UDC 519.8 Becrauk CII6I'Y. IIpuknagunas maremaruka. Vudopmaruka... 2020. T. 16. B, 4
MSC 90C33

Spatial market equilibrium in the case of linear transportation costs*

A. Y. Krylatov, Y. E. Lonyagina, R. 1. Golubev

St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg,
199034, Russian Federation

For citation: Krylatov A.Y., Lonyagina Y.E., Golubev R.I. Spatial market equilibrium in the
case of linear transportation costs. Vestnik of Saint Petersburg University. Applied Mathematics.
Computer Science. Control Processes, 2020, vol. 16, iss. 4, pp. 447-454.
https://doi.org/10.21638/11701 /spbu10.2020.409

In this article, we study the spatial market equilibrium in the case of fixed demands and
supply values, the requirement of equality in regard to overall supply and overall demand,
and linear transportation costs. The problem is formulated as a nonlinear optimization
program with dual variables reflecting supply and demand prices. It is shown that the
unique equilibrium commodity assignment pattern is obtained explicitly via equilibrium
prices. Moreover, it is proved that in order to obtain absolute values of equilibrium prices, it
is necessary to establish a certain base market price. Therefore, once the base market price
is given, then other prices are adjusted according to spatial market equilibrium.

Keywords: spatial market equilibrium, non-linear optimization, multipliers of Lagrange,
Karush—Kuhn—Tucker conditions.

1. Introduction. The modern market was formed mainly due to the division of
labor. Actually, the market already lost its national and territorial boundaries and turned
into a global market for commodities from spatial perspectives. The sale and purchase
of commodities can occur at completely different prices, bounded above by the price of
demand, and below — by the price of supply. Actual prices depend primarily on the struc-
ture of market and transaction costs, which incorporate the transportation costs. There
are several structures of the market.

e Perfect competition markets: many small firms with homogeneous products.

e Monopoly: there is only one company on the market that produces unique products.

e Monopolistic competition: there are many small firms on the market whose pro-

ducts are heterogeneous.

e Oligopoly: there are a small number of large firms with homogeneous or heteroge-

neous products on the market.

For each of the above structures, it is possible to determine such a situation (point)
in the market, when neither the buyer nor the seller is interested in changing the current
situation. The price at which the product offered on the market corresponds to the demand
is called the equilibrium. The market mechanism begins to work, exerting pressure on
prices from the lower and upper sides to achieve an equilibrium price. The study of the
market, as well as the principles of its functioning and regulatory mechanisms, today seems
to be relevant and necessary for understanding the essence of the socio-economic processes
that are currently taking place throughout the world.

The first consideration of the spatial price equilibrium problem was made in [1]. The
foundations for the study of spatial production, consumption, and trade of commodities
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was given in [2]. Up-to-date there exists a wide range of computational techniques for
coping with such kind of problems [3—7]. Comprehensive mathematical models concerning
spatial equilibrium are studied in [8-10]. Spatial equilibrium models are commonly ex-
ploited to solve the traffic assignment problem [11-14]. Moreover, its applications can be
found in energy markets [15, 16] and telecommunication markets [17].

In this paper, we study the spatial market equilibrium in the case of linear
transportation costs. The problem is formulated in a form of nonlinear optimization
program in Section 2. The supply and demand price functions are assumed to be given
as well as the unit transaction cost functions, which are assumed to incorporate the unit
transportation costs. The unique equilibrium commodity assignment pattern is obtained
explicitly via equilibrium prices in Section 3. Moreover, in Section 3 it is proved that in
order to obtain absolute values of equilibrium prices, the market moderator has to establish
the basic market price. Conclusions are given in Section 4.

2. Spatial market equilibrium. Consider the set of suppliers M and the set
of consumers N, which are associated with commodity production, distribution, and
consumption. We denote by s; the supply of ¢ € M, and by A; — the price of a unit
of the ith supply, A = (A1,...,Am)T. By d; we denote the demand of j € N, and by
pj — the price of a unit of the jth demand, p = (p1, ..., p,)*. Finally, let z;; > 0 be the
commodity volume between a pair (4, j), while ¢;;(z;;) is the cost of the transaction of a
unit of x;;. Let us also introduce the indicator of market relations:

. 1 fOI‘l’ij>O, ..
6”{ 0 for z;; =0, V(i j) € M x N.

Definition. Commodity assignment pattern x is the spatial market equilibrium if and
only if
)\7; + Cij (l’”) = Hj for Lij > O,

)\7; + Cij(l’ij) = Hj for Tij = O, V(Z7j) €MXxN.

Thus, if the sum of the i-th supplier’s price and the transaction costs between ¢ and j

exceeds the demand price of j-th consumer, then the pair (7, ) will not have any market
relations. The commodity assignment pattern x* such as

o = argm‘gn Z Z /cij(u)du (1)
0

i€EM jEN
subject to
Z Tij = 84 Vi € ]\4'7 (2)
JEN
Z Tij = dj V] € ]\[7 (3)
€M
I’U>O VZ,]GMXN, (4)
under
> 5= d (5)
ieM JEN

is proved to be spatial market equilibrium [10, 18].
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3. Pricing mechanism in case of linear transaction costs. Within the present
paper, we examine spatial market equilibrium in case of linear transaction costs. In other
words, we assume that

Cij(l’ij) = a;; + bijxij Doaq 2 O,bij >0 V(Z,]) €M x N.

Lemma 1. Assume that demands and supplies are fized in the spatial market and
satisfy the requirement (5). The spatial market equilibrium under linear transaction costs
is obtained by the following commodity assignment pattern:

BimAizai e g
Tij = bij ) 1 Hj i > Qij, Vie M, jeN, 6)
0, if puj — A < aij,

where (A, ) are such that

@i1041
di+ > 4
i€ M

bin
(B’lf“ B> (u) _ ienr )
B B A s1+ Z #JJ ’

A jOmj
Sm + Z W;,J —

mj

JEN
while
di1 0 _ Z VAN 0
2 bin L by
€M JEN
B, = : , Bx= :
. bin b/ynj
€M JEN
and
911 Om1
b11 bm1
B = . .
91n ... O9mn
bln bmn

Proof. Let us consider Lagrangian of the problem (1)—(4):

L:ZZ/Cij(u)du+Z)‘i Z-’L'ij_si +

iEM jEN {) ieM JEN

+>u <— > +dj> +) 0> &),

jEN icM i€M jEN
where \;, p1j, and &; > 0 for i € M, j € N are multipliers of Lagrange, according to
Kuhn—Tucker conditions

OL

oo = Cii(Tig) FAi—p; =&, =0 VieM, jeEN, (8)
Tij
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oL

:—Z.’I?ij+81‘:0 VieM,

OAi jeN

oL

TI*ZI”“FCZJ':O VjGN,
Hi ieM

&j(—25) =0 VieM, jeN.
Since &;j(—wzi;) =0 for all (4,j) € M x N, then

if 25 >0=&; =0, .
ifaz;;=0=¢&; =20, v(i,j) € M X N,

hence, due to (8):

=pj— N, bz >0, .
cij (@i5) " S ~ V(i,7) € M x N,
Z py — i, if g =0,

or in case of linear transaction costs:

=pu; — A, if x;; >0, .
Qg+ bigwgg 10T T V(i,§) € M x N,
Z pj — i, if g =0,
that leads to \
_ pi—Xi—ag s
xij = = e L, if zy; >0, V(L]) € M x N,
aij = i — A, if ;5 =0,
consequently, commodity volume between pair (i, j) depends on value of a;;:

ifaij>,uj—)\i=>xij:0, V(lj)GMXN
ifaij<,uj—)\,»:>x,»j>07 ’ ’

so the expression (6) holds.
Now we substitute x;; into the balance equations and get the following expressions:

5 5in i

Y )\iﬂ — ZW7h , YieM
Z Hi bi; Z bi; - bij e e
JEN JEN JEN

i 0ij ai;0;j )
Z’”E—ZME:. o tdi VieN,
iEM I deM J €M J

that in a matrix form is equivalent to (7).

The lemma is proved.

The next lemma proves that the system of linear equations (7) has infinitely many
solutions.

Lemma 2. The following statements hold:

o the left-side matriz from (7) is singular, and its rank is m +n — 1;

o the system of linear equations (7) is solvable.
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Proof.
I. Let us sum rows from the first one to n in the left-side matrix from (7):

in 5171. . 67711 5mn
(5t et )

b
ieM 71 ieM 11 ml mn

that is

g

€M il

SN g
bzn Zblj”_zbmj
JEN

and let us sum rows from n + 1 to n + m in the left-side matrix from (7):

51 Smj
Zblj,...,zb_{

jen "Ml

o, 1. 9%

; e
bl 1 b’rnl bln ’rnn

that is

>

ieEM

zn 6 i m
Z bin Z bij.; o Z —
iEM J jEN bm;

As one can see, obtained rows are equal. Therefore, the left-side matrix from (7) is singular.

Moreover, according to (3), > x;; = d; for any j € N, then there exists at least
ieM
one z;; > 0 for any j € N. In other words, > §;; > 1 for any j € N and, consequently,
ieM
> Z?’: > 0 for any j € N. Thus, it is clear that the first n rows are mutually linearly
ieM

independent. On the other hand, according to (2),

> x5 = s; for any ¢ € M, then there

JEN
exists at least one x;; > 0 for any ¢ € M. In other words, ) d;; > 1 for any i € M and,
jEN
consequently, > i—’ > 0 for any ¢ € M. Thus, it is clear that the rows from n + 1 to
ij

jEN

n +m are mugually linear independent. However, the sum of the first n rows is equal to
the sum of rows from n + 1 to n + m. Consequently, the Gauss—Seidel method achieves a
trapezoid matrix which dimension is m +n — 1. Therefore, the rank of the left-side matrix
from (7)is m+n — 1.

II. According to the Kronecker—Capelli theorem, for a system to be solvable, it is
necessary and sufficient that the rank of the extended matrix of this system be equal to
the rank of its main matrix. Construct an extended matrix of the system

divn .. @161
Z bi1 0 di + Z bi1
€M €M
: —-B :
0 Y Jin dp+ 3 @inin
. bin no bin
/_1 o €M s €M 5
= -y 0 s+ Y wlu
; by ; bij
JEN JEN
BT : - : :
Omj AmjOmj
0 . Z T S+ Z A
jen "™ jen ™
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It is clear that rankA < m + n since dimA = (m +n) x (m +n +1). On the other hand,
according to the first part of the proof, rankA > m +n — 1. Hence, m +n — 1 < rankA4 <
m + n. Let us sum rows from the first one to n in the matrix A:

1 .. 7251J Zalbléll +d +Za2n n

ieM bi iem i ieM bi

that is

PIL DI DI RO M W DIUED DD I

i€EM JEN JEN JEN JENieM

and let us sum rows from n + 1 to n + m in the matrix A:

Zb T %7 S 1+Za1]51] "+8frn+27a72j5’_mj

ieM jen "1 JEN jeN

that is

Sk Y e Y e — YL Y e YO Y

ieM ieM bin JEN JEN ieM ieM jeN

Since Y s; = > dj, then the sum of the first n rows is equal to the sum of rows from
ieM jEN

n+1to n+m. Thus, rankA < m+n and, hence, rankA = m +n — 1. Therefore, the rank

of the extended matrix of the system (7) is equal to the rank of its main matrix.

The lemma is proved.

Proved lemmas lead that the following theorem holds.

Theorem. In the case of fized demands and supplies, requirement (5), and linear
transaction costs, there is only one independent spatial market price for the equilibrium
commodity assignment pattern.

Proof. According to Lemma 1, spatial market equilibrium in case of linear transac-
tion costs is obtained by the unique commodity assignment pattern (6) with demand and
supply prices that satisfy the system of linear equations (7). According to Lemma 2, the
system of linear equations (7) is solvable with respect to m+n variables (prices), while the
rank of the main matrix is m + n — 1. Therefore, there is only one independent variable,
while all others depend on it.

The theorem is proved.

The conducted study revealed an important conclusion: only one price value is
independent value. In other words, once the basic market price is given, then other prices
are adjusted according to spatial market equilibrium.

4. Conclusion. In this paper, we study the spatial market equilibrium and examine
the case of linear transaction costs. Obtained results show that the dual variables, which
are the Lagrange multipliers, reflect supply and demand prices. Thus, when this problem
is solved, the equilibrium commodity assignment pattern is obtained as well as the
equilibrium prices. Moreover, we find out that to obtain absolute value of equilibrium
prices someone (actually the market moderator) has to give the basic market price. Once
the basic market price is given, then other prices are adjusted according to spatial market
equilibrium.
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IIpocTpancTBEeHHOE PBEIHOYHOE paBHOBECHE B CJIydae
JMHENHBbIX TPAHCIIOPTHBIX 3aTpaT”®

A. FO. Kpvunamos, 0. E. Jlonaeuna, P. U. Toaybes
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Wccnenyercst mpocTpaHCTBEHHOE PHIHOYHOE PABHOBECHE B CIIyYae PUKCUPOBAHHDBIX 3HAUECHUN
CIpOCa 1 3HAYEHUI NPEJJIOXKEHNsI, TPeOOBAHNST PABEHCTBA COBOKYIIHOI'O CIIPOCA W COBOKYII-
HOT'O IIPEJIJIOXKEHUsI, & TaK»Ke JIMHEHHBIX (DyHKIUI 3aTpaT Ha IIepeMelieHIe TOBapoB. 3a1ada
chopMyIupOBaHa B BHUJE 3aJaYUN HEJIUHENHON ONTUMHU3AINY C JBONCTBEHHBIMU IT€PEMEHHBI-
MU, OTPasKaloIIUMU IIeHBI CIIPOCa U IpeaoxkeHus. [loka3aHo, 4TO eIMHCTBEHHOE paBHOBEC-
HOE COCTOSIHUE PACIIPEJIEJICHHUsI TOBAPOB MOXKET OBITH sIBHO BBIPDAXKEHO Yepe3 DPaBHOBECHBIE
nenbl. Kpome TOro, BBISBIEHO, UTO IS MIOTYyYEHUsI aOCOJIOTHBIX 3HAYEHNI PABHOBECHBIX
[IeH HeoOXOIMMO YyCTAHOBUTH HEKOTOPYIO 0a30ByI0 DBIHOYHYIO IleHy. Takum obpasom, mgoKa-
3aHO, YTO KaK TOJBKO 3aJaHa 0a30Basi PHIHOYHAS II€HA, JAPYTHe IEHBI KOPPEKTUPYIOTCS B
COOTBETCTBUM C IPOCTPAHCTBEHHBIM DHIHOYHBIM PABHOBECHEM.

Karoueswie cA06a: TPOCTPAHCTBEHHOE DPBIHOYHOE PABHOBECHE, HEJIMHEHHAsl OITHMHI3AINS,
muokutenn Jlarpamxka, ycaosusa Kapyma—Kyna—Takkepa.
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