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New dinitrosyl iron complexes of binuclear structure [Fe,(pt-SCHMe,),(NO)4] and [Fe,(p-SCHPh;),(NO)4]
were first synthesized employing new method from Fe(CO)s, corresponding thiol, and EtONO. Complexes
structures were determined by XRD technique. DFT calculations were performed to probe the cis-
conformer structures in gas and solution phases. NO donor ability of the complex with isopropyl thiolate
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1. Introduction

The interest to iron-thiolate coordination compounds is mainly
due to their abundance in nature in the form iron-sulfur clusters
(Fe,S,) responsible for cellular redox status [1]. Today the redox
modulation with metal complexes is suggested to be next-
generation therapy in cancer [2].

Endogenously treatment of Fe,S, clusters with NO can trans-
form these clusters into dinitrosyl iron complexes (DNIC) [3,4]. In
turn DNICs can affect the redox state of the cell via the reactions
with free cysteine residues, leading to the formation of unstable
S-nitrosocysteine derivatives that decompose to form disulfides
[5,6]. DNICs (as well as S-nitroso thiols) considered to be the depot
of NO in living cells [7,8]. Binuclear DNICs [Fe,(}t-SR)>(NO)4]
(called Roussin’s red salt esters — RRSE) are naturally occurring
complexes that are formed in vivo by the nitrosylation of
[4Fe-4S] iron-sulfur clusters [9]. Synthetically obtained complexes
can serve as NO source after dissolution in aqueous media [10] or
after photo-activation [11]. Today synthetic DNICs are suggested
for use in medicine as NO donor pro-drugs [12].
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Different synthetic ways are described for the dinuclear RRSE
preparations: nitrosylation of Fe(Il) and thiolate mixed solution
with NO# [13]; S-alkylation of Roussin’s red salt Na,[Fey(p-S),
(NO)4] [14]; substitution reactions of DNICs thiosulfate bridging
ligands Na,[Fe,(11-SSO3)>(NO),4] with other thiolates [15]; reaction
of Fe(NO),(CO), with thiols [12]; S-oxidation of the mononuclear
species [Fe(SR),(NO),]~ [16].

Today structural data for binuclear RRSEs [Fe,(p-SR);(NO)4]
are available with aliphatic [3,17], aromatic [18,19], peptide
bound [20], and inorganic [21,22] substituents. Different
“aliphatic” DNICs with primary [23,24] and tertiary [25,26] thio-
late ligands are known, yet binuclear DNICs with secondary thiols
(R;CH-SH) were not earlier structurally characterized by X-ray
diffraction analysis. The n-propyl DNIC [Fe,(p-S-"Pr)y(NO)4] was
synthesized and its structure was determined by XRD crystallog-
raphy to be centrosymmetric by Ref. [23]. A complex with
benzyl substituent at the sulfur bridging atom was described by
Lippard and co-workers [19] and with the ethyl substituent, by
Lu et al. [27].

The structure and dynamic properties of these compounds
should be understood as they are suggested as prodrugs for the
delivery of nitric oxide [12]. Herein we describe the crystal
structure, DFT calculations of [Fe,(p-SCHMe;),(NO)4] (I) and
[Fea(p-SCHPh,)»(NO)4] (II) complexes and NO donor ability of
complex L
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2. Experimental
2.1. Instrumental methods

2.1.1. X-ray diffraction experiments’

Crystal structures of I and II were determined by the means of
single crystal X-ray diffraction analysis. Crystals were fixed on a
micro mounts, placed on a Bruker Kappa Apex Il Duo diffractome-
ter and measured at a temperature of 100 K using microfocused
monochromated Mo Ko radiation. Data were integrated and cor-
rected for background, Lorentz, and polarization effects using an
empirical spherical model by means of the Bruker programs Apex2
and xprep. Extinction correction was applied using the sapass pro-
gram [28].

The unit cell parameters and refinement characteristics for the
crystal structures of I and II are given in Table 1. The unit cell para-
meters of I were determined and refined by the least-squares tech-
niques on the basis of 3223 reflections with 260 in the range of
7.14-60.00°. From the systematic absences and statistics of reflec-
tion distribution, the space group C2/m was determined. The struc-
ture was solved by the direct method and refined to R, = 0.059
(WRy =0.110) for 700 reflections with |F,| > 40F using the sHELXL-
97 [29] incorporated in the otex2 program package [30]. The unit cell
parameters of Il were determined and refined by the least-squares
techniques on the basis of 7304 reflections with 26 in the range of
8.98-60.00°. From the systematic absences and statistics of reflec-
tion distribution, the space group P1 was determined. The struc-
ture was solved by the direct method and refined to R; = 0.047
(WR; =0.120) for 3215 reflections with |F,| > 40F using the
SHELXL-97 program [29] incorporated in the oLex2 program package
[30]. The final models included coordinates and anisotropic dis-
placement parameters for all non-hydrogen atoms. The carbon-
bound H atoms were placed in calculated positions and were
included in the refinement in the ‘rider’ model approximation,
with Ujso(H) set to 1.5Ueq(C) and C-H 0.96 A for the CH; groups,
Uiso(H) set to 1.2Ue(C) and C-H 0.98 A for the tertiary CH groups,
and Ujso(H) set to 1.2Uq(C) and C-H 0.93 A for the CH groups in
phenyl fragments. High values of the refinement parameters and
rather low bonds precision in the structural model of I are due to
the small size of the crystals.

X-ray photoelectron (XP) parameters for complex I were
recorded with a Kratos Axis Ultra electron spectrometer, a
monochromated Al Ko source operated at 150 W and a charge neu-
tralizer was used for the measurements. The binding energy (BE)
scale was referenced to the aliphatic carbon C 1s line at 285.0 eV.

2.1.2. Spectroscopic measurements

'H NMR spectrum was recorded on the Bruker Avance III
spectrometer at 400.13 MHz in chloroform-d;. The FT-IR spectra
were recorded using pellets with KBr in the range 4000-
400 cm™~! on a Shimadzu IR-Affinity-1 spectrometer at room tem-
perature. Elemental analysis of Il was performed on Perkin Elmer
2400 Series II CHNS/O analyzer. UV-Vis spectrum was recorded
at room temperature in 1 cm quartz cell on Shimadzu UV-1800
spectrophotometer at 1 nm resolution in the range from 190 to
1100 nm in methanol.

2.1.3. NO-donor ability

For the quantification of the NO amount generated in the
solution by DNIC I it was registered by the sensor electrode
“amiNO-700" of the Innovative Instruments system “inNO Nitric
Oxide Measuring System”. The NO concentration was measured

1 It should be mentioned that the quality of obtained data suffers from the
complexes instability under the X-ray irradiation.

Table 1
Crystallographic data for I and IL
Compound I I
Formula CeHi4Fe;N404S, CysHaoFeaN404S,
Crystal system monoclinic triclinic
a(A) 11.757(12) 6.4177(4)
b (A) 13.238(12) 8.7438(6)
c(A) 5.001(5) 12.6952(9)
o (°) 90 78.329(2)
B(°) 103.934(18) 81.846(2)
y(°) 90 83.084(2)
V(A% 755.4(13) 687.51(8)
Space group C2/m P1
wu (mm~1) 2.205 1.246
VA 2 1
Deaic (g cm™3) 1.679 1.522
Crystal size (mm) 0.11 x 0.05 x 0.01 0.20 x 0.18 x 0.05
Total reflections 3223 7304
Unique reflections 887 3705
Angle range 20 (°) 7.14-60.00 8.98-60.00
Reflections with |F,| > 40f 700 3215
Rint 0.2080 0.0917
Rs 0.1253 0.0691
Ry (|F,| = 4a5) 0.0591 0.0471
WR; (|F| > 40F) 0.1101 0.1201
R; (all data) 0.0750 0.0520
WR; (all data) 0.1157 0.1231
S 0.991 1.067
Prmine Pmax (€ A73) —1.368, 0.769 -1.111, 1.265

Ry = Z|IF| — [F|I/ZIFol; ~ WRy = {Z[w(F,> — F2P)[Z[W(F° 1} w=1/[0°(F,) +
(aP)? + bP], where P=(F,? +2F>2)[3; s={Z[w(F,2 — F2)]/(n — p)}'* where n is the
number of reflections and p is the number of refinement parameters.

for 500 s with the 0.2 s time step in 1% DMSO water solution with
the 4 uM concentration of NO donor (complexes were pre-
dissolved in DSMO). For the calibration of electrochemical sensor
the 100 pM NaNO, water solution was added to the 18 mL mixed
water solution of 0.12 M KI and 2 mL 1 M H,SO,4. The experiment
was carried out under aerobic and anaerobic conditions at 25 °C
and pH values 6.5, 7.0 (physiological values) and 9.0 (for the
evaluation of the pH effect). The pH was measured by HANNA
instruments membrane pH-meter “HI 8314”. Commercial buffer
“Hydrion” was used for appropriate pH estimation.

2.2. DFT calculations

DFT calculations were performed with the PBEhVP86 functional
and Dunning’s triple-zeta cc-PVTZ basis set [31] (aug-cc-PVTZ for
topological analysis) level of theory using caussian 09 [32] software
package. The QM approach was validated by comparison the calcu-
lated and experimental geometrical parameters for complexes; the
calculated parameters matched accurately with X-ray data
(Table S3). The solvent effects were accounted for in PCM model
[33]. The stacking interactions were accounted for with the
MO062X functional [34].

2.3. Synthesis

All reagents were purchased from commercial sources and used
without further purifications. Ethyl nitrite was prepared by the
esterification reaction from ethanol and sodium nitrite. The
syntheses were carried out under inert atmosphere.

2.3.1. trans-Bis(mercapto-i-propyl-1S:S )bis[dinitrosyl-iron](Fe-Fe) (I)

2mL of Fe(CO)s (148 mmol) and 1.4 mL (15 mmol)
2-propanethiol were mixed in 5 mL of deaerated ethanol and left
for several hours at 4 °C for system equilibration. No reaction
was observed. After the solution was cooled to —40°C 2 mL
(21 mmol) of ethyl nitrite was added during next 10 min. During
the reaction a microcrystalline precipitate was formed. After 3 h
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the precipitate was collected, washed twice with 7% HCI (to
remove the traces of the iron oxides formed on the crystals surface)
and water. The product was crystallized from n-hexane at ambient
temperature until the plate burgundy-colored crystals suitable for
X-ray analysis were formed. Product yield ~55%.

Anal. Calc. for CgH 4Fe;N404S,: C, 18.9; Fe, 29.2; N, 14.7; S, 16.8.
Found: C, 19.4; Fe, 29.5; N, 13.4; S, 17.2%.

IR (KBr) v, cm™': 442, 557, 613, 1047, 1142, 1234, 1369, 1381,
1439, 1458, 1717 (vno), 1790 (vno), 2857, 2920, 2955 and 2984.

UV-Vis, Zmax (cm~'-M~1), nm: 240, 310 (10820), 360 (10000)
and 435.

TH NMR, 6, ppm: 1.56 (s, 1H, CH), 3.01 (s, 6H, CHs).

XPS, Egg, €V: C 1s 285.0 (-CH3-), S 2p3;2 162.9 (p-SR), N 1s 401.3
(N=0), O 1s 533.3 (N=0),> Fe 2ps;; 709.4.

2.3.2. trans-Bis(mercapto-diphenylmethyl-«2S:S)bis[dinitrosyliron]
(Fe-Fe) (II)

Complex II was prepared similarly to compound I. Product yield
~60%. The diphenylmethyl thiol bridging ligand was prepared
from the diphenylmethanol and Lawesson’s reagent according to
[36,37] and purified by the fractional distillation (~150 °C,
10 Torr).

Anal. Calc. for Co6H 2FeaN404S5: C, 49.6; Fe, 17.7; N, 8.9; S, 10.2.
Found: C, 50.0; Fe, 18.1; N, 8.3; S, 11.5%.

IR (KBr) v, cm™~': 625, 697, 748, 1449, 1728 (vno) u 1775 (Vno).

3. Results and discussion

Here we describe the “one-pot” synthesis and crystal structure
of DNIC with iso-propyl and benzhydryl substituents at bridging
thiolate ligand (p-SR) (Fig. 1). The compounds were obtained by
treatment of the mixture of iron pentacarbonyl with the corre-
sponding thiol followed by addition of ethyl nitrite under inert
atmosphere.’ The formation of Roussin’s red salt ester probably
occurs via the stage of intermediate iron dinitrosyldicarbonyl
Fe(NO),(CO), generation; this nitrosylated precursor is known to
give DNICs when reacted with thiols [12,26] or with nitrogen con-
taining bidentate aromatic ligands [38,39]. The advantage of ethyl
nitrite consists in the mild conditions (4 °C) of the nitrosylation reac-
tion and the easy control of the amount of NO-source.

The Fe. - -Fe distance 2.711 A in [Fe,(pu-S'Pr),(NO)4] complex is
longer than in DNICs with methyl and ethyl thiolate ligands
(2.686 and 2.708 A) (Table S2), but matches the value for complex
with tertiary p-S'Bu bridging ligand. In the second ['Fe,(p-
'SCHPh;),('N’O)4] complex the Fe’---Fe’ distance is extended up to
2.730 A, compared to reported DNIC with benzylthiolate bridging
ligand 2.712 A [19].* We have analyzed the Mulliken charge distri-
bution for RRSE with different substituents on thiolate sulfur
(Table S1). Replacing hydrogens in [Fe,(1-SCH3),(NO)4] with Me
groups up to 'Pr leads to the increase in the negative charge on sulfur
and decrease in the positive charge on Fe atoms. In case of ‘Bu the
negative charge on sulfur increases, but iron gets more positive value
compared even with p-SCHs. The hydrogen substitution with aro-
matic phenyl rings results in stronger charge changes on the Fe
and S core atoms, but with the same tendency. The complex with tri-
tyl substituent [Fe,(p-SPh3),(NO)4] has the highest bond polarity
compared to other complexes in Table S2.

2 That value is close to the iron in [Fe,(u-SR),(NO);] complex studied by Brant
709.2 eV [35].

3 We have also prepared the complex with benzylthiolate ligand [Fe,(u-SBn),
(NO),] applying the same reaction conditions. The complex crystallized with the same
cell parameters as in earlier published paper [19], but with 0.39% smaller R-factor
(crystallographic data are presented in Table S4).

4 The comparison of geometrical parameters with previously synthesized com-
plexes can be founds it Table S1 of Supporting information.

Since DNICs can be formed in living cells and then serve as
nitric oxide depot, the NO donor ability was studied for the
[Fey(u-S™Pr),(NO)4] complex (DNIC with (pu-SCHPh,) bridging
ligand was not studied due to its extremely low solubility). DNIC
I generates NO in protic media without photo or thermal activa-
tion. It is shown that with the pH rise from 6.5 to 9.0 the amount
of evolved NO decreases almost twice. As it can be seen from
experimental curve of equilibrated amount of NO versus time after
compound I dissolution (Fig. 2) the maximal NO donation was
achieved at anaerobic conditions with pH 6.5 value after 500 s.

In aerobic conditions, the NO amount and kinetic relationships
are close to those in anaerobic solutions. The complex for a long
time donates NO in water solution, presumably, because of the for-
mation of relatively stable intermediates. With the rise of pH to 7.0
the character of the kinetic curves changes. For the first 50 s the
complex evolves NO in smaller amounts (~0.5 nM), then more
extensive nitric oxide generation begins and after 100s the
amount of NO (~4.0nM) is close to the value at pH 6.5
(~6.0 nM); but then the curve reaches the plateau compared to
the experiment at pH 6.5, where the NO prolonged generation
takes place [40].

In comparison with water-soluble DNICs with cysteamine
bridging ligand [Fe,(p-SCH,CH,NH3)2(NO)4|SO4 [41] or mononu-
clear DNICs with thiourea [Fe(SC(NH;);),(NO),]|Cl [10] complex I
evolves NO less actively; that could originate from the solvation
effects.

Theoretical studies

The initial geometry for calculations was taken directly from
the resolved crystal structures; normal mode vibration analysis
was performed to prove that the optimized structures are in the
local minima.

DNIC with Pr bridging thiolate ligand was earlier studied by
solution >N and '3C NMR [42]. NMR data showed that
[Fe,(nu-SCHMe;),(NO),] exist in solution in two equimolar isomeric
forms: cis-conformer (C,, symmetry) and trans-conformer (Cpp
symmetry).

We have tested the cis-conformers of the complexes under the
current study. The calculated energy differences between two
isomeric forms in gas state: the 5*°AE = E, ;s — Egs for complex 1
is 0.3 kJ/mol and 0.8 kJ/mol for II. The values indicate very small
preference of the trans-isomeric form. The difference in aqueous
medium (accounted for by means of the PCM model) V**'AE has
an opposite character —0.4 and —1.6 kJ/mol, the reason of that dif-
ference is that C,, molecules have larger value of solvation energy
compared to Co, symmetry conformers. The larger solvation value
can lead to more effective NO release from C,, complex (substitu-
tion of nitrosyl ligand by water molecule). Nevertheless, this
assumption should be examined in further experimental studies.

The diamagnetism (supported by NMR data) of [Fe,(u-CHMe,),
(NO)4] and [Fey(p-SCHPh,);(NO),] indicates that the complexes
exist in a singlet magnetic state. The [Fe,(p-SR)>(NO)y] can be
represented as the combination of two {Fe(NO),}°-{Fe(NO),}°
units according to the Enemark-Feltham notation [43], the spin-
spin coupling proceeds via thiolate (p-SR) bridges.

In complex II crystal structure conformation is stabilized by
stacking interactions between two pare of phenyl rings in the
[101] direction (r = 3.510 A). The intermolecular nt-stacking interac-
tion energy was accounted as the difference of the total energies of
the two-molecule complex and a single one and was found to be
~19.2 kJ/mol. The calculated energy is close to the experimental
values [44]. Furthermore, the conformation of II can be stabilized
by the phenyl ring hydrogen and nitrosyl ligand oxygen short con-
tacts (see Fig. S5).
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(b)

Fig. 1. Molecular structure of (a) [Fe,(p-SPr),(NO),] (I) and (b) [Fe,(pu-'SCHPh,),('N'O),] (II). Atoms are represented as ellipsoids of thermal displacements with 50%
probability. Selected bond lengths (A) and angles (°): Fe- - -Fe = 2.711; Fe'- - -Fe’ = 2.730; Fe-S = 2.270; Fe'-S' = 2.268; Fe-N = 1.674; Fe'-N’ = 1.680; N-O = 1.185; N'-0' = 1.173;

{Fe-N-0 = 169.44; {Fe’'-N'-0' = 170.90.
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Fig. 2. The amount of NO generated by [Fe,(pu-SCHMe;),(NO)4] vs. time at different pH values and 100 nM concentration: (a) deoxygenated solution and (b) oxygenated

solution.

Accumulation of information on the synthetic method and
structure of RRSE with different substituents in thiolate bridges
is important for understanding the structure-property relationship
in RRSE, as the complexes are suggested as promising prodrugs.
Further findings could bring the contribution to the understanding
of the RRSE structure-property relationships.
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Appendix A. Supplementary data

CCDC 991969 and 991970 contains the supplementary crystal-
lographic data for complex I and II. These data can be obtained free
of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or
from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: (+44) 1223 336 033; or e-mail:
deposit@ccdc.cam.ac.uk. Supplementary data associated with this

article can be found, in the online version, at http://dx.doi.org/10.
1016/j.poly.2015.02.009.

References

[1] D.C. Johnson, D.R. Dean, A.D. Smith, M.K. Johnson, Annu. Rev. Biochem. 74
(2005) 247.

[2] I. Romero-Caneldn, PJ. Sadler, Inorg. Chem. 52 (2013) 12276.

[3] J.C. Crack, L.J. Smith, M.R. Stapleton, J. Peck, N.J. Watmough, M.]. Buttner, R.S.
Buxton, J. Green, V.S. Oganesyan, A.J. Thomson, N.E. Le Brun, J. Am. Chem. Soc.
133 (2010) 1112.

[4] T.C. Harrop, Z.J. Tonzetich, E. Reisner, S.J. Lippard, ]. Am. Chem. Soc. 130 (2008)
15602.

[5] L. Grossi, P.C. Montevecchi, Chem.-Eur. ]. 8 (2002) 380.

[6] J.M. Joslin, B.H. Neufeld, M.M. Reynolds, RSC Adv. 4 (2014) 42039.

[7] T.C. Berto, A.L. Speelman, S. Zheng, N. Lehnert, Coord. Chem. Rev. 257 (2013)
244.

[8] K.A. Broniowska, N. Hogg, Antioxid. Redox Signal. 17 (2012) 969.

[9] J.C. Crack, J. Green, A.J. Thomson, N.E.L. Brun, Acc. Chem. Res. 47 (2014) 3196.

[10] N.A. Sanina, S.M. Aldoshin, N.Y. Shmatko, D.V. Korchagin, G.V. Shilov, N.S.
Ovanesyan, A.V. Kulikov, Inorg. Chem. Commun. 49 (2014) 44.

[11] Q. Zheng, A. Bonoiu, T.Y. Ohulchanskyy, G.S. He, P.N. Prasad, Mol. Pharm. 5
(2008) 389.

[12] S.AT. Dillinger, H.W. Schmalle, T. Fox, H. Berke, Dalton Trans. (2007) 3562.

[13] T.N. Rudneva, N.A. Sanina, K.A. Lyssenko, S.M. Aldoshin, M.Y. Antipin, N.S.
Ovanesyan, Mendeleev Commun. 19 (2009) 253.

[14] D. Seyferth, M.K. Gallagher, M. Cowie, Organometallics 5 (1986) 539.

[15] N.A. Sanina, A.G. Krivenko, R.A. Manzhos, N.S. Emelyanova, G.I. Kozub, D.V.
Korchagin, G.V. Shilov, T.A. Kondrateva, N.S. Ovanesyan, S.M. Aldoshin, New ].
Chem. 38 (2014) 292.

[16] ]. Fitzpatrick, H. Kalyvas, J. Shearer, E. Kim, Chem. Commun. 49 (2013) 5550.

[17] P.B. Davidovich, V.V. Gurzhy, A.N. Belyaev, Russ. ]J. Gen. Chem. 84 (2014) 719.


http://www.ccdc.cam.ac.uk/conts/retrieving.html
http://dx.doi.org/10.1016/j.poly.2015.02.009
http://dx.doi.org/10.1016/j.poly.2015.02.009
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0005
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0005
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0010
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0015
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0015
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0015
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0020
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0020
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0025
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0030
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0035
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0035
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0040
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0045
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0050
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0050
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0055
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0055
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0060
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0065
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0065
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0070
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0075
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0075
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0075
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0080
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0085

P.B. Davidovich et al./Polyhedron 90 (2015) 197-201 201

[18] Z]. Tonzetich, H. Wang, D. Mitra, C.E. Tinberg, L.H. Do, F.E. Jenney, M.\W.W.
Adams, S.P. Cramer, S.J. Lippard, ]J. Am. Chem. Soc. 132 (2010) 6914.

[19] T.C. Harrop, D. Song, S.J. Lippard, ]. Inorg. Biochem. 101 (2007) 1730.

[20] Z. Lin, F. Lo, C. Li, C. Chen, W. Huang, I. Hsu, J. Lee, ]J. Horng, W. Liaw, Inorg.
Chem. 50 (2011) 10417.

[21] N.A. Sanina, O.A. Rakova, S.M. Aldoshin, LI. Chuev, E.G. Atovmyan, N.S.
Ovanesyan, Russ. J. Coord. Chem. 27 (2001) 179.

[22] T.CW. Mak, L. Book, C. Chieh, M.K. Gallagher, L. Song, D. Seyferth, Inorg. Chim.
Acta 73 (1983) 159.

[23] R. Wang, M.A. Camacho-Fernandez, W. Xu, J. Zhang, L. Li, Dalton Trans. (2009)
777.

[24] Y.-]. Chen, W.-C. Ku, L.-T. Feng, M.-L. Tsai, C.-H. Hsieh, W.-H. Hsu, W.-F. Liaw,
C.-H. Hung, Y.-]. Chen, J. Am. Chem. Soc. 130 (2008) 10929.

[25] C.-C. Tsou, W.-F. Liaw, Chem.-Eur. J. 17 (2011) 13358.

[26] T.C. Harrop, D. Song, S.J. Lippard, ]. Am. Chem. Soc. 128 (2006) 3528.

[27] T.-T. Lu, C.-C. Tsou, H.-W. Huang, LJ. Hsu, ]J.-M. Chen, T.-S. Kuo, Y. Wang, W.-F.
Liaw, Inorg. Chem. 47 (2008) 6040.

[28] G.M. Sheldrick, SADABS, University of Gottingen, Germany, 2004.

[29] G. Sheldrick, Acta Crystallogr., Sect. A 64 (2008) 112.

[30] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, ].A.K. Howard, H. Puschmann, J. Appl.
Crystallogr. 42 (2009) 339.

[31] T.H. Dunning, K.A. Peterson, A.K. Wilson, J. Chem. Phys. 114 (2001) 9244.

[32] Gaussian 09, Revision D01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria,
M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson,
H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, ]. Bloino, G.
Zheng, ].L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A.

Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N.
Kudin, V.N. Staroverov, R. Kobayashi, ]. Normand, K. Raghavachari, A. Rendell,
J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, ].M. Millam, M. Klene, ].E.
Knox, J.B. Cross, V. Bakken, C. Adamo, ]. Jaramillo, R. Gomperts, R.E. Stratmann,
0. Yazyev, AJ. Austin, R. Cammi, C. Pomelli, ].W. Ochterski, R.L. Martin, K.
Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, JJ. Dannenberg, S.
Dapprich, A.D. Daniels, Farkas, ].B. Foresman, J.V. Ortiz, ]. Cioslowski, D.J. Fox,
Gaussian Inc., Wallingford CT, 2009.

[33] Y. Takano, K.N. Houk, J. Chem. Theory Comput. 1 (2004) 70.

[34] Y. Zhao, D.G. Truhlar, Acc. Chem. Res. 41 (2008) 157.

[35] P. Brant, R.D. Feltham, Inorg. Chem. 19 (1980) 2673.

[36] T. Nishio, J. Chem. Soc., Chem. Commun. (1989) 205.

[37] M. Ohno, M. Miyamoto, K. Hoshi, T. Takeda, N. Yamada, A. Ohtake, ]J. Med.
Chem. 48 (2005) 5279.

[38] R. Wang, X. Wang, E.B. Sundberg, P. Nguyen, G.P.G. Grant, C. Sheth, Q. Zhao, S.
Herron, K.A. Kantardjieff, L. Li, Inorg. Chem. 48 (2009) 9779.

[39] K.M. Skodje, P.G. Williard, E. Kim, Dalton Trans. 41 (2012) 7849.

[40] N.A. Sanina, G.I. Kozub, T.A. Kondrateva, D.V. Korchagin, G.V. Shilov, N.S.
Emelyanova, R.A. Manzhos, A.G. Krivenko, S.M. Aldoshin, J. Mol. Struct. 1075
(2014) 159.

[41] N.A. Sanina, K.A. Lysenko, O.S. Zhukova, T.N. Rudneva, N.S. Emelianova, S.M.
Aldoshin, U.S. Patent: 2010/0190850 A1, 2010.

[42] AR. Butler, C. Glidewell, A.R. Hyde, ]J. McGinnis, Inorg. Chem. 24 (1985) 2931.

[43] J.H. Enemark, R.D. Feltham, Coord. Chem. Rev. 13 (1974) 339.

[44] B.B. Averkiev, A.A. Korlyukov, M.Y. Antipin, A.B. Sheremetev, T.V. Timofeeva,
Cryst. Growth Des. 14 (2014) 5418.


http://refhub.elsevier.com/S0277-5387(15)00088-1/h0090
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0090
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0095
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0100
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0100
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0105
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0105
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0110
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0110
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0115
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0115
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0120
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0120
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0125
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0130
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0135
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0135
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0145
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0150
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0150
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0155
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0165
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0170
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0175
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0180
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0185
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0185
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0190
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0190
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0195
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0200
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0200
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0200
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0210
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0215
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0220
http://refhub.elsevier.com/S0277-5387(15)00088-1/h0220

	Synthesis and structure of dinitrosyl iron complexes with secondary thiolate bridging ligands [Fe2(µ-SCHR2)2(NO)4], R=Me, Ph
	1 Introduction
	2 Experimental
	2.1 Instrumental methods
	2.1.1 X-ray diffraction experiments1
	2.1.2 Spectroscopic measurements
	2.1.3 NO-donor ability

	2.2 DFT calculations
	2.3 Synthesis
	2.3.1 trans-Bis(mercapto-i-propyl-κ2S:S)bis[dini
	2.3.2 trans-Bis(mercapto-diphenylmethyl-κ2S:S)bi


	3 Results and discussion
	Theoretical studies
	Acknowledgments
	Appendix A Supplementary data
	References


