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CONSTRUCTIVE DESCRIPTION OF THE BESOV CLASSES
IN CONVEX DOMAINS IN Cd

A. S. Rotkevich∗ UDC 517.5

The method of pseudoanalytic continuation developed by E. M. Dyn’kin is extended to convex domains in Cd and
used to give a constructive description of the Besov classes in such domains. Bibliography: 22 titles.

Introduction

In 1981, E. M. Dyn’kin [5] gave a constructive description of the analytic Besov classes in terms of global
polynomial estimates for the Radon domains in C. In the present paper, the methods suggested in [5] are
generalized to the multidimensional case.

Study of characteristics of functional spaces in terms of approximation is a classical problem issued by the
remark of Jackson (1911) who stated that smoothness can be described in this way. One of the first results
in this field is the Jackson–Bernstein theorem characterizing the periodic Hölder class Λs[−π, π] for 0 < s < 1
as the class of functions whose best approximations by trigonometric polynomials of degree n decrease as n−s

with growth of n. To mension results in the multidimensional case, we note that an analogous characteristic
was achieved by N. A. Shirokov in [20] for the analytic Hölder classes in strictly preudoconvex domains. It is
interesting that our result appears to be similar to the classical characterization of the Belov classes Ḃs

pq[−π, π].

Theorem 0.1. A function f on [−π, π] belongs to the Besov class Ḃs
p,q[−π, π], s > 0, 1 ≤ p, q ≤ ∞, if and only

if [ ∞∑
n=1

1
n

(nsEn(f)p)
q

]1/q

<∞, (0.1)

where En(f)p = inf
Tn

(
π∫

−π

|f(x)− Tn(x)|p dx

)1/p

is the best approximation of the function f in Lp[−π, π] by

trigonometric polynomials of degree n.

The method of studying the Belov spaces is based on a generalization of pseudoanalytic continuation, i.e.,
continuation of a function f defined in some bounded domain Ω ⊂ Cd to a function f defined in the entire
space Cd such that the discrepancy of the Cauchy–Riemann equations |∂f | =

∣∣∣ ∂f
∂z1

∣∣∣ + · · · +
∣∣∣ ∂f
∂zd

∣∣∣ decreases in
a controlled way with the approach to the boundary of the domain Ω. The rate of this decreasing uniqely
characterizes smoothness of the initial function. Similarly to the one-dimensional case, a function f ∈ Hp(Ω)
belongs to the analytic Besov space As

p(Ω) if and only if its continuation with∫
Cd\Ω

|∂f(z)|pρ(z)−p(s−1)−1 dµ(z) <∞ (0.2)

is possible, where ρ is the function defining the domain Ω and µ is Lebesgue measure in Cd.
The main idea is that completely different constructions of pseudoanalytic continuation lead to bounds of the

form (0.2). In the present paper, two constructions of continuation are introduced, based on local and global
polynomial estimations. In such a way, it becomes possible to connect the module of smoothness of a function
with its global estimates, which leads to statement analogous to Theorem 0.1.

The paper is divided into seven sections. In Sec. 1, the main notation, introductional definitions, and properties
of the studied functions classes are given. Section 2 is devoted to the study of the Cauchy–Leray–Fantappie
formula, which is analogous to the Cauchy formula. Estimates of the kernel of this formula presented in this
section are mainly obtained in [7] for a more general class of domains. Part of the estimates happens to hold
only under the condition of strict convexity of the domain. As was mentioned, we study the smoothness of
functions using local approximations but the classic definition of the Besov spaces is based on the module of
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smoothness defined by the operator of taking of differences. In Sec. 3, we study the connection of the classic
definition with the polynomial module of smoothness defined using local approximations. Note that the results
of this section hold for an arbitrary smooth domain in Rl. In Sec. 4, we construct an operator that gives “almost
the best” approximation of a function by polynomials of degree not exceeding some parameter m ≥ 0. In
Sec. 5, two constructions of pseudoanalytic continuation are presented, by means of local and global polynomial
approximations. In Sec. 6, the first construction is used for describing the Besov classes in terms of pseudoanalytic
continuation. Particularly, it is proved that the analytic Besov classes As

pq(Ω) are described as the classes of
functions admitting a continuation with the bound

∞∫
0

 ∫
∂Ωr

|∂F (z)|p dσr(z)

q/p

r−q(s−1)−1 dr <∞, (0.3)

where ∂Ωr = {z ∈ Cd \Ω : ρ(z) = r}, σr is the surface Lebesgue measure on ∂Ωr, and ρ is the function defining
the domain Ω.

In Sec. 7, a constructive characteristic of the analytic Besov classes is studied. Particularly, it is proved that
the class As

pq(Ω) is characterized by the following condition on the best polynomial approximations :[ ∞∑
n=1

1
n

(nsEn(f)p)
q

]1/q

<∞, (0.4)

where En(f)p = inf
Tn

( ∫
∂Ω

|f(z)− Tn(z)|p dσ(z)
)1/p

is the best approximation of a function f in Lp(∂Ω) by

polynomials of degree n in each variable and σ is the surface Lebesgue measure on ∂Ω.
In Sec. 8, the pseudoanalytic continuation method is presented and the continuity of the Cauchy–Leray–

Fantappiè operator in the Besov spaces Bs
p(∂Ω) for 1 < p <∞ and 0 < s < 1 is proved.

1. Main definitions

1.1. Main notation. Let Cd be the space of d complex variables, d ≥ 2, z = (z1, . . . , zd), zj = xj + iyj ,

∂f

∂zj
=

1
2

(
∂f

∂xj
− i

∂f

∂yj

)
,

∂f

∂zj
=

1
2

(
∂f

∂xj
+ i

∂f

∂yj

)
,

∂f =
d∑

k=1

∂f

∂zk
dzk, ∂f =

d∑
k=1

∂f

∂zk
dzk, and df = ∂f + ∂f.

Define in the space Cd the inner product 〈z, w〉=
d∑

k=1

zkwk and the corresponding norm |z| =
√
〈z, z〉. We

similarly denote the action of the differential forms ∂f and ∂f on a vector w ∈ Cd:

〈∂f, w〉 =
d∑

k=1

∂f

∂zk
wk,

〈
∂f, w

〉
=

d∑
k=1

∂f

∂zk
wk.

Considering this notation, we usually identify the form ∂f with the corresponding vector
(

∂f
∂z1

, . . . , ∂f
∂zd

)
. Note

that if the function ρ is real-valued, then ∂ρ
∂zk

= ∂ρ
∂zk

.
Denote the distance from a point z ∈ Cd to a set D ⊂ Cd by dist(z, D) = inf{|z − w| : w ∈ D}.
To shorten the notation in inequalities, we define the symbols . and � in the following way: f . g if f ≤ cg

for some constant c > 0, independent of the main arguments of f and g. Similarly, f � g if c−1g ≤ f ≤ cg for
some constant c > 1.

Denote by µl the l-dimensional Lebesgue measure.
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1.2. Class of considered domains. Let

Ω =
{
z ∈ Cd : ρ(z) < 0

}
be a strictly convex domain such that ∂ρ 6= 0 on ∂Ω, where ρ is a function of class C∞. Note that we can take
ρ(z) > 0 outside the domain Ω, and domains of the form Ωr =

{
z ∈ Cd : ρ(z) < r

}
are also strictly convex for

0 ≤ r ≤ 2 and ∂ρ(z) 6= 0, z ∈ Ω2 \ Ω. This means that the second differential of the function ρ generates a
strictly positive definite quadratic form on the tangent plane:

d2ρ(z)[z − w] ≥ c|z − w|2, Re 〈∂ρ(z), z − w〉 = 0, z ∈ Ω2 \ Ω, (1.1)

for some constant c > 0, where d2ρ is the second differential of the function ρ. Since the function ρ is real-valued,

d2ρ(z)[v] = 2 Re
d∑

k,j=1

(
∂2ρ(z)
∂zk∂zj

vkvj +
1
2
∂2ρ(z)
∂zk∂zj

vkvj

)
, v ∈ Cd.

Consider at a point ξ ∈ ∂Ωr =
{
ξ ∈ Cd : ρ(ξ) = r

}
the tangent hyperplane

TRξ =
{
z ∈ Cd : Re 〈∂ρ(ξ), ξ − z〉 = 0

}
.

This (2d−1)-dimensional real affine subspace Cd contains the unique complex affine subspace Tξ of dimension
d− 1, which is called the complex tangent hyperplane. In our notation,

Tξ =
{
z ∈ Cd : 〈∂ρ(ξ), ξ − z〉 = 0

}
.

Denote the projection of a point z ∈ Cd to a tangent hyperplane TRξ by prξ(z) ∈ TRξ and denote the projection
to a complex tangent hyperplane by πξ(z) ∈ Tξ.

1.3. Hardy and Besov spaces. The main objects of the following study are the Besov classes and their
analytic analogs in convex domains. To define these spaces, it is necessary to introduce the notion of integral
modulus of smoothness and the corresponding operators of taking the differences. Note that the definition given
in this section is inconvenient to be applied to the study of polynomial approximations. In Sec. 3, we give an
equivalent definition of the Besov class in terms of best local polynomial approximations.

Thus, the spaces Lp(∂Ωr) = Lp(∂Ωr, dσr) are defined in terms of the Lebesgue measure dσr on the surface
∂Ωr. Denote the space of functions that are analytic in a domain Ω by H(Ω) and denote the Hardy space in the
following way:

Hp(Ω) =
{
f ∈ H(Ω) : ‖f‖Hp(Ω) = sup

r<0
‖f‖Lp(∂Ωr) <∞

}
.

Recall that a function f ∈ Hp(Ω) takes nontangent boundary values almost everywhere. Continuing the
function to the boundary, we have ‖f‖Hp(Ω) � ‖f‖Lp(∂Ω).

Let f ∈ Lp(Rl), k ∈ N, and t > 0, and define the operator of taking the kth difference in coordinate
ej = (0, . . . , 1, . . . , 0):

∆1
j,tf(x) = f(x+ tej)− f(x), ∆k

j,tf(x) = ∆1
j,t(∆

k−1
j,t f)(x). (1.2)

Let α = (α1, . . . , αl) be a multiindex and let h ∈ Rl; we set

∆α
hf(x) = ∆α1

1,h1
◦ . . . ◦∆αl

l,hl
f(x). (1.3)

Define the corresponding α-modulus of smoothness:

ωα(f, h)p = ‖∆α
hf‖Lp(Rl) =

 ∫
Rl

|∆α
hf(x)|p dx

1/p

. (1.4)

In what follows, usually α = (m, . . . ,m) and h = (t, . . . , t); in this case, we use a shorter notation:

ωm(f, t) = ω(m,...,m)(f, (t, . . . , t)).

Definition 1.1. Let 0 < s <∞ and 1 ≤ p, q ≤ ∞. Then the Besov class Bs
pq(R

l) consists of all functions such
that for 1 ≤ q <∞, the inequality

cpq(f) =

 ∞∫
0

(
ωα(f, h)p

hs

)q
dh

h

 1
q

<∞ (1.5)
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holds, and for q = ∞, the inequality

cp∞(f) = sup
h>0

ωα(f, h)p

hs
<∞ (1.6)

holds, where α is an arbitrary multiindex satisfying the condition αi>s, i = 1, . . . , l. The definition does not
depend on the multiindex α, and the norm ‖f‖Bs

pq(Rl) = ‖f‖Lp(Rl) + cpq(f) defines on Bs
pq(R

l) the structure of
a Banach space. The space Bpp(Rl) we shortly denote by Bp(Rl).

Now we transfer the definition of the Besov class to the boundary of the domain Ω. For this purpose,

consider an open atlas and the corresponding partition of unity. Let ∂Ω =
N⋃

j=1

Kj and smooth diffeomorphisms

ψj : Kj → Q1 be given, where Q1 = [0, 1]2d−1. In addition, a smooth partition of unity
N∑

j=1

χj(z) = 1, z ∈ ∂Ω,

is given such that supp χj ⊂ Kj . Denote the diffeomorphism that is inverse to ψj by ϕj = ψ−1
j .

Definition 1.2. Let 0 < s <∞ and 1 ≤ p, q ≤ ∞. Then

Bs
pq(∂Ω) =

{
f ∈ Lp(∂Ω) : (χjf) ◦ ψ−1

j ∈ Bs
pq(R

2d−1)
}
,

and this space is a Banach space with the norm

‖f‖Bs
pq(∂Ω) =

N∑
j=1

‖(χjf) ◦ ψ−1
j ‖Bs

pq(R2d−1).

Note that different classes and partitions of unity generate different but pairly equivalent norms. To study
the Besov spaces and corresponding concepts and methods in more detail, see the monograph [22].

The main object of our study is the analytic Besov class As
pq(Ω) consisting of all analytic functions with

boundary values in the class Bs
pq(∂Ω), and the norm in the space As

pq(Ω) is defined by the relation ‖f‖As
pq(Ω) =

‖f‖Bs
pq(∂Ω). Respectively, As

p(Ω) = As
pp(Ω).

1.4. The Hardy inequality. To prove some estimates, we need the following Hardy inequality. Let a function
f(t) be positive on (0,∞). Define a function F (x) with respect to a parameter r 6= 1 in the following way:

F (x) =

x∫
0

f(t) dt, r > 1,

and

F (x) =

∞∫
x

f(t) dt, r < 1.

Then for 1 ≤ p <∞, the estimate
∞∫
0

x−rF p(x) dx <
(

p

|r − 1|

)p
∞∫
0

x−r(xf(x))p dx (1.7)

holds. A proof and detailed discussion of these inequalities can be found in the monograph [8].

2. The Cauchy–Leray–Fantappiè formula and its kernel estimates

2.1. Preliminary remarks. In the theory of functions of several complex variables, an analog of the Cauchy
formula is the famous Leray theorem ( [1, 15]). Recall that if a domain Ω =

{
z ∈ Cd : ρ(z) < 0

}
is convex and

a function ρ is smooth, then a function f ∈ H1(Ω) can be reconstructed by its boundary values using the
Cauchy–Leray–Fantappiè formula:

f(z) = Kdf(z) =
1

(2πi)d

∫
∂Ω

f(ξ)∂ρ(ξ) ∧ (∂∂ρ(ξ))d−1

〈∂ρ(ξ), ξ − z〉d
, z ∈ Ω. (2.1)

Note that according to [7], the operator Kd continuously maps the space Lp(∂Ω) onto the space Hp(Ω), i.e.,
‖Kdf‖Hp(Ω) . ‖f‖Lp(∂Ω).
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The main instrument in this paper is the method of continuation of a function f outside the domain Ω. Let
f0 ∈ H1(Ω) and let the boundary values of the function f0 almost everywhere concide with the boundary values
of some function F ∈ C1

loc(C
d \ Ω) such that |∂F | ∈ L1(Cd \ Ω). Then by the Stokes formula, for z ∈ ∂Ω, we

have the equalities

f0(z) = lim
r→0+

1
(2πi)d

∫
∂Ωr

F (ξ)∂ρ(ξ) ∧ (∂∂ρ(ξ))d−1

〈∂ρ(ξ), ξ − z〉d

= lim
r→0+

1
(2πi)d

∫
Cd\Ωr

∂F (ξ) ∧ ∂ρ(ξ) ∧ (∂∂ρ(ξ))d−1

〈∂ρ(ξ), ξ − z〉d
(2.2)

=
1

(2πi)d

∫
Cd\Ω

∂F (ξ) ∧ ∂ρ(ξ) ∧ (∂∂ρ(ξ))d−1

〈∂ρ(ξ), ξ − z〉d

since

d

(
∂ρ(ξ) ∧ (∂∂ρ(ξ))d−1

〈∂ρ(ξ), ξ − z〉d

)
= 0, z ∈ Ω, ξ ∈ Cd \ Ω.

This remarkable formula allows one to study properties of the function f0 relying on estimates of its continu-
ation. Note that it is not necessary for the function F to be a continuation in terms of coincidence of boundary
values; in fact, relation (2.2) is sufficient. We call such a function F the pseudoanalytic continuation of the
function f0.

To shorten the notation, denote

ω(ξ) =
1

(2πi)d
∂ρ(ξ) ∧ (∂∂ρ(ξ))d−1 and K(ξ, z) =

1

〈∂ρ(ξ), ξ − z〉d
. (2.3)

2.2. Pointwise estimates of the kernel. As was mentioned before, an important instrument in studying
boundary properties of analytic functions is formula (2.2). In this section, we give pointwise and integral estimates
of the kernel of the operator Kd. Note that a part of this estimates can be obtained using only the strict linear
convexity (see [7]); this refers to estimates on the surface ∂Ω; however, continuation of these estimates to the set
Cd \Ω essentially uses the convexity of the domain (see Lemma 2.1). For short, denote v(ξ, z) = | 〈∂ρ(ξ), ξ − z〉 |
and denote by ξ∗ a point of the boundary ∂Ω that is the closest one to a point ξ ∈ Cd \ Ω.

Lemma 2.1. Let a domain Ω be convex. Then

v(ξ, z) � ρ(ξ) + v(ξ∗, z), z ∈ Ω, ξ ∈ Cd \ Ω. (2.4)

Proof. Denote by n(ξ) = ∂ρ(ξ)
|∂ρ(ξ)| the complex normal at the point ξ. Note that

〈n(ξ), ξ − ξ∗〉 = |ξ − ξ∗| = dist(ξ, ∂Ω) � ρ(ξ);

hence,

〈∂ρ(ξ), ξ − z〉 = |∂ρ(ξ)| (〈n(ξ), ξ − ξ∗〉+ 〈n(ξ), ξ∗ − z〉)
= |∂ρ(ξ)| (dist(ξ, ∂Ω) + 〈n(ξ∗), ξ∗ − z〉+ 〈n(ξ)− n(ξ∗), ξ∗ − z〉) .

In addition,
| 〈n(ξ)− n(ξ∗), ξ∗ − z〉 | . |ξ − ξ∗||ξ∗ − z| . |ξ∗ − z|ρ(ξ).

The domain Ω is convex; hence, Re 〈n(ξ∗), ξ∗−z〉≥0 for z ∈ ∂Ω (see [10]). Assuming that the value |ξ∗ − z| is
sufficiently small, we obtain the inequalities

| 〈∂ρ(ξ), ξ − z〉 | &
(
(dist(ξ, ∂Ω) + Re 〈n(ξ∗), ξ∗ − z〉)2 +

(
Im 〈n(ξ∗), ξ∗ − z〉

)2)1/2

& dist(ξ, ∂Ω) + | 〈n(ξ∗), ξ∗ − z〉 | & ρ(ξ) + v(ξ∗, z);

the inverse inequality obviously follows from the triangle inequality. Due to the continuity of the considered
expressions, local estimates can be transferred to arbitrary values z ∈ Ω and ξ ∈ Cd \ Ω. �

The following lemma shows that the function v(ξ, z) defines a quasimetric on ∂Ω (for details, see [7]). Note that
the estimates hold locally, and this is compensated afterwards by a choice of finite pseudoanalytic continuations.

5

Alexander
Highlight



Lemma 2.2. Let a domain Ω be strictly convex. Then the following estimates hold:
(1) dist(z, ∂Ω) � ρ(z) � |z − ξ|2, z ∈ Tξ

⋂
Ω2, ξ ∈ ∂Ω;

(2) |ξ − z|2 . v(ξ, z) . |ξ − z|, z, ξ ∈ ∂Ω;
(3) v(ζ, ξ) � v(ξ, ζ), ζ, ξ ∈ ∂Ω;
(4) v(ζ, ξ) . v(ξ, w) + v(w, ζ), ζ, ξ, w ∈ ∂Ω;
(5) |ξ − z|2 . v(ξ, z), ξ ∈ Ω2 \ Ω, z ∈ ∂Ω.

Proof. (1) Let z ∈ Tξ

⋂
Ω2 and expand ρ(z) by the Taylor formula:

ρ(z) = ρ(ξ) + 2 Re 〈∂ρ(ξ), z − ξ〉+
1
2
d2ρ(ξ)

[
z − ξ

|z − ξ|

]
|z − ξ|2 + o(|z − ξ|2)

=
1
2
d2ρ(ξ)

[
z − ξ

|z − ξ|

]
· |z − ξ|2 + o(|z − ξ|2) � |z − ξ|2.

(2) Similarly to the previous item, by the Taylor formula,

2 Re 〈∂ρ(ξ), z − ξ〉 = −1
2
d2ρ(ξ)

[
z − ξ

|z − ξ|

]
· |z − ξ|2 + o(|z − ξ|2) � |z − ξ|2,

which gives us the lower bound. The upper bound is obvious.
(3) Estimate the value |v(ξ, z)/v(z, ξ)|:∣∣∣∣ 〈∂ρ(ξ), ξ − z〉

〈∂ρ(z), z − ξ〉

∣∣∣∣ = ∣∣∣∣ 〈∂ρ(z), ξ − z〉 − 〈∂ρ(z)− ∂ρ(ξ), ξ − z〉
〈∂ρ(z), z − ξ〉

∣∣∣∣
. 1 +

|ξ − z|2

|ξ − z|2
. 1.

The inverse inequality is obtained by symmetry.
(4) This property is easily derived from the previous items:

| 〈∂ρ(ζ), ζ − ξ〉 | ≤ | 〈∂ρ(ζ), ζ − w〉 |+ | 〈∂ρ(ζ)− ∂ρ(w), w − ξ〉 |+ | 〈∂ρ(w), w − ξ〉 |
. v(ζ, w) + v(w, ξ) + |ζ − w||w − ξ|
. v(ξ, w) + v(w, ζ) + |ζ − w|2 + |w − ξ|2 . v(ξ, w) + v(w, ζ).

(5) By item (2) of this Lemma, |ξ∗ − z| . v(ξ∗, z)1/2, and

|ξ − z| ≤ |ξ − ξ∗|+ |ξ∗ − z| . ρ(ξ) + v(ξ∗, z)1/2 .
√
ρ(ξ) + v(ξ∗, z) . v(ξ, z)1/2.

Note that the inverse inequality does not hold. �

Lemma 2.3. There exists a constant A = A(ρ) such that from the conditions v(ξ, z) > Ah and v(z, w) < h it
follows uniformly in h > 0 that v(ξ, z) � v(ξ, w) for ξ ∈ Ω2 \ Ω, z, w ∈ ∂Ω.

Proof. Note that since v(ξ, z) defines a quasimetric on ∂Ω, there exists a constant A0 such that the statement
of the lemma holds for ξ ∈ ∂Ω. Now let ξ ∈ Cd \Ω. Then by Lemma 2.2, there exists a constant c > 1 such that

c−1(ρ(ξ) + v(ξ∗, z)) ≤ v(ξ, z) ≤ c(ρ(ξ) + v(ξ∗, z)).

Let v(ξ, z) > 2cA0. Then either ρ(ξ) > A0h or v(ξ∗, z) > A0h. Assume that the first inequality ρ(ξ) > A0h
holds. Then

v(ξ, w) . ρ(ξ) + v(ξ∗, w) . ρ(ξ) + v(ξ∗, z) + v(z, w)

. ρ(ξ) + h+ v(ξ∗, z) . ρ(ξ) + v(ξ∗, z) . v(ξ, z).

The inverse inequality is obtained in a similar way.
Now let v(ξ∗, z) > A0h; then v(ξ∗, z) � v(ξ∗, w), and, hence,

v(ξ, w) � ρ(ξ) + v(ξ∗, w) � ρ(ξ) + v(ξ∗, z) � v(ξ, z).

The lemma is proved. �

The main estimate of the kernel, which is used later, is stated as a corollary of Lemmas 2.2 and 2.3.
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Corollary 2.4. Let z, w ∈ ∂Ω and ξ ∈ Ω2 \ Ω, with v(ξ, w) > Ah and v(z, w) < h. Then the estimate

|K(ξ, z)−K(ξ, w)| . v(z, w)1/2

v(ξ, z)d+1/2
(2.5)

holds uniformly in h > 0.

Proof. Note that K(ξ, z) = 1
〈∂ρ(ξ), ξ−z〉d . We have the relations

| 〈∂ρ(ξ), ξ − z〉 − 〈∂ρ(ξ), ξ − w〉 | = | 〈∂ρ(ξ), w − z〉 | ≤ | 〈∂ρ(ξ)− ∂ρ(z), z − w〉 |
+ | 〈∂ρ(z), z − w〉 | . |ξ − z||z − w|+ v(z, w)

. v(ξ, z)1/2v(z, w)1/2 + v(z, w)1/2v(ξ, w)1/2 . v(ξ, w)1/2v(z, w)1/2.

Therefore, taking into account that v(ξ, z) � v(ξ, w) by Lemma 2.3, we obtain the estimate

|K(ξ, z)−K(ξ, w)| . v(ξ, w)1/2v(z, w)1/2v(ξ, w)d−1

v(ξ, z)dv(ξ, w)d
.

v(z, w)1/2

v(ξ, z)d+1/2
,

which proves the corollary. �

2.3. Integral estimates of the kernel. Integral estimates of the kernel of the Cauchy–Leray–Fantappiè op-
erator are based on the following lemma defining a system of special neighborhoods on ∂Ω.

Lemma 2.5. Let ξ ∈ Cd \ Ω and let δ > 0. Define

V (ξ, δ) = {z ∈ ∂Ω : v(ξ, z) < δ}, (2.6)

then σV (ξ, δ) . δd.

Proof. Let, as before, ξ∗ be the closest point of the boundary ∂Ω to the point ξ. Then, by Lemma 2.1, v(ξ, z) .
ρ(ξ) + v(ξ∗, z), and hence, it is sufficient to consider the case ξ ∈ ∂Ω. But in this case, the result is well-known
since the neighborhoods V (ξ, δ), ξ ∈ ∂Ω, are Hörmander ellipsoids. �

Remark 2.6. Let 0 ≤ r ≤ 1, ξ ∈ Cd \ Ω, δ > 0, and let

V (ξ; r, δ) = {z ∈ ∂Ωr : v(ξ, z) < δ}. (2.7)

Then it follows from the smoothness of the function ρ that σrV (ξ; r, δ) . δd.

Lemma 2.7. Assume that α > 0 and 0 < r < δ < 1. Then

Iα(ξ, δ) =
∫

z∈∂Ω,
v(ξ,z)>δ

dσ(z)
v(ξ, z)d+α

. δ−α, ξ ∈ Ω2 \ Ω,

and

Jα(z, δ) =
∫

ξ∈∂Ωr,
v(ξ,z)>δ

dσr(ξ)
v(ξ, z)d+α

. δ−α, z ∈ Ω.

Proof. We prove the first inequality. For this purpose, consider the sets

Vk =
{
z ∈ ∂Ω : 2kδ ≤ v(ξ, z) ≤ 2k+1δ

}
;

then {z ∈ ∂Ω : v(ξ, z) > δ} =
∞⋃

k=1

Vk and σ(Vk) . 2kdδd. Hence,

Iα(z, δ) .
∞∑

k=1

2kdδd

(2kδ)d+α
.

∞∑
k=1

2−kαδ−α . δ−α.

The second inequality is proved in a similar way by considering the sets Wk = {ξ ∈ ∂Ωr : 2kδ ≤ v(ξ, z) ≤ 2k+1δ};
we again take σr(Wk) . 2kdδd. �
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Lemma 2.8. If 0 < r < δ < 1, then ∫
z∈∂Ω,

v(ξ,z)<δ

dσ(z)
v(ξ, z)d

. 1 + log
δ

r
, ρ(ξ) = r,

and ∫
ξ∈∂Ωr,

v(ξ,z)<δ

dσr(ξ)
v(ξ, z)d

. 1 + log
δ

r
, z ∈ Ω.

Proof. The proof of these inequalities is similar to the proof of the previous lemma; however, it is necessary
to control the number of sets into which we partition the integration domain. Now let Vk = {z ∈ ∂Ω : 2k ≤
v(ξ, z) ≤ 2k+1}, k ∈ Z, and let ρ(ξ) = r < δ. Note that by Lemma 2.1,

c−1v(ξ, z) ≤ ρ(ξ) + v(ξ∗, z) ≤ cv(ξ, z);

hence,
c−12k − δ ≤ c−1v(ξ, z)− δ ≤ v(ξ∗, z) ≤ cv(ξ, z)− r ≤ c2k+1 − r, z ∈ Vk.

Therefore, since 0 ≤ v(ξ∗, z) ≤ δ, we conclude that Vk = ∅ if 2k+1 < c−1r or 2k > c · δ, i.e., for k < k1(r) =
log2 c

−1r − 1 and for k > k2(δ) = log2 cδ. Thus,

{z ∈ ∂Ω : v(ξ, z) < δ} =
⋃

k1≤k≤k2

Vk

and ∫
ξ∈∂Ωr,

v(ξ,z)<δ

dσr(ξ)
v(ξ, z)d

≤
∑

k1≤k≤k2

∫
Vk

dσr(ξ)
v(ξ, z)d

.
∑

k1≤k≤k2

2kd

2(k+1)d
. k2(δ)− k1(δ) . 1 + log

δ

r
.

The second inequality is proved in a similar way. �

2.4. Approximation of the Cauchy–Leray–Fantappiè kernel. Corollary 2.4 provides an opportunity to
local approximations of the Cauchy–Leray–Fantappiè kernel (see Sec. 5.1). It is often required to construct a
global approximation, which is possible due to Lemma 2.10 based on the V. K. Dzyadyk theorem on estimation
of the Cauchy kernel (Theorem 1 in Sec. 1 of Chap. 7 of the monograph [4]). The approximation here is chosen
similarly to that of [9].

Lemma 2.9. Assume that a domain Ω is strictly convex and 0 ∈ Ω. Then for an arbitrary point ξ ∈ ∂Ω, the
values of the expression λ = 〈∂ρ(ξ), z〉

〈∂ρ(ξ), ξ〉 for z ∈ Ω belong to the domain L(t) bounded by the bigger arc of the circle
|λ| = R = R(Ω) and the chord {λ ∈ C : λ = 1 + eits, s ∈ R, |λ| ≤ R}, where t = π

2 − arg(〈∂ρ(ξ), ξ〉).

Proof. Let ξ ∈ ∂Ω and define

Λ(ξ) =
{
λ ∈ C : λ =

〈∂ρ(ξ), z〉
〈∂ρ(ξ), ξ〉

, z ∈ Ω
}
.

Note that since the domain Ω is convex and 0 ∈ Ω, the inequalities

| 〈∂ρ(ξ), ξ〉 | & |∂ρ(ξ)||ξ| & 1 (2.8)

and
Re 〈∂ρ(ξ), z − ξ〉 ≤ 0, z ∈ Ω, ξ ∈ ∂Ω. (2.9)

hold. The domain Λ(ξ) is convex and contains 0; hence, the equality

〈∂ρ(ξ), z〉
〈∂ρ(ξ), ξ〉

= 1 +
〈∂ρ(ξ), z − ξ〉
〈∂ρ(ξ), ξ〉

with estimates (2.8) and (2.9) completes the proof of the lemma. �
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Lemma 2.10. Assume that α > 0. Then for any n = 1, 2, . . . there exists a polynomial Kglob
n (ξ, z) in z of degree

not exceeding n such that for z ∈ ∂Ω and ξ ∈ Cd \ Ω, the estimates

|K(ξ, z)−Kglob
n (ξ, z)| . 1

nα

1
v(ξ, z)d+α

, v(ξ, z) ≥ 1
n

; (2.10)

and
|Kglob

n (ξ, z)| . nd, v(ξ, z) ≤ 1
n
, (2.11)

hold.

Proof. Note that due to [4] and [9], for any n ∈ N there exists a polynomial Tn(t, λ) in λ of degreee n such that∣∣∣∣ 1
1− λ

− Tn(t, λ)
∣∣∣∣ . 1

nα

1
|1− λ|1+α

for λ ∈ L(t) \
{
λ : |1− λ| < 1

n

}
such that coefficients of the polynomial Tn(t, λ) continuously depend on the

parameter t. Note also that by the maximum principle,

Tn(t, λ) . n−1, λ ∈ L(t)
⋂{

λ : |1− λ| < 1
n

}
.

Setting

Kglob
nd (ξ, z) =

1

〈∂ρ(ξ), ξ〉d
T d

n

(
t(ξ),

〈∂ρ(ξ), z〉
〈∂ρ(ξ), ξ〉

)
,

it is easily seen that the polynomials Kglob
nd (ξ, ·) satisfy relations (2.10)–(2.11). Adding to the sequence of the

polynomials the relation Kglob
n = Kglob

d[n/d], we obtain the required approximation. �

3. Local approximations and the spaces Bs
pq(∂Ω)

The definition of the Besov space given in Sec. 1 appears to be inconvenient in application to approximation
problems. For this reason, the definition of modulus of continuity in terms of local polynomial approximations
is often used. Note that the results of this section hold in the general case for an arbitrary domain with C [s]+1-
smooth boundary.

Let K ⊆ ∂Ω and f ∈ L1(K). Define the best approximation of the function f by polynomials of degree m in
the metric of Lp by the formula

Em(f,K)p = inf
T∈Pm

∫
K

|f − T |p dσ

1/p

, (3.1)

where Pm is the set of all polynomials of degree m in each variable, m ≥ 0.

Remark 3.1. Note that the lower bound in definition (3.1) can be searched among polynomials T such that
‖T‖Lp(K) ≤ 2‖f‖Lp(K). In addition, by the equivalence of norms in a finite-dimensional space, the relation
‖T‖C∞(K) ≤ c(m)

σ(K)‖T‖Lp(K), T ∈ Pm, holds.

Consider the following special atlas of the boundary of the domain Ω:

∂Ω =
N⋃

k=1

Q̃k, where Q̃k = ϕk(Q), and Q = [0, 1]2d−1 is the unit cube in R2d−1, (3.2)

and assume that a partition of unity
N∑

k=1

χk = 1 is chosen such that

Q̃k,ε = ϕk((1− ε)Q) ⊂ supp χk ⊂ Q̃k (3.3)

for some 0 < ε < 1.
Denote by Qh = Qh(x) = {x+ [0, h]2d−1} the cube in R2d−1 with side length h and denote by Q̃h = ϕk(Qh)

its image under the action of a diffeomorphism ϕk. The notation Q̃h/2 ⊂ F ⊂ Q̃h formally means that there
exist two points x, y ∈ R2d−1 such that ϕk(Qh/2(x)) ⊂ F ⊂ ϕk(Qh(y)) for one of the functions ϕk. A similar
notation is used when we use projections on tangent hyperplanes instead of diffeomorphisms (see Remark 3.5).
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Definition 3.2. Let f ∈ Lp(∂Ω); define a polynomial modulus of smoothness of order m ≥ 1 by the formula

ωm(f, h)p = sup

 N∑
j=1

Em−1(f, Fj)p
p

1/p

,

where the upper bound is taken over all partitions {Fj} of the boundary of the domain Ω such that Q̃h/2 ⊂ Fj ⊂
Q̃h.

Note that for cubes, the equivalence of the definition of modulus of continuity in terms of approximations and
differences (see Definitions (1.2)–(1.6)) is proved in [3], and we rely on the following lemma.

Lemma 3.3 (Brudny̆ı and Irodova [3]). Assume that m ≥ 1 and 0 < p ≤ ∞. Then the equivalence

ωm(f, t)p � sup

 N∑
j=1

Em−1(f,Q
j
t )

p
p

1/p

(3.4)

holds uniformly in f ∈ Lp([0, 1]l) and t ∈ [0, 1] where the upper bound is taken over all the sets {Qj
t} of disjoint

cubes with side length t.

Theorem 3.4. Assume that 1 ≤ p, q ≤ ∞ and s > 0, let a domain Ω have a smooth boundary, and let
f ∈ Lp(∂Ω). Then f ∈ Bs

pq(∂Ω) if and only if

c̃pq(f) =

 1∫
0

(
ωm(f, t)p

ts

)q
dt

t

1/q

<∞

for q <∞ and

c̃pq(f) = sup
t>0

ωm(f, t)p

ts
<∞

for q = ∞, where m ∈ N and m > s. In addition, ‖f‖Bs
pq
� ‖f‖p + c̃pq(f).

Proof. Consider the atlas and partition of unity defined in relations (3.2) and (3.3). The idea of the proof is to
assign to polynomials which approximate the function f polynomials wich approximate the functions (fχk)◦ϕk,
and vice versa. There is the equivalence of the definitions on the cube Q, and, by Lemma 3.3, for m ≥ 0 we have
the equivalence

ωm+1((fχk) ◦ ϕk, t)p � sup

∑
j

Em((fχk) ◦ ϕk, Q
j
t )

p
p

1/p

.

By means of this equivalence, we prove the following two estimates, which imply the statement of the theorem:

ωm+1((fχk) ◦ ϕk, t)p . ωm+1(f, t)p + ‖f‖Lp(∂Ω)t
m+2 (3.5)

and

ωm+1(f, t)p .
N∑

k=1

ωm+1((fχk) ◦ ϕk, t)p + ‖f‖Lp(∂Ω)t
m+2. (3.6)

We prove inequality (3.5). For this purpose, fix a value k, consider a family of disjoint cubes
{
Qj

t

}
with side

length t that are contained in the unit cube Q1, and assign to each cube its image in ∂Ω under the action of the
diffeomorphism ϕk. Let Q̃j

t = ϕk(Qj
t ).

Consider a polynomial P̃m of coordinate degree m defined on Q̃j
t such that ‖P̃m‖Lp(Q̃j

t)
≤ 2‖f‖Lp(Q̃j

t)
(see

Remark 3.1). Then the function (P̃mχk) ◦ ϕk is smooth on Qj
t , and by the Taylor formula, there exists a

polynomial Pm of degree m defined on Qj
t such that for y ∈ Qj

t , the estimates

|(P̃mχk) ◦ ϕk(y)− Pm(y)| . ‖P̃mχk ◦ ϕk‖C∞(Qj
t)
tm+1 .

‖f‖Lp(Q̃j
t)

|Q̃j
t |

tm+1

hold.
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Therefore,

‖(fχk) ◦ ϕk − Pm‖Lp(Qj
t)

. ‖(f − P̃m)χk ◦ ϕk‖Lp(Qj
t)

+ ‖f‖Lp(Q̃j
t)
tm+1

≤ ‖f − P̃m‖Lp(Q̃j
t)

+ ‖f‖Lp(Q̃j
t)
tm+1.

Due to the arbitrariness of the choice of the polynomial P̃m, we have the inequalities

Em((fχk) ◦ ϕk, Q
j
t )p . Em(f, Q̃j

t )p + ‖f‖Lp(Q̃j
t)
tm+1

and( ∑
j

Em((fχk) ◦ ϕk, Q
j
t )

p
p

)1/p

.

( ∑
j

Em(f, Q̃j
t )

p
p

)1/p

+ ‖f‖Lp(Q̃k)t
m+1≤ωm+1(f, t)p+‖f‖Lp(Q̃k)t

m+1.

Passing to the upper bound in the left-hand side of this inequality, we obtain the inequality

ωm+1((fχk) ◦ ϕk, t)p . ωm+1(f, t)p + ‖f‖Lp(Q̃k)t
m+1.

To prove inequality (3.6), we use the fact that the supports of functions from the partition of unity cover ∂Ω,

and we may assume that ∂Ω =
N⋃

k=1

Q̃k,ε. Assume that the value t > 0 is sufficiently small to choose a covering

of the cube (1− ε)Q1 by disjoint cubes with side length t, and let

(1− ε)Q ⊂
⋃
Qj

t ⊂ Q.

Consider a polynomial Pm of coordinate degree m defined on Qj
t . Note that ‖1/χk‖C∞(Q̃k,ε) < ∞ and the

function (Pm/χk) ◦ψk is smooth on Q̃k,ε. If parameter t > 0 is sufficiently small, then, similarly to the previous
case, there exists a polynomial P̃m of degree m such that

‖(Pm/χk) ◦ ψk − P̃m‖Lp(Q̃j
t)

. ‖f‖Lp(Q̃j
t)
tm+1;

hence,

‖f − P̃m‖Lp(Q̃j
t)

. ‖f − (Pm/χk) ◦ ψk‖Lp(Q̃j
t)

+ ‖f‖Lp(Q̃j
t)
tm+1

. ‖(fχk) ◦ ϕk − Pm‖Lp(Q̃j
t)

+ ‖f‖Lp(Q̃j
t)
tm+1.

Therefore, ∑
j

Em(f, Q̃j
t )

p
p

1/p

.

∑
j

Em((fχk) ◦ ϕk, Q
j
t )

p
p

1/p

+ ‖f‖Lp(Q̃k)t
m+1

. ωm+1((fχk) ◦ ϕk, t)p + ‖f‖Lp(Q̃k)t
m+1.

It remains to improve the left-hand side of this inequality before we obtain the required estimate. Let ∂Ω =
N⋃

j=1

Fj

with Q̃j,t/2 ⊂ Fj ⊂ Q̃j,t. Note that the cube Q̃j,t assigned to the set Fj can intersect only a finite number of
cubes assigned to the remaining sets Fl; in particular, #{k : Q̃j,t ∩ Q̃k,t 6= ∅} ≤ 4d. Hence,

ωm+1(f, t)p = sup

∑
j

Em(f, Fj)p
p

1/p

. sup

∑
j

Em(f, Q̃j,t)p
p

1/p

.
N∑

k=1

ωm+1((fχk) ◦ ϕk, t)p + ‖f‖Lp(∂Ω)t
m+1.

Therefore, inequalities (3.5) and (3.6) are proved, and the proof of the theorem is completed. �
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Remark 3.5. Note that in the definition of the value ωm(f, h)p we can use partitions into sets Fj such that
Qh/2(ζ1) ⊂ prξFj ⊂ Qh(ζ2) for some point ξ ∈ ∂Ω and points ζ1, ζ2 ∈ TRξ , where prξ is the projection on
the tangent plane at a point ξ ∈ Fj . This is possible due to the smoothness of the boundary ∂Ω and since
‖prξ1

◦ pr−1
ξ2
‖C∞ < c(Ω) < ∞ for any points ξ1, ξ2 ∈ ∂Ω. In the following, we use this definition of the value

c̃pq(f).

4. Construction of almost best local approximation

The result of the previous section allows us to pass from the concepts of the operator of taking differences to
best local approximations. In this section, we consider an interpolating construction whicht provides an almost
best approximation on a set K ⊂ ∂Ω such that Qh ⊂ prξ(K) ⊂ Q2h for some point ξ ∈ ∂Ω and h > 0. Let P0

be a polynomial of degree m of one real variable such that

1∫
0

P0(x) dx = 1 and

1∫
0

xkP0(x) dx = 0, k = 1, . . . ,m, (4.1)

and let P1(z) be a polynomial of degree m of one complex variable such that∫
Q

P1(z) dµ2(z) = 1 and
∫
Q

zkP1(z) dµ2(z) = 0, k = 1, . . . ,m, (4.2)

where Q = {z ∈ C : z = x+ iy, x, y ∈ [0, 1]} is the unit cube in C and µ2 is the Lebesgue measure in C.
Let z ∈ Cd; introduce the following notation: z = (z′, w), where z′ = (z1, . . . , zd−1) ∈ Cd−1, w ∈ C.
Fix a point ξ ∈ ∂Ω. By an analytically-linear change of coordinates we can take ξ = 0 and

TRξ = {z ∈ Cd : Im zd = 0} = {z ∈ Cd : zd ∈ R}.

Then in this notation,

prξ(z) = (z′,Rew) and πξ(z) = (z′, 0),

where, as before, prξ and πξ are the projectors on the tangent and complex tangent hyperplanes, respectively.
Let u ∈ TRξ and h, h1 > 0. Consider a parallelepiped in the tangent hyperplane:

J̃u = u+ {z ∈ Cd : z = (z′, w), z′ ∈ [0, h]2d−2 ⊂ Cd−1, w = zd−1, Rew ∈ [0, h1], Imw = 0}.

Since the domain is regular, the projection operator on the tangent hyperplane is locally invertible in a
neighborhood of the point ξ. Assuming that the parallelepiped J̃u is sufficiently small and close to the point ξ,
denote

Ju = pr−1
ξ (J̃u), (u′, w0) = pr−1

ξ (u), (z′, w1(z′)) = pr−1
ξ (z′, ud + h1),

where (z′, 0) ∈ πξ(J), and, obviously, Rew0 = ud and Rew1(z′) = ud + h1.
In addition, consider the line segment connecting the points u and (z′, ud+h1) and the curve γ̃z′ connecting the

points (u′, w0) and (z′, w1(z′)), which is obtained as the image of this line segment under the inverse projection
pr−1

ξ on the boundary of the domain Ω, i.e.,

γ̃z′ = pr−1
ξ

{
(1− t)u+ t(z′, ud + h1)

}
.

Finally, assign to the curve γ̃z′ the curve γz′ in the complex plane which is defined by the last coordinate of the
curve γ̃z′ . Introduce the notation J ′u = πξ(Ju).

Define the function

PJu
(z) = PJu

(z′, w) =
1

h2(d−1)

1
w1(z′)− w0

Pd

(
z′ − u′

h

)
P0

(
w − w0

w1(z′)− w0

)
,

where Pd(z′) = P1(z1) · . . . · P1(zd−1).
This is not a polynomial and even not an analytic function but this function reconstructs the value of any

polynomial whose coordinate degree does not exceed m at a point z0 = (u′, w0) ∈ ∂Ω by the following operation:
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∫
J′u

dµ2d−2(z′)
∫

γz′

T (z′, w)PJu
(z′, w) dw

=
∫
J′u

dµ2d−2(z′)
h2d−2

Pd

(
z′ − u′

h

) ∫
γz′

T (z′, w)P0

(
w − w0

w1(z′)− w0

)
dw

w1(z′)− w0

=
∫
J′u

dµ2d−2(z′)
h2(d−1)

Pd

(
z′ − u′

h

) 1∫
0

T (z′ + z′0, w0 + v(w1(z′)− w0))P0(v) dv

=
∫
J′u

Pd

(
z′ − u′

h

)
T (z′, w0)

dµ2d−2(z′)
h2(d−1)

= T (u′, w0) = T (z0).

Passing from the curve γz′ connecting the points w0 and w1(z′) to the integral over the segment line [0, 1] is
possible by the change of variables v = w−w0

w1(z′)−w0
and the fact that the integrand is analytic. Note that the

integration is performed over the half of the parallelepiped projection J̃u, which is swept by the curves γ̃z′ , with
|dw| dµ2d−2(z′) � dσ(z′, w).

We finally describe the operator of local almost best approximation. Let K be a set such that Qh(ζ1) ⊂
prξ(K) ⊂ Q2h(ζ2) for some points ζ1, ζ2 ∈ Tξ and some function f ∈ L1(K). Consider the partition of the cube
Qh = Qd−1

h × [0, h] into shifts of parallelepipeds of the form

Q(m) =
{

(z′, w) : xj , yj ∈ [0, h/(
√
m+ 1 + 1)2 + 1], xd ∈ [0, h/m]

}
⊂ Tξ

and decompose the cube Qh(ζ) in a similar way. Enumerate elements of partition arbitrarily, e.g., diagonally,

then
(m+1)d⋃

j=1

Q̃j(zj) ⊂ K, where Q̃j(zj) are the inverse projections of the corresponding elements of the partition.

Let Q′
j = πξ(Q̃j(zj)); denote by PK(f) a polynomial such that

PK(f)(zj) =
∫
Q′

j

dµ2d−2(z′)
∫

γz′

PQj(zj)(z
′, w)f(z′, w) dw, j = 1, . . . , (m+ 1)d.

Then PK is the projection on the space of polynomials whose coordinate degrees do not exceed m, and
PK(T ) = T for any polynomial whose degree by every coordinate does not exceed m. In addition

max
dist(z, K)≤λh

|PK(f)(z)| ≤ c

σ(K)

∫
K

|f | dσ, (4.3)

since max
z∈Qλh

|PQh
(z)| < c(λ,Ω)

h2d−1 ; the constant c depends only on parameter λ > 0 and m ∈ N∪{0}, and the domain

Ω, and does not depend on K and f . This implies the estimate

‖f − PKf‖Lp(K) ≤ (c+ 1)Em(f, K)p;

hence, PKf can be used instead of the best approximation polynomial.

Remark 4.1. Assume that f ∈ Hp(∂Ω) and that ∂Ω =
N⋃

j=1

Fj , where the sets Fj are such that Qh ⊂ prξ(Fj) ⊂

Q2h. Define a piecewise-polynomial function Th that coincides on Fj with the polynomial PFj
; then

ωm(f, h)p � sup ‖f − Th‖Lp(∂Ω),

where the upper bound is taken over all the partitions of this form.

Remark 4.2. Note a useful inequality which connects local polynomial approximations for different parameters
p:

Em(f,K)1 ≤ σ(K)1−
1
pEm(f,K)p. (4.4)
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5. Two methods of pseudoanalytic continuation

5.1. Continuation by local approximations. Let f ∈ H1(Ω), let m be an integer, and let z ∈ Cd \ Ω. Set

E(f, z) = Em(f, J(z))1, (5.1)

where
J(z) =

{
ξ ∈ ∂Ω : πz∗(ξ) ∈ Qρ(z)/10(z∗)

}
. (5.2)

Theorem 5.1. Assume that
E(f, z)ρ(z)−2d ∈ Lp(Cd \ Ω) (5.3)

for some p ≥ 1. Then f ∈ Lp(∂Ω) and there exists a pseudoanalytic continuation f of the function f such that

|∂f(z)| . E(f, z)ρ(z)−2d. (5.4)

Proof. To begin with, we show that f ∈ Lp(∂Ω), assuming that p > 1. Let J ⊂ ∂Ω be a set such that
Qh ⊂ prξJ ⊂ Q2h for some point ξ ∈ ∂Ω and some value h > 0. We assign to this set a domain in Cd \ Ω:

L(J) =
{
z ∈ Cd \ Ω : dist(z, J) < h/10, dist(z, ∂Ω) > h/100

}
.

It is obvious that µ2d(L(J)) � h2d and E(f, z) ≥ Em(f, J)1, z ∈ L(J).
Consider a sequence of the partitions of the boundary of the domain Ω:

∂Ω =
2dn⋃
k=1

Jn
k , diam (Jn

k ) � 2−n, σJn
k � 2−(2d−1)n,

where each successive partition is obtained from the previous one by dividing its elements into 2d parts.
Define a function Tn on ∂Ω by setting Tn(z) = PJn

k
f(z) for z ∈ Jn

k , where PJn
k

is the polynomial projection

defined in the previous section. Then f = Tn0 +
∞∑

n=n0

(Tn+1 − Tn) almost everywhere on ∂Ω, and it remains to

verify that
∞∑

n=n0

‖Tn+1 − Tn‖Lp(∂Ω) <∞.

Note that for z ∈ Jn+1
k , the relations

|Tn+1(z)− Tn(z)| = |PJn+1
k

f(z)− PJn
k
f(z)| . 1

σ(Jn+1
k )

∫
Jn+1

k

|f − PJn
k
f | dσ

. 2−(2d−1)nEm(f, Jn
k )1 . 2−(2d−1)n inf

{
E(f, z) : z ∈ L(Jn

k )
}
.

hold.
Since ρ(z) � 2−dn, ∫

Jn+1
k

|Tn+1 − Tn|p dσ . 2−n(p−1)

∫
Jn

k

E(f, z)pρ(z)−2dp dµ2d(z).

Consider the domain Ln = {z ∈ Cd \ Ω : 2−n−10 < dist(z, Ω) < 2−n}, n ≥ n0; then L(Jk
n) ⊂ Ln,

‖Tn+1 − Tn‖Lp(∂Ω) . 2−n(1−1/p)

( ∫
Ln

E(f, z)pρ(z)−2dp dµ2d(z)

)1/p

,

and
∞∑

n=n0

‖Tn+1 − Tn‖Lp(∂Ω) ≤

( ∫
Cd\Ω

E(f, z)pρ(z)−2dp dµ2d(z)

)1/p

<∞.

We proceed to construction of a continuation of the function f . Consider the Witney partition in the domain
Ω1 \ Ω with

∑
χk = 1 and |grad χk(z)| . ρ(z)−1. Let zk ∈ supp χk and Jk = Qρ(zk)/100(z∗k). We define

f(z) =
∞∑

k=1

χk(z)PJk
f(z), z ∈ Cd \ Ω.

14



Note that for an arbitrary polynomial T (z),

f(z) = T (z) +
∞∑

k=1

χk(z)(PJk
f(z)− T (z)), z ∈ Cd \ Ω,

and

∂f(z) =
∞∑

k=1

(PJk
f(z)− T (z))∂χk(z), z ∈ Cd \ Ω.

Now let T = PJ(z)f . Note that Jk ⊂ J(z) if χk(z) 6= 0; hence, by estimate (4.3), we have the relation

|PJk
f(z)− T (z)| = |PJk

(f − T )(z)| . σ(J(z))−1E(f, z) . ρ(z)−(2d−1)E(f, z).

In addition supp f ⊂ Ω1 and
|∂f(z)| . E(f, z)ρ(z)−2d ∈ Lp(Cd \ Ω).

The theorem is proved. �

In the proof of this theorem, polynomials were used for construction of a continuation of the function f .
Conversely, let a pseudoanalytic continuation of the function f on the space Cd be given and let J ⊂ {ξ ∈ ∂Ω :
v(ξ, z0) < h/A} for some point z0 ∈ ∂Ω, where the constant A is chosen according to Lemma 2.3. Consider the
polynomial of degree m:

PJ(z) =
∫

v(ξ,z0)>2h

∂f(ξ) ∧ ω(ξ)K loc
m (ξ, z, z0),

where the form ω(ξ) is defined in (2.3) and the kernel K loc
m is defined in the following way:

K(ξ, z) =
1

〈∂ρ(ξ), ξ − z〉d
=

1
(〈∂ρ(ξ), ξ − z0〉+ 〈∂ρ(ξ), z0 − z〉)d

=
1

〈∂ρ(ξ), ξ − z0〉d

(
1 +

〈∂ρ(ξ), z0 − z〉
〈∂ρ(ξ), ξ − z0〉

)−d

=
1

〈∂ρ(ξ), ξ − z0〉d

(
1 +

m∑
k=1

〈∂ρ(ξ), z0 − z〉k

〈∂ρ(ξ), ξ − z0〉k

+O

(
| 〈∂ρ(ξ), z0 − z〉 |
| 〈∂ρ(ξ), ξ − z0〉 |

)m+1)
= K loc

m (ξ, z, z0) +O

(
| 〈∂ρ(ξ), z0 − z〉 |d+1

| 〈∂ρ(ξ), ξ − z0〉 |m+d+1

)
. (5.5)

Note that, similarly to (2.5), for |v(ξ, z0)| > Ah and |v(z, z0)| < h, we have the inequality

|K(ξ, z)−K loc
m (ξ, z, z0)| .

v(z, z0)
m+1

2

v(ξ, z)d+ m+1
2

. (5.6)

The polynomial PJ can be used instead of the polynomial of best approximation. In this case, estimate (5.6)
implies that

|f(z)− PJ(z)| .
∫

v(ξ,z0)<2h

|∂f(z)| dµ2d(z)
| 〈∂ρ(ξ), ξ − z〉 |d

+
∫

v(ξ,z0)>2h

|∂f(z)| h
m+1

2

| 〈∂ρ(ξ), ξ − z〉 |d+ m+1
2

dµ2d(z) (5.7)

for z ∈ J .

5.2. Continuation by global approximations.
Let a function f ∈ H1(Ω) be approximated in L1(∂Ω) by a sequence of polynomials P1(z), P2(z), . . . of degree

1, 2, . . ., correspondingly. We set

λ(z) = ρ(z)−1|P2n+1(z)− P2n(z)|, 2−n < ρ(z) < 2−n+1.

Theorem 5.2. Assume that λ ∈ Lp(Cd \Ω) for some p ≥ 1. Then f ∈ Lp(∂Ω) and there exists a pseudoanalytic
continuation f of the function f such that

|∂f(z)| . λ(z), z ∈ Cd \ Ω. (5.8)
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Proof. Let a function χ ∈ C∞(0,∞) be such that χ(t) = 1 for t ≤ 1 and χ(t) = 0 for t ≥ 2. We define the
continuation function f by the formula

f(z) = P2n(z) + χ(2nρ(z))(P2n+1(z)− P2n(z)), 2−n < ρ(z) < 2−n+1.

It is clear that the function f is continuously differentiable in Cd \ Ω and that |∂f(z)| . λ(z). We introduce
a function FN (z) such that FN (z) = f(z) for ρ(z) > 2−N and FN (z) = P2N+1(z) for ρ(z) < 2−N . Then the
function FN is infinitely differentiable everywhere, analytic in the domain Ω2−N , and |FN (z)| . λ(z) outside this
domain. Similarly to the previous theorem, we obtain the equality

P2n+1(z) = FN (z) =
1

(2πi)d

∫
Cd\Ω

∂FN (ξ) ∧ (∂ρ(ξ) ∧ (∂∂ρ(ξ))d−1

〈∂ρ(ξ), ξ − z〉d
, z ∈ Ω.

We can pass to the limit in this formula by the dominated convergence theorem; hence, the continuation is
constructed. �

In applications (see Sec. 7), Pn are polynomials of best approximation. Conversely, if an approximation with
estimate (5.8) is given, then polynomials that give almost best approximation are obtained by approximation of
the kernel of the Cauchy–Leray–Fantappiè formula, which is defined in Lemma 2.10.

6. Pseudoanalytic continuation of functions from the Besov classes

Let f be a pseudoanalytic continuation of a function f and let 1 ≤ p ≤ ∞. We consider the following
characteristic of the function f :

Sp(f , r) =

( ∫
∂Ωr

|∂f(z)|p dσr(z)

)1/p

, r > 0. (6.1)

This characteristic turns out to be directly connected with the modulus of smoothness of the function f .

Theorem 6.1. Assume that 1 ≤ p, q ≤ ∞, s > 0m and f ∈ H1(Ω). Then f ∈ As
pq(Ω) if and only if there exists

a pseudoanalytic continuation f of the function f such that
1∫

0

(
Sp(f , r)
rs−1

)q
dr

r
<∞ (6.2)

for q <∞. For q = ∞,
Sp(f , r) . rs−1. (6.3)

Proof. Let f ∈ As
p(Ω), we use the construction from Theorem 5.1 and construct a continuation of the function

f such that
|∂f(z)| . E(f, J(z))1ρ(z)−2d.

Taking the estimate E(f, J(z))1 ≤ σ(J(z))1−
1
pEm(f, J(z))p, into account this inequality implies that

Sp(f , r)p . r−(2d−1)−p

∫
∂Ωr

Em(f, J(z))p
p dσr(z).

We estimate the integral in the right-hand side. The sets J(z) form a covering of the boundary ∂Ω, and we can
choose a finite collection of sets Jk = {ξ ∈ ∂Ω : prz∗k

(ξ) ∈ Qr(z∗k)} such that for every point z ∈ ∂Ωr, J(z) ⊂ Jk

for some k, and every point is covered by not more than 52d intervals. Therefore,∫
∂Ωr

Em(f, J(z))p
p dσr(z) . r2d−1

N∑
k=1

Em(f, Jk)p
p . r2d−1ωm(f, 10r)p

p,

hence, Sp(f , r) . ωm(f, 10r)p/r. Condition (6.2) follows from the definition of the Besov space.
Conversely, let a continuation of the function f be given for which estimate (6.2) holds. Without loss of

generality, we may assume that supp f ⊂ Ω2. Since an arbitrary cube Q̃t is contained in the Hörmander ellipsoid
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{ξ ∈ ∂Ω : v(ξ, z0) < Ct}, where z0 ∈ ∂Ω and C > 0 is some constant depending only on the domain Ω, inequality
(5.7) implies that the modulus of continuity is estimated in the following way:

ωm(f, cδ)p . ‖g‖Lp(∂Ω) + ‖h‖Lp(∂Ω)

for some constant c > 0, where

g(z) =
∫

v(ξ,z)<2δ

|∂f(ξ)|
| 〈∂ρ(ξ), ξ − z〉 |d

dµ2d(ξ), z ∈ ∂Ω,

and

h(z) =
∫

v(ξ,z)>δ

|∂f(ξ)|δm+1
2

| 〈∂ρ(ξ), ξ − z〉 |d+ m+1
2

dµ2d(ξ), z ∈ ∂Ω.

Consider the following functions:

gr(z) =
∫

ξ∈∂Ωr,
v(ξ,z)<2δ

|∂f(ξ)|
| 〈∂ρ(ξ), ξ − z〉 |d

dσr(ξ), z ∈ ∂Ω,

and

hr(z) =
∫

ξ∈∂Ωr,
v(ξ,z)>δ

|∂f(ξ)|δm+1
2

| 〈∂ρ(ξ), ξ − z〉 |d+ m+1
2

dσr(ξ), z ∈ ∂Ω.

Then

ωm(f, δ)p .

2δ∫
0

‖gr‖Lp(∂Ω) dr +

1∫
0

‖hr‖Lp(∂Ω) dr.

We show that

‖gr‖Lp(∂Ω) . Sp(f , r) log
2δ
r
, 0 < r < 2δ,

‖hr‖Lp(∂Ω) . Sp(f , r), 0 < r < δ,

and

‖hr‖Lp(∂Ω) . Sp(f , r)
δ

m+1
2

r
m+1

2

, r > δ.

It is sufficient to verify these estimates for p = 1 and p = ∞; for 1 < p <∞, they follow from the Riesz–Thorin
interpolation theorem. By estimates of Lemma 2.7,∫

∂Ω

|gr(z)| dσ(z) =
∫

∂Ωr

|∂f(ξ)| dσ(ξ)
∫

z∈∂Ω,
v(ξ,z)<2δ

dσ(z)
| 〈∂ρ(ξ), ξ − z〉 |d

.S1(f , r) log
δ

r
.

for p = 1. For p = ∞,

|gr(z)| . S∞(f , r)
∫

ξ∈∂Ωr,
v(ξ,z)<2δ

dσ(ξ)
| 〈∂ρ(ξ), ξ − z〉 |n

. S∞(f , r) log
δ

r
,

which proves the first estimate. Estimates for the function hr are obtained in a similar way by estimates of
Lemma 2.8.

Therefore, we have shown that

ωm(f, cδ)p .

2δ∫
0

Sp(f , r)
δε

rε
dr + δ

m+1
2

1∫
δ

Sp(f , r)
dr

r
m+1

2

(6.4)

17



for any ε > 0, and the condition  1∫
0

ωm(f, δ)q
pδ
−1−sqdδ

1/q

<∞

for 1 ≤ q <∞ follows from the Hardy inequality. In fact, we estimate the first summand in the right-hand side
of formula (6.4), set ε = s/2, and define

F1(δ) =

δ∫
0

Sp(f , r)
dr

rε
.

Then

1∫
0

(δεF1(δ))qδ−1−sqdδ .

1∫
0

r−1−sq+εq
(
Sp(f , r)r−εr

)q
dr

=

1∫
0

(
Sp(f , r)
rs−1

)q
dr

r
<∞.

The second summand in the right-hand side of formula (6.4) is estimated in a similar way assuming that
s < (m+ 1)/2 (note that we can choose the value of m as large as needed since condition (1.5) does not depend
on m > s). Next, we define

F2(δ) =

δ∫
0

Sp(f , r)
dr

r
m+1

2

,

then
1∫

0

(δ
m+1

2 F2(δ))qδ−1−sqdδ .

1∫
0

r−1−sq+ m+1
2 q

(
Sp(f , r)r−

m+1
2 r
)q

dr

=

1∫
0

(
Sp(f , r)
rs−1

)q
dr

r
<∞.

For q = ∞, the estimate ωm(f, δ)p . δs is also easily obtained from inequality (6.4) and the fact that
Sp(f , r) . rs−1. Therefore, the proof of the theorem is completed. �

7. Constructive characteristic of the Besov classes

Let Pn be a sequence of polynomials of best approximation. By Theorem 5.2, we can construct a pseudoanalytic
continuation f of the function f such that

|∂f(z)| . ρ(z)−1|P2n+1(z)− P2n(z)|, 2−n ≤ ρ(z) ≤ 2−n+1. (7.1)
Assume that 0 ∈ Ω. Any point z ∈ Cd can be represented in the form z = uv, where u = reiϕ ∈ C and

v ∈ C =
{
(v1, . . . , vd) ∈ Cd : v1 ∈ [0, 1], v2

1 + |v2|2 + · · ·+ |vd|2 = 1
}
.

We write in these coordinates the boundary of the domain Ωδ, 0 ≤ δ ≤ 1. Note that any vector v ∈ C
generates the complex plane Tv = {uv : u ∈ C} such that the intersection of the domain Ωδ with this plane
is a convex domain with the boundary Ωv,δ, and the boundary of the domain depends on parameters v and δ
continuously. Therefore,

∂Ωδ =
{
rδe

iϕv ∈ Cd, rδ = r(δ, ϕ, v)
}

= {r(δ, ϕ, v)eiϕv, ϕ ∈ [0, 2π], v ∈ C},

and parameters (ϕ, v) ∈ [0, 2π]×C define on ∂Ωδ smooth coordinates. Since rδ also depends on δ continuously,
the relation dσδ � |du| dµ2d−2(v2, . . . , vd) holds uniformly in δ ∈ [0, 1]. The last relation obviously holds in the
case of the sphere S2d−1 = {z ∈ Cd : |z| = 1}, but a strictly convex domain is diffeomorphic to the sphere by the
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mapping z → z
|z| ; hence, the statement holds in the general case. The uniformity in δ ∈ [0, 1] follows from the

smoothness of the function r(δ, ϕ, v).
Fix a vector v ∈ C. As before, it is associated with the collection of domains Ωv,δ = {uv ∈ Ωδ : u ∈ C}. We

identify the plane Tv with the space C and consider domains of the form

Ω̃v,δ = {u ∈ C : uv ∈ Ωv,δ}.

Consider a conformal mapping ψv of the domain C \ Ω̃v,0 on the complement of the disk {u ∈ C : |u| > 1}
normed by the condition ψ′v(∞) > 0. By virtue of the smoothness of the boundary, the mapping ψv is continued
to a conformal mapping of the closed domains and continuously depends on v ∈ C, which implies that |ψv(u)| �
1 + dist(u, Ω̃v,0) � 1 + ρ(uv).

Consider the function

Φv(u) =
P2n+1(uv)− P2n(uv)

ψv(u)2n+2 ,

which is analytic in C \ Ω̃v,0 and such that |u|Φv(u) → 0, u→∞; hence,

‖Φv‖Hp(C\Ω̃v,0)
� sup

0<δ<∞

( ∫
∂Ω̃v,δ

|Φv(u)|p|du|

)1/p

. c(Ωv,0)

( ∫
∂Ω̃v,0

|Φv(u)|p|du|

)1/p

.

The constant c(Ωv,0) > 0 is determined by the geometry of the domain Ωv,0 and depends on v continuously;
hence, c(Ωv,0) < c <∞.

Note, that |ψv(u)|2n+2 � (1 + 2−n)2
n+2 � 1 for u ∈ Ωv,2−n \ Ωv,2−n−1 and |ψv(u)| = 1 for u ∈ ∂Ωv,0, which

implies that

( ∫
∂Ω̃v,δ

|P2n+1(uv)− P2n(uv)|p|du|

)1/p

.

( ∫
∂Ω̃v,δ

|Φv(u)|p|du|

)1/p

.

( ∫
∂Ω̃v,0

|Φv(u)|p|du|

)1/p

=

( ∫
∂Ω̃v,0

|P2n+1(uv)− P2n(uv)|p|du|

)1/p

, 2−n ≤ δ < 2−n+1,

where all the estimates are uniform. This fact combined with the relation dσδ � |du| dµ2d−2 gives us an estimate
of the integrals over the boundaries of the domains ∂Ωδ:( ∫

∂Ωδ

|P2n+1(z)− P2n(z)|p dσδ(z)

)1/p

.

( ∫
∂Ω

|P2n+1(z)− P2n(z)|p dσ(z)

)1/p

, 2−n ≤ δ < 2−n+1.

Therefore, taking into account property (7.1) of the continuation function f , we obtain the estimate

Sp(f , δ) . 2nE2n(f)p, 2−n < δ ≤ 2−n+1. (7.2)

Theorem 7.1. Assume that 1 ≤ p, q ≤ ∞, s > 0, and f ∈ Hp(∂Ω). Then f ∈ As
pq(Ω) if and only if( ∞∑

n=1

1
n

(nsEn(f)p)q

)1/q

<∞ (7.3)

for q <∞; for q = ∞,
En(f)p . n−s, n = 1, . . . ,∞.

Proof. Note that En(f)p monotonically decreases with growth of n, hence, condition (7.3) is equivalent to the
condition ( ∞∑

n=1

2nsqE2n(f)q
p

)1/q

<∞.
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Assume that condition (7.3) holds. Then, using the construction from Theorem 5.2, we can construct a
pseudoanalytic continuation f of the function f such that

Sp(f , r) . 2nE2n(f)p, 2−n ≤ r ≤ 2−n+1,

and  1∫
0

(
Sp(f , r)
rs−1

)q
dr

r

1/q

.

( ∞∑
n=1

2nsE2n(f)q
p

)1/q

<∞, (7.4)

which implies that f ∈ As
pq(Ω) by Theorem 6.1.

Conversely, assume that f ∈ As
pq(Ω). Then there exists a pseudoanalytic continuation of the function f

satisfying estimate (6.2). We prove a more accurate estimate of the best approximations:

En(f)p .

1/n∫
0

Sp(f , r)
dr

(nr)ε
dr +

∞∫
1/n

Sp(f , r)
dr

(nr)α
, (7.5)

where the value of parameter α is as large as needed and the value of ε > 0 is small. We construct polynomials
approximating the function f . For this purpose, we use the estimates of the Cauchy–Leray–Fantappiè kernel
from Lemma 2.10 and put

Pn(z) =
∫

Cd\Ω

∂f ∧ ω(ξ)Kglob
n (ξ, z).

Then

|f(z)− Pn(z)| .
∫

Cd\Ω

|∂f |

∣∣∣∣∣ 1

〈∂ρ(ξ), ξ − z〉d
−Kglob

n (ξ, z)

∣∣∣∣∣ dµ2d(ξ)

≤ U(z) + V (z) +W1(z) +W2(z),

where µ2d is the Lebesgue measure in Cd, and

U(z) =
∫

v(ξ,z)<1/n

|∂f(ξ)|
| 〈∂ρ(ξ), ξ − z〉 |d

dµ2d(ξ),

V (z) = nd

∫
v(ξ,z)<1/n

|∂f(ξ)| dµ2d(ξ),

W1(z) =
1
nα

∫
v(ξ,z)<1/n,
ρ(z)<1/n

|∂f(ξ)|
| 〈∂ρ(ξ), ξ − z〉 |d+α

dµ2d(ξ),

W2(z) =
1
nα

∫
ρ(z)>1/n

|∂f(ξ)|
| 〈∂ρ(ξ), ξ − z〉 |d+α

dµ2d(ξ),

where α is some fixed value that is more than the exponent s.
Note that V (z) ≤ U(z). Next,

U(z) .

1/n∫
0

dr

∫
∂Ωr

|∂f(ξ)| dσr(ξ)
| 〈∂ρ(ξ), ξ − z〉 |d

=

1/n∫
0

gr(z) dr.

It is easily shown that ‖gr‖Lp(∂Ω) .
1/n∫
0

Sp(f , r) log 2
nr dr, which implies, by the Minkowski integral inequality,

that

‖U‖p .

1/n∫
0

Sp(f , r) log
2
nr

dr.
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Similarly, we obtain the estimates

‖W1‖p .

1/n∫
0

Sp(f , r) dr and ‖W2‖p .

∞∫
1/n

Sp(f , r)
dr

(nr)α
,

which completes the proof of inequality (7.5).

The final estimate (7.3) for 1 ≤ q <∞ follows from the Hardy inequality. Actually, we put F (t) =
t∫
0

Sp(f , r)dr
rε ,

and let ε < s; hence, due to the monotonicity of the function F ,

∞∑
n=1

nsq−1

 1/n∫
0

Sp(f , r)
dr

(nr)ε


q

.

∞∫
0

t(ε−s)q−1F (t)q dt

.

∞∫
0

r(ε−s)q−1(Sp(f , r)r1−ε)q dr =

∞∫
0

Sp(f , r)qr−q(s−1)−1 dr <∞. (7.6)

Let

G(t) =

∞∫
t

Sp(f , r)
dr

rα
.

In this case, α > s; hence,

∞∑
n=1

nsq−1

 ∞∫
1/n

Sp(f , r)
dr

(nr)α


q

.

∞∫
0

t(α−s)q−1G(t)q dt

.

∞∫
0

r(α−s)q−1(Sp(f , r)r1−α)q dr =

∞∫
0

Sp(f , r)qr−q(s−1)−1 dr <∞. (7.7)

Therefore, it follows from estimates (7.5)–(7.7) that

∞∑
n=1

1
n

(nsEn(f)p)q .

∞∫
0

(
Sp(f , r)
rs−1

)q
dr

r
<∞.

For q = ∞, we have the inequality En(f)p . n−s, and the theorem is proved. �

8. Boundedness of the Cauchy–Leray–Fantappiè operator in the Besov spaces

Theorem 6.1 has many interesting applications, e.g., the continuity of the Cauchy–Leray–Fantappiè operator
in some Besov spaces can be deduced from its proof.

Theorem 8.1. Assume that 1 < p < ∞, 1 ≤ q ≤ ∞, and 0 < s < 1. Then the operator Kd continuously maps
the space Bs

pq(∂Ω) onto the space As
pq(Ω), and

‖Kdf‖As
pq(Ω) ≤ c(Ω, p, q, s)‖f‖Bs

pq(∂Ω). (8.1)

Proof. Recall that ‖f‖Bs
pq(∂Ω) = ‖f‖Lp(∂Ω) + c̃pq(f), where c̃pq(f) is defined in Theorem 3.4. The operator

Kd is bounded on Lp(∂Ω) due to [7]; hence, Kdf ∈ Lp(∂Ω). Now let f ∈ Bs
pq(∂Ω). By the constructions of

Sec. 3, using only local approximations by constants, we construct a continuation f of the function f such that
|∂f | ≤ E(f, z)ρ(z)−2d. Therefore, similarly to Theorem 6.1, Sp(f , r) . ωm(f, 10r)/r. In addition, similarly to
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formula (2.2),

f(z) = lim
r→0+

1
(2πi)d

∫
∂Ωr

f(ξ)∂ρ(ξ) ∧ (∂∂ρ(ξ))d−1

〈∂ρ(ξ), ξ − z〉d

= lim
r→0+

1
(2πi)d

∫
Cd\Ωr

∂f(ξ) ∧ ∂ρ(ξ) ∧ (∂∂ρ(ξ))d−1

〈∂ρ(ξ), ξ − z〉d
(8.2)

=
1

(2πi)d

∫
Cd\Ω

∂f(ξ) ∧ ∂ρ(ξ) ∧ (∂∂ρ(ξ))d−1

〈∂ρ(ξ), ξ − z〉d
.

As in Theorem 6.1, repeating the reasoning of estimate (5.7), from the previous formula we obtain the inequality

ωm(Kdf, δ)p .

2δ∫
0

Sp(f , r)
δε

rε
dr + δ

m+1
2

∞∫
δ

Sp(f , r)
dr

r
m+1

2

. (8.3)

This inequality implies that

c̃pq(Kdf)q =

1∫
0

(
ωm(Kdf, δ)p

δs

)q
dδ

δ
.

1∫
0

(
Sp(f , r)p

rs−1

)q
dr

r

.

1∫
0

(
ωm(f, r)p

rs

)q
dr

r
. c̃pq(f)q. (8.4)

The last inequality together with the continuity of the operator Kd on Lp(∂Ω) proves the theorem. �

Note that due to [6], the operator Kd is also bounded in the Hölder space Λs(∂Ω) = Bs
∞(∂Ω) for 0 < s < 1.

9. Conclusion

The characteristic obtained in Theorem 7.1 is, in general, similar to the characteristic of the Besov classes
obtained by E. M. Dyn’kin in [5], however, its formulation is closer to a similar statement for the periodic Besov
classes on [−π, π]. The reason of such simplification is the smoothness of the domain, which is necessary for
applying the Cauchy–Leray–Fantappiè formula. Note that in the one-dimensional case, assuming the smoothness
of the boundary of the domain, we pass to condition (7.3). The final result can be formulated as a general
statement.

Theorem 9.1. Assume that Ω ⊂ Cd is a domain with smooth boundary which is strictly convex in terms of
(1.1). Let 1 ≤ p, q ≤ ∞, s > 0, and f ∈ Hp(∂Ω). Then f ∈ As

pq(Ω) if and only if( ∞∑
n=1

1
n

(nsEn(f)p)q

)1/q

<∞, 1 ≤ q <∞, (9.1)

and

En(f)p . n−s, q = ∞. (9.2)

Note also that the methods of pseudoanalytic continuation suggested in Sec. 5 are important in themselves
because they enable one to study the smoothness of the boundary values of analytic functions and obtain
conditions which are similar to Theorem 6.1.

Translated by K. S. Pilyugin.
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7. A. S. Rotkevich, “The Cauchy–Leray–Fantappiè integral in linearly convex domains,” Zap. Nauchn. Semin.
POMI, 201, 172–188 (2012).

8. G. H. Hardy, J. E. Littlewood, and G. Pòlya, Inequalities [Russian translation], Moscow (1948).
9. N. A. Shirokov, “A direct theorem in a strictly convex domain in Cn,” Zap. Nauchn. Semin. POMI, 206,

151–173 (1913).
10. N. A. Shirokov, “ Uniform polynomial approximations in convex domains in Cn,” Zap. Nauchn. Semin.

POMI, 333, 98–112 (2006).
11. K. Adachi, Several complex variables and integral formulas, World Scientific (2007).
12. F. Beatrous Jr., “Estimates for continuations of holomorphic functions,” Michigan Math. J., 32, 361–380

(1985).
13. Bloom T. et al. Polynomial interpolation and approximation in Cd, (2011) arXiv preprint

arXiv:1111.6418.
14. C. Fefferman and E. M. Stein, “Hp spaces of several variables,” Acta Math., 129, no. 1, 137–193 (1972).
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