
UDC 519.654+539.31 Вестник СПбГУ. Прикладная математика. Информатика... 2020. Т. 16. Вып. 4
MSC 74S60

Statistical criteria for the limits of application of Hooke’s law

A. V. Orekhov
St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg,
199034, Russian Federation

For citation: Orekhov A. V. Statistical criteria for the limits of application of Hooke’s law.
Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Proces-
ses, 2020, vol. 16, iss. 4, pp. 391–401. https://doi.org/10.21638/11701/spbu10.2020.404

Modern methods for studying the stress-strain state of solids use graphical methods based on
a stress-strain curve to determine the transition from elastic deformation to plastic
deformation. However, this approach is not formal and it is intended only for when stress
is a function of strain in the one-dimensional case. Cases, when strain is a function of the
stress, are also of practical importance. The purpose of the study is to develop formal rules
for determining the limits of applicability of Hooke’s law. The proposed analytical methods
for determining the transition from elastic deformation to plastic deformation are based on
consistent statistical sequential. In this article, quadratic forms are derived for calculating
the point at which the type of an increasing monotonous numerical sequence changes
from linear to non-linear type. With the help of these quadratic forms, statistical criteria
(approximation-estimation tests) are constructed to determine the limits of applicability
for Hooke’s law. These boundaries are defined as Markov moments. The novelty of the
results shows that it is possible to determine the yield point without visualizing the
experimental data. The numerical example of the application of a parabolic approximation-
estimation test is provided. From the results of this experiment, it can be concluded that the
analytical determination of the limits of applicability of Hooke’s law coincides with a visual
assessment. Approximation-estimation tests provide an opportunity to determine the limits
of applicability of Hooke’s law analytically.
Keywords: Hooke’s law, stress, strain, approximation-estimation test, least squares method,
Markov moments.

1. Introduction. The primary purpose of studying the properties of materials when
exposed to external forces is to establish a relationship between stresses and strains.
Sometimes displacements and deformations are determined by stresses and forces, and
sometimes vice versa, forces, and stresses are determined by displacements and deforma-
tions. The purest form of such a dependence arises during elastic deformations and is
expressed by Hooke’s law, which states that stress is proportional to deformation [1, 2].

For example, for uniaxial tension (compression) along the z-axis, this law can be
expressed by the simple formula σz = Eεz, where σz is the longitudinal stress, εz is
the relative elongation, E is proportionality coefficient. This coefficient is called Young’s
modulus (for a fixed isotropic and homogeneous material, the coefficient E is a constant
value). It is important to note that during axial compression of the cylinder, in addition to
longitudinal shortening, transverse elongation occurs. However, in the transverse direction,
there is no stress. Therefore, the one-dimensional form of Hooke’s law generally cases
insufficient. Experimental studies have shown that under uniaxial stress in solids, triaxial
deformation occurs (except for individual cases of anisotropy) [3].

Transverse deformation under elastic tension (compression) is characterized by the
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Poisson coefficient of ν, which is equal to the ratio of transverse and longitudinal
deformation with the opposite sign. Another important quantity is the shear modulus
G, which characterizes the material’s ability to resist shear. The following relationship
determines the shear modulus:

G =
τ

γ
,

where τ is the shear stress, γ is shear deformation. In a homogeneous isotropic material,
the shear modulus is connected with the Young’s modulus through the Poisson’s ratio:

G =
E

2(1 + ν)
,

here ν is the value of the Poisson’s ratio for a given material [1, 2].
The shear modulus, Young’s modulus, and Poisson’s ratio are quantities characterizing

the elastic properties of a material. All of them are used in the generalized Hooke’s law [2].
For an isotropic material, this law can be represented:

εx =
1
E

[σx − ν(σy + σz)] , γxy =
τxy
G

,

εy =
1
E

[σy − ν(σz + σx)] , γyz =
τyz
G

,

εz =
1
E

[σz − ν(σx + σy)] , γxz =
τxz
G

.

Continuous medium and internal stresses are abstract scientific concepts. They differ
from real crystalline lattices and laws of interatomic interaction. Therefore, Hooke’s law
is a model approximation of physical processes in solids. However, experimentally shown
that this law is observed with sufficient accuracy for the vast majority of materials, but
only within specified limits. The limits of applicability of Hooke’s law are limited to the
onset of significant deviations from the linear relationship between stresses and strains.
That is, if the relationship between deformation and stress is linear, then the calculation
of strength, stiffness, and stability is based on the paradigm of Hooke’s law. If the relation
between stresses and strains ceases to be linear, then Hooke’s law becomes inapplicable [3].
Such situations arise both in experiments and in theoretical studies.

If we study the dependence of the stress on the strain, the transition from an elastic
to a plastic state is characterized by a change in the type of increase in stress from linear
to logarithmic, for example [4, 5]. If the strain is a function of stress, then the transition
from an elastic to a plastic state is characterized by a change in the type of strain growth
from linear to parabolic or exponential, for example [6, 7].

The test results for the strength of various materials or the numerical modeling of
their properties are usually presented in the form of tabular functions. In most cases,
their analytical form is unknown. Currently used graphical methods for determining the
elastic-plastic zone boundaries using the stress-strain curve are relatively primitive. They
are intended only when the stress is a function of strain [8, 9]. Cases when strain is a
function of the stress are also it is crucial.

In this regard, it is of practical interest to obtain statistical criteria that make it
possible to determine the moment when the nature of the monotonous increase in the
tabulated value goes from linear to non-linear type.

2. Four classes of approximating functions. We will build these criteria in the
form of statistics based on a comparison of the quadratic errors of approximation of a
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numerical sequence in four classes of real functions: linear — f(x) = ax + b, incomplete
parabolic (without linear term) — f(x) = cx2 + d, logarithmic — f(x) = g ln(x + 1) + h
and exponential — f(x) = pex + q. We consider mappings defined on a discrete subset of
points {t0, t1, . . . , tn, . . .} of the number line R. If all these points are equidistant, i. e. for
∀ n : tn − tn−1 = T , then such functions are called functions of discrete argument and
are denoted as f [nT ], where T is the period of discreteness. The transition from linear
to non-linear dependence does not depend on the scale. Therefore, due to the similarity
transformation, the discreteness period T can be to the unit one and consider in the further
the lattice functions as numeric sequences yn = {y0, y1, . . . , yn, . . .}.

We will accept the agreement that the sequence yn is non-negative, monotonically
increasing, and a priori yn first changes “linearly” and then “nonlinearly”. For further
constructions, it is necessary to agree on the precise understanding of the terms: “linear
increase” and “nonlinear increase” of a numerical sequence. In this case, the evaluation of
the nature of the change in yn is implied by the local. Not overall values yn but only by
several elements y0, y1, . . . , yk−1.

We use the concept of an approximating function [10, 11]. The approximation nodes
for the yn numerical sequence are ordered pairs (i, yi), where i is a natural argument, yi is
the corresponding sequence values of yn. Since the subscript of the sequence yn uniquely
identifies natural argument, then the approximation node (i, yi) will be identified with the
element of the sequence yi, we will call them “natural nodes”. The mapping f(x) from the
class of function X is an approximating function for the natural nodes y0, y1, . . . , yk−1, if
it is the most is close to these points (in a certain sense) among all the mappings from X .
The segment of the real axis [y0, yk−1] is called “a current interval of approximation”. It
is clear that all natural nodes y0, y1, . . . , yk−1, belong to [y0, yk−1].

The sum of the squares of the differences yn and f(x) with the corresponding the
values of the natural argument is called the quadratic error of the approximation of the
number sequence yn by the function f(x) at the natural nodes y0, y1, . . . , yk−1:

δ2 =
k−1∑
i=0

(f(i) − yi)2.

A real function f(x) of a certain class X approximates the numerical sequence yn using
the method of least squares, if the following for quadratic form δ2f is true:

δ2f = min
f∈X

k−1∑
i=0

(f(i) − yi)2.

Such a minimum can always be found as δ2f is a positive definite quadratic form [12, 13].
The quadratic errors for the linear, incomplete parabolic, logarithmic and exponential

approximations for the natural nodes y0, y1, . . . , yk−1 are respectively equal to:

δ2l (k) =
k−1∑
i=0

(a · i+ b− yi)2, δ2q(k) =
k−1∑
i=0

(c · i2 + d− yi)2,

δ2n(k) =
k−1∑
i=0

(g · ln(i+ 1) + h− yi)2, δ2e(k) =
k−1∑
i=0

(p · ei + q − yi)2.

Let m = min(δ2l (k), δ
2
q (k), δ

2
n(k), δ

2
e(k)).
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We will assume by definition that increasing the number sequence yn over the natural
nodes y0, y1, . . . , yk−1 is linear if m = δ2l (k). Respectively: an increase in yn is parabolic
in nature, if m = δ2q(k), an increase in yn is logarithmic, if m = δ2n(k), an increase in yn is
exponential, if m = δ2e(k).

3. Construction of “approximation-estimating tests”. When constructing
quadratic forms of “approximation-estimating tests”, besides the similarity transformation,
you can use one more trick, we will consider the values of the sequence yn at the points
y0, y1, . . . , yk−1 assuming that y0 = 0 [14, 15]. It is easy to achieve this condition at any
approximation step using a linear transformation:

y0 = yj − yj , y1 = yj+1 − yj , y2 = yj+2 − yj, . . . , yk−1 = yj+k−1 − yj.

We will calculate coefficients of the linear, parabolic, logarithmic, and exponential
approximation of the numerical sequence yn over the natural nodes y0, y1, . . . , yk−1.

First, using the method of least squares, we calculate the coefficients a, b of the linear
function f(x) = ax+ b approximating the natural nodes y0, y1, . . . , yk−1. For this, we find
the local minimum of the function of two variables

fl(a, b) =
k−1∑
i=0

(a · i+ b− yi)2.

Calculate the partial derivatives of the function fl(a, b)

∂fl
∂a

= 2a
k−1∑
i=0

i2 + 2b
k−1∑
i=0

i− 2
k−1∑
i=0

i · yi ,

∂fl
∂b

= 2a
k−1∑
i=0

i+ 2b
k−1∑
i=0

1 − 2
k−1∑
i=0

yi .

By equating them to zero, we obtain a system of linear equations for the unknown a and b:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
k(k − 1)(2k − 1)

6
· a+

k(k − 1)
2

· b =
k−1∑
i=1

i · yi ,

k(k − 1)
2

· a+ k · b =
k−1∑
i=1

yi ,

which implies

a =
6

k(k2 − 1)

k−1∑
i=1

(2i+ 1 − k)yi, b =
2

k(k + 1)

k−1∑
i=1

(2k − 1 − 3i)yi.

Then we calculate the coefficients c, d of the incomplete quadratic function cx2 + d as
the local minimum for

fq(c, d) =
k−1∑
i=0

(c · i2 + d− yi)2.

Differentiating fq(c, d) we find

∂fq
∂c

= 2c
k−1∑
i=0

i4 + 2d
k−1∑
i=0

i2 − 2
k−1∑
i=0

i2 · yi,
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∂fq
∂d

= 2c
k−1∑
i=0

i2 + 2d
k−1∑
i=0

1 − 2
k−1∑
i=0

yi,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
k(k − 1)(2k − 1)(3k2 − 3k − 1)

30
· c+

k(k − 1)(2k − 1)
6

· d =
k−1∑
i=1

i2 · yi,

k(k − 1)(2k − 1)
6

· c+ k · d =
k−1∑
i=1

yi .

We find that

c =
30

k(k − 1)(2k − 1)(8k2 − 3k − 11)

k−1∑
i=1

(6i2 − (k − 1)(2k − 1))yi,

d =
6

k(8k2 − 3k − 11)

k−1∑
i=1

(3k(k − 1) − 1 − 5i2)yi.

Using the method of least squares, we calculate the coefficients of the approximating
function g ln(x+ 1) + h. We find the local minimum of the function

fn(g, h) =
k−1∑
i=0

(g ln(x+ 1) + h− yi)2.

We calculate the partial derivatives of the function fn(g, h)

∂fn
∂g

= 2
k−1∑
i=0

ln(i+ 1)(g ln(i+ 1) + h− yi),

∂fn
∂h

= 2
k−1∑
i=0

(g ln(i+ 1) + h− yi) ,

and equate them to zero, we find the system of equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
g
k−1∑
i=0

ln2(i+ 1) + h
k−1∑
i=0

ln(i+ 1) =
k−1∑
i=1

ln(i+ 1)yi,

g

k−1∑
i=0

ln(i+ 1) + kh =
k−1∑
i=1

yi .

We find that

g =
k ·∑k−1

i=1 ln(i+ 1)yi −
∑k−1
i=0 ln(i+ 1) ·∑k−1

i=1 yi

k ·∑k−1
i=0 ln2(i+ 1) −

(∑k−1
i=0 ln(i+ 1)

)2 ,

h =
∑k−1

i=1 yi ·
∑k−1

i=0 ln2(i+ 1) −∑k−1
i=0 ln(i+ 1) ·∑k−1

i=1 ln(i+ 1)yi

k ·∑k−1
i=0 ln2(i+ 1) −

(∑k−1
i=0 ln(i+ 1)

)2 .
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Similarly, we calculate the coefficients p and q for the function pex+q, through finding
the local minimum of the function

fe(p, q) =
k−1∑
i=0

(pei + q − yi)2.

We calculate the partial derivatives of fe(p, q), equate them to zero, and solve the
system of linear equations

∂fe
∂p

= 2
k−1∑
i=0

ei(pei + q − yi),

∂fe
∂q

= 2
k−1∑
i=0

(pei + q − yi),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p ·

k−1∑
i=0

e2i + q ·
k−1∑
i=0

ei =
k−1∑
i=1

eiyi,

p ·
k−1∑
i=0

ei + kq =
k−1∑
i=1

yi.

We find that

p =
k ·∑k−1

i=1 e
iyi −

∑k−1
i=0 e

i ·∑k−1
i=1 yi

k ·∑k−1
i=0 e

2i −
(∑k−1

i=0 e
i
)2 ,

q =
∑k−1

i=1 yi ·
∑k−1
i=0 e

2i −∑k−1
i=0 e

i ·∑k−1
i=1 e

iyi

k ·∑k−1
i=0 e

2i −
(∑k−1

i=0 e
i
)2 .

Now it is possible to construct three “approximation-estimating tests”, which are
designed to determine the moment when the increase in the monotonous sequence yn,
the numerical parameters of the solid, changes from linear to parabolic, logarithmic or
exponential.

“Parabolic approximation-estimating test” has the form

δ2lq(k) = δ2l (k) − δ2q(k).

If for the natural nodes y0, y1, . . . , yk−1 the inequality δ2lq(k) � 0 is satisfied, and for the
nodes y1, y2, . . . , yk, shifted right by one step of discreteness, the inequality sign changes to
the inverse δ2lq(k) > 0, then we can say that near the point yk the character of increasing
of the sequence yn has changed from linear to parabolic.

Similarly, we define:
“logarithmic approximation-estimating test”:

δ2ln(k) = δ2l (k) − δ2n(k),

“exponential approximation-estimating test”:

δ2le(k) = δ2l (k) − δ2e(k).
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4.Markov’s moments for the boundaries of elastic deformation. Consider a
physical or numerical experiment as a random process.

Let T = 1,m− 1, a bounded subset of the natural series containing the first m − 1
natural numbers (we note right away that m can be arbitrarily large). Then the indexed
family ξ = {ξt, t ∈ T } of random variables ξt = ξt(ω) given for ∀ t ∈ T on the same
probability space (Ω,F ,P) is called a discrete random process [16, 17].

Each random variable ξt generates an σ-algebra, which will be denoted as Fξt . Then
the σ-algebra generated by the random process ξ = {ξt, t ∈ T } is the smallest σ-algebra
containing all Fξt that is

σ(ξ) = σ

(
m−1⋃
t=1

Fξt

)
.

A discrete random process ξ = {ξt, t ∈ T } can be considered as a function of two
variables ξ = ξ(t, ω), where t is a natural the argument ω is a random event. If we fix t,
then, as mentioned above, we get a random variable ξt, but if we fix a random event ω0,
we get a function of the natural argument t, which is called the trajectory of the random
process ξ = {ξt, t ∈ T } and is a random sequence ξt(ω0).

We will consider only those random processes whose trajectories monotonically
increase. An arbitrary random ω ∈ Ω event is to extract a sampleX from the n-dimensional
Euclidean space E

n. Theoretically, any point x ∈ E
n can belong to the sampling X ,

therefore, the σ-algebra from the probability space (Ω,F ,P) contains E
n, any finite set

X from the space E
n, all possible countable unions of such sets, and additions to by him.

Denote this system of sets as S (En) and call it “selective σ-algebra” F = S (En) . The
same reasoning is valid for any σ-algebra Fξt , therefore,

σ(ξ) = S (En) .

Note that this σ-algebra is “poorer” than the Borel σ-algebra — S (En) ⊂ B (En).
Indeed, a countable union of at most countable sets is countable, therefore, S (En) does
not contain intervals.

We will consider the problem of testing statistical hypotheses H0 and H1 [18]. There
are two hypotheses H0: “the random sequence ξt(ω0) increases is linear”, and H1: “the
random sequence ξt(ω0), increases is nonlinearly”. H0 is called the null hypothesis, H1 is
called the alternative hypothesis.

It is necessary to construct a criterion as a strict mathematical rule, to test the
statistical hypothesis. That rule accepts or rejects the hypothesis. Any statistical criterion
is based on a random sample X . Two cases are possible. The first one, a sample X , is
extracted from E

n simultaneously and has a fixed size. The second one, when a sample X
form at the period. Then its size is a random variable. In this case, the sequential analysis
and the construction of a stopping time are used [19–21].

Let (Ω,F ,P) be a probability space, then the indexed family of σ-algebras
F = {Ft, t ∈ T } is called a filtration if for ∀ i, j ∈ T | i < j : Fi ⊂ Fj ⊂ F . Moreover, if for
∀ t ∈ T right Ft = σ(ξi, i < t), then the filtration is called natural. The random process
ξ = {ξt, t ∈ T } is said to be adapted to the filtration F if for ∀ t ∈ T : σ(ξt) = Fξt ⊂ Ft.

Any stochastic process ξ = {ξt, t ∈ T } is an adapted process with respect to its
natural filtration. The mapping τ : Ω −→ T is called Markov moment [22] or stopping
time (with respect to the filtration F) if for ∀ t ∈ T the preimage of the set {τ � t} ∈ Ft.
In other words, let τ be the moment of occurrence of some event in the random process
ξ = {ξt, t ∈ T }. If for ∀ t0 ∈ T , you can definitely say if the event τ has come or not,
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provided that the values of ξt are known only in the past (to the left of t0), then τ is a
Markov moment with respect to natural filtration of F, random process ξ = {ξt, t ∈ T } [21,
23]. In this case for a random sequence ξt(ω0) the natural filtration an adapted with process
is it the selective σ-algebra S (En) .

In the case of the sequential statistical analysis, one can define the Markov moment
(or stopping time) of the experiment as the values of t in which the change occurred like
an increase in the random sequence ξt(ω0) from linear type to nonlinear type. As such, we
reject the null hypothesis H0 and accept the alternative hypothesis H1. We write out the
values of τ explicitly.

The transition from linear increase to parabolic growth — the Markov moment:

τ = min{t | δ2lq(k) > 0}.
The transition from linear increase to logarithmic growth — the Markov moment:

τ = min{t | δ2ln(k) > 0}.
The transition from a linear increase to an exponential growth — the Markov moment:

τ = min{t | δ2le(k) > 0}.
5.Numerical simulation example. Let us consider the experiment results on

uniform bending by a concentrated force P of a cantilever beam of model material with
a single step of discreteness. It is required to determine the point in time when elastic
deformation turns into plastic deformation. We use the hypothesis that the beginning of the
plasticity development coincides with the point in time when the strains begin to increase
rapidly, and their dependence on the load ceases to be linear. We will write a “parabolic
approximation-estimating test” previously constructed for four natural nodes [14, 15]:

δ2lq(4) =
1

245
(19y2

1 − 11y2
2 + 41y2

3 + 12y1y2 − 64y1y3 − 46y2y3).

The deformation values and values of the criterion δ2(4) are given in the Table. Values
yp present in a dimensionless and normalized form. The stress is also normalized and
increases in the unit step. The symbol δ24 denotes the criterion value under natural nodes:
y1, y2, y3, y4, the symbol δ25 under nodes: y2, y3, y4, y5, etc.

The first members of yn is increase almost linear, since δ2lq = δ2l −δ2q < 0. Sign becomes
positive of the quadratic form δ2lq for nodes: y26 = 15.90, y27 = 16.47, y28 = 17.26, y29 =
18.62. It means that the character of increasing yn has changed and has become parabolic.
The graph of the numerical sequence yn, shown in Figure, confirms this.

6.Conclusion. “Approximation-estimation tests” allow, with some probability, to
determine the Markov moment in a physical or numerical experiment when the limit
of applicability of Hooke’s law is reached. A significant problem is related to the
sensitivity of “approximation-estimating tests” toward the length of the current interval of
approximation and step of discreteness. This problem is that by a tiny step of discreteness,
the change in any monotonic sequence will be linear, and to detect the occurrence of
nonlinearity, it is necessary to increase the length of the current interval of approximation.
Indeed, an increment of any smooth function is an infinitesimal quantity. It has been
known that, in a small neighborhood, this increment is accurately approximated by the
differential. However, as the argument increments increase, the differential approximation
ceases to be satisfactory. Therefore, there is no general answer to the problem posed. It
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Table. Values of the strain yp and values the criterion δ2(4)

Step number Strain id Strain value Criterion id Criterion value
1 y1 1.00 — —
2 y2 1.51 — —
3 y3 2.03 — —
4 y4 2.54 δ2

4 −0.11
5 y5 3.05 δ2

5 −0.11
6 y6 3.57 δ2

6 −0.11
7 y7 4.08 δ2

7 −0.11
8 y8 4.59 δ2

8 −0.11
9 y9 5.10 δ2

9 −0.11
10 y10 5.74 δ2

10 −0.08
11 y11 6.25 δ2

11 −0.13
12 y12 6.76 δ2

12 −0.16
13 y13 7.27 δ2

13 −0.11
14 y14 8.08 δ2

14 −0.04
15 y15 8.60 δ2

15 −0.16
16 y16 9.11 δ2

16 −0.26
17 y17 9.79 δ2

17 −0.07
18 y18 10.30 δ2

18 −0.14
19 y19 11.03 δ2

19 −0.14
20 y20 11.61 δ2

20 −0.13
21 y21 12.26 δ2

21 −0.20
22 y22 13.29 δ2

22 −0.02
23 y23 13.86 δ2

23 −0.28
24 y24 14.63 δ2

24 −0.36
25 y25 15.00 δ2

25 −0.21
26 y26 15.90 δ2

26 −0.12
27 y27 16.47 δ2

27 −0.09
28 y28 17.26 δ2

28 −0.27
29 y29 18.62 δ2

29 0.14
30 y30 20.52 — —
31 y31 23.46 — —
32 y32 28.17 — —

Figure. Strain-stress curve for uniform bending
by a concentrated force P of a cantilever beam
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should bear in mind that the increase in the number of natural nodes of approximation
inevitably entails a geometric increase in the computational complexity of constructing a
quadratic form for these tests.

The following thought gives some relief to the mind. If the discreteness step is so small
that the approximation parameters of the stress-strain state of a solid still change linearly
in the current interval, then the corresponding mathematical models can be built within
the paradigm of generalized Hooke’s law. On the other hand, proposed “approximation-
estimating tests” allow us to determine the boundaries beyond which Hooke’s law’s use
becomes incorrect. By the way, this law has usually used for small deformations. Therefore,
admitting freedom of speech, it can be said that the “approximation-estimating tests” allow
not only to determine the boundaries of the application of Hooke’s law but also to formally
approach the determination of the quantitative value of small deformation, for each fixed
structural material.
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При современных способах исследования напряженно-деформированного состояния
твердых тел и определения точки перехода от упругой к пластической деформации
(точки предела упругости) используются графические методы, основанные на визуаль-
ной оценке кривых напряжения–деформации (диаграмм деформирования). Однако этот
подход не является формальным и предназначен только для ситуаций, когда напряже-
ние — это функция от деформации в одномерном случае. Случаи, когда деформация
есть функция от нагрузки, также имеют большое практическое значение. Цель статьи —
построение формальных правил для определения границ применимости закона Гука.
Предлагаемые аналитические методы основаны на последовательном статистическом
анализе. Выведены квадратичные формы для вычисления точки, в которой тип воз-
растающей монотонной числовой последовательности изменяется от линейного к нели-
нейному. С помощью таких квадратичных форм строятся статистические критерии для
оценки границ применимости закона Гука, которые определяются как марковские мо-
менты. Новизна результатов состоит в том, что предел упругости можно вычислить без
визуализации экспериментальных данных. Приводится численный пример применения
параболического аппроксимационно-оценочного критерия. По результатам этого экспе-
римента можно сделать вывод, что аналитическое определение границ применимости
закона Гука совпадает с визуальной оценкой и аппроксимационно-оценочные критерии
позволяют формально вычислять пределы применимости закона Гука.
Ключевые слова: закон Гука, напряжение, деформация, аппроксимационно-оценочный
критерий, метод наименьших квадратов, марковский момент.
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