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This article describes an algorithm for solving the optimal control problem in the case when
the considered process is described by a linear system of ordinary differential equations. The
initial and final states of the system are fixed and straight two-sided constraints for the control
functions are defined. The purpose of optimization is to minimize the quadratic functional
of control variables. The control is selected in the class of quadratic splines. There is some
evolution of the method when control is selected in the class of piecewise constant functions.
Conveniently, due to the addition/removal of constraints in knots, the control function can
be piecewise continuous, continuous, or continuously differentiable. The solution algorithm
consists in reducing the control problem to a convex mixed-integer quadratically-constrained
programming problem, which could be solved by using well-known optimization methods that
utilize special software.

Keywords: optimal control, differential equations, linear control system, quadratic spline,
mixed-integer quadratically-constrained programming.

1. Introduction. Often, in mathematical models describing various mechanical,
electrodynamic, economic, or other processes, the control function by its nature must
be continuous or even smooth in time. Another example is when smooth movement is an
important goal of the control problem. Thus, in [1] the problem of control constructing for
a wheeled mobile robot is considered. Such machines are used to transport people with
disabilities, so it is necessary to do this with comfort for passengers.

In such situations, it is convenient to select the control from the class of quadratic
splines, because these functions are quite easy to research, and they can approximate dif-
ficult nonlinear functions. Also by adding or removing constraints in knots, the control
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function can be made piecewise-continuous, continuous, or smooth. The entire considered
time segment is splitted into some predetermined number of sub-segments N (for
simplicity, we assume that all sub-segments are of the same length, but this is easy to
change). And on each segment, we will consider a polynomial of the second degree as a
control function.

This work is a continuation of the articles [2, 3], in which algorithms of constructing
optimal control for the linear and nonlinear cases in the class of piecewise constant func-
tions are described, which is very justified, given the global digitalization and, therefore,
the sampling of most processes. The original idea in this area belongs to the R. Gabasov
research team [4]. Related researches are also presented in [5, 6].

2. Problem statement. The dynamics of the process is consistent with a linear
system of ordinary differential equations with control:

& = Az + Bu, (1)

where x(t) is a n-dimensional phase vector; &(t) is a derivative of z(t); u(t) is a r-di-
mensional control vector; A is a (n X n)-matrix; B is a (n X m)-matrix; ¢ is a time variable
defined in a segment [0, T.

The terminal problem is to transfer the system from the initial to the final state:

2(0) = ., 2(T) = 2", 2)

The controls have two-sided constraints:

M <u 1P, 0=

; 1,r. (3)

We also assume that the controls belong to the class of smooth functions:
ui(t) € C'([0, T]), ieTlr. (4)

The objective of the control is to minimize the integral of the quadratic form of w:

J= [ w(t)TQu(t) dt — min. (5)
/

In this expression, ) is a m X m symmetric matrix. Suppose that @ is a Positive Semi-
Definite matrix. This is an optional restriction. But the convexity of the problem depends
on this, which is very important for solvability.

The control is chosen in the class of uniform quadratic splines with knots ¢, =
Tk/N, k=0, N, where N is predefined number:

PR P+, e [th, th),

ui(t) = i=1,r. (6)
k=1,N,

Thus the problem is in finding optimal admissible values of pgg), pz(.;), pz(.z).

3. Reduction to MIQCP problem. In this section it will be shown that the optimal
control problem (1)-(6) can be reduced to an optimization problem with continuous and
binary variables, linear and quadratic constraints and a quadratic objective function. This
problem termed a Mixed-Integer Quadratically-Constrained Programming (MIQCP).
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Smoothness condition. Since the control is represented as a quadratic spline, there
are guaranteed smoothness between knots. Therefore, it remains to ensure continuity and
smoothness at knots.

Continuity at knots for control functions:

PR+t ol = P APt AP, k=T, N—1, i=Tr. ()

Continuity at knots for derivatives of control functions:

1) _ 5,2 )

2t + 0 = 2050tk AP, k=T,N—1, i=T1r. (8)

Note, if smoothness is not required at knots, we just need to disable restrictions (8). If
continuous is also not required, we also need to disable restrictions (7).

Straight constraints. In accordance with inequalities (3) and representation of the
control functions as (6), the following conditions must be satisfied:

lz(l) g pgi)tQ +p§1)t +p(0) l2) vt € [tkfh tk)7 k = 17N7 1= 17T'

These conditions can be transformed to extremum conditions
i<t (PP pe+ ),
t€[tp—1, tr)

1> s (0Pt +),
te(ty—1, tr)

In this case, on each segment [tx_1, tg), it is necessary to consider only three points
e ) _ (D /9, (2)
suspicious of extremum: tx_1, tx and —p;,’/2p;; -

There are simple restrictions for knot points:

0 <P P+ <)

k=1,N, i=1,r. (9)

1 2 0 2

l( ) <p( )t2+p(k)tk+p( ) <lz( )

More difficult situation with the parabola extremum —pl(.;) / QpEi). It would be wrong

to say that the extremum value must satisfy two-sided boundaries, because, after all, it

is permissible to violate the boundaries if the argument of the extremum is to the left or

right of the segment [ty_1, tx).

For simplicity reassign some variables:

D fpgk), T i=1tk_1, To:=tg, Il1:= lgl), lg = l§2).

And suppose that values of quadratic polynomial at knots are fixed:

(2) (1) (0) (2 (1)

0
Y1 =it Dy 1 DY Y2 —pzk)tk + iy, tk +p( )

Then it is possible to express the values of pgé) and pgg) through p, y1 and ys:

(1)_y2—y1_ ()_ y2—y1
Pk = p(T1+72), Dy =DPTiT2 p—
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Now we can find the conditions that an extremum value of quadratic polynomial is equal I5:

2
(y2 ] —p(m + Tg)) —4p (pﬁTg — ?i le +y1 — 12> =0.

T2 —T1 2 —T1

After transformations we get the quadratic equation of p:

2 —T1

2
(12052 + (24 ) + )+ (222 o,
above is a quadratic equation for unknown variable p that has two solutions:

R <\/l2—y1i\/l2—y2)2

T2 —T1

Thus, the task was solved: find the parameters of the quadratic polynomial, when
two points are fixed, and the extremum is equal to a predeterminated value. Analysis
of solutions makes it easy to understand that the solution with a larger absolute value
corresponds to the extremum value located between two fixed points, and another solution
corresponds to the extremum value located outside these points.

By doing the same for the lower bound, we get a two-sided constraint for p:

(\/l2y1+\/lzy2>2<p<<\/y1ll+\/ygll>2' (10)

T2 —T1 A T2 —T1
Now let’s return to the previous notations and introduce new variables 51(,1), sg?, ng)a Si)
and add restrictions for them:

(1) _ (2)t2

Sik. = Pik ( - 11(1)7

R plk)tk—l + D

@ p@2 Oy O )

=1 PR, e ), E=TE i=TR )
LR )

s >0, s >0

Then rewrite equation (10):

72p® <N2< M @ 4o [ (2)>’

A C ARV ARRA )

Next step is to split variables pz(.z) to new non-negative variables rg), rgz), TEZ), 7"5:):

szl(i) — N2 ( r(;) _ 7n(k) + 7n(k) + r(:))
i) =0 rgi) =0, T(Z) =0

ik ’ % ’
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The idea behind this separation is that in equations (12) rl(,i) should be responsible for the

linear part of the lower boundary, Q(Z) should be responsible for the non-linear part of the

lower boundary, rl(,i’) should be responsible for the linear part of the upper boundary and

rl(:) should be responsible for the non-linear part of the upper boundary.

Important detail is that if pgi) > 0 then 1"5,1) + Q(Z) = 0. Otherwise, if pgi) < 0 then

rgz) + rl(:) = 0. To ensure this, we have to introduce a binary variable J;; and append

following constraints:

?

7"2(11) + TE? <4 (152) - 1(1)) Oiks
@ <4 (1P 1) (1= o),

Thereby, if d;; = 0 then rl(,i) + rl(,z) = 0, else if d;5 = 1 then TEZ) + ’I"E:) = 0. Element

4(11(2) - lgl)) means upper bound because it is easy to demonstrate that if pgi) > 4(l§2) —

lgl))N 2/T? then straight constraints are anyway violated.
Finally, let’s rewrite the linear part of constraints (12) in the new notations:

A<D <P, k=T, i=T7, (15)
and non-linear part:
2 2
() <as@sly, (W) <asfs, k=TN, i=Tw  (10)

Note that constraints (16) are a rotated Second-Order Cone constraints. This is main
achievement and we will discuss it in the Section 4.

In summary, it was shown how two-sided constraints (3) were transformed into linear
constraints (9), (11), (13), (15), linear inequalities with binary variables (14) and quadratic
inequalities (16).

Terminal conditions. The condition for the initial state is already satisfied, since
it is a part of the Cauchy problem. Let us define the conditions for the final state.

Write the Cauchy formula at final point and apply conditions (2)

T
ot =M, + /eA(T_t)Bu(t)dt.
0

Let’s divide segment [0, T'] into N subsegments with the same lengths and apply that the
control function is selected in the form (6)

.’IJ* _ eATx*+

r 123 tx 123

n Z /eA(T—t)bitZdt pg?"‘ /eA(T—t)bitdt pz(-;?-l- /eA(T_t)bidt pl(,g)

=1 k=1 to1 tr_1 fr—1

Here b; denotes the column 7 of the matrix B.
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Vector functions eA(T=%b; could be numerically calculated as solutions of the following

Cauchy problems (it’s profitable if r < n):

20 = —A20)(¢),
20(T) = b,

Now let’s introduce new notations:

gi=a"—e Tz,

t
dik0 = f eAT=Db;dt,

t—1
. 23
dkli= [ eATVptdt, k=1,N, i=T1r,
tp—1
dik? = f eAT=Dbt2dt,
t—1
it is assumed that integrals will be calculated numerically.
Then we get n linear equalities
r N
Zz(dmo (0)+dzk1 (1) dzkzpl(i)):gj’ j=Tmn. (17)

=1 k=1

Objective function. Replace the control u(t) by quadratic spline (6) in the objective
function (5):

N T T tr
T=3 5 [ (200 004 000) (62 4 00+ 5L,

k=1i1=1 12:1tk71

where ¢;,;, is an element of the matrix Q.

After calculating of the integrals and introducing new designations, we obtain

quadratic form in the variables p(k), pgé) and p(2)

P IPIPIPD Z (hisenlo o)) (18)

here

a1,a 178
Piiar = Ginia G 7p (kﬁ = (k= 1)’8) , B=ait+as+1,

k‘:LN7 i1:17r7 i2:1,r, 011:0727 042:0,_2.

According Q is a positive semi-definite matrix, in 3 steps it can be proved that the quadratic
form in the formula (18) is a positive semi-definite:

1) the resulting matrix is a block diagonal matrix consisting of N blocks for each
k = 1, N. Therefore, it is necessary to demonstrate that any block is a positive semi-
definite matrix;
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2) for each k if we fix ¢ then w;(t) is a linear function of pgg), pgé) and pgi). Next it can
be shown that composition G(F'(§)) is a positive semi-definite quadratic form, if G(n) is
a positive semi-definite quadratic form and F(£) is a linear function. Thence we see that

under the integral is a positive semi-definite quadratic form in the variables p£2)7 pgi) and

pl(.z) for each fixed t;

3) the last step is to show that the result of integrating of a positive semi-definite
quadratic form with the parameter ¢ is a positive semi-definite quadratic form.

4. Model analysis. In previous section the optimal control problem (1)-(6) was
transformed to the optimization problem (7)—(9), (11), (13)—(18). In this article we are
not aimed in receiving matrix-based model with a minimal number of variables. Because
it is quickly achieved at the stage of presolve in the runtime of the optimization software.
Real purpose is to obtain effective model, optimal in the terms of calculation time. For
ease of narration, we have described the model in a constraint-based form. So let’s take a
closer look at this.

Variables:

1) 3rN basic continuous variables: pz(.g), pz(.;), pgi), k=1,N,i=1,r.

2) 8rN continuous non-negative variables: 3511)7 sgi), sgz), SE;), rg), rgz), T'EZ), TE:),
k=1,N,i=1,r.

3) rN binary variables: 6;,, k = 1, N, i =1, 7.

Constraints:

1) 7rN — 2r + n linear equalities: (7), (8), (11), (13), (17). So a number of variables
can be excluded.

2) 6rN linear inequalities: (9), (15).

3) 2rN linear inequalities with binary variables: (14).

4) 2rN quadratic inequalities: (16). Although quadratic constraints are not repre-
sented by positive semi-definite quadratic forms, they are rotated Second-Order Cone
equations. And it can be proved that in the case when the variables SE;), sgz), sgz), 51(':)
are non-negative, there is a convex set of solutions.

Accordingly, we have a convex set of solutions in the optimization problem obtained
by linear and quadratic constraints.

Objective. The objective function (18) of the optimization problem is a positive
semi-definite quadratic form in the variables p£2)7 pz(.;), pgi), k=1,N,i=1,r.

Summary. Thereby, we have obtained the optimization problem with continuous
and binary variables, linear and convex quadratic constraints, and a convex quadratic
objective. According to the generally accepted classification, this problem is a convex case
of MIQCP. There are various software that can resolve this problem, such as Gurobi,
CPLEX, Artelys Knitro, etc. [7].

5. Example. The problem of the damping of the sleeping Lagrange top [8] was
considered as an illustration of the method:

€+ Bij — Ag = uy,
M — Bf - AW = U2,
here £(t) and 7)(t) are denote coordinates of the top end; ui(t), ua(t) are generalized forces;

A and B are model parameters, indicating the physical properties of the object. Let’s put
A=1, B=3.
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The terminal problem is to change object position (5,5,77,7'7) from (-10,5,6,8) to
(0,0,0,0). The value of T was set to 20, N also equals 20. All lower bounds are —2, all
upper bounds are 2. And finally, ) is two-dimensional identity matrix.

MIQCP problem was obtained and then solved using Gurobi. Total processing time
is 1.56 s. The result is illustrated at Figure.

w1 (1), u(1) Control Function
2 -

— (0
14|--- w

n (0 Phase Portrait

10 A

—10 1

e T s o 0
Figure. The damping of the sleeping Lagrange top
(moving an object from point (—10, 6) to point (0, 0). The object’s speed also fades to zero)

6. Conclusion. Recall that the initial problem is a control problem with a linear
ordinary differential equations (ODE) system, a quadratic objective functional, fixed initial
and final states and bounded control in the form of quadratic splines. This problem is
a some alternative or generalization of similar problem with a control in the form of piece-
wise-constant function. The optimal control problem has been reduced to the convex case
of MIQCP. In order to accomplish this, it is necessary to carry out a numerical calculation
of ODEs and definite integrals. The main achievement of current research that the derived
optimization problem is a convex, which means that the global extremum can be efficiently
calculated using special software.

This study is completed, but further researches may be related to the consideration
of nonlinear ODE systems or consideration of other control functions instead of quadratic
splines. More specific restrictions to the phase or control variables may also be considered.

References

1. Park J.J., Kuipers B. A smooth control law for graceful motion of differential wheeled mobile
robots in 2D environment. 2011 IEEE International Conference on Robotics and Automation, 2011,
pp. 4896-4902.

2. Popkov A.S. Application of the adaptive method for optimal stabilization of a nonlinear object.
2016 International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s
Conference), 2016, pp. 1-3.

3. Popkov A. S., Smirnov N. V., Smirnova T. E. On modification of the positional optimization method
for a class of nonlinear systems. ACM International Conference Proceeding Series, 2018, pp. 46-51.

4. Balashevich N.V., Gabasov R., Kirillova F. M. Chislennye metody programmnoy i pozitsionnoy
optimizatsii lineynyh sistem upravleniya [Numerical methods of program and positional optimization

Becrauk CII6I'Y. Ilpuknanmnas maremaruka. Vudopmaruka... 2020. T. 16. Bem. 4 469



of linear control systems|. Journal of Computational Mathematics and Mathematical Physics, 2000,
vol. 40(6), pp. 838-859. (In Russian)

5. Girdyuk D.V., Smirnov N.V., Smirnova T.E. Optimal control of the profit tax rate based on
the nonlinear dynamic input-output model. ACM International Conference Proceeding Series, 2018,
pp. 80-84.

6. Baranov O.V., Smirnov N.V., Smirnova T.E., Zholobov Y.V. Design of a quadrocopter with
PID-controlled fail-safe algorithm. Journal of Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications, 2020, vol. 11(2), pp. 23-33.

7. GAMS Development Corporation: Solver Manuals. Available at:
http://www.gams.com/latest/docs/S MAIN.html#SOLVERS MODEL TYPES (accessed: September 15,
2020).

8. Babadzanjanz L. K., Pototskaya I. Yu. Upravlenie po kriteriyu raskhoda v mehanicheskih sistemah
[Control by expense criteria in mechanical systems|. St. Petersburg, Saint Petersburg State University
Press, 2003, 137 p. (In Russian)

Received: October 08, 2020.
Accepted: October 23, 2020.

Authors’ information:

Alexander S. Popkov — Postgraduate Student, Research Engineer; alexandr.popkoff@gmail.com
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Paspaboran ajropurMm perneHus 3a7a9u ONTUMAJIBHOIO YIPABJICHUS B CJIydae, KOTJa pac-
CMaTpUBAEMBIIi TTPOIIECC OMMUCHIBAETCS JIMHEHHON CUCTEMO OOBIKHOBEHHBIX auddepeHraib-
HBIX ypaBHEHUI, 33/IaHbl HAYAJbHOE U KOHEUHOE COCTOSTHUS YIIPABJISIEMOTO O0bEKTa U MPU-
CYyTCTBYIOT JIByCTOPDOHHKE OIDaHUYECHUs Ha yrpasjenusd. [legeBoil hyHKIIMOHAT 3a/1aH B BU-
Jle MHTerpaJja OT MOJIOXKUTEJIBHO MOJTyOITPeIeIEHHON KBaIPATUIHONW (DOPMBI OT yIIPaBJICHUIA.
VupabjeHue BBIOMPAETCs B KJIacCe KBaJIpPaTUUYHBIX CILIAitHOB. I[Ipm TakoMm Buze ympasie-
HUII OKA3bIBAETCS BeCbMa yMOOHO, 4TO, Osarofapsi JOOABJIECHUIO WM YAAJEHUIO OI'DAHMYe-
HUI B y3/1aX, PYHKIUs YIPABJIEHUS MOXKET ObITh KyCOUYHO-HENPEPBIBHON, HETPEPBIBHOM WIN
DJIJIKON. AJITOPUTM pellleHr s 3aKIF0YAeTCsl B CBEJIEHUN 3a]a4UN YIIPABIEHNUsI K 3a,/1a9€e BBIITYK-
JIOrO CMEIAHHOIO TEJIOYUCIEHHOTO KBAJIPATUIHOrO MPOrPAMMUPOBAHUSA C KBaJPATHIHBIMU
OrpaHUYEHUSIMU, KOTOPYIO MOYKHO PEIUTH IPU MTOMOIIK W3BECTHBIX METOJIOB ONMTUMU3AIIAN
C HCIIOJIB30BAHMEM CIEIHAIbHOIO IPOrPAMMHOIO ODECIIEYEHHUSI.

Karoueswie caosa: onruMasbHOe yIpaBieHue, nuddepeHIaabable ypaBHEHUs, JTUHEeHAsT
yIpasJisieMasl CUCTeMa, KBaIPATUIHbIE CILIAHBI, CMEIIAHHOE I[€JIOMNCICHHOE KB IPATHIHOE
[IPOrPaMMUPOBAHNE C KBAIPATHIHBIMUA OIPAHUIEHUSAMH.
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