Верхнее-современное звенья

Элювиально-делювиальные отложения (edIII-IV) представлены суглинками и глинами с щебнем, мощностью до 5 м.

Делювиальные образования (dIII-IV) состоят из бурых и темно-бурых суглинков мощностью 2-5 м.

Современное звено

Аллювиальные современные отложения (*aIV*) сложены суглинками, глинами с илами, песками и галечниками. Мощность толщ варьирует от 3 до 7 м, в некоторых местах может достигать 30 м.

1.6. Тектоника

Территория Молдавии относится к зоне сочленения Восточно-Европейской платформы и Скифской плиты (Гребенщиков, Проданов, 2014). Блоки разделяются глубинным разломом по линии Леово – Комрат – Плахтеевка – Белгород-Днестровский, что было подкреплено геофизическими исследованиями.

Территория осложнена рядом структур различного порядка:

- 1) Восточно-Европейская платформа, Скифская плита;
- 2) Украинский щит, Молдавская плита;
- Котовская силурийская впадина, Молдавская юрская впадина, Причерноморская мел-палеогеновая впадина;

- Ореховско-Суворовский и Нижнепрутский горсты, Боградско-Вилковский выступ и Алуатский, Саратско-Тузловский, Нижнедунайский и Килийский грабены;
- 5) Различные мелкие локальные поднятия и антиклинальные складки.

Столь разнообразное тектоническое районирование обусловило сложное геологическое строение региона. Участок нашего исследования расположен в зоне сочленения Молдавской плиты и Украинского щита, рядом с Приднестровским разломом. В строении Молдавской плиты выделяется два структурных этажа: нижний – фундамент, верхний – осадочный чехол.

Puc 1.2. Схема тектонического районирования, лист L-35 (<u>http://webmapget.vsegei.ru/index.html</u>)

Фундамент платформы сложен комплексом метаморфизованных осадочных, вулканогенных и ультраметаморфических пород, магматических интрузивных и метасоматических образований архей-протерозойских пород. Фундамент представлен гранитами, габбро, гнейсами, кварцитами, гранулитами, метаморфическими сланцами. В с.Косоуцы кристаллический фундамент достигает отметок 30-40 м, а в южном направлении наблюдается плавное понижение в сторону отметок -1988 м (скв. 111, Яргора). Сейсмичность данного региона варьирует от 6 до 7 баллов. Поднятие фундамента зафиксировано с амплитудой +2 мм/год, а в нижнем течении Днестра фиксируется опускание территории на -2 мм/год. Поверхность фундамента сильно эродирована, а выше залегают породы осадочного чехла.

Выше залегает байкальский подэтаж с породами вендско-раннекембрийского структурно-формационного комплекса с резким угловым и стратиграфическим

несогласиями. Терригенные образования венда представлены песчаниками, аргиллитами, алевритами и туффитами. Красноцветные грубозернистые песчаники залегают на верхней границе и могут относиться как к вендским, так и к кембрийским отложениям. Мощность всех отложений этого возраста в изучаемом нами районе составляет 50-70 м.

С раннего кембрия до среднего ордовика происходил перерыв в осадконакоплении. Выше залегает альпийский структурный подэтаж, сложенный породами мела и кайнозоя.

Структурно-формационный комплекс среднего ордовика – раннего девона представлен терригенно-карбонатными толщами мощностью до 550 м. Особенно большие мощности наблюдаются в отложениях силура – раннего девона. Они сложены известняками, доломитами, доломитизированными известняками, а их мощность колеблется от 160 м на окраинах и до 520 м в средней части седиментационного бассейна. Отложения этого комплекса формируют Котовскую платформенную депрессию. В конце раннего девона и до средней юры так же отмечен перерыв в осадконакоплении.

Формирование Молдавской юрской впадины произошло в связи с отложением среднеюрского – раннемелового структурно-формационного комплекса. Литологически отложения юры представлены аргиллитами, алевролитами, песчаниками, известняками, а раннемеловые – глинами, песчаниками, песками, алевролитами и прослоями известняков.

В сеномане произошла трансгрессия, перекрывшая почти всю территорию Днестровско-Прутского междуречья, оставив после себя комплекс позднемеловых и палеогеновых отложений. Они представлены глинистыми известняками, мергелями, писчим мелом, мелоподобными и кремнеземистыми известняками, трепеловокремнистыми породами, глауконитовыми песками мощностью до 800 м. Поверхность отложений осложнена различными поднятиями и понижениями эрозионно-тектонического происхождения.

Формирование миоценового структурно-формационного комплекса произошло благодаря неотектонической активности Карпатского орогена. Породы комплекса представлены известняками, мергелями, глинами и песчаниками мощностью до 500 м.

Плиоценово-антропогеновый структурный комплекс представлен аллювиальными (конгломераты, гравий, галечники, пески, алевриты, глины) и субаэральными (суглинки, супеси, ископаемые почвы, глины) породами. Отложение получили распространение в надпойменных террасах, а их глубина варьирует от 0-25 м на севере до 70-75 м на югозападе.

13

Глава 2. Методы исследования

В данной главе рассматриваются методики изучения керамики и глинистых пород, необходимые для установления технологии производства и происхождения сырья, использованного поселениями в раннем железном веке.

Был применен комплекс естественно-научных методов. Совокупность нескольких методик позволит упростить оценку технологического производства керамики. Исследования позволяют проанализировать и определить взаимосвязь между химическими и микроструктурными изменениями керамики в сравнении с известными образцами. Очень важно изучить морфологические и химико-минералогические изменения в зависимости от температуры обжига. В лабораторных условиях были воссозданы возможные керамические образцы, которые в последствии были подвергнуты различным температурным изменениям (от 400 до 900°С). Образцы горных пород были отобраны из коренных обнажений вблизи поселений Сахарна, Шолданешть и Хлиджени.

В свою очередь, исследуемая керамика была подвержена обратному процессу: были проанализированы и изучены окончательные характеристики, а также определены предполагаемые технологии и методики ее производства.

Методики были отобраны на основании целей исследования и изученных литературных данных. Инновационных методы были выбраны в связи со своей перспективностью в получении данных, связанных с данной отраслью. Был применен комплексный подход с изучением химического состава, минеральных фаз, микроструктуры, морфологии гончарных изделий. Это обосновывается зависимостью данных характеристик от состава исходного материала, технологии и сохранности образцов (Ricci, 2017).

Оптические и морфологические свойства изучены при помощи оптической микроскопии (OM) и сканирующей электронной микроскопии (SEM); химические свойства помощи рентгеновской порошковой дифракции изучены при (XRD), рентгенофлюоресцентной дифракционного спектроскопии (XRF) И термогравиметрического анализа (DTA-TG). Рентгеновская микротомография (µ-CT) и анализ по определению общего объема открытых пор были проведена для исследования приготовленной керамики на структурную целостность. Для уточнения физикомеханических свойств исходного материала были проведены инженерно-геологические исследования: гранулометрический состав и определение числа пластичности (пределы Аттенберга).

14

Петрографический анализ. Образцы были проанализированы под поляризационным микроскопом Leica DMLP на кафедре минералогии СПбГУ. Это позволит определить минералогический состав, процентное содержание, форму зерен и пространственное расположение, поры. Фотографии образцов были сделаны на оптическом микроскопе Leica 450P с микропозиционным столиком. Анализ сделан в РЦ «Рентгенодифракционные методы исследования».

Рентгенофлюоресцентная спектроскопия (XRF). Данный анализ был сделан при помощи вакуумного рентгенофлюоресцентного кристалл-дифракционного сканирующего спектрометра «СПЕКТРОСКАН МАКС-GV» в РГПУ им. А.И. Герцена. Исследование проводится для изучения валового химического состава керамики и исходного материала.

Для исследования были отобраны 6 проб глинистого материала и сформированы в «таблетки». Глинистые породы просушивались при T=105°C, истирались в агатовой ступке и отжигались при T=800°C (8 часов). Приготовленный таким образом материал (приблизительно 0,5 г) запрессовывался в «таблетки» из борной кислоты диаметром 1,5 см при помощи гидравлического пресса с давлением 10 Па.

Образец облучают первичным излучением рентгеновской трубки, далее измеряют интенсивность вторичного флюоресцентного излучения на длинах волн. Вторичное флюоресцентное излучение разлагается в спектр с помощью кристалла-анализатора, имеет высокое разрешение и хорошо подходит для многокомпонентных веществ.

Рентгеновская порошковая дифракция (XRD). Исследования были выполнены в Ресурсном центре СПбГУ «Рентгенодифракционные методы исследования» на настольном дифрактометре Rigaku «MiniFlex II» с кобальтовым анодом. На приборе определяется минералогический состав песчано-глинистых пород и керамики. Обработка результатов производилась в программе PDXL.

Всего было обработано 6 проб глинистых грунтов. В начале был определен валовый минеральный состав образцов. Пробы растирались в агатовой ступке, после при помощи этилового спирта распределялись на предметном стекле и помещались в дифрактометр. Съемка проведена в диапазоне углов 5-70° 2Ө и с шагом 2°/мин. Следует отметить, что при измельчении грунта исключается растирание во избежание изменения политипии глинистых минералов.

Из-за специфики глинистых минералов и для исключения ошибочных результатов, было решено сделать дополнительные исследования с глинистым материалом. Для

удаления песчаной компоненты порода ситовалась и отбиралась илистая фракция (<71 mic). Глинистый материал растворяли в ёмкости с водой, отстаивали в течении 1 минуты и отбирали ориентировочно 1 см³ суспензии с глубины 1 см от поверхности и наносили на предметное стекло. Делались три исследования каждого образца: пробы, высушенные на воздухе, пробы, насыщенные этиленгликолем, и пробы, отожженные при 500°C в течении 4 часов.

При насыщении этиленгликолем межслоевое пространство глинистых минералов расширяется и пики заметно сдвигаются в коротковолновую область по сравнению с воздушно-сухими препаратами. Отжиг образцов производился для выявления каолина в породе. При температуре свыше 500°С каолин распадается, становится аморфным (метакаолином) и его пики пропадают.

Сканирующая электронная микроскопия в совокупности с энергодисперсионным микрозондом (SEM-EDX). Исследование проведено в Ресурсном Центре СПбГУ «Геомодель» на сканирующем электронном микроскопе Hitachi S-3400N, оборудованном рентгеновским энергодисперсионным анализатором Oxford X-Max 20. Условиями эксперимента: ускоряющее напряжение 20 кВ, ток пучка 1 нА, время сбора данных 30 с. Образцы глинистых пород были изучены в прозрачно полированных шлифах, образцы керамики были залиты эпоксидной смолой в шайбы диаметром 2,4 см. Напыление образцов для SEM осуществлялось графитом.

Дифракционный термогравиметрический анализ (DTA-TG). Анализ проводился в ресурсном центре «Рентгенодифракционные методы исследования» на приборе Netzsch STA 449 F3. Исследования проводились в воздушной среде. Термогравиметрический анализ проводился в интервале температур 25-1000°C с градиентом 10°/мин. Для ДТА анализа образцы керамики были очищены от загрязнений, промыты в ультразвуковой ванночке и тщательно истерты в агатовой ступке, глинистые породы были истолчены в агатовой ступке и с помощью сита была отобрана илистая фракция (<71 mic).

Инженерно-геологические испытания. Методики для получения данных содержатся в действующем ГОСТе 25100-2011 «Грунты. Классификация». Испытания проводились в грунтовой лаборатории СПбГУ.

Для определения физических характеристик использовался ГОСТ 5180-84 «Грунты. Методы лабораторного определения физических характеристик». Стоит сразу отметить характеристики, определяемые методиками, описанными в данном стандарте:

• Гигроскопическая влажность;

16

- Плотность частиц грунта;
- Влажность границы текучести;
- Влажность границы раскатывания.

Гигроскопическая влажность определяется путем просушивания навески грунта в сушильном шкафу. В бюкс отбирается навеска 10-20 г в воздушно-сухом состоянии, растертом и просеянном через сито N 1. Бюкс взвешивается с закрытой крышкой и помещается в сушильный шкаф на 5 часов при температуре 105°C. Далее грунт ставится в эксикатор для остывания и после взвешивается.

Гигроскопическая влажность грунта (w_{гигр}, %) вычисляется по формуле (согласно ГОСТ 5180-84):

 $w_{\text{гигр}} = 100(m_1 - m_0)/(m_{0-}m),$

где т – маса пустого бюкса с крышкой, г;

m₁ – масса влажного грунта с бюксом и крышкой, г;

то – масса высушенного грунта с бюксом и крышкой, г.

Плотность частиц грунта определяется отношением массы частиц грунта к их объему. В самом начале опыта взвешиваются пикнометры, отбирается навеска 15 г, далее осуществляется повторное взвешивание уже с навеской. Пикнометры, наполненные водой на 1/3, ставят на песчаную баню и кипятят 1 час. В охлажденные пикнометры доливают воду до мерной риски и ставят в ванную с водой до приобретения комнатной температуры. Далее пикнометры вытирают снаружи от воды и взвешивают. Пробу выливают, пикнометры ополаскивают и наливают в них дистиллированную воду и проводят манипуляции, описанные выше, при фиксированной температуре.

Плотность частиц грунта (р_s, г/см³), вычисляется по формуле (согласно ГОСТ 5180-84):

 $\rho_s = \rho_w m_0 / (m_0 + m_2 - m_1),$

где m_0 – масса сухого грунта, г;

m₁ – масса пикнометра с водой и грунтом после кипячения при температуре испытания, г;

m2 – масса пикнометра с водой при той же температуре, г;

ρ_w – плотность воды при той же температуре, г/см (см. Приложение 11 данного стандарта).

При использовании воздушно-сухого грунта, то вычисляют по формуле:

 $m_0 = m/(1 + 0.01 w_{\text{гигр}}),$

где т – масса пробы воздушно-сухого грунта, г;

17

w_{гигр} – гигроскопическая влажность грунта, %.

Влажность границы текучести определяется как влажность приготовленной из исследуемого грунта пасты, при которой балансирный конус погружается под действием собственного веса за 5 с на глубину 10 мм.

Образец грунта в воздушно-сухом состоянии растирают в фарфоровой ступке, удаляя растительные остатки крупнее 1 мм, увлажняют дистиллированной водой до состояния густой пасты, перемешивая шпателем, и выдерживают в закрытом стеклянном сосуде не менее 2 часов. Небольшими порциями плотно укладывают пасту в цилиндрическую чашку к балансирному конусу. Поверхность пасты заглаживают шпателем вровень с краями чашки. Балансирный конус, смазанный тонким слоем вазелина, плавно опускают в пасту под давлением собственного веса. Погружение конуса в пасту в течении 5 с на глубину 10 мм свидетельствует о влажности грунта, соответствующей границе текучести. По достижении границы текучести из пасты отбирают пробы массой 15-20 г для определения влажности и ставят в сушильный шкаф на 5 часов при температуре 105°С. Расчет производится по аналогичной формуле, как и в расчете гигроскопической влажности.

Влажность границы раскатывания определяется из пасты исследуемого грунта, раскатываемая в жгут диаметром 3 мм и длиной 3-10 мм.

Паста тщательно перемешивается и отбирается небольшой кусочек, который раскатывается ладонью на стеклянной или пластмассовой пластинке до образования жгута диаметром 3 мм. Жгут должен распадаться на кусочки длинной 3-10 мм по поперечным трещинам, отрывать категорически нельзя. Длина раскатываемого жгута не должна превышать ширину ладони, допускается слегка надавливать на раскатываемый жгут. Масса кусочков должна составлять 10-15 г, крышку стаканчика в обязательном порядке необходимо закрывать во избежание преждевременного высыхания грунта. Бюксы с грунтом ставятся в сушильный шкаф на 5 часов при температуре 105°C, расчет производится аналогично с вычислением остальных влажностей.

Разность между влажностью на границе текучести и на границе раскатывания называется *числом пластичности*.

Для определения гранулометрического состава используется ГОСТ 12536-79 «Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава».

Грунтовая проба взвешивается и просеивается через сита 10, 5, 2, 1 мм. Из сита размерностью 1 мм отбирается навеска в 30-35 г для дальнейшего определения частиц. Отобранная навеска засыпается в стеклянную колбу и заливается водой на 1/3 колбы. В

сосуд доливают 1см³ 25% раствора аммиака и ставят кипятиться на песчаную баню в течении 1 часа. После суспензию остужают до комнатной температуры.

Далее суспензию сливают в стеклянный цилиндр ёмкостью 1 л сквозь сито с размером отверстий 0,1 мм, помещенное в воронку (d~14 см). Частицы грунта, оставшиеся на стенках колбы, следует тщательно смыть. Все задержавшиеся на сите частицы грунта необходимо смыть струей воды в фарфоровую чашку, где их следует тщательно растереть пестиком с резиновым наконечником. Слить взвесь сквозь сито, растирание осадка продолжать до полного осветления воды над частицами, но также следует помнить о том, что выходить больше объема цилиндра (1 л) нельзя.

Частицы, оставшиеся после отмывания грунта, следует перенести в фарфоровый тигль и высушить на песчаной бане. Далее эти частицы следует просеять сквозь сита 0,5; 0,25 и 0,1 мм.

Суспензия в цилиндре доводится до объема 1 л и взбалтывается в течение 1 минуты до полного взмучивания осадка со дна цилиндра. В воду опустить ареометр и измерить плотность суспензии. Ареометр не должен касаться стенок суспензии. Время взятия отсчета определять по табл.2 настоящего стандарта. На практике измеряют 1-минутный, 30-минутный и суточный отсчеты. Немаловажно измерить температуру суспензии, она будет служить поправкой к отсчету по ареометру.

Рентгеновская микротомография (µ-СТ). Исследование проводилось в Ресурсном центре СПбГУ «Рентгенодифракционные методы исследования» на рентгеновском микротомографе SkyScan1172. Для SkyScan1172 использованы следующие параметры: размер образца до 25 x 25 x 25 (50) мм с углом вращения от 0,1°. Источник рентгеновского излучения- до 100 кВ x 100 mA. Детектор 4000 x 2000 пикселей. Разрешение от 0,8 мкм /пиксель. Обработка результатов производилась в программах СТАп и СТvox (визуализация).

Метод рентгеновской микротомографии относится к неразрушающим, благодаря ему мы можем получить информацию о внутренних включениях и структуре материала, сохранив целостность объекта. Широкое распространение метод получил в изучении культурных ценностей (картины, скульптуры, ювелирные изделия и т.д.). С внедрением этого метода можно получить более детальную информацию о процессе изготовления, дефектах и дальнейшего прогноза сохранности.

Немаловажно использование данного метода и для исследования керамики. Практическое применение микротомографии позволит избежать нарушений структуры материала, увидеть скрытые внутренние компоненты керамики. Важным аспектом является и возможность оценки пористости материала, что играет ключевую роль в понимании состава, структурных параметров и температуры обжига керамики. Сьемка позволила рассчитать общую пористость (открытую и закрытую) в виде совокупного объема и распределения размера пор. Кроме того, микротомография позволяет оценить параметры сферичности для каждой измеренной поры. Данный параметр был введен Х.Уоделлом. Представляет собой отношение площади поверхности сферы (того же объема, что и данная частица) к площади поверхности частицы (Wadell, Hakon, 1935). Для сферы данный параметр равняется 1, для идеальной плоскости – 0, для куба – 0,806.

В лаборатории были приготовлены 4 вида паст для дальнейшего обжига. Для изготовления каждой использовались следующие пропорции: 80% глинистого материала и 20% кварцевого песка размерностью 150-250 µm. Состав песка был проверен методом рентгеновской дифракции.

Из полученных паст были сформированы цилиндры (d=1 см и h=5 см), в последствии высушенные при комнатной температуре 20°С на протяжении 7 дней и 1 дня.

Из литературных источников (Юшкевич, 1969) известно, что соотношение времени сушки и влагосодержания играет важную роль в изготовлении керамики. Поверхность изделия, как правило, высыхает раньше, чем внутренняя часть. Это влечет за собой возможные деформации и усадку изделия снаружи. Из-за недостаточной сушки внутри и чрезмерной снаружи, так же могут возникнуть сжимающие напряжения, в следствии которых происходят пластические деформации и изгибается внешний край изделия, а в конечном итоге образуются внутренние трещины. Данный эксперимент был проделан с целью выявления зависимости времени сушки на трещинностость готового материала.

Обжиг цилиндров из глиняной пасты производился при температурах от 400°С до 900°С. Цилиндры, высушенные в течении 1 дня, были обожжены при температуре 700°С. После цилиндры были распилены на части (~25 мм) для изучения в микротомографе.

Порометрический анализ. Исследование было проведено в Ресурсном центре СПбГУ «Рентгенодифракционные методы исследования» на газоволюметрическом пикнометре «Поромер». Каждый образец был снят три раза и полученные значения были усреднены. Микротомография позволила нам определить поры, размерностью от 5 µ, но поры меньшего размера учтены не были. Именно для этого решено было измерить валовый объем открытой пористости при помощи поромера и сопоставить полученные характеристики с результатами микротомографии.

Глава 3. Результаты исследования

3.1. Петрографический анализ.

Посредством метода оптической микроскопии были изучены 4 непокрытых шлифа глин: №1 Сахарна, №7 Шолданештъ, №9 Хлиджень, №10 Хлиджень. Стоит отметить сложность их изготовления – глинистый материал трудно правильно расположить на предметном стекле, возможны перемены слоистости и местами проявления так называемого «толстого кварца» в составе породы. Образцы шлифов керамики, представленные в этом разделе, были описаны Кульковой М.А. в рамках работы по гранту Фонда Фольксваген №90 216.

Шлиф №1. Основная масса породы имеет коричневый цвет, обломки – бесцветные. Порода на 78% состоит из глинистого матрикса, 15% – зерна, 7% – пустоты. Структура породы алевритовая. Матрикс преобладающий несплошной, по распределению – открытый поровый. Обломочный материал представлена кварцем и калиевым полевым шпатом. Обломки плохо окатанные, отмечается первоначальная форма со слегка сглаженными краями. Зерна кварца имеют размер от 0,05 до 0,5 мм, полевого шпата – от 0,05 до 0,3 мм. Местами отмечается появление новых аутигенных некарбонатных минералов – гидрооксилов железа.

поляризованный свет

скрещенные николи

скрещенные николи и кварцевая пластинка

Фото 3.1. Шлиф №1 Сахарна: поляризованный свет, скрещенные николи и скрещенные николи с кварцевой пластинкой.

<u>Образец керамики №369 Сахарна.</u> Глины иллит-смектитового состава, тощие (35%).

Отощитель:

1. Шамот (15%) – дробленая плохо обожженная керамика различного состава (0,5-2 мм).

2. Песок (8%), зерна средней окатанности. Состав: кварц, полевой шпат, биогенные карбонаты, песчаник. Размеры – 0,25-0,7 мм.

Дробленая карбонатная порода (оолитовый известняк или мел) (25%). Размеры – 1-2 мм.

Пористость – 12%. Обжиг при температуре 750-800°С, кратковременный, в окислительной атмосфере.

поляризованный свет

скрещенные николи

скрещенные николи и кварцевая пластинка

Фото 3.2. Керамика №369 Сахарна: поляризованный свет, скрещенные николи и скрещенные николи с кварцевой пластинкой. Сделано М.А. Кульковой.

Шлиф №7. Матрикс породы имеет коричневый цвет, обломки – бесцветные. Порода на 10% состоит из глинистого матрикса, 10% – зерна, 10% – пустоты. Структура породы алевритовая. Цемент преобладающий несплошной, по распределению – открытый поровый. Обломки представлены неокатанными зернами кварца и полевого шпата. Зерна кварца имеют размер от 0,03 до 0,3 мм, полевого шпата – от 0,03 до 0,25 мм.

поляризованный свет

скрещенные николи

скрещенные николи и кварцевая пластинка

Фото 3.3. Шлиф №7 Шолданештъ: поляризованный свет, скрещенные николи и скрещенные николи с кварцевой пластинкой.

<u>Образец керамики №77 1544, Шолданешть.</u> Тонкостенная керамика, покрытая светло-коричневой глиной. Состав пасты: смектит-гидрослюдистая глина с 25% содержанием кластического материала. Размеры зерен 0,028-0,04 мм. Состав: полевой шпат, кварц. Поры от сгоревшей органики имеют размер 0,5-2 мм, вторичные карбонаты внутри пор.

Отощитель:

- 1. Песок (16%): среднеокатанные зерна (полевой шпат, песчаник, гнейс, карбонаты, кварц). Размеры зерен 0,2-1,5 мм.
- Шамот (5%) дробленная необожженная керамика того же состава, размеры 0,4-2 мм.

Пористость 15%, температура обжига составляет 650-700°С. Кратковременный обжиг в восстановительной атмосфере.

поляризованный свет

скрещенные николи

скрещенные николи и кварцевая пластинка

Фото 3.4. Керамика №77 1544 Шолданештъ: поляризованный свет, скрещенные николи и скрещенные николи с кварцевой пластинкой. Сделано М.А. Кульковой.

<u>Шлиф №9</u>. Основная масса породы имеет коричневый цвет, местами – бурые полосы, обломки – бесцветные. Порода на 63% состоит из глинистого матрикса, 30% – зерна, 7% – пустоты. Структура породы алевритовая. Матрикс преобладающий несплошной, по распределению – базальный. Отмечается появление новых аутигенных некарбонатных минералов – гидрооксидов железа. В шлифе была обнаружена песчаная жила, сложенная кварцем, полевым шпатом и карбонатами (фото). Обломки средней окатанности, отмечаются сглаженные углы. Зерна кварца в жиле имеют размер от 0,05 до 0,4 мм, полевого шпата – от 0,05 до 0,4 мм, карбонатов – до 0,2 мм.

поляризованный свет

скрещенные николи

скрещенные николи и кварцевая пластинка

Фото3.5. Шлиф №9 Хлиджени: поляризованный свет, скрещенные николи и скрещенные николи с кварцевой пластинкой.

Фото3.6. Фрагмент кварцевой жилы в шлифе №9: поляризованный свет.

Фото3.7. Фрагмент кварцевой жилы в шлифе №9: скрещенные николи.

<u>Шлиф №10</u> Основная масса породы имеет коричневый цвет, местами – бурые пятна, обломки – бесцветные. Порода на 50% состоит из глинистого матрикса, 40% – обломки кварца и полевого шпата, 10% - карбонатные включения. Структура породы псамитовая. Матрикс преобладающий несплошной, по распределению – открытый поровый. Отмечается появление новых аутигенных некарбонатных минералов – гидрооксилов железа. Обломки зерен средней окатанности, отмечаются сглаженные углы. Зерна кварца имеют размер до 0,02 мм, полевого шпата – до 0,15 мм.

поляризованный свет

скрещенные николи

скрещенные николи и кварцевая пластинка

Фото3.8. Шлиф №10 Хлиджени: поляризованный свет, скрещенные николи и скрещенные николи с кварцевой пластинкой.

<u>Образец керамики №1, Хлиджени II.</u>

Тонкостенная керамика, светло-коричневого цвета. Состав пасты: смектитовая глина с 50% содержанием кластического материала. Размеры зерен 0,02-0,08 мм. Состав: полевой шпат, слюда, амфибол, органические включения, карбонат. Поры от сгоревшей органики имеют размер 0,5-2 мм, вторичные карбонаты внутри пор.

Отощитель:

- Дробленный карбонат (20%): мел или известняк с арагонитовыми сфероидами в окружении кристаллов кальцита и органических включений. Размеры фрагментов 0,5-1,5 мм.
- Шамот (25%) дробленная необожженная керамика того же состава, размеры 0,4-2 мм.

Пористость 10%, температура обжига составляет 650-700°С, карбонаты и органика не сгорели. Кратковременный обжиг в восстановительной атмосфере.

поляризованный свет

скрещенные николи

скрещенные николи и кварцевая пластинка

Фото 3.9. Керамика №1 Хлиджени II: поляризованный свет, скрещенные николи и скрещенные николи с кварцевой пластинкой. Сделано М.А. Кульковой.

Обобщение результатов. В образцах глины Сахарны и Шолданешта прослеживается некоторое сходство: порода состоит из глинистого матрикса и содержит обломки кварца и полевого шпата. Глина из Хлиджени имеет отличия от остальных в виде полосчатости, а именно ожелезненной ее части; в шлифе так же отчетливо видны

карбонатные овальные стяжения, как и в керамике. В глине из Сахарны карбонатов не выявлено, тогда как в керамике добавлялся дробленный карбонат в качестве отощителя.

3.2. Рентгенофлюорисцентный анализ.

Химический состав элементов, полученных в результате рентгенофлюоресцентного анализа, представлен в таблице 3.1.

05	a :o	т'о	.1.0	БО			0.0		V O	DO	Потери
Образец	S_1O_2	$11O_2$	Al_2O_3	Fe_2O_3	MnO	MgO	CaO	Na ₂ O	K_2O	P_2O_5	при
											прокаливании
Гл. №1	68,16	0,83	13,99	3,54	0,087	1,82	1,82	0,75	1,98	0,15	6,87
Гл. №2	69,52	0,79	13,89	3,31	0,096	1,81	1,02	0,70	1,97	0,14	6,75
Kep. №394	62,36	0,79	15,50	4,46	0,098	2,42	3,14	0,43	2,80	0,43	7,57
Сахарна											
Гл. №7	61,91	0,74	12,07	3,09	0,077	2,27	6,62	1,64	1,90	0,15	9,53
Гл. №8	61,33	0,72	14,11	3,54	0,098	2,22	6,13	0,35	1,99	0,14	9,38
Кер. №69	64 57	0.91	14 65	4 71	0.095	2 22	1 84	0.18	2 65	0.15	8.03
Шолданештъ	01,07	0,91	1 1,00	1,71	0,090	_,	1,01	0,10	2,00	0,10	0,00
Гл. №9	55,26	0,79	15,53	5,23	0,067	2,43	5,19	0,40	2,77	0,02	12,31
Гл. №10	55,84	0,91	15,07	3,84	0,078	2,25	6,84	0,71	2,34	0,04	12,09
Кер. №2 Хлиджени	58,59	0,74	13,82	5,15	0,081	1,94	7,80	0,29	2,77	0,24	8,58

Таблица 3.1. Химический состав элементов, полученный методом XRF (%)

Содержание SiO₂ в глинах варьирует от 55 до 68%, наименьшее содержание отмечается в образце №9 (Хлиджени), наибольшее – №1. Это может отразиться на физикомеханических свойствах породы и гранулометрическом составе, образцы могут относиться к разным видам грунтам. Сопоставление с образцами керамики показало, что содержание SiO₂ не имеет значительных различий в глинах и керамике.

В образце №9 так же отмечается высокое содержание Fe₂O₃, почти на 2% выше по сравнению с остальными образцами. Данные значения сопоставимы с результатами керамики и петрографического анализа, где в породе были найдены полосы ожелезнения.

Наблюдаются отличия в содержании CaO в глинах: для образцов из Caxapны (№1,2) характерны низкие значения карбонатов (до 2%), для образцов из Шолданешта (№7,8) и Хлиджени (№9,10) значения варьируются от 5 до 7%, что является довольно высоким показателем. В свою очередь, в образцах керамики самые низкие значения представлены у образца из Шолданешта (1,84%), а в образце Хлиджени содержание CaO возрастает до 8%. Отмечена тенденция повышения содержания MgO и K₂O от первого образца к последнему. Только в образце №7 (Шолданештъ) наблюдаются значения Na₂O выше 1%. Оксиды фосфора в глинах и керамике отмечаются только в виде следов.

При прокаливании образцы потеряли довольно большое количество общей массы (6-12%), что может свидетельствовать о содержании органической компоненты. Самые высокие значения потери получились в образцах №9 и 10 (Хлиджени), самые низкие – образцы №1 и 2 (Сахарна).

Химический состав редких элементов, полученных при помощи рентгенофлюоресцентного анализа представлен в таблице 3.2.

Образец	V	Cr	Ni	Cu	Zn	Rb	Sr	Y	Zr	Nb	Ba	La	Pb
Гл. №1	79	111	39	38	70	105	130	30	355	15	515	51	21
Гл. №2	95	80	42	28	77	97	123	32	350	16	482	52	19
Кер. №394 Сахарна	149	117	67	57	102	117	206	30	225	16	1254	58	25
Гл. №7	76	88	35	36	65	93	257	30	309	13	593	70	17
Гл. №8	92	96	41	28	70	93	127	28	223	12	478	38	13
Кер. №69 Шолданештъ	155	120	65	83	98	135	235	32	243	17	862	32	32
Гл. №9	122	123	66	56	101	146	224	29	150	12	449	44	21
Гл. №10	93	23	48	365	80	84	376	22	181	14	363	51	6
Кер. №2 Хлиджени	125	125	52	24	96	106	177	30	188	17	718	15	25

Таблица 3.2. Химический состав редких элементов, полученный методом XRF (ppm)

Для всех образцов характерны высокие концентрации таких редких элементов как *Sr, Zr, Ba*. В образцах керамики из Сахарны и Шолданешта, а также глины и керамики из Хлиджени отмечается содержание Cr больше 100 ppm. В глине №10 зафиксировано содержание Cu больше 360 ppm, в то время как в остальных образцах оно гораздо ниже.

Обобщение результатов. По результатам определения валового химического состава, глины и керамика имеют схожий элементный состав. В частности, это касается содержаний SiO₂, CaO и редких элементов как Ba, Sr, Zr.

3.3. Рентгеновская порошковая дифракция (XRD).

При использовании трех методов съемки образцов, нам удалось расчленить некоторые пики и получить результаты, позволяющие установить некоторые минеральные ассоциации. Так нам удалось подтвердить пики хлорита, микроклина, альбита, мусковита, каолина, кальцита.

График 3.1. Дифрактограмма глины №1 Сахарна: clay – кривая, полученная при съемке воздушно-сухого грунта; glycol – кривая, полученная при съемке образца, насыщенного этиленгликолем; 550 – кривая, полученная при обжиге образца при 550°С.

График 3.2. Дифрактограмма глины №2 Сахарна: clay – кривая, полученная при съемке воздушно-сухого грунта; glycol – кривая, полученная при съемке образца, насыщенного этиленгликолем; 550 – кривая, полученная при обжиге образца при 550°С.

График 3.3. Дифрактограмма глины №7 Шолданештъ: clay – кривая, полученная при съемке воздушно-сухого грунта; glycol – кривая, полученная при съемке образца, насыщенного этиленгликолем; 550 – кривая, полученная при обжиге образца при 550°С.

График 3.4. Дифрактограмма глины №8 Шолданештъ: clay – кривая, полученная при съемке воздушно-сухого грунта; glycol – кривая, полученная при съемке образца, насыщенного этиленгликолем; 550 – кривая, полученная при обжиге образца при 550°С.

График 3.5. Дифрактограмма глины №9 Хлиджени: clay – кривая, полученная при съемке воздушно-сухого грунта; glycol – кривая, полученная при съемке образца, насыщенного этиленгликолем; 550 – кривая, полученная при обжиге образца при 550°С.

График 3.6. Дифрактограмма глины №10 Хлиджени: clay – кривая, полученная при съемке воздушно-сухого грунта; glycol – кривая, полученная при съемке образца, насыщенного этиленгликолем; 550 – кривая, полученная при обжиге образца при 550°С.

В таблице 3.3 приведены результаты количественного фазового состава керамики.

Миноролии	Сахарна	Шолданештъ	Хлиджени
минералы	(№394)	(№ 69)	(№2)
Кварц	61,1	68,9	56,0
Слюда	93	84	22.0
(мусковит)	,5	0,1	22,0
Альбит	6,6	8,1	5,0
Микроклин	5,1	9,0	2,0
Кальцит	8,3	3,6	15,0
Доломит			<1
Хлорит	4,8	2,1	
Эпидот	3,5		
Гипс	4,4		
Rp (%)*	3,9	4,0	3,4

Таблица 3.3. Количественный фазовый состав образцов (вес. %) по данным полнопрофильного анализа методом Ритвельда

Результаты анализа керамики показали превалирующее содержание кварца в образцах (от 56%). Также в керамике были отмечены минералы, схожие с составом глины: мусковит, альбит, микроклин, кальцит. В керамике Сахарны отмечено наличие кальцита, тогда как в глине он отсутствует.

Обобщение результатов. К сожалению, из-за наличия смешаннослойных минералов и неспособности правильного их расчленения, у нас нет возможности верно рассчитать количественный анализ глины.

3. 4. Сканирующая электронная микроскопия в совокупности с энергодисперсионным микрозондом (SEM-EDX).

Используя данный метод, мы получили набор минералов, содержащихся в образцах керамики и глин. Результаты представлены в таблице 3.4.

Мицерал	Φοριαμο	Ca	ахарна	Шол	данештъ	Хлиджени		
минерал	Формула	глина	керамика	глина	керамика	глина	керамика	
Кварц Qz	SiO ₂	+	+	+	+	+	+	
Микроклин Fsp	K(AlSi ₃ O ₈)	+	+	+	+	+	+	
Альбит Ab	Na(AlSi ₃ O ₈)	+	+		+	+		
Нонтронит Nont	(Ca _{0,5} ,Na) _{0,3} Fe ₂ (Si,Al) ₄ O ₁₀ (OH) ₂ *nH ₂ O	+	+	+	+	+	+	
Монтморил- лонит Mnt	(Na,Ca) _{0,3} (Al,Mg) ₂ SiO ₁₀ (OH)2*nH ₂ O		+		+		+	
Кальцит Cal	Ca(CO ₃)		+	+		+	+	
Мусковит Ms	KAl ₂ (Si ₃ Al)O ₁₀ (OH,F) ₂		+		+		+	
Группа хлорита Chm	$(Mg_5Al)(AlSi_3O_{10})(OH)_8$ (Fe_5Al)(AlSi_3O_{10})(OH)_8	+	+	+	+	+	+	
Рутил Rt	TiO ₂	+	+	+	+	+	+	
Ильменит Ilt	FeTiO ₃	+	+	+	+	+	+	
Циркон Zrn	Zr[SiO ₄]	+	+	+	+	+	+	
Монацит Mnz	Ce(PO ₄)	+	+	+	+	+	+	
Хромит	FeCr ₂ O ₄					+	+	
Апатит Ар	Ca ₅ (PO ₄) ₃ (F,Cl,OH)	+	+	+	+	+	+	
Титанит Ttn	CaTi[SiO ₄]O		+	+		+	+	
Барит Brt	Ba(SO ₄)		+	+	+		+	
Халькозин Cct	Cu_2S			+				
Стибнит Stb	Sb_2S_3					+		
Мушистонит	(Cu,Zn,Fe)Sn(OH) ₆	+				+		
Цоизит	$Ca_2Al_3[SiO_4][Si_2O_7]O(OH)$		+		+		+	
Пирит	$Fe(S_2)$		+				+	
Шпинель Spl	Mg(Cr,Al ₂)O ₄		+			+	+	
Куприт Срг	Cu ₂ O	+			+	+		
Эпидот	$\begin{array}{c} Ca_2(Al,Fe)[SiO_4]\\ [Si_2O_7]O(OH) \end{array}$		+		+		+	
Пирофиллит	$Al_2[Si_4O_{10}](OH)_2$				+			
Ксенотим	YPO ₄		+	+		+	+	
Альмандин Alm	Fe ₃ Al ₂ (SiO ₄) ₃	+		+	+	+	+	
Спессартин Sps	Mn ₃ Al ₂ (SiO ₄) ₃				+	+		
Гроссуляр Grs	Ca ₃ Al ₂ (SiO ₄) ₃						+	

Таблица 3.4. Минералы, содержащиеся в образцах керамики и глинах.

*Кварц (SiO*₂) содержится во всех образцах керамики и глин, является одним главным породообразующих минералов. Размер зерен от 0,05 до 0,25 мм, плохоокатанные с резкими границами зерен.

Фото 3.10. Минеральный состав глины Сахарна №1 в обратно рассеянных электронах.

Группа полевых шпатов представлена калиевым полевым шпатом – микроклином и плагиоклазом – альбитом.

Микроклин (K(AlSi₃O₈)) содержит в составе примесь *Ba*, что является довольно специфическим явлением для калиевых полевых шпатов. Минерал отмечен во всех образцах и относится к главным породообразующим. Размеры зерен 0,02-0,08 мм. Химический состав микроклина приведен в таблице 3.5. В ней видно, что *Ba* так же содержится в полевых шпатах керамики.

Альбит Na(AlSi₃O₈). Плагиоклаз встречается в образцах из Сахарны (глина и керамика), керамике Шолданешта и глине Хлиджени. Самое крупное зерно размером 0,03 мм (керамика, Шолданештъ).

		Сахарна]	Шолдан	нештъ	Хлиджени			
	Гл	ина	Керамика	Гл	ина	Керамика	Гл	ина	Керамика	
мас%/№	2354	2358	3180	2453	2470	1448	2511	2565	4019	
SiO ₂	64	64,31	63,29	64,86	63,6	64,17	66,39	64,36	64,12	
Al_2O_3	18,54	18,64	19,07	18,42	18,97	18,28	19,07	18,7	18,58	
Na ₂ O		0,49	1,02		0,62	0,52	5,29	1,2	0,32	
<i>K</i> ₂ <i>O</i>	16,64	16,06	15,05	16,72	15,65	16,23	9,25	14,88	16,32	
BaO	0,82	0,5	1,56		1,16	0,8		0,85	0,76	
Сумма	100	100	99,99	100	100	100	100	99,99	100,1	
Fc/№	2354	2358	3180	2453	2470	1448	2511	2565	4019	
Si	2,98	2,98	2,94	3,01	2,96	2,98	2,99	2,98	2,98	
Al	1,02	1,02	1,05	1,01	1,04	1	1,01	1,02	1,02	
Na		0,04	0,09		0,06	0,05	0,46	0,11	0,03	
K	0,99	0,95	0,89	0,99	0,93	0,96	0,53	0,88	0,97	
Ba	0,01	0,01	0,03		0,02	0,1		0,02	0,01	

Таблица 3.5. Химический состав (мас.% и формульные единицы) микроклина в глине и керамике. Расчёт на 5 катионов

Нонтронит (*Ca*_{0,5},*Na*)_{0,3}*Fe*₂(*Si*,*Al*)₄*O*₁₀(*OH*)₂**nH*₂*O*. Минерал является главным представителем группы смектитов, являющийся породообразующим всех образцов глины и керамики по результатам микрозондового анализа. Нонтронит глины и керамики Шолданешта характеризуется примесью Mn в своем составе. Химический состав нонтронита представлен в таблице 3.6.

Фото 3.11. Минеральный состав глины Хлиджени №10 в обратно рассеянных электронах.

		Сахарна			Шолдан	нештъ	Хлиджени			
	Глі	ина	Керамика	Гл	ина	Керамика	Гл	ина	Керамика	
мас%/№	2377	2389	3761	2431	2474	1440	2512	2560	4344	
SiO ₂	64,48	64,56	42,74	53,89	53,92	43,46	59,82	64,04	41,19	
TiO ₂	1,13	0,79	0,7	0,48	1,14	1,18	0,94	0,56		
Al ₂ O ₃	21,17	21,61	18,4	15,96	9,79	9,78	20,08	18,57	22,34	
FeO	6,34	5,93	29,11	5,41	17,56	24,8	6,21	6,74	19,58	
MgO	1,95	1,85	2,64	2,15	7,03	5,91	2,55	2,47	12,76	
MnO			0,84	0,84	0,23	0,76				
CaO	1,3	0,83	1,68	18,44	7,53	11,36	5,86	4,19	0,87	
Na ₂ O	0,74	0,74		0,63	1,38	1,17	0,65		0,33	
<i>K</i> ₂ <i>O</i>	2,88	3,7	3,22	1,96	1,11	1,34	3,58	3,21	2,74	
Сумма	99,99	100	99,33	99,76	99,69	99,76	99,69	99,78	99,81	
Fc/№	2377	2389	3761	2431	2474	1440	2512	2560	4344	
Si	3,93	3,94	3,09	3,55	3,65	3,18	3,77	3,97	2,83	
Ti	0,05	0,04	0,04	0,02	0,06	0,06	0,04	0,03		
Al (IV)	0,07	0,06	0,91	0,45	0,35	0,82	0,23	0,03	1,17	
Al(VI)	1,45	1,5	0,66	0,79	0,43	0,02	1,26	1,33	0,64	
Fe	0,32	0,3	1,76	0,3	1	1,52	0,33	0,35	1,12	
Mg	0,18	0,17	0,28	0,21	0,71	0,64	0,24	0,23	1,31	
Mn			0,05	0,05	0,01	0,05				
Ca	0,09	0,05	0,13	1,3	0,55	0,89	0,4	0,28	0,06	
Na	0,09	0,09		0,08	0,18	0,17	0,08		0,04	
K	0,22	0,29	0,3	0,16	0,1	0,13	0,29	0,25	0,24	

Таблица 3.6. Химический состав (мас.% и формульные единицы) нонтронита в

глине. Расчёт на 22 заряда.

*Монтмориллонит (Na,Ca)_{0,3}(Al,Mg)₂SiO₁₀(OH)2*nH₂O* характерен только для образцов керамики всех трёх поселений. В монтмориллоните из керамики Шолданешта содержится примесь Mn. Химический состав монтмориллонита в керамике представлен в таблице 3.7.

Таблица 3.7. Химический состав (мас.% и формульные единицы) монтмориллонита

	Сахарна		Шолда	нештъ	Хлиджени		
	Кера	мика	Керам	иика	Кера	мика	
мас%/№	3772	3301	1034	1431	4445	4356	
SiO ₂	51,46	45,24	57,2	61,35	60,07	61,81	
TiO_2	0	4,45	0,98	0,71	0,7	0,47	
<i>Al</i> ₂ <i>O</i> ₃	15,54	15	21,19	19,63	24,02	22,03	
FeO	25,22	16,18	8,8	8,95	4,73	7,72	
MgO	1,79	11,55	1,91	1,39	2,39	2,65	
MnO			3,22				
CaO	1,43	2,41	2,71	4,2	1,83	1,71	
<i>Na</i> ₂ <i>O</i>	0	0	0,5	0,4	0,71	0	
<i>K</i> ₂ <i>O</i>	4,07	5,18	3,5	2,97	4,22	3,61	
Сумма	99,51	100,01	100,01	99,6	98,67	100	
Fc/№	3772	3301	1034	1431	4445	4356	
Si	3,58	3,01	3,66	3,86	3,74	3,82	
Ti		0,23	0,05	0,03	0,03	0,02	
Al (IV)			0,34	0,14			
Al (VI)			1,26	1,32			
Al общ	1,27	1,21	1,6	1,46	1,78	1,61	
Fe	1,47	0,93	0,47	0,47	0,25	0,4	
Mg	0,19	1,18	0,18	0,13	0,22	0,24	
Mn			0,17	0			
Ca	0,11	0,18	0,19	0,28	0,12	0,11	
Na			0,06	0,05	0,09		
K	0,36	0,45	0,29	0,24	0,34	0,28	

в керамике. Расчёт на 22 заряда.

Фото 3.12. Минеральный состав керамики поселения Шолданешть в обратно рассеянных электронах.

Кальцит Са(CO₃) был найден в образцах керамики Сахарны и глины Шолданешта. В образцах из поселения Хлиджени кальцит присутствует как в керамике, так и в глине. Размер зерен от 0,05 до 0,5 мм. По химическому составу присутствуют примеси Mg и Fe. Результаты химического состава представлены в таблице 3.8.

	Шолда	нештъ		Хлиджени							
	Гл	ина		Гл	ина		Керамика				
мас%/№	2510	2506	2540	2558	2577	2609	3788	3810	3877	3964	
FeO					2,76	1,73			1,69		
MgO	1,74	1,2		1,53	0,64	0	4,9	1,29	1,54		
MnO						0,74					
CaO	92,89	90,04	100	93,98	93,3	97,52	95,1	97,54	96,77	100	
Сумма	94,63	91,24	100	95,51	96,7	99,99	100	98,83	100		
Fc/№	2510	2506	2540	2558	2577	2609	3788	3810	3877	3964	
Fe					0,02	0,01			0,01		
Mg	0,03	0,02		0,02	0,01		0,07	0,02	0,02		
Mn						0,01					
Ca	0,97	0,98	1	0,98	0,97	0,98	0,93	0,98	0,97	1	
<i>CO3</i>	1	1	1	1	1	1	1	1	1	1	

Таблица 3.8. Химический состав (мас.% и формульные единицы) кальцита в глине и керамике. Расчёт на 2 катиона

Фото 3.13. Минеральный состав керамики поселения Хлиджени в обратно рассеянных электронах.

Мусковит КАІ₂(Si₃Al)O₁₀(OH,F)₂ отмечается во всех образцах керамики, в образцах глин найден не был.

Минералы *группы хлорита ((MgsAl)(AlSi₃O₁₀)(OH)*⁸, (*FesAl)(AlSi₃O₁₀)(OH)*⁸), *рутил (TiO₂), ильменит (FeTiO₃), циркон (Zr[SiO₄]), монацит (Ce(PO₄))* содержатся в образцах как глин, так и керамики. Перечисленные минералы относятся к второстепенным (акцессорным). Зерна рутила достигают 0,07 мм в размере в некоторых образцах.

Цирконы (*Zr*[*SiO*₄]), в основном, Hf-вые, но в некоторых образцах были отмечены примеси U, Sc, Th, Y. Особенно редкая минерализация характерна для образцов керамики. Размер зерен до 0,02 мм. Химический состав цирконов в глине и керамике представлен в таблице 3.9.

					керимике. Т исчет на 2 китиони							
		Caxa	арна			Шода	нештъ			Хли	іджени	
	Кера	мика	Гл	ина	Кера	мика	Гли	іна	Кера	мика	Гл	ина
мас%/№	3227	3770	2347	2348	1078	1271	2466	2432	3798	4210	2520	2567
SiO ₂	27,29	31,43	32,57	32,2	30,99	32,76	32,48	30,98	32,07	28,65	32,47	32,81
ZrO_2	49,64	64,28	65,81	66,25	60,59	61,21	64,65	60,9	66,9	60,91	65,25	65,88
HfO ₂	0,9	1,59	1,53		0,9	1,03	1	0,99	1,16	1,26	1,6	1,23
UO_2				1,34	1,12		1,88					
Sc_2O_3					0,44	0,73		0,36		1,11		
ThO_2					1,12							
Y ₂ O ₃	4,04	0,7			1,1	0,54			0,79	1,11		
Сумма	81,87	98	99,91	99,79	96,26	96,27	100,01	93,23	100,9	93,04	99,32	99,92
Fc/№	3227	3770	2347	2348	1078	1271	2466	2432	3798	4210	2520	2567
Si	0,99	0,98	1	0,99	0,98	1	1	1	0,98	0,91	1	1,01
Zr	0,88	0,01	0,99	1	0,93	0,91	0,97	0,95	0,99	0,95	0,98	0,98
Hf	0,01		0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,02	0,01
U					0,01		0,01					
Sc					0,04	0,06		0,03		0,09		
Th					0,01							
Y	0,13	0,02			0,03	0,01			0,02	0,03		

Таблица 3.9. Химический состав (мас.% и формульные единицы) циркона в глине и керамике. Расчёт на 2 катиона

Фото 3.14. Минеральный состав глины Шолданештъ №7 в обратно рассеянных электронах.

Хромит (FeCr₂O₄) был найден только в образцах керамики и глины Хлиджени. Он относится к редкой минерализации и может являться маркером источника сырья для производства керамики.

Фото 3.15. Минеральный состав керамики поселения Шолданештъ в обратно рассеянных электронах.

Апатит Са₅(PO₄)₃(F,Cl,OH) содержится в образцах из всех трех поселений.

Титанит CaTi[SiO₄]O был найден в глине и керамике Хлиджени. В керамике поселения Сахарна так же был обнаружен титанит, а в Шолданеште – только в глине.

Наличие барита Ba(SO₄) отмечено только в образцах керамики из всех поселений.

Халькозин Си₂S содержится только в образце глин из Шолданешта.

*Стибнит Sb*₂*S*₃ обнаружен в глине из поселения Хлиджени, в остальных образцах отсутствует.

Фото 3.16. Минеральный состав глины Хлиджени №9 в обратно рассеянных электронах.

*Мушистонит (Си, Zn, Fe)Sn(OH)*₆ характерен для глин из Сахарны и Хлиджени.

Цоизит *Ca*₂*Al*₃*[SiO*₄*][Si*₂*O*₇*]O(OH)* найден в керамике всех поселений.

В керамике поселений Сахарна и Хлиджени были найдены *пирит Fe(S₂) и шпинель Мg(Cr,Al₂)O₄*. Шпинель, в основном, хромовая, но в керамике Сахарны отмечено наличие магнезиоферрита. Результаты химического состава представлены в таблице 3.10.

				nepullite. I de le				
_	(Сахарна		Хл	иджени			
	К	ерамика		глина	керамика			
мас%/№	<i>2879</i>	3091	3139	2584	3823			
Al2O3	21,87	0	23,5	30,54	13,86			
Cr2O3	46,84	27,08	45,77	39,21	53,06			
FeO	15,57	43,09	15,77	15,54	25,71			
MgO	15,87	19,68	14,96	14,48	7,36			
MnO		10,15		0,23				
Сумма	100,15	100	100	100	99,99			
Fc/№	2879	3091	3139	2584	3823			
Al	0,78		0,84	1,06	0,54			
Cr	1,12	0,98	1,09	0,91	1,39			
Fe3+	0,11	1,04	0,07	0,02	0,07			
<i>Fe2</i> +	0,29		0,33	0,36	0,64			
Mg	0,71	0,51	0,67	0,64	0,36			
Mn		0,47		0.06				

Таблица 3.10. Химический состав (мас.% и формульные единицы) шпинели в глине и керамике. Расчёт на 3 катиона

Куприт Си₂О содержится только в одном образце – керамике Шолданешта.

Эпидот Ca₂(Al,Fe)[SiO₄][Si₂O₇]O(OH) был обнаружен в образцах керамики трех поселений.

Пирофиллит Аl₂[Si₄O₁₀](OH)₂ найден в одном образце керамики Шолданешта.

*Ксенотим YPO*₄ рассчитан в образцах глин Шолданешта и Хлиджени, а также керамики Сахарны и Хлиджени.

Фото 3.17. Минеральный состав глины Шолданешть №7 в обратно рассеянных электронах.

*Альмандин Fe₃Al₂(SiO₄)*³ встречается во всех образцах глин и в керамике Хлиджени, Шолданешта и глине из Сахарны. Крупный кристалл альмандина был найден в образце глины из Шолданешта – около 0,4 мм. Химический состав альмандина представлен в таблице 3.11.

	Сахарна		Шолд	анештъ		Хлиджени			
	Глина	Глі	ина	Керам	лика	Глина	Керамика		
мас%/№	2359	2415	2427	1100	1456	2538	4429		
SiO ₂	37,79	38,51	36,64	37,57	36,48	36,56	36,6		
Al_2O_3	21,35	21,87	21,64	21,33	20,46	20,5	20,8		
FeO	23,31	29,88	32,45	26,97	31,85	32,4	25,46		
Mg0	4,28	7,56	3,06	2,13	1,44	0,83	0		
MnO	2,8	0	2,12	1,22	2,05	2,97	14,67		
CaO	10,47	2,17	4,09	10,79	7,71	6,75	2,47		
Сумма	100	99,99	100	100,01	99,99	100,01	100		
Fc/№	2359	2415	2427	1100	1456	2538	4429		
Si	2,95	2,99	2,94	2,97	2,94	2,96	3		
Al	1,97	2,01	2,04	1,99	1,94	1,96	2,01		
Al(IV)	0,05	0,01	0,04	0,03		0,04			
Al(VI)	1,92	2,00	2,00	1,96		1,92			
Fe общ	1,52	1,94	2,17	1,79	2,14	2,19	1,75		
Fe^{3+}	0,09			0,4		0,08			
Fe^{2+}	1,43	1,94	2,17	1,75		2,11			
Mg	0,5	0,88	0,36	0,25	0,17	0,1	1,02		
Mn	0,19		0,14	0,08	0,14	0,2			
Ca	0,88	0,18	0,35	0,92	0,67	0,59	0,22		

Таблица 3.11. Химический состав (мас.% и формульные единицы) альмандина в глине и керамике. Расчёт на 8 катионов

Спессартин Мп₃Al₂(SiO₄)₃ обнаружен в образце глины из Хлиджени и в образце керамики Шолданешта. *Гроссуляр Ca₃Al₂(SiO₄)₃* найден в образце керамики Хлиджени. Химический состав спессартина и гроссуляра представлен в таблице 3.12.

	Шолданешть Хл		иджени	
	Керамика	Глина	Керамика	
	спессарт	гроссуляр		
мас%/№	1434	2598	4420	
SiO ₂	35,8	35,61	37,69	
<i>Al</i> ₂ <i>O</i> ₃	21,02	20,48	21,82	
Fe_2O_3	0	0	0	
FeO	6,93	7,06	35,04	
MgO	1,52	2,2	2,12	
MnO	31,61	26,47	1,73	
CaO	3,24	2,84	1,61	
Сумма	100,12	94,66	100,01	
Fc/№	1434	2598	4420	
Si	2,9	3,02	3,04	
Al	2	2,05	2,08	
Fe общ	0,47	0,5	2,37	
Mg	0,18	0,28	0,26	
Mn	2,17	1,9	0,12	
Ca	0,28	0,26	1,61	

Таблица 3.12. Химический состав (мас.% и формульные единицы) спессартина и гроссуляра в глине и керамике. Расчёт на 8 катионов

Фото 3.18. Минеральный состав керамики поселения Хлиджени в обратно рассеянных электронах.

Обобщение результатов. Главными породообразующими минералами всех исследуемых образцов являются кварц, микроклин, альбит и смектиты. К акцессорным относятся хлорит, мусковит, рутил, ильменит, циркон, монацит. Редкие – эпидот, барит, титанит, ксенотим, апатит, куприт, халькозин, хромит, стибнит, гроссуляр, спессартин.

Схожесть керамики и глин лучше всего проявляется в схожести редких и акцессорных минералов. Для образцов из Хлиджени это минералы хромит, титанит, ксенотим, шпинель, альмандин. Барит, альмандин характеры для образцов керамики и глины Шолданешта. Для Шолданешта так же характерна медная минерализация (куприт, халькозин). Схожесть образцов керамики и глины Сахарны обусловлена схожим химических составом калиевых полевых шпатов, в которых была найдена примесь Ва.

3.5. Дифференциальный термический анализ.

Во всех образцах температура 20-209°С приурочена к выходу адсорбционной воды. Кривая этого диапазона согласуется с литературными данными (Иванова и др., 1974) для слоистых минералов группы смектитов монтмориллонита и нонтронита. Промежуток 300-500°С показывает, что происходит выход кристаллизационно-связанной воды, а также выгорание органического вещества. Во всех изученных образцах пик на 570°С приурочен к переходу α-β кварца. В образцах №7, 9, 10 отчетливо видны резкие перепады кривых в интервале 750-800°С и резкая потеря массы, что приурочено к разложению минералов группы карбонатов.

График 3.8. ТG/DTA для образца №7.

График 3.9. ТG/DTA для образца №9.

График 3.10. ТG/DTA для образца №10.

3.6. Инженерно-геологические испытания.

Использование инженерно-геологических методов позволило определить ряд физико-механических характеристик исследуемых грунтов. Мы получили значения гигроскопической влажности и плотности частиц грунта, являющимися важными компонентами в получении следующих физико-механических характеристик (табл.3.13). Согласно результатам, гигроскопическая влажность имеет примерно одинаковые значения, пониженные характеристики наблюдаются только у образца №7. Это касается и плотности частиц грунта, где пониженная плотность характерна для образца №7, а повышенная – для образца №2.

Таблица 3.13. Результаты определения гигроскопической влажности и плотности частиц грунта.

Ofnanau	Гигроскопическая	Плотность частиц грунта	
Образец	влажность (w _{г, %})	(ρs)	
№1 Сахарна	3,53	2,73	
№2 Сахарна	3,31	2,81	
№7 Шолданештъ	3,03	2,66	
№8 Шолданештъ	3,52	2,75	
№9 Хлиджени	3,55	2,74	

Гранулометрический состав исследуемых грунтов (табл.) показывает, что все образцы имеют в большинстве пылеватую фракцию. В образцах №1, 2 и 8 наблюдается повышенное содержание мелкого песка (больше 10%).

Таблица 3.14. Гранулометрический состав образцов, %

	Песчаные частицы			Пылеватые частицы		Глинистые	
Образцы	крупные	средние	мелкие	тонкие	крупные	мелкие	частицы
	1-0,5	0,5-0,25	0,25-0,1	0,1-0,05	0,05-0,01	0,01-0,002	<0,002
Nº1	0,16	0,92	10,53	21,57	30,56	29,52	6,73
<u>№</u> 2	0,12	0,85	15,42	27,64	19,75	27,28	8,94
<u>№</u> 7	0,13	1,5	7,97	17,97	32,31	32,83	7,3
Nº8	0,45	3,02	14,62	17,58	26,55	32,16	5,62
N <u>⁰</u> 9	0,45	0,87	4,98	15,75	37,46	34,93	5,57

В лабораторных условиях так же были определены границы текучести и раскатывания. Число пластичности было рассчитано посредством вычитания значений предела раскатывания из предела текучести. Результаты представлены в таблице 3.15.

Образец	Число пластичности (%)		
№1 Сахарна	14		
№2 Сахарна	13		
№7 Шолданештъ	13		
№8 Шолданештъ	16		
№9 Хлиджени	25		

Таблица 3.15. Число пластичности грунта.

Обобщение результатов. Согласно полученным данным, мы можем подразделить образцы на тяжелые суглинки (образцы №1, 2, 7 и 8) и легкую глину (образец №9).

3.7. Рентгеновская микротомография (µ-СТ) и поровый анализ.

При помощи компьютерной микротомографии были исследованы 4 образца керамики. Предварительно образцы №1, 2, 7, 9 были высушены на протяжении 7 дней при температуре 20°С, а после обожжены при температурах 400, 600, 800 и 900°С. Три образца (№1,2,9) были высушены в течении одного дня и обожжены при температуре 700°С.

Из полученных данных было построено распределение сферичности пор в зависимости от объема. Это позволило нам узнать объем, форму пор, содержащихся в керамических изделиях. Результаты указывают на то, что с увеличением объема сферичность пор пропадает, переходя в трещиноватость.

График 3.11. Распределение зависимости сферичности пор от объема. Образец №1 Сахарна: 1) 20°С; 2) 400°С; 3) 600°С; 4) 800°С; 5) 900°С.

График 3.12. Распределение зависимости сферичности пор от объема. Образец №2 Сахарна: 1) 20°С; 2) 400°С; 3) 600°С; 4) 800°С; 5) 900°С.

График 3.13. Распределение зависимости сферичности пор от объема. Образец №7 Шолданештъ: 1) 20°С; 2) 400°С; 3) 600°С; 4) 800°С; 5) 900°С.

График 3.14. Распределение зависимости сферичности пор от объема. Образец №9 Хлиджени: 1) 20°С; 2) 400°С; 3) 600°С; 4) 800°С; 5) 900°С.

В таблице 3.16 рассчитаны значения открытой, закрытой и общей пористостей для каждого образца в различных температурных условиях.

Температура °С	Образец	Пористость, %			
reimiepurypu, C	ооризец	Закрытая	Открытая	Общая	
	1	0,07	20,81	20,87	
20	2	0,54	9,92	10,41	
20	7	1,44	5,43	6,78	
	9	0,24	15,27	15,48	
	1	0,67	10	10,61	
400	2	2,44	4,7	7,02	
400	7	1,75	5,58	7,24	
	9	1,98	4,47	6,36	
	1	0,18	12,43	12,59	
600	2	0,22	12,66	12,85	
000	7	0,1	13,31	13,4	
	9	0,3	12,51	12,77	
	1	0,03	24,94	24,96	
800	2	0,08	19,74	19,81	
800	7	0,09	16	16,07	
	9	0,21	16,84	17,01	
	1	0,08	19,82	19,88	
900	2	0,99	9,16	10,05	
200	7	0,7	10,43	11,06	
	9	0,24	14,14	14,34	

Таблица 3.16. Процентное содержание пор в каждом из исследованных образцов.

Поровый анализ показывает нам содержание общего объема открытой пористости в керамическом изделии. Каждый образец был измерен трижды, а значения усреднены и показаны в таблице 3.17.

Таблица 3.17. Объем открытой пористости в образцах, %.

Температура, °С	№1 Сахарна	№2 Сахарна	№7 Шолданештъ	№9 Хлиджени
20	28,97	31,29	30,69	34,94
400	34,05	32,14	34,45	36,14
600	23,12	34,04	34,01	38,74
800	30,45	30,56	29,18	30,67
900	32,39	28,62	30,96	34,65

Причины проведения дополнительного порометрического анализа были описаны в главе методы, но все же существует необходимость объяснить принцип выбора методики более детально. Микротомография учитывает только макропористость образцов, разрешение съемки варьирует от 5 до 80µ. В свою очередь, порометрический анализ способен нам показать поры более мелкого размера и оценить их общий объем. Влияние температурного режима удобно оценивать в совокупном применении двух этих съемок. Для более наглядного представления все результаты были вынесены на графики и проанализированы. Для наглядности результаты представлены на графике 3.15.

<u>400°С.</u> Во всех образцах наблюдается рост общей открытой пористости, измеренной поромером, и закрытой пористости. Открытая пористость, измеренная при помощи микротомографии, в свою очередь понижается. Это связано с потерей адсорбционной воды при обжиге. Как нам известно, это происходит в диапазоне с 25 до 150°С.

<u>600°С.</u> Согласно проинтерпретированным данным анализа DTA/TG, для температурных пределов 400-600°С характерно исчезновение конституционно связанной воды, сжиганием органических компонент и переходом α - β кварца. Потеря воды хорошо коррелируется с общей открытой пористостью, полученной методом порометрии. Рост открытой макропористости можно сопоставить как с потерей воды, так и с выгоранием органического вещества. Закрытая пористость в данном температурном диапазоне уменьшается.

<u>800°С.</u> При данной температуре наблюдается скачок открытой пористости, связанный с декарбонатизацией образцов и подтвержденный результатами DTA/TG. Закрытая пористость уменьшается, общая открытая пористость тоже претерпевает падение пористости, кроме образца №1. Однако если значение скоррелировать с процентным соотношением в других образцах, то оно одинаково колеблется в диапазоне 29-31%.

<u>900°С.</u> Данный температурный интервал характеризуется повышением закрытой пористости и понижением открытой. Общая открытая пористость в большинстве образцов повышается, только в образце №2 отмечается понижение. Такое изменение пористостей может быть связано с температурным переходом каолина в муллит.

56

График 3.15. Изменение порового пространства в зависимости от температуры. Результаты, полученные методом микротомографии: 1 – открытая пористость; 2 – закрытая пористость. 3 – общая открытая пористость, полученная порометрическим анализом.

Дополнительно был проведен эксперимент с так называемой быстрой сушкой. Для этого образцы №1 и 9 были высушены в течении одного дня и обожжены при температуре 700°С. Позже при помощи микротомографии и порометрического анализа было измерено их поровое пространство. Результаты представлены в таблице 3.18.

Таблица 3.18. Результаты измерения порового пространства (%) при быстрой сушке

	Микротов	Поромер			
Образец		Zaknutag	Общая		
	Открытая	Эакрытая	открытая		
Nº1	12 13	0.58	39,24		
Сахарна	12,15	0,58			
Nº9	16.08	0.21	36.00		
Хлиджени	10,08	0,21	50,09		

Эксперимент был сделан с целью выявить различия порового пространства при разных условиях сушки. Мы сравнили образцы, высушенные в течение 7 дней (длительная сушка) и обожжённые при температуре 600°С с образцами, высушенными в течение 1 дня (быстрая сушка).

График 3.16. Поровое пространство (%). Сравнение результатов различных видов сушки в образцах №1 и 10.

На графике видно, что в образце №1 поровое пространство в результате быстрой сушки выросло больше, чем на 15% по сравнению с длительной. В образце №9 наблюдаются противоположные результаты. Такая разница может быть обусловлена так же минеральным составом образцов. По данным рентгенофлюорисцентного анализа известно, что в составе образца №1 больше кремнезема, чем в образце №9, размерность частиц образца №1 так же больше, чем у второго. Согласно результатам инженерно-геологических испытаний, оба образца благодаря своему минеральному составу и свойствам относятся к разным категориям грунтов и водопоглощение у них происходит по-разному: у образца №1 оно гораздо быстрее, чем у образца №9. Соответственно, при коротких сроках сушки, вода из материала уходит медленнее, а при обжиге поровое пространство и трещиноватость возрастают.

Обобщение результатов. Из полученных результатов мы можем сделать вывод, что минеральный состав и подбор индивидуальной технологии изготовления играет важную роль в создании керамики и оказывает непосредственное влияние на трещиноватость готового изделия.

Заключение

В петрографическом анализе в образцах глины Сахарны и Шолданешта прослеживается некоторое сходство: порода состоит из глинистого матрикса и содержит обломки кварца и полевого шпата. Глина из Хлиджени имеет отличия от остальных в виде полосчатости, а именно ожелезненной ее части; в шлифе так же отчетливо видны карбонатные включения. Керамика Сахарны имеет отличия от глины №1: в керамике видны добавки дробленных карбонатов, тогда как в глине их не обнаружено.

По результатам определения валового состава, глины и керамика имеют схожий элементный состав. В частности, это касается содержаний SiO₂, CaO и таких редких элементов как Ba, Sr, Zr.

Интерпретация результатов сканирующей электронной микроскопии показала, что главными породообразующими минералами всех исследуемых образцов являются кварц, микроклин, альбит и смектиты. К акцессорным относятся хлорит, мусковит, рутил, ильменит, циркон, монацит. Редкие – эпидот, барит, титанит, ксенотим, апатит, куприт, халькозин, хромит, стибнит, гроссуляр, спессартин.

Схожесть керамики лучше всего проявляется в схожести редких и акцессорных минералов. Для образцов из Хлиджени это минералы хромит, титанит, ксенотим, шпинель, альмандин. Барит, альмандин характеры для образцов керамики и глины Шолданешта. Для Шолданешта так же характерна медная минерализация (куприт, халькозин). Схожесть образцов керамики и глины Сахарны обусловлена схожим химических составом калиевых полевых шпатов, в которых была найдена примесь Ва.

В рентгенодифракционном анализе из-за наличия смешаннослойных минералов и неспособности правильного их расчленения, у нас нет возможности верно рассчитать количественный анализ глины.

Согласно дифференциальному термогравиметрическому анализу, во всех образцах температура 20-209°С приурочена к выходу адсорбционной воды. Кривая этого диапазона согласуется с литературными данными для слоистых минералов группы смектитов монтмориллонита и нонтронита. Промежуток 300-500°С показывает, что происходит выход кристаллизационно-связанной воды, а также выгорание органического вещества. Во всех изученных образцах пик на 570°С приурочен к переходу α-β кварца. В образцах №7, 9, 10 отчетливо видны резкие перепады кривых в интервале 750-800°С и резкая потеря массы, что приурочено к разложению минералов группы карбонатов.

59

Инженерно-геологические исследования разделили образцы на тяжелые суглинки (образцы №1, 2, 7 и 8) и легкую глину (образец №9).

Из результатов микротомографии и порометрического анализа мы можем сделать вывод, что минеральный состав и подбор индивидуальной технологии изготовления играет важную роль в создании керамики и оказывает непосредственное влияние на трещиноватость готового изделия. Возможно, что добавление карбонатов в пасту могло снизить время сушки. Так же, согласно литературным данным, известно, что примесь карбонатов увеличивает пористость и улучшает процесс лощения керамики.

Исследование имеет смысл только при наличии комплексного подхода при использовании естественно-научных методов.

Список литературы

- 1. Булах А.Г., Золотарёв А.А., Кривовичев В.Г. Структура, изоморфизм, формулы, классификация минералов. СПб.: СПбГУ, 2014. 132 с.
- Геологическая карта СССР масштаба 1:1000000. Лист L-35,36 (Кишинев).
 Объяснительная записка Ленинград 1988.
- ГОСТ 12536-79 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава. Дата введения 01.07.1980.
- 4. ГОСТ 25100-2011 Грунты. Классификация. Дата введения 01.01.2013
- 5. ГОСТ 5180-84 Грунты. Методы лабораторного определения физических характеристик. Дата введения 01.07.1985.
- Гребенщиков В.П., Проданов Ф.П. Особенности тектоники и геологического строения территории Приднестровской Молдавской Республики и Днестровско-Прутского междуречья. // Сост.: В. П. Гребенщиков, Ф.П. Проданов. – Тирасполь, 2014. – 61с.
- Иванова В.П., Касатов Б.К., Красавина Т.Н., Розинова Е.Л. Термический анализ минералов и горных пород. М.: Недра, 1974.
- Кайзер Э., Гаврилюк Н.А., Кашуба М.Т., Кулькова М.А. Сосуды «фракийской группы» из степных предскифских погребений в Северном Причерноморье: возможности изучения // Археология и древняя история Украины, 2017, вып.2 (23)
- Платонов М.В., Тугарова М.А. Петрография обломочных и карбонатных пород // Учебно-методическое пособие, СПб: издательство СПбГУ, 2004 г., 72 стр.
- 10. Юшкевич М.О., Роговой М.И. Технология керамики, 3-е изд. М.: Стройиздат, 1969.
- Ricci G. Archaeomethric studies of historical ceramic materials. Venetia, 2017, 203, 48-54.
- Wadell, Hakon (1935). "Volume, Shape and Roundness of Quartz Particles". Journal of Geology. 43 (3): 250—280. DOI:10.1086/624298.
- 13. География Молдавии // Режим доступа: https://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%B3%D1%80%D0%B0
 %D1%84%D0%B8%D1%8F_%D0%9C%D0%BE%D0%B8%D0%B4%D0%B0%D0%
 B2%D0%B8%D0%B8

МИНИСТЕРСТВО ГЕОЛОГИИ СССР

Приложение №1

ГОСУДАРСТВЕННАЯ

ГЕОЛОГИЧЕСКАЯ КАРТА СССР

(НОВАЯ СЕРИЯ)

Масштаб 1:1 000 000

КАРТА ЧЕТВЕРТИЧНЫХ ОТЛОЖЕНИЙ

L-(35),(36) (Кишинев)

