Spectroscopic constants and potential energy curve of the iodine weakly bound 1_u state correlating with the $I(^2P_{1/2}) + I(^2P_{1/2})$ dissociation limit

M E Akopyan, V V Baturo, S S Lukashov, S A Poretsky and A M Pravilov

V A Fock Institute of Physics, Faculty of Physics, St. Petersburg State University, Ul'yanovskaya 1, Staryj Peterhof, 198504 St. Petersburg, Russia

E-mail: a.pravilov@spbu.ru

Received 1 July 2014, revised 1 October 2014 Accepted for publication 27 October 2014 Published 24 December 2014

Abstract

The stepwise three-step three-color laser population of the $I_2(\beta 1_g, \nu_\beta, J_\beta)$ rovibronic states via the $B0_u^+$, ν_B , J_B rovibronic states and rovibronic levels of the $I_u(bb)$ and $0_g^+(bb)$ states mixed by hyperfine interaction is used for determination of rovibronic level energies of the weakly bound $I_2(1_u(bb))$ state. Dunham coefficients of the state, Y_{i0} (i=0-3), Y_{i1} (i=0-2), Y_{02} and Y_{12} for the $v_{1_u}=1-5$, 8, 10, 15 and $J_{1_u}\approx 9-87$ ranges, the dissociation energy of the state, D_e , and equilibrium I–I distance, R_e , as well as the potential energy curve are determined. There are aperiodicities in the excitation spectrum corresponding to the β , $\nu_\beta=23$, $J_\beta\leftarrow 1_u(bb)$, $\nu_{1u}=4$, 5, J_{1u} progressions in the $I_2+Rg=He$, Ar mixture, namely, a great number of lines which do not coincide with the R or R line progressions. Their positions conflict with the R-even selection rule. Furthermore, they do not correspond to the R-odd progression.

Keywords: iodine molecule, weakly-bound states, dunham coefficients, potential energy curve

(Some figures may appear in colour only in the online journal)

1. Introduction

Among 23 valence states of iodine molecules [1], only deeply bound $X0_{\rm g}^+(aa)$, $A'2_{\rm u}(aa)$, $A1_{\rm u}(aa)$ and $B0_{\rm u}^+(ab)$ states correlating with the $I(^2P_{3/2})+I(^2P_{3/2})$ (aa) and $I(^2P_{3/2})+I(^2P_{1/2})$ (ab) are well studied experimentally [2–15]. For weakly bound $B'0_{\rm u}^-(aa)$, $a1_{\rm g}(aa)$, $B''1_{\rm u}(aa)$, $a'0_{\rm g}^+(aa)$, $c1_{\rm g}(ab)$, $0_{\rm g}^+(ab)$, $0_{\rm g}^-(ab)$ and b'(ab) states, only some spectroscopic characteristics are known [2–4, 16–18].

In 2007, T Ridley *et al* [19, 20] measured rotationally unresolved $I_2(D0_u^+, F0_u^+ \to 0_g^+(bb))$ and $I_2(1_g(^1D_2)) \to 1_u(bb))$ luminescence spectra. They simulated these spectra and obtained some spectroscopic parameters (T_e , D_e , ω_e , B_e and R_e) of the lower states. Uncertainties of these parameters are rather high, $\pm 2 \text{ cm}^{-1}$ for T_e and T_e , and T_e 0.2 cm⁻¹ for T_e 1.

Recently [21], we reported on results of determination of the rovibronic level energies of the $0^+_{\sigma}(bb)$ state that were

more precise than in [19, 20]. The Dunham parameters of the state, Y_{i0} (i=0–3), Y_{i1} (i=0–3) and Y_{02} for the $v_{0_g^+}$ =0–16 and $J_{0_g^+}\approx 14$ –135 ranges, as well as R_e and D_e values were determined. The potential energy curve (PEC) of the state was also given.

Very recently, we have estimated upper limit of electric dipole forbidden $I_2(1_u(bb)\leftarrow B0_u^+)$ transition cross section. We have shown that the integral cross-section of the transition at fundamental harmonics of a Nd:YAG laser, $\nu_f^1=9395.12~{\rm cm}^{-1}$, $\nu_f^2=9393.53~{\rm cm}^{-1}$ and $\nu_f^3=9396.67~{\rm cm}^{-1}$, $\Sigma=\int\sigma(\nu){\rm d}\nu$, is low and does not exceed $1.7\times10^{-19}~{\rm cm}$, so the effective cross section $\sigma_{1u-B}^{\rm eff} \leqslant \Sigma/\Delta\nu \approx 4\times10^{-18}~{\rm cm}^2$ ($\Delta\nu\approx0.04~{\rm cm}^{-1}$) [22]. We have also shown that rovibronic levels of three $0_g^+0_u^-1_u(bb)$ states are mixed by hyperfine interaction. The $I_2(1_u(bb)\leftarrow B0_u^+)$ transition is allowed due to hyperfine mixing of the $1_u(bb)$, ν_{1u} , $J_{1u}/0_g^+(bb)$, ν_0 , J_0 rovibronic states [23].