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The article proposes an analog of E. Rothe’s method (semi-discretization with respect to the
time variable) for construction convergent different schemes when analyzing the countable
stability of a weak solution of an initial boundary value problem of the parabolic type with
distributed parameters on a graph in the class of summable functions. The proposed method
leads to the study of the input initial boundary value problem to analyze the boundary
value problem in a weak setting for elliptical type equations with distributed parameters
on the graph. By virtue of the specifics of this method, the stability of a weak solution is
understood in terms of the spectral criterion of stability (Neumann’s countable stability),
which establishes the stability of the solution with respect to each harmonic of the generalized
Fourier series of a weak solution or a segment of this series. Thus, there is another possibility
indicated, in addition to the Faedo—Galerkin method, for constructing approaches to the
desired solution of the initial boundary value problem, to analyze its stability and the way
to prove the theorem of the existence of a weak solution to the input problem. The approach
is applied to finding sufficient conditions for the countable stability of weak solutions to other
initial boundary value problems with more general boundary conditions — in which elliptical
equations are considered with the boundary conditions of the second or third type. Further
analysis is possible to find the conditions under which Lyapunov stability is established.
The approach can be used to analyze the optimal control problems, as well as the problems
of stabilization and stability of differential systems with delay. Presented method of finite
difference opens new ways for approximating the states of a parabolic system, analyzing their
stability in the numerical implementation and algorithmization of optimal control problems.

Keywords: parabolic differential-difference system, distributed parameters on the graph, weak
solution, countable stability.

1. Introduction. The paper provides a fairly sufficiently total approach of using ideas
of the method of finite difference and some principles of construction converging different
schemes when analyzing initial boundary value problems with distributed parameters on
the graph in the class of summable up functions. The essence of the approach is not
new — it is based on the method of E. Rote (1930), named in scientific literature by the
method of semi-digitization (see, for example, [1]). This approach has been realized and
proved in connection with the classic domains of spatial variable change [1, 2]. Further
fundamental results of the study on the solvability of initial boundary value problems in
network-like domains [3-5] allowed to transfer the ideas and results of [1, 2] without much
difficulty in the case of parabolic equations with distributed parameters on the graph.
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Below is a analogy of the Rote method [2, p. 189] which essentially reduce the analysis of
the input initial boundary value problem to the study of the boundary value problem for
elliptical type equations with distributed parameters on the graph. Thus, there is another
possibility [1, 2, 6], besides the Faedo—Galerkin method, to construction approaches to
the desired solution of the initial boundary value problem, to analyze its stability and the
way to prove the theorem of the existence of a weak solution to the input problem. The
approach is applied to finding sufficient conditions for the stability of weak solutions to
other initial boundary value problems with more total boundary conditions — in which
elliptical equations are considered with the boundary conditions of the second or third
type. The solvability of such problems is proved similarly to the reasoning for the problem
with the boundary conditions of the first type.

2. Notations, concepts and basic statements. In the represented work uses
concepts and notations accepted in the works [6-10]: T' is bounded oriented geometric
graph with edges 7 parameterized segment [0, 1]; OT and J(I') are many boundary ¢ and
interior £ nodes of the graph, respectively; I'y is join all the edges of the graph I' that do
not contain endpoints; I'y = T'g x (0,t) (v = v x (0,¢)), Ty = 9T x (0,¢) (¢t € (0,71,
T < oo is arbitrary fixed constant).

In the course of the work the Lebesgue integral is used by I' or I'y: ff(:c)d:c =

r

> [ f(@)ydx or [ f(z,t)dzdt =Y [ f(xz,t)ydzdt, f(-)y is narrowing the function f(-) to
e Ty Y vt
the edge 7.

Necessary spaces and sets: C1[['] is space of continuous and differentiable on T
functions (derivative at the endpoints of the ribs is understood as one-sided), L,(T")
(p = 1,2) is the Banach space of measurable on I'y functions summarized with a p degree

(similar to space L,(I'r)); Lo,1(I'r) is the space of function from L, (I'z) with the norm,
T

defined by the ratio ||ullz, ,ry) = [([ uw?(z,t)dz)*/?dt; W(T) is the space of functions
0T

from Ly(T') having a generalized first order derivative also from Lo(T'); W5%(I'r) is the
space functions from Lo(I'r) having a generalized first order derivative by z belonging
Ly(T'r) (similarly entered the space Wi(I'r)).

Below is the difference-differential analogue of the parabolic equation

2t — 2 (afw) 2450 + b(@)y(e.t) = fla,t), w,tETr, (1)
with measurable bounded on I'y functions a(z), b(x) summable with the square:
0 <a. <a(z) <a*, |b(z)| < B, z el (2)

Introduce space states of the parabolic system and auxiliary spaces (see [6, 8, 9]). To
do this in space W3(T) consider the bilinear form

) =] (a(2) 422 1 b(a)u(a)v(@)) de.

The following statement to take place [11].

Lemma 1. Let fulfill conditions (2) and function u(x) € W(T) is such that £(u,v) —
J f@)n(z)dz = 0 for any n(z) € W(T), f(z) € Lao(T) is fized function. Then for any
r

edge v C T narrowing a(x)v% continuously at the endpoints of the edge 7.
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Let’s designate through Q,(T") a set of functions u(z) € C[I'] that meet the conditions
of Lemma 1 and ratios

du(l)y du(0)
> a(1), 2 = ¥ a(0), 240
YER(E) vET(E)

in all the nodes ¢ € J(T') (here R(§) and r(§) are sets of edges ~, respectively oriented “to
node £’ and “from node £”). The closing of the set ,(T") in norm W1(T') relabel W1 (a,T).
In addition, if we assume that the functions u(x) € €, (T") satisfy the boundary condition
u(x)|ar = 0, then we will get space W}(a,T).

Next, let’s designate through W " (a, T'7) the closure in the norma W4 °(T'r) the set
of differentiable functions Q(I'r), equal to zero near the boundary OT'r and satisfying

ratios
> a(), 25 = 5 a(0), 2R
YER(E) yer(€)
for all nodes ¢ € J(I') and for any ¢ € [0,T]. Analogously let’s introduce space W+ (a, I'r)
as the closure in the norma W3(I'7) set of functions Q(I'z).
The space Wlo’o(a,FT) describes many states y(z,t) of the parabolic system (1),
Wh(a,T'r) is auxiliary space.
For functions y(z,t) € W " (a, ') we consider equation (1) with initial and boundary
conditions
Y li=o=¢(x) € Lao(T), ¥ |zeory= 0; 3)

the first equality in (3) have meaning sense and is understood almost everywhere.

Remark 1. In the paper in detail be considered the first initial boundary value
problem (1), (3) (the boundary condition of Dirichlet in ratios (3)), for the rest types of
boundary conditions given the necessary comment.

Below are the subsidiary statements in space W%’O(CL, I'r) and the main fragments of
their evidence, the full evidence is given in the work [6].

Definition 1. A weak solution to the initial boundary value problem (1), (3) of class
Wé’O(FT) is called a function y(z,t) € Wlo’o(a, ') that satisfies the integral identity

—fy:cta7’(lt)dxdt+€Tyn fga dex+ffxt n(x, t)dzdt (4)
I'r

for any n(z,t) € Wh(a,'r) that is zero at t = T. Here {r(y,n) is bilinear form, defined
by the ratio

Cr(y,m) :pf (a( ) Znt) O] 4 () (x,t)n(x,t)) dzdt.

In proving the solvability of the problem (1), (3) in space W%’O(CL, I'7) is used a special

basis of space W}(a,T'), that is a system of generalized eigenfunctions of the boundary
value problem

— 4 (@) 2 + b(a)ule) = Au(z), u(@)lor =0 (5)
in class W!(a,T) [11-13]. This problem is to find many such numbers (eigenvalues of
the boundary value problem (5)), each of which corresponds to at least one nontrivial

generalized solution u(z) € Wi(a,T') (generalized eigenfunction) that satisfies an integral
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identity £(u,n) = A(u,n) for any function n(z) € W{(a,T) (here and everywhere below
through (-, -) designated the scalar product in Lo(T) or L 2(T'r)). The following statement
is true.

Lemma 2. Let the assumptions (2) be fulfilled. Then the spectral problem (5) has
an denumerable set of real eigenvalues {\;}i>1 (numbered in ascending order, with regard
for their multiplicity) with a limit point on infinity (eigenvalues X\; are positive, with the
exception of maybe the final number of the first). The system of generalized eigenfunctions
{ui(x)}is1 forms a basis in Wi(a,T) and Lo(T), orth-normalized in W(a,T').

Remark 2. If b(z) > 0 in (2), as is the case in applications, then all the eigenvalues
of the spectral problem (5) are nonnegative.

Theorem 1. For any f(z) € L21(T'r), ¢(z) € La(T") and for any 0 < T < oo the
initial boundary value problem (1), (3) is weak solvable in space W5°(a, T'r).

With proof of theorem we construct the Faedo—Galerkin’s approximations on the
basis {u;(z)};>1: the approximate solutions y™ (x,t) (natural N is fixed) of problem (1),

(3) have form yV(z,t) = Z cN (t)ui(z), where ¢ (t) are absolutely continuous on [0, 7]
functions (c;(t) € L2(0,T )) deﬁned from the system

K3

(%) + J (00 202D by @ uie)) do = ()
cN(0) = (¢, u;), i=1,N.

?
Further reasoning based on a priori estimates of norm of weak solutions (1), (3) and

construction the subsequence {yN k } x>1 Of sequence {yN } N0 Weakly converge to solution
y(z,t) € W5°(a,T'r) in a norm of W (I'r) (weak compactness {y™ }k>1). Namely, it is

shown that for a approximate solution y~ (z,t) is inequality

1y llzr, < C@) (9™ (2,0l Loy + 20 fll 2 acrs))

for any t € [0,T], where | - ||2,r, is a norm of W10(I;), the function C(t) is limited to

€ [0,T] (C(t) € C*,0 < C* < ), not depend on N, is determined by the value T
and permanent a*, 3. From this inequality, taking into account the ratio cf\' (0) = (o, u;)
(i =1, N) and by virtue of inequalities

N N
™ (2, 0)l[ Loy = |l 2 (puiui(@)l < 4 2 [0 ui)l < lelleary

i=1
N
(]l - | is Euclidean norm: ||w|| = 4/ > w? ) it should be
i=1
lyNl2.r, < C@) (1)l Loy + 20 f Lo s) » (6)

that means independent of N estimate ||y~ |2, < C (C > 0).
The latter means: from the sequence {yN } N>p With limited totality elements yv

can be distinguish the subsequence {yN k} 10 that converge weakly to certain element
y € Wi0(a,I'r) at a norm W {y }k>1 converge weakly to y together with

a%x at a norm Lo(I'7)). As a result of the consequent reasoning become clear that
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the all sequence {y is weakly converges to an element y € W%’O(a,FT) (so as

N}N21
- lwromyy < |- ll2,rp). Element y(z,t) is a weak solution problem (1), (4).

Theorem 2. If the conditions of the theorem 1, then initial boundary value problem
(1), (3) has only a weak solution in the space W%(a,T'r) for any 0 < T < oco.

Proof of uniqueness by virtue of linearity problem (1), (3) is the standard way: assumes
the existence of two different solutions y;(z, ), y2(x,t) of class W§°(a, T'v). Where and
from (6) it should be inequality ||y|l2,rr < 0 (y(z,t) = y1(x,t)—y2(z,t)) for any T > 0, and
that means, coincidence solutions yi(x,t), y2(z, t) in space W%’O(a, Tr) (y1(x,t) = yo(x,t)
almost everywhere).

Corollary. A weak solution of initial boundary value problem (1), (3) continuously
depends on the source data f(z,t) and ¢(z). Thus shows the correctness of Hadamard
initial boundary value problem (1), (3) in the space W §"(a,T'7) for any 0 < T' < oo.

Remark 3. Statements of Theorems 1 and 2 are preserved under substitution [0, 7]
on [to,T] (to > 0), the initial condition in the ratio (3) is replaced by y |i=¢,= ().

Remark 4. Boundary condition in (3) can be non-homogeneity:

y(@,t) lacor= (. 1).

Proof of Theorems 1 and 2 in this case literally repeat the above reasonings. For this
as a preliminary introduces a new unknown function y(x,t) = y(z,t) — ®(z,t) (here
®(z,t) is a arbitrary function of Ly(I'r), having generalized derivative 92 € L, (I'y)
and satisfying (almost everywhere) non-homogeneity boundary condition). The integral
identities in definition 1 be changed respectively.

3. Differential-difference system. Below make use of analog of the Rote method
[2, p. 189], which essentially reduce the analysis of initial boundary value problem (1), (3)
to the study of the boundary value problem for elliptical type equations with distributed
parameters on the graph I'. In space Wlo’o(a7 I'r) consider the equation (1) and dissect the
domain I'r planes t = k7, £k =0,1,2,...., M, 7 = %, in addition denote by I”% section I'p
the plane t = k7. Equation (1) will replace differential-difference

L(u(k) —ulk— 1) = 2 (a(2)282) + b@)u(k) = £ (k)

(7)

(k=1,2,..,M),
where i
fr(k) = fr(z, k) =L [ f(z,t)dt € Lo(D).
(k—1)T

Functions u(k) (k = 1,2,..., M) will define as a solution to the equation system (7)
that meets the conditions

u(0) = ¢(x), u(k) |zeor=0 (k=1,2,..,M). ®)

Ratios (7), (8) is the boundary value problem for the system of elliptical equations (7).

Remark 5. Ratios (7), (8) are analogous to the implicitly difference scheme of the
first order of approximation on the time variable ¢ for the initial boundary value problem
(1), (3), set in space Wlo’o(a,FT), with an elliptical operator —% (a(m)i—g) + b(x)u, u €
Wi(a,T).

Definition 2. A weak solution to a boundary value problem (7), (8) is called functions
u(k) = Wi(a,T) (k= 0,1,2,.... M), u(0) = p(x) (p(z) € La(T)), satisfying an integral
identity

406 Becruuk CII6I'Y. Ilpuknaguas maremaruka. Vudopmaruka... 2020. T. 16. B, 4



JU(k)t n(z)dz + (u(k),n) = !ff(k) n(z)dz o)
(k=1,2,..,M)

for any n(x) € Wi(a,T); equality u(0) = (z) is understood almost everywhere,
w(k), = uler k)i = (u(k) — u(k — 1)),

T

We will establish the correctness of the statements, similar to presented in Theorems 1
and 2.

Theorem 3. The following statements take place:

1. For any ko = 0 and any ¢(z) € Lo(T') weak solution u(k) is uniquely defined at
kogkgM (k0<M<OO).

2. A weak solution of the initial boundary value problem (1), (3) is the limit of functions
u(k), caleulated from ratios (7), (8).

P r o o f. Beforehand we will obtain an w(k) a priori estimate that not dependent on
7. Out of the ratio u(k — 1)? = (u(k) — Tu(k))? = u(k)? + 72u(k)? — 27u(k)u(k); follow
relation

2ru(k)u(k); = u(k)? + 72 (u(k)s)? — u(k — 1)2. (10)

Let as take in the ratio (9) n(z) = 27u(k) and granting (10), as well as the lower boundary
ay for a(z) (see (2)) get inequality

Ju(k)?de — [u(k —1)%*dz + 72 f )2dz + 2a. )2dz <
r F
=27 [ b(z) )d:c+2TffT )d:c
r
from here (everywhere below through || - ||2,r the marked norm in space W3(I"))

du(k ||2

[R5, = llulk = D)3 r + 72 [luk)e|3 r + 2a.7] =5
=27 [b(z)u(k)?dz + 2Tff-r u(k)dr <
r
<267 |u(k)|3 r + 27 f- (k ) (k)
As a result, with k =1,2,..., M,

du(k)
(B 13 0 = lulk = D3 0 + 72 [u(E)]3 p + 20.7] 22212 <
< orllu(k)3 r + 27 £ (B)||2,pl[u(k)]|2,r,
where o = 2(3. The latest inequality ensue from
(I3 — llulk = DIZ r < orlulk)l3 r + 271 f- (k) ()2, (12)

1. Let [|u(k)|l2r + [Ju(k — 1)|l2,0 > 0, then divide both parts of inequality (12) on
lu(k)|l2,r + [|u(k — 1)||2,r and taking into account

(11)

(k) la,r
Tl +lu(-Dhr < 1

come to an estimate

[u(k) (13)

=5 [u(k = Dllo,r + 72221 £- (k)
when 7 < QLQ.
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2. Let [|u(k)||2,0+|lu(k—1) ]2, = 0, then from the ratio (12) follows 0 < o7 [[u(k)|]2,r+
27 f+(k)||2,r, that means

+ 27| f- (k)

[u(F)ll2,r < orllu(k) 2,0 = [lu(k = 1)

that again leads to an estimate (13).
Given the recursively of the estimate (13), we get

k
lu(k)l2r < G=gawllu(0)ll2,r + 27 ; ol (s)llar <

k
< b (IO)lar + 27 5 15-0)lar) <
< T (ul0)ar + 207 (B)2ry).

k
Here Hfﬂ'(k)H?,LFT =T ; ||f7-(3> 15‘;7_ <
lngT < 20T at 7 < ﬁ and m < €297, Thus, a estimate has been obtained
||u(k‘)||2,1—* < e2eT (Hu(O)HQ,F + 2||f7—(k)||2,17[‘T) . (14)

Further, summing up the inequality (11) by & from 1 to m < M and using the estimate
(14), we come to

du(k)
lu(m)l|3 ¢ + 2a.7 Z 1958212 + 72 Z luk)el3 r <

< (lelzr + IIfT m)3ir,), m=1,M,

(15)

where c; it depends only on a., 3 and T; | f-(m)ll2,1rr < || fllz,,(rr). Going over in
the resulting inequality to the limit, when M — oo we get a limited totality sequence
{u(m)} € Wi(a,T) (Jlu(m)|ar < ¢, m = 1,2,..), from which you can choose a
subsequence {u(m;)}, weakly convergent to a certain element u(z) € W{(a,T'). The first
statement of the theorem is proven.

Let’s show the correctness of the second statement. Introduce piecewise constant
interpolations u(x,t) by t for u(k), namely: u(z,t) = u(k), when t € ((k — 1)1, k7], k =
1, M. Tt is clear that @(z,t) will be elements of space Wlo’ (a,T'r) and for them by virtue
of (15) take place estimate

< ¢, (16)

[@ll2rr + 1135

constant cs not depend on 7. Going over in (16) to the limit when M — oo we get a limited
totality sequence {u} C W (a ') from Wthh you can choose a subsequence, weakly
convergent to a certain element u(z,t) € Wi°(a,T'r). Let’s show that the function u(z,t)
satisfies the integral identity (4), i. e. is a Weak solution from W°(a, T'r) of the initial
boundary value problem (1), (3). Set this identity for fairly smooth functions n(z,t),
equal to zero on Ol'r and at t = T: let’s n(x,t) € C'(T'ry,), it’s zero on L't and
on t = T. We construct for n(z,t) averaging n(k) = n(x, k7), interpolations 77(:5 t) and
n(z,t)e (n(k)e = L(n(k + 1) — n(k)). It’s easily to verify that interpolations 7, 8 , T+ on
on(z,t) In(z,t)

oz and =5

'y uniformly converge to functions n(z,t), , respectively, in addition

(. t) =0,te[T,T+7).
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Under (k)¢ = L(n(k + 1) — n(k)) correctly

r 3 uk)en(l) = =7 3= wln(h): — u0)n(1), (1"

Summing the identities (9) at n(z) = (k) over k from 1 until M and taking into
account (17), as well as n(M) =n(M + 1) =0, get

~r & [ulk)nde — [ plaa(V)ds +7 3 oulk). ) =
= 3 (£-(k).n(k)

i

or

— f n(x, t)dxdt + br(u,n) — [ @(z)n(l)dx

r
= f f(x,t),7n(x, t)dxdt. (18)
In the ratio (18), going over to the limit on the chosen above weakly convergent in
W (e, T'r) the subsequence of the sequence {u(z,t)} (u(z,t) € W (a,T'r) is limit
function), we get an integral identity (4), at means the function u(z,t) is a weak solution
of the initial boundary value problem (1), (3) of the space W°(a,T'r). By virtue of
the uniqueness of solution u(z,t) (Theorem 1) and the estimate (16) the whole sequence
{u(x,t)} is weakly converged to u(x,t). The theorem is fully proven.

Remark 6. The first statement of the theorem (essentially there is a method of finite
difference) provides another possibility (except for the Faedo—Galerkin method, presented
by the statement of the Theorem 1) of constructing approximations to the solution, along
the way realizing (along with the second statement of the theorem) and proof of the
theorem of the existence of the initial boundary value problem (1), (3). The approach
used also applies to finding solutions to other initial boundary value problem. In them,
the boundary conditions of the second or third type is added to the elliptical equations
(7). The solvability of such problems is proved similar to reasoning for the problem (7),
(8). Finally, both the Faedo—Galerkin method and the of finite difference method open
the way to approximate the states of the system in numerical realization (construction
algorithms) of the posed problems.

4. The countably stability of the differential-difference system of equations
(7), (8). We do not seek to a possible generality of define the concept of countably stability
of the differential-difference equations or systems of equations, as we are interested in
approaches to the analysis of the quality of the differential-difference system of equations
(7), (8), approximating the initial boundary value problem (1), (3).

In the assumptions of section 3, consider the differential-difference system of equations
(7), (8) in a weak formulation (9). Let’s introduce the following of Fourier series on the
system {u;(z)};>1 (see Lemma 2):

u(k) = ;ui(k)ui(ﬂf% f=(k) = ;fi(k)ui(x% P = ;wiui(w)7 (19)
where ul(k) = (u(k>>ul>7 f:—(k) = (f‘r(k)7ui)7 (pi = (¢, ui)'

D. Neumann introduced the concept of countably stability of the difference schemes
of evolutionary equations [14]. Below is an analogue of this concept, following the work of

[15, p. 44].

Becruuk CII6I'Y. Ilpuknagnas maremaruka. Vudopmarnka... 2020. T. 16. Bem. 4 409



Definition 3. Differential-difference system (7), (8) is called countably stability, if
for each coefficient u, (k) of the Fourier series (19) take place inequality

[u(k)] < Crnle™ + Canlf",
where constants Cy 4, Ca; are uniformly bounded at 0 < kT < T, |f™i| = max |fi(k)|.
k=T1,M

For n(x) = u;(x), i = 1,2, ..., get

ul(k) —ui(k — 1) + 7 \ui(k) = 7fi(k — 1), u*(0) = ¢*
(k=1,2,.., M),

fi(k — 1) it’s chosen as fi(tx): fi(tx) = (f(z,tx),u;(z)). The sequential exclusion of the
unknown u'(j), 7 = 1,2, ..., k, reduce to a ratio

wi(k) = rigi b S e G - 1)
(k=1,2,. M),
here r; = (14 7);)~!. From here take place estimate
[ (k)] < [ral*le"| + 7lral Sl (12 (G = 1) <

J
< Il + ol SR 1] = ma (7 GR)
(k=1,2,..,M).

As O < <1 (i=1,2,..) then |r|* < 1 and 7|r;| 1= '““ <7l < T+ %
it means, the coefficients of |p?| and |f?| are uniformly bounded at any value 7 > 0 and
do not depend on 7, ¢ and f. This means that the spectral criterion of counting stability
of definition 3 be fulfilled: differential-difference system (7), (8) is absolutely countably
stability.

5. Example. We consider the example reduced in the work [10]. Let T is a graph-star
with edges ¢, £ = 1,2, 3, and a interior node £ (to simplify the formulas, let’s assume that
the edges ¢, £ = 1,2, are parameterized by a segment [0, 7/2], v3 is parameterized by a
segment [7/2,7]). In space W 5" (a,T'7), consider the initial boundary value problem (1),
(3) at a(z) =1, b(xz) =0 and f(z,t) = 0:

ulet) _ Pat) | o= o(x), z €T, y |ocory= 0. (20)

The weak solution y(z,t) € W°(1,T'r) of problem (20) is determined by identity

7fyxt6n(zt)d dt+f8y(mt)a77th dt — fSD

for any function n(z,t) € W{(1,T'r) that is zero at t = T.
Let’s define the differential-difference analog of the system (20) (see (7)) ratios

Ly(k) —y(k—1) - 22 =0, k=1,2,...,

y(0) =, y(k)ar =0,
y(k) € Wi(a,T) (k=1,2,..), p(x) € La(T).
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Functions y(k) (k = 1,2,...) are defined by virtue of recurrence ratios for integral
identities

(y(k) —y(k — 1),m(2)) + 7(HE, 92) = 0 V(z) € Wh(a,T), k=1,2,...,

here y(0) = (), z €T

Easily to show [11-13], that the spectral problem (5) (under a(z) = 1, b(z) = 0) in the
weak formulation defines a set of eigenvalues {\;}i>1 (A\; = %) and system of generalized
eigenfunctions {u;};>1, where eigenvalues when ¢ = 2j — 1 is prime numbers, when i = 2j
have multiplicity 2, the corresponding generalized eigenfunctions are determined by the
relations (j = 1,2,...)

005(2]: —1)(x—3%), x €,
ugj—1(x) = cos(2j —1)(x — %), v € 7o,
cos(2j — 1)(z — %), 7 € 75,
sin2j(z — §), © € 71, 0, z €,
ugj1(x) = 0, = €, ugj2(x) =< sin2j(x —§), r € 7o,
sin2j(x — %), © € 73, sin2j(x — %), v € 3.

Let n(x) = u;(z) (i = 1,2,...) then the ratios connecting Fourier’s coefficients y*(k),
¢* of the elements y(k), ¢ for each i = 1,2, ..., take the form of

y'(k) —y'(k = 1)+ 7i%y' (k) = 0, y*(0) = ", k=1,2,....
From here y*(k) = (1 + 7i?) %™ and for any 7 > 0
0] < el k= 1.2,

The absolute countably stability of the differential-difference system is obvious. The last
inequality have as a consequence stability of the system to norm Lo(T'):

ly(E)l Loy < l@llLy@ys £ =1,2,....

6. Conclusion. The work outlines an approach to the analysis of the differential
system with distributed parameters on the graph, which, not using the Faedo—Galerkin
method, establishes the theorem of the existence of a solution to the initial boundary value
problem (1), (3) and at the same time gives you the opportunity to obtain the conditions
of stability (countably stability) of the investigated problem. The proposed method can be
used for solve other initial boundary value problems. In this case, the boundary conditions
of the second or third types is added to the elliptical equations (7). Note also, the used
approach it is not difficult to extend to the case when I' is a netlike domain of Euclidean
space R" (n > 2).

Further analysis is possible on the way to finding the conditions of the Lyapunov
stability of problem (1), (3). The approach can be used to analyze the optimal control
problems of [16-20], as well as the problems of stabilization and stability of differential
systems with delay [21-27].
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CyeTHas yCTOWYUBOCTD CJIAOOTO pellleHus mapadbomiecKoi
nuddepeHImaabHO-PA3HOCTHOM CUCTEMBI C pacHpeae/IeHHBIMI apaMeTpaMu
Ha rpade

B. B. IIposomopos*, C. M. Cepzees®, B. H. Xoanz"

1 Bopomexxkckuit TocyqapcTBeHHbIH ynusepcuTeT, Poccuiickas Peneparus,
394006, YuuBepcureTrckas InI., 1

2 Ierep6yprexuit nonuTexuuueckuii yausepcurer Ilerpa Bemukoro, Poccuiickas ®epeparust,
195251, Caukr-Ilerepbypr, yia. Ilomurexunueckass, 29

Hast mutupoBanusi: Provotorov V. V., Sergeev S. M., Hoang V. N. Countable stability of a
weak solution of a parabolic differential-difference system with distributed parameters on the
graph // Becrauk Cankr-IletepOyprckoro yausepcurera. Ipukiaanas maremaruka. UHpopma-
tuka. [Iponeccesr ynpasienns. 2020. T. 16. Bem. 4. C. 402-414.

https://doi.org/10.21638/11701 /spbul0.2020.405

B pabore npegaraerca anasnor merona E. Pore (Meron mosyuckpern3anuu o BpeMeHHOR
[IEPEMEHHO) I1JIsl TOCTPOEHUs CXOAANIMXCA PA3HOCTHBIX CXEM IIPU AHAJIM3E yCTONIMBOCTH
c/1aboro peleHnsl HadaJIbHO-KPaeBoil 3a1adu mapaboIuIecKoro TUIA C pacipeaeeHHBIMU
napamerpaMu Ha rpade B KJAacCe CyMMHUPYEMBIX (DYHKIHA. DTOT METOJ IIO3BOJISIET UCXOJI-
HYIO Ha9aJIbHO-KPAEBYIO 3a/1ady IIPUBECTU K N3y IEHUIO KPAEBOIi 3a/1a49u B cJ1aboii MOCTAHOBKE
JIJIsl ypaBHEHU SJIIMIITHYECKOTO TUTA C PACIPEIeIEHHBIMY TTapaMeTpaMu Ha rpade. B cury
crernuuKN yKa3aHHOTO METOJIa YCTONYUBOCTL CJIabOro pelleHus MOHUMAECTCA B TEPMUHAX
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CIIEKTPAJIBHOTO KPUTEPUsl yCTOHIMBOCTU (CUeTHOH ycroitumBocTu 1o Hefimany), KOTOPBIi
YCTAHABIMBAET YCTONUMBOCTD PEIEHUs] 0 OTHOIIEHUIO K KaXKJI0# rapMOHUKE 0H60OIIEHHOTO
pana Pypbe caaboro pemreHust WM OTpe3ka 3Toro psiaa. Takum ob6pa3oM, BBISIBIEHA €Ie
OJHa BO3MOXKHOCTB, KpoMe Meroga Pazmo—lanmepkuna, mocTpoeHus MPUOJIUKEHUN K HUCKO-
MOMY PENICHHUIO HadaJIbHO-KPaeBOH 3aa9, aHAJIN3a €ro YyCTOMYUBOCTHA U IIyTh JOKa3aTelb-
CTBa TEOPEMBI CYIIECTBOBaHUsI CJIab0T0 PEIeHus NCXOAHOM 3aMaun. Vcmomb3yeMblit moaxor
MPUMEHUM K OTBICKAHUIO OCTATOYHLIX YCJIOBUN YCTONYIMBOCTH CJIAOBIX PEIIeHUN APYTHX
HaJaJIbHO-KPAaeBbIX 3a7a4 ¢ 6oJjiee OOIUMU IPAHUYHBIMU YCJIOBUSIMU: B HUX JITUITUIECKIE
YPaBHEHUSI PACCMATPUBAIOTCS C KPAEBBIMHU YCJIOBUSIMH BTOPOTO HJIA TPETbero tuna. Jlaib-
HeAImU aHaJIu3 BO3MOXKEH IIPU OTBICKAHWUU YCJIOBHUM, IPU KOTOPBIX OIpENeIdeTcs yCTONIU-
BOCTb 110 JIsamyHoBy. VI3/102KEHHBIN TOX0/T MOYKHO HCIOJIB30BATh IIPU AHAJIU3E 3312 OITH-
MaJIbHOTO YIPABJIEHUsI, 8 TAKKe 3a/1a9 CTAOUIU3AINY U YCTONINBOCTH JuddepeHInaIbHbIX
cucreM c 3amnasabiBanneM. [IpencTaBieHHbI METON, KOHEYHBIX PA3HOCTEN TACT BO3MOXKHOCTH
MIPOBOUTH AIITPOKCUMAIIAIO COCTOSTHUN Mapabo/IMIecKoil CHCTEMBI, aHAIN3a UX YCTOWIMBOC-
TH, IPU YUCJEHHON peayin3allii U aJrOPUTMUIAINAN 3aJa9 ONTUMAJJIbHOTO YIIPDABJICHU.

Karoueswie caosa: napabonudeckas TuddepeHnnaabHo-Pa3HOCTHAS CUCTEMa, PACIPeIeIeH-
HBble TapaMeTphl Ha Tpade, c1aboe pelleHne, CueTHasl yCTONINBOCTb.
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