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This article presents some new ideas connected to nonlinear and nonautonomous control
laws based on the application of an optimization approach. There is an essential connection
between practical demands and the functionals to be minimized. This connection is at the
heart of the proposed methods. The discussion is focused on the optimal damping concept
first proposed by V. I. Zubov in the early 1960’s. Significant attention is paid to various
modern aspects of the optimal damping theory’s practical implementation. Emphasis is
given to the specific choice of the functional to be damped to provide the desirable stability
and performance features of a closed-loop system. The applicability and effectiveness of the
proposed approach are confirmed by an illustrative numerical example.
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1. Introduction. At present, the intensive development of the world economy
constantly generates many problems connected to the performance, safety, and reliability
of various automatic control systems, which provide effective operation for different control
plants in all areas of human activity.

The various approaches associated with the design of feedback control laws have
already been extensively researched and reflected in numerous publications ([1-6] and
many others). However, the complexity of this problem is vast until now because of the
many dynamical requirements, restrictions, and conditions that must be satisfied by the
control actions.

It seems to be quite evident for today that one of the most effective analytical and
numerical tools for feedback connections design is the optimization approach. This point
of view is supported by the flexibility and convenience of modern optimization methods
with respect to the relevant practical demands for control theory implementation.

Several aspects of optimization ideology’s applications for control systems design are
presented in multitudinous scientific publications, including such popular monographs
as [4-6]. Various analytical methods are presently used to compute the optimal control
actions for linear and nonlinear systems subject to given performance indices. Importantly,
optimality is not the end itself for most practical situations, as a rule. This means that the
optimization approach should be rather treated as an instrument to achieve the desirable
features of the system to be designed.

Nevertheless, the optimization approach is not recognized overall as a universal
instrument to be practically implemented. This can be explained by the presents of some
disadvantages connected to computational troubles. Therefore, there is a need to develop
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persistently analytical and numerical methods of control laws design based on optimization
ideology.

Various problems in this area comprise an essential part of many scientific publications
devoted to control theory and its applications. Special attention is focused on control
laws synthesis for nonlinear and non-autonomous controlled plants, whose corresponding
problems are the most complicated and practically significant.

At present, numerous approaches are used to practically solve these problems [1-11].
These approaches are based on Pontryagin’s Maximum Principle, Bellman’s Dynamic Pro-
gramming Principle (using HJB equations), finite-dimensional approximation in the range
of the model predictive control (MPC) technique, etc. However, all these approaches are
connected to many calculations, which fundamentally impede their implementation in both
laboratory design activities and real time control regimes.

This work is focused on a different concept that can be used to design stabilizing
controllers based on the theory of transient processes optimal damping (OD). This theory,
which was first proposed and developed by V. I. Zubov [9-11], provides effective analytical
and numerical methods for control calculations with essentially reduced computational
consumptions.

In modern interpretations, OD theory is closely connected to the Control Lyapunov
Function (CLF) concept [12, 13]. The essence of this connection is reflected by the various
constructive methods using the inverse optimal control principle [14, 15]. The initial
concept was earlier proposed by Zubov, who suggested using Lyapunov constructions to
provide stability and meet performance requirements.

In this paper, efforts are made to combine the modern CLF concept with the
optimal damping approach. Attention is paid to various aspects of OD theory’s practical
implementation. This study focuses on the specific choice of the functional to be damped
to provide the desirable stability and performance features of the closed-loop connection.

This paper is organized as follows. In Section 2, two feasible approaches are presented
to formalize the practical requirements for the closed-loop system’s dynamic properties.
Here, Zubov’s optimal damping problem is mathematically posed. Section 3 is devoted
to the specific features of this problem, which can be used as a basis for practical
feedback control laws synthesis. In Section 4, methods are proposed for the approximate
minimization of the integral functionals based on OD theory. Section 5 is devoted to new
practical choices of the integral items of the functional to be damped, thus providing
desirable performance features. In Section 6, the proposed approach is illustrated by
a simple numerical example of the approximate optimal controller design. Section 7
concludes the paper by discussing the overall results of this research.

2. About two approaches to control laws design. Let us consider a commonly
used mathematical model for a nonlinear and non-autonomous control plant, presented by
the following system of ordinary differential equations:

x=f(t,x,u), x€ E", ue E™, t € [ty,), (1)

where, x is the state vector, and vector u implies a control action. The function f :
Ertm+tl _, E™ is continuous with respect to all its arguments in the space E"T™ 11, Let
us suppose that the system (1) has zero equilibrium, i. e.,

£(£,0,0) =0 Vi >t (2)
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The essence of the feedback design problem is to synthesize a nonlinear and non-
autonomous controller of the form

u = u(t,x), (3)

such that the following requirements fulfilled:
a) the function u(t,x) is piecewise continuous in its arguments;
b) the closed-loop connection (1), (3), like (2), must have zero equilibrium

£(£,0,u(t,0)) =0 VYt > to; (4)

¢) the aforementioned equilibrium point must be locally (globally) uniformly asymp-
totically stable (UAS or UGAS).

For the local variants, let us suppose that all admissible controls are limited by the
condition u € U C E™, where the set U is a metric compact set in the space E™. For
one turn, all admissible states of plant (1) are limited by belonging to the r-neighborhood
x € B, of the origin.

If there is freedom in the choice of control laws in the range of the requirements to be
satisfied, it is suitable to pose questions related to the performance of the control processes.

The practical problem statements are usually formulated as certain additional
requirements to be undeviatingly satisfied with the help of the obtained feedback control
laws of the form (3). In most cases, the aforementioned requirements can be presented as
follows:

x(t,x,u() e XVt >ty vx’€ B,, YueU, (5)
where the vector function x(¢,x°, u(+)) is the motion of plant (1) closed by controller (3)
under the initial condition x(tg) = x°.

Herein, an admissible set determines the aforementioned complex of requirements to
be satisfied and corresponds to desirable performance features. This set, in particular,
can be determined by some constraints of the system’s characteristics (transient time,
overshoot, etc.).

Notably, numerous well-known scientific publications ([5, 6, 10| and most others) flatly
connect formalized expression of the processes’ performance, except for (5), which only
presents the values of certain integral functionals of the form

oo

J:ﬂmw:/%@xmﬁ. (6)

to
It is supposed that the subintegral function Fy is positively definite, i. e.,
Fy(t,x,u) >0 Vt=ty, Vx€ B,, Yuel, (7)

excluding the points (¢,0,0) for any time ¢. For these points, Fy =0 .

Notably, the choice of function Fy is generally made outside of the range of formalized
approaches for the solution of various practical problems. Usually, this question is
considered based on the informal opinions of experts with a connection to the relevant
requirements (5).

If the function Fj is given, this process is much better when the value of functional
(6) is less.

Becrauk CII6I'Y. Ipuknagnas maremaruka. Madopmaruka... 2020. T. 16. Beimn. 3 295



In this connection, the following optimization problem is of primary importance:

J(u(-)) — min, ug(t,x) =arg min J(u(:)), Jo:=J(uco(")). (8)
ueU. ueU.
This is the problem of the integral functional minimization (MIF) on the admissible set
U, of stabilizing controllers (3). Further, it is assumed that the lower exact bound for
functional J on set U, is reached within the context of the present situation.

Currently, numerous well-known approaches are widely used to practically solve
problem (8). These approaches are based on Pontryagin’s Maximum Principle, Bellman’s
Dynamic Programming ideas, finite-dimensional approximation in the range of the MPC
technique, etc.

In particular, let us consider certain specialties of the Dynamic Programming theory
application [4,5,10]. For the feedback control design, it is necessary to carry out the
following actions.

1. Given a system (1), a performance index (6), and an admissible set U, the Hamil-
ton—Jacobi—Bellman (HJB) equation can be constructed as

oV (t,x) + min vV (t,x)
uelU

5 . f(t,x,u) + Fy(t, %, u)} =0, (9)

where the Bellman function V'(¢,x) is initially unknown.
2. In accordance with (9), assign the connection between a control and the Bellman
function V'(¢,x), providing the minimum of the expression in braces:

o

—ii[t,x, V(t,x)] = arg mi
u=1ltx,V(tx)] = arg min g

uh f(t,x,u) + Fy(t,x, u)} (10)

Here set U can be used instead of set U..
3. Substitute the found function @ into (9), thereby obtaining the HJB equation,
which is not weighed down by the minimum search operation:

vV (t,x) OV(tx) .
N + p t{t, x,ult,x,V(t,x)]} + (11)

+ Fof{t,x,u[t,x,V(t,x)]} = 0.

One can easily see that (11) is a routine PDE with respect to the initially unknown
function V(t,x).

4. If the solution V = V(£,x) of this equation is computed, and if the function V is
continuously differentiable and satisfies the conditions V(t,0) =0 Vt > to, V(c0,x) = 0
Vx € B,, then, after substituting V = f/(t,x) into (10), the desired solution of the MIF
problem can be obtained as follows:

u=upolt,x) =@ [t,x, f/(t,x)} e U.. (12)

Here, function V = V(t,x), which satisfies HIB equation (11), is called a value func-

tion cosidering the equality V (to, o) = Hliél J(u(")): i. e., its value determines a minimum
ucU.

of the functional J based on the motion of the closed-loop system with the initial condition
X(to) = XQ-

As is well known, an application of Bellman’s theory to solve the MIF problem is
significantly hampered by a number of difficulties.
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First of all, the aforementioned scheme for the problem’s solution is notably only
based on the sufficient conditions of the extreme. Actually, the function V' = V(t,x) by no
means is always continuously differentiable or able to satisfy the desirable conditions. In
addition, a search of this function can be implemented numerically with no trouble only if
the halfway problem (10) admits an analytical solution. Under this condition, subsequent
computing obstacles are connected only to PDE (11).

Otherwise, the computational consumption increases like an avalanche due to the
so-called “curse of dimensionality”.

Considering the presence of the obstacles mentioned above, let us address an
alternative approach to formalize the practical judgments for dynamical processes quality.
This approach is based on the concept of optimal transient process damping, which was
first proposed by V. I. Zubov in [9-11].

This concept is built upon the following functional:

L =L(t,x,u) =V (t,x) + /F(T7 x,u)dr, (13)

to

which is introduced to check the performance of a closed-loop connection (1), (3).

Here, various scalar functions V' = V(¢,x) can be used to define a distance from the
current state x of the plant (1) to the zero equilibrium. Let us assume that these functions
are continuously differentiable and satisfy the following conditions:

ar([x]) < V(£ x) < ea(|[x[]) Vx € E", Vt € [to, 00), (14)

and for some functions ag, ay € K (or a1, as € K) (Hahn’s comparison functions, which
are determined in [2, 3, 16]).

Note that the integral item in (13) inherently determines a penalty for a closed-loop
system with the help of the additionally given function F' connected to the performance
of the motion. Let us accept that this function is positively definite in the same way as
the function Fy in (7). The problem of optimal damping (OD) with respect to functional
(13) can be posed in the form

W =W(t,x,u) — mig7 u=uy(tx) = arg mig W (t,x,u), (15)
uc uc

where the function W determines the rate of changes in functional L due to the motions
of the plant (1), as follows:

L
W(t,x,u) := (fl_ = c(li_V + F(t,x,u) = (16)
oy 4t
_oV(t,x) OV (t,x)
=% + . f(t,x,u) + F(t,x,u).
Clearly, the solution
u = ugy(t,x) (17)

of the OD problem (15) determines feedback control (OD controller) for plant (1). The
corresponding closed-loop system (1), (17), which has zero equilibrium, is a closed-loop
OD system.
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The optimal damping concept is based on the following simple idea: the process
improves significantly the more rapidly the functional (13) decreases based on the motions
of the closed-loop connection.

Let us consider a circumstance where the computational scheme for the OD problem
solution is considerably simpler than for the MIF one. Actually, as it follows from
relationships (13)—(17), it is not necessary (though, it is desirable) to obtain an analytical
representation of the function u[t,x,V(¢,x)]. This is determined by the possibility to
calculate the values of u = uy(t,x) numerically, using a pointwise minimization of the
function W (¢, x, u) according to the choice of u € U for the current values of the variables
t, X.

Note that the OD mathematical formalization of the exacting practical demands on
process performance is reduced to the choice of the functions V = V(t,x) and F =
F(t,x,u) for functional (13) to be damped. Since a direct connection is not evident between
the aforementioned functions and the requirements in (5), this choice can be realized
informally based on experts’ opinions. Naturally, this is also true for the MIF problem.

However, because the numerical solution of the OD problem is considerably simpler
than the MIF solution, it is possible to use this advantage to formalize the choice of
functions V' and F' in the range of the optimal damping concept. This is one of the main
issues discussed below. This idea was partially implemented for damping stabilization in
[17, 18], but was not connected to optimality issues.

3. Basic features of optimal damping control. Problem (15) for optimal damping
has certain features that should be used as a basis for practical control laws synthesis issues.
We will next consider some of these principals.

First, let us introduce the concept of the control Lyapunov function [1, 12, 13] for
plant (1).

Definition 1. Continuously differentiable function V' (¢,x) such that

ar([lx[) < V(t,x) < ao(([x]])  Vx € E", Vi > to, (18)

a1,z € Ko, is said to be global Control Lyapunov Function (global CLF) for plant (1) if
there exists a function as € Ko such that the inequality
. avV(t,x) OV(t,x)
f
wlin |0t T ox

ft,x,u)| +as(||x])) <O Vt =t Vxe€ E", (19)

holds. If conditions (18), (19) are satisfied for a1, as, a3 € K, Vx € B,., then V is said to
be local CLF.

It the CLF for system (1) (global or local) exists, then this system is globally (or
locally) uniformly asymptotically stabilizable (UGAS or UAS) [3].

Notably, the properties of stability and performance for the motions of the closed-
loop OD system, transferring from some initial point xo = x(t9) # 0, vary based on the
choice of the functions V' = V(t,x) and F = F(t,x,u) in (13). Here, the main role of
V' is to support the stability properties, and the purpose of F' is to provide the desirable
performance features.

Evidently, any choice of function V for the damping functional (13) should be treated
as the choice of a Lyapunov function candidate. In particular, these functions can play a
role of CLF for plant (1).

The main purpose of controller (17) is to provide the stability properties for the
zero-equilibrium position of the closed-loop system. This requirement is connected to the
following statement.
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Theorem 1. Let the condition
Wao(t,x) := W (t,x,uq(t,x)) < —au(||x|]) Vt=>to, Vx € By, (20)

holds for feedback control (17), where ay € K. Then the function V (t,x) is a CLF for
plant (1), and zero equilibrium for the closed-loop system (1), (17) is locally uniformly
asymptotically stable, i. e., the feedback (17) serves as a stabilizing controller for plant (1).

Proof. Thus, let condition (20) holds for the controller (17), which is the solution of
OD problem (15), i. e., the following relationships are correct:

dv
in Wi(t = mi — t F(t > 21
min W(t, x, u) = min | — (1)(7x,U)+ (t,x,u) (21)
in (8,3 w) + min F(t, %, 1) < —aa(|x])
> mip |, (0 i P < —aa(lel)

However, the function F satisfies the condition F'(¢,x,u) > 0 for any arguments that

provides — mig F(t,x,u) < 0. Substituting the last relation into (21), we can obtain
ue

(t,X, u) < _a4(HXH) - minF(t7X’ u) < _a4(HXH)7
(1) uclU

which is equivalent to

min
uelU

[ava,x) + VX e x| < —aa(lx),

ot ox

i. e., the function V (¢,x) is, by definition, the local CLF for the system (1).
Now, in accordance with the equality (16) on the basis of (20), the following is true:
- - oV (t,x) OV(t,x)
frd = f g
Wao = Wao(t, x) ot + x (t,x,uq(t,x))
< —au(|x]]) = F(t, %, aa(t, %)) < —aa(llx]),

av

WdO = Wdo(t,x) = E
(1)

< —au([x]),
;su=ug(t,x)
where a4 € K.

It follows from this (|2, 8] and others) that the zero equilibrium of the closed-loop
system (1), (17) is locally uniformly asymptotically stable, i. e., the feedback (17) is a
stabilizing controller for plant (1). [ |

Remark 1. If all the aforementioned conditions of Theorem 1 are fulfilled for the
whole space, i. e., if B, = E™, U = E", and if all the aforementioned functions o, ¢ = 1,4
belong to class K, then the zero equilibrium point for the closed-loop system is globally
uniformly asymptotically stable (UGAS) [2, 8|.

Let us specify one of the most important features for the solution (17) of OD problem
(15), which was first developed and investigated by V. I. Zubov [9-11].

Theorem 2. Let MIF problem (8) have a unique solution, and let the control law
(17) be a solution of OD problem (15) with respect to functional (13) with the subintegral
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function F(t,x,u) = Fy(t,x,u) and with function V, which coincides with the solution
V(t,x) = V(t,x) of HIB equation (11).

Then the controller u = uy(t,x) is simultaneously a solution for the MIF problem
(8), i. €., uco(t,x) = uq4(t,x), where uy is determined by (12).

If the mentioned solution is not unique, then any OD controller can be taken as a
MIF optimal feedback.

Proof. This statement can be proven based on the scheme proposed by V. I. Zubov
with respect to integral functionals with finite limits.

Given a control law u = ug(¢,x) and initial conditions x(ty) = xo, let us integrate

the equations of the closed-loop system
x = f[t,x,uq(t, x)] & % = f4(¢,x); (22)

as a result, we can obtain the corresponding motion x = x,4(t) and the control u = uy(t)
as functions of ¢ € [tg,00). Let us suppose that the zero equilibrium of system (22) is
asymptotically stable, i. e., for any x¢ € B, tlim x4(t) = 0.

— 00

Based on (9) and (11), the following identity is valid for these functions (see f in (2),

(4)):

{8V(t,x) SOVEX) e P, u)] =0,
8t 8X x:xd(t)ﬂ—l:ud(t)
i e,
M + F(t,x, u)] =0,
dt
(1) x=xq4(t),u=uq4(t)

which is equivalent to the identity (by time)
dV(t,x) = —F(t,x4(t), uq(t))dt (23)

for the OD motion x = x4(¢).
Both parts of identity (23) can be integrated by a curvilinear integral from the initial
position [tg, X4(tg)] to the endpoint lim [7,x4(7)] along the motion x4(t):
T—00

Tim _[rxa(7)]

V(%) =~ [ Fltxa(®) us(t)ir,
[to,xa(to)] to
which leads to the equality
lim V[ xa(r)] — Vlto,xa(to)] = - / F(t,xa(t), ua(t))dt. (24)
to

However, since the optimal motion passes through the given initial point A(tg,x"),
we obtain

Vlto, xa(to)] = V (to, x°), (25)
and, according to the condition . lim OV(t,x) = 0 and considering the property of

asymptotic stability, the equality
lim Vr,xq(7)] =0 (26)

T—00

holds, because lim x4(7) = 0.

T—00
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Substituting relationships (25) and (26) into (24), we obtain

o0

/F(t,xd(t), ug(t))dt = V(to,x).

to

However, the integral on the right is equal to Jg = J(uy), i. e.,
Jq = J(ug) = V(to,x°). (27)

Next, let us consider a contrary proof: suppose that there exists an admissible control
1 € U such that

J(l_l) <Jg= J(ud). (28)

Let us suppose that the controller u = u(¢,x) provides the corresponding motion

x(t) of plant (1), satisfying the boundary conditions %(tp) = x° and lim %(7) = 0, and
providing the corresponding function u(t) for the closed-loop system.

Since the control u is not necessary a solution of OD problem, based on (15), we
obtain

W(t,xq(t), uq(t)) < W(t,x(t),a(t)) V= to.
In accordance with (16), it follows that

oV (t,x) n AV (t,x)
ot ox
> AV (t,x4) + AV (t,xq)
ot ox

f(t,xq,uq) + F(t,xq,uq) =0 Vt > to,
or
oV(L®)  OV(tx)
ot ox

dV (t,x)
dt

f(t,%,0) + F(t,%x,0) =

+F(t,x, u)] >0 V>t
x=x%(t),u=u(t)

1)

The last inequality can be rewritten in the equivalent form

dv(t
(t, ) ] = —F(t,%,1) +aft), (29)
dt
(D] x=x(t),u=1u(t)
where a(t) is a function satisfying the condition
alt) =0 V>t (30)
Relation (29) defines the following identity:
dV (t,x) = —F(t,x(t),u(t))dt + a(t)dt (31)

for the aforementioned motion x = X(t).
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As before, both parts of identity (31) can be integrated by a curvilinear integral from
the initial position [tg,X(¢0)] to the end position lim [r,%(7)] along the motion x(¢):
T—00

rli—»n;c[T’i(T)] eS) 0o
cwmm:—/F@ﬂmmmﬁ+/a@@
[t(],f((t())] to to

which leads to the equality

oo (oo}

lim V[r,%(7)] — V[to, X(t0)] = —/F(t,i(t),ﬁ(t))dt+/a(t)dt. (32)

T—00
to to

However, since the motion %(t) also passes through the given starting point A(tg, x"),

Vlto, %(to)] = V (to,x"). (33)
Further, considering lim x(7) = 0, we obtain
lim V[r,x(r)] = 0. (34)

Substituting (33) and (34) into (32), obtain

o0 oo

/F@ﬂmmmmzv%m%+/mmw

to to

The integral on the right is equal to J = J(i1). Considering (27), we arrive at the equality

J:ﬂmzjm@+/a@ﬁ. (35)

to

Since function «(t) satisfies condition (30), it follows from equality (35) that
J = J) = J(ug) = Jg.

However, this contradicts the assumption of (28), i. e., a control u(t) satisfying con-
dition (28) does not exist.

This means that the OD controller u = uq(t, x) gives the same optimal value J(ug) =
Ji = Jeo = J(ue) as the MIF controller u = ugo(¢,x). Considering the uniqueness of
problem (8)’s solution, the identity uco(t,x) = uq(t, x) is valid.

Clearly, if a mentioned solution is not unique, then any OD controller can be used for
MIF optimal feedback. |

Notably, Theorem 2 formally reduces the solution of the MIF problem to a solution
of an essentially simpler OD problem. However, it is natural that the direct utilization
of such a transformation has no practical sense, since one need to determine a solution
V(t,x) for the HIB equation (11) to state the OD problem. However, solving the HJB
equation is the essence of the MIF problem.
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Nevertheless, the aforementioned peculiarity can be successfully used for various
theoretical constructions. For example, the conformity of these two problems was applied
by Zubov for a minimum-time problem investigation presented in [9-11], which was carried
out with the help of OD theory.

It directly follows from Theorem 2 that the MIF problem can be treated as a particular
case of the OD problem for plant (1). Indeed, under the conditions Fy(t,x,u) = F(t,x,u)
and V(t,x) = V(t,x), the OD controller (17) minimizes functional (6).

In this way, the OD problem has the following significant advantages over the MIF
problem. First, the OD problem can be more simply numerically solved; second, the OD
problem is more general because the set of its solutions for the various functionals (13)
also provides solutions for the MIF problem (8).

The aforementioned advantages suggest the two following main directions for OD
theory’s application:

1) the choice of the approximate solution of the MIF problem, if this problem plays
a self-contained role in feedback (3) synthesis;

2) the construction of the methods guaranteeing fulfillment of the practical require-
ments (5) to support the desirable performance of the closed-loop system.

The priority of these two directions is determined by the following circumstance:
all MIF and OD problems are no more then variants of the approximate mathematical
formalization for the practical requirements presented by (5). Thus, both approaches are
valid. Nevertheless, their successful implementation is determined by the correct selection
of the functionals under consideration. For the MIF problem (8), the function Fy(¢,x,u)
should be used for functional (6). On the other hand, to set the OD problem (15), functions
V(t,x) and F(t,x,u) should be selected. A choice of these functions should be made
considering the initially given requirements (5).

In the end, these two functions play a central role in the process of designing the
optimal controllers (12) and (17), which are the subintegral functions F' and Lyapunov—
Bellman functions V.

Nevertheless, there is a fundamental difference between the aforementioned approa-
ches. For the MIF problem, the integrand Fy(t,x,u) is initially given for the functional
(6), while the Lyapunov—Bellman function V = V (¢,x) is computed as a solution of the
HJB equation in accordance with the scheme presented above, which leads to the optimal
controller u = ug(t, x).

For the OD problem, both the function V (¢, x) and the function F(¢,x,u) are initially
given for the functional (13), and these functions directly determine the optimal controller
u = ug(t,x). As observed earlier, the selection of function V is primarily done to provide
stability for the closed-loop system.

Under the consideration of stability and desirable performance issues, the following
variants of the functions V (¢,x) and F'(¢,x,u) can be chosen for the functional L(t,x,u)
(13) to be damped.

1. The aforementioned functions are taken from the MIF problem (8), i. e., the iden-
tities V (t,x) = V(t,x) and F(t,x,u) = Fy(t,x,u) are valid. As follows from Theorem 2,
the solution of the OD problem in this case is simultaneously a solution for the MIF
problem: ug(t, x) = uco(t, x).

2. The subintegral functions F' is taken as before from the MIF problem (8), i. e.,
F(t,x,u) = Fy(t,x,u), while the function V (¢,x) is selected from the some given class R
to provide an approximate solution f/(t, x) for the HIB equation.

3. The function V (¢, x) is initially fixed in the range of the class Ry of the CLF, while
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the function F'(¢,x,u) is computed based on the requirements (5), thereby providing the
desirable performance of the control process. This case corresponds to the concept of
inverse optimality, first presented in [14].

4. Functions V(¢,x) and F(t,x,u) are simultaneously selected in the range of certain
classes with no direct connection to the integral functional (6) and with the MIF problem
(8). This selection is initially performed to provide stability and the desirable performance.

The last three variants presented here generate concrete computational methods of
the stabilizing controllers (3) design based on the optimal damping theory.

4. Approximate optimal control design based on optimal damping. The
following subtle issue is connected to the coincidence of the aforementioned problems. For
the MIF problem, the choice of the function Fy uniquely determines the function V =V
as a solution of the correspondent HJB equation. If this function is used together with the
function F = Fy for the OD problem (15), then the OD controller u = uy(¢,x) provides
the same optimal value J = Jy as the MIF controller u = u.(t, x).

However, if any function V(¢,x) is used in functional (13) instead of V (t,x), thereby
maintaining the identity F' = Fp, then the corresponding OD controller (17) will not
be a solution of the MIF problem, i. e., this controller will provide a value J > Jy for
the performance index (6). Retaining function Fy means that the functional (6) has real
fundamental worth for practical situation.

In that case, by solving the OD problem (15) for different functions V, one can
determine which function V approximates the HJB solution V (¢,x) in the best way. Thus,
the OD problem can be treated as an instrument for dragging of the function V to the
aforementioned optimal solution V, with the trend J — Jo.

It is evident that the presented idea is applicable only for a situation where a direct
MIF problem solution is connected to large computational troubles. In this case, it is
suitable to construct an approximate optimal controller that is similar to an optimal one,
u = u(t,x), but can be designed with lower computational consumption.

Here, a specialized approach is proposed to construct an approximate optimal
controller based on the optimal damping concept.

Thus, let us consider the MIF problem (8) with integral functional (6), which is given
based on the motions of the closed-loop system with the controller u = u.(t, x) for the
plant

% = fo(t,x, ), (36)
where the right part has the same properties as plant (1).
As mentioned above, the MIF problem is equivalent to the OD problem in the form

W =W(t,x,u) — min, u = u,(t,x) := arg min W (t,x,u), (37)

W(t,x,u) := dL/dt| s,
¢
L=L(t,x,u)=V(tx)+ /FO(T7 x,u)dr, (38)
to

if V(t,x) = V(t,x) for the solution V of the HIB equation
AV (t,x) + min { AV (t,x) £ (
ox

ot min t,x,u) + Fy(t,x, u)} =0.

There are two possible situations of solution processes for both optimization problems:
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a) it is possible to analytically find the function

()

3 = arg min{Mfo(t,x,u)—&—ﬂ)(t,x,u)};
x

u=a |:t’X7 uclU ox

b) this function can not be found analytically.
The first situation leads to the HJB equation presented in the following form:

ov(t,x) 0OV(t,x) N oV (t,x)
5 + % fo<t,x,a |t x, ox + (39)
+ Fy {t7x,ﬁ [t,x7 L(t’x)} } =0
ox

Because function @ is known, PDE equation (39) for function V (¢,x) can be solved
numerically (for example, using power series [19]).

If the second situation occurs, it is impossible to transform the HJB equation into
the form in (39). Thus, it is necessary to solve equation (9) directly, which usually leads
to the “curse of dimensionality”.

For the OD problem, the first situation is also preferable. If the function

u [t, X, 8‘/8(:(”‘)] is known, then it is possible to immediately obtain the OD controller
OV*(t,x)
= * t = u t 77
u ud( aX) u l: » X, 8x

for any specified function V' = V*(¢,x) in (38).

Nevertheless, in contrast to the MIF problem, the second situation here is not critical.
Numerically realizing the pointwise minimization of the function W (t,x, u) for every fixed
point (¢,x), we can obtain the OD controller

- _ L [OVT(E x)
u=uj(t,x) =arg IuTlGIIIJl{Tfo(t,)Q u) + Fy(t,x, u)}

for the given partial function V' = V**(t,x). Clearly, uj(t,x) = uj*(t,x) if V*(t,x) =
V**(t, x).

For both situations, accepting V* = V** = V(t,x), we can obtain OD controllers
such that they are simultaneously solutions of the MIF problem, i. e.,

; ~ oV (¢,
u=1u4(t,x):=1 lt,x, %1 = ueo(t, X).

The last position serves as a basis for constructing the approximate optimal solutions
of the aforementioned problem. This construction demand appears either in certain
situations when the choice of the optimal controller is essentially hindered or for cases
when the exact solution u = u.(t, x) is obtained but is practically unusable.

The choice of the aforementioned approximation can be realized as a solution of the
corresponding OD problem. Let us consider the space Ry of the CLF, which contains the
function V = V (¢, x).

Civen a function V*(¢,x) € Ry that is not identically equal to V (#,x), let us solve the
OD problem (37), thereby deriving the OD controller u}(t,x) := uq(t,x, V*). Since this
controller is not MIF optimal, we obtain

J* = J(V*) = J(ualt,x, V")) = J(uo() = Jo.

Becrauk CII6I'Y. Ipuknagnas maremaruka. Madopmaruka... 2020. T. 16. Beimn. 3 305



If the assessment is true
AJZ(J*—J())/J0<EJ (40)

for a given value £; of the admissible functional J degradation, then the controller u =
u’,(t,x) can be accepted as an approximate solution for problems (6), (8), and (36).
Remark 2. The aforementioned function V*(t,x) can be treated as an approximate
solution of the HJB equation (28). Its approximation quality is interpreted as in (40).
To choice the function V*(¢,x) € Ry that satisfies (40), one can use an optimization
approach. Next, we state a minimization problem

J=JV") = J(ug(t,x, V")) — Jmin (41)

which has the obvious solution

Vo (t,x) = arg min J(ua(t,x, V7)) = V(t, x).

Any numerical method for this problem solution generates the minimizing sequence
{Vi¥(t,x)} € Ro, which trends toward the function V (¢,x):

gngﬂu@}=V@m) V(t, x).

Clearly, for any e; there is the function V(¢,x) (among the items of the sequence
{VE(t,x)} € Ro), such that condition (40) is valid. This function determines the
approximate optimal controller u = u’(¢,x) := uq(t, x, V).

Naturally, if the exact solution u = u.o(t,x) cannot be obtained simply or if this
solution is known but requires an essential simplification, it is necessary to implement the
problem of

J=J(V*) = J(ua(t,x, V*)) — (42)

min
V*ERa0CRo
instead of (41). Here, the set R40 is a contraction of the set Ry, including CLF V (¢, x).

If the set Rg0 does not include the optimal function, i. e., if V(t,x) ¢ Rqo, then the

solution of problem (42),

Vio(t,x) := arg V*e%el;?c%o J(uq(t,x, V™)),
which gives an OD controller u = u}},(¢,x) := uq(t,x, V) that is generally spiking, can
interrupt requirement (40) for a given ;. In this case, the admissible set Jg0 must be
changed in (42).

Note that the set 49 can be introduced in the simplest parametric way. To this end,
one should fix a structure of the CLF V* and extract the vector h € EP of its parameters
to be varied: V* = V*(¢,x, h).

By analogy with (42), it is next possible to pose the optimization problem such that
its solution with respect to h results in an approximate optimal controller.

Let us consider this question in detail, introducing the metric compact set H, € EP.
Suppose that the functions of V* are formed as follows:

he H, C E? = V*(t,x,h) € Ro.

Given the initial conditions x(tg) = x¢ € B, for plant (36), let us compose the series of
computational procedures, which should be executed in the range of the proposed method.
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1. Assign the vector h € H, C EP of the tunable parameters.
2. Specify the function V*(¢,x,h).
3. Solve the OD problem with the following functional to be damped:

t
L=L(t,x,u,h)=V(t,x,h) + /FO(T, x,u)dr,

to

thereby obtaining the OD controller u = uj(¢,x, h).
4. Compose the equations of the closed-loop system

X = de(t7Xa h)a de(t7Xa h) = fO(t7Xa UZ(t7X, h)) (43)

5. Solve the Cauchy problem for system (43) with the given initial conditions x(tp) =
Xo that result in the motion x4(t, h).

6. Specify the function uq(t, h) := uj(t, x4(¢, h), h).

7. Calculate a value of the function J;(h), determined by the expression

oo

Ja = Ja(h) = /FO [t,x4(t, h,x0),uq(t, h,x0)] dt.

to
8. Minimize the function Jy(h) on the set H,, i. e., solve the problem of

Jd = Jd(h) — min, hd = arg min Jd(h), JdO = Jd(hd), (44)

heH, heH,

repeating the steps 1-7 of this scheme.
The solution h = hy of the problem (44) allows us to construct an approximation of
the Bellman function as follows:

Vio(t,x) = V*(t,x, hq).
Correspondingly, the control law
u=uj(t,x) :=uj(t,x, hy)

represents the approximate optimal controller for the initial MIF problem.
If the optimal value Jy is known, one can estimate the following measure of the
functional J degradation due to the approximate solution using

AJ = (Jao — Jo)/Jo.
If there is a vector h* € H,, C EP such that the identity is valid
V*(t,x,h*) = V(t,x),
then the following evident relationships are fulfilled:

uZO(t7X) = ucO(taX)7 JdO = J07 AJ =0.

5. On practical choice of integral item. As mentioned in Zubov’s works [9-11],
the OD problem has obvious advantages in its implementation simplicity over the MIF
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problem. Consequently, there is a reason to abandon the exclusive use of functional (6)
and concentrate initially on supporting practical requirements (5) using OD concept.

Under this approach, there is a reason to first assign not the integrand F'(¢,x,u) but
the function V(¢,x) for functional (13) to be damped. The primary choice of V' should be
done as Lyapunov function candidate (ideally, as a CLF). At the same time, the subintegral
function F' should be varied to fulfill the requirements of (5).

Note that this idea originates from the following statement proven in [14]: any CLF
V(t,x) is a value function for certain performance index, i. e., this function satisfies the
HJB equation associated with functional (6).

Let us next consider the suggested OD oriented approach in detail. Suppose that
function V'(¢,x) is assigned to the functional L(¢,x,u) and that this function meets the
conditions in (14).

Let us introduce a certain class RF of positively definite functions of type (7) and
specify a functional to be damped:

t
L=L(t,xu)=V(tx)+ /F(T, x,u)dr (45)
to
for a given function F' € Rp.

Let us next solve OD problem (15), thereby obtaining the OD controller

u=ugp(t,x):=arg InellI]l W(t,x,u, F), (46)

where the rate W is defined as
_oV(t,x)  OV(t,x)
W(t,x,u, F):= ot + Ix f(t,x,u) + F(t,x,u).

Let us accept a comparison function a3 € K and check the condition

Wro(t,x,u) := W(t, x,uqr(t,x), F) < —as(||x]]) Vx € B,, Vt=t. (47)

If this condition is valid, then it follows from Theorem 1 that the controller (46) is
stabilizing controller for plant (1).

Repeating this computations using formulae (45)—(47) for various functions F' € Rp,
let us introduce a functional of stability given on the set Rp:

JC(F) ‘= Ssup Ssup [W(t7xv udF(t7X))vF(t7x7 lldF(t,X)) + O[3(HXH)] .
te[0,00) XEB,-

Further, let us extract the subset R. C R of functions F' such that
R.={F € Rp: J.(F) <0}.

For these functions, all controllers (45) are stabilizing. The next step addresses the re-
quirements (5) for the dynamics of the transient processes and introduce a functional of
performance given on set R.:

Ja(F):= sup sup dist {x(t,xo,udp(t,x),X)},
t€[0,00) xV€ B,

where the function dist(x(-), X) determines the distance from the motion x(¢,x%, ugr) to
the admissible set X.
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The presented reasoning allows us to pose a problem of the performance functional
minimization on the set R.:
Ja(F inf .
AF) = i,
Clearly, if the function F' = F € R, is obtained in the course of this problem solution
such that J4(F) = 0, then the corresponding OD controller

u = ugp(t,x) := arg min W(t,x, u, F)
uelU

is locally uniformly asymptotically stabilizing for the plant (1). In addition, the practical
requirements (5) for the motion of the closed-loop connection are satisfied by this
controller.

Naturally, the presented global approach determines only a general theory of the
OD concept’s implementation to provide stability and performance features for nonlinear
and non-autonomous control plants. This theory should be reflected in various particular
practically realizable methods.

The simplest specific definition of the aforementioned approach can be determined
by the vector parameterization of the functions F' population. Really, let us introduce
p-parametrical family of the functions

F = F(t,x,u,h) (48)

with the certain given structure, where h € E? is a vector parameter.

Here, it is possible to accept the quadratic form F = u” Q(h)u with positive definite
symmetric matrix Q, particularly with the form Q = diag {(h{ h3 ... h2)}.

For any fixed vector h, one can specify a functional to be damped as follows:

t
L=L(t,x,uh) =V(t,x)+ / F(r,x,u,h)dr,

to

which determines a solution of OD problem (15) as

u= Udh(t, X) = arg Hlelzrjl W(t7 X, u, h)v (49)

where

oV (t,x) n oV (t, x)
ot ox

For a general case, it is possible to assign any comparison function ag = ag € K and
check the condition

W(t,x,u,h) := f(t,x,u) + F(t,x,u,h).

Who(t,x,u,h) := W (t,x,ugn(t,x),h) < —as(||x||) Vx € B,, Vi > to. (50)

If this condition is valid, using Theorem 1, one can conclude that controller (49) stabilizes
plant (1).

On this occasion, a functional of stability turns into the function of the p variables,
which, in conformity with (48)—(50), can be presented as

Jo(F):= sup sup [W(t,x,ugn(t,x),h) + az(||x]])] -
te[0,00) xE B,
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Next, let us extract the subset H. C EP of vectors h such that
H.={heE"”: J.(h) <0}.

For any h € H, controller (49) is a stabilizing one. Similarly, one can determine a function
of performance using requirements of (5):

Ja(h) := sup sup dist {x(t,xo,udh(t,x),X)},
te[0,00) x9€ B,

which are given on the set H..
Next, the finite dimensional minimization problem

Ja(h) — inf
heH.

can be posed.NIf the vector h = h € H_ is obtained in the course of this problem solution
such that J4(h) = 0, then the corresponding OD controller

u = ugy(t,x) := arg min W (¢, x, u, h)
uclU
is locally uniformly asymptotically stabilizing one for plant (1). As before, practical
requirements (5) for the motion of the closed-loop connection are satisfied.
6. Practical example of approximate synthesis. To illustrate the applicability

of the presented approach, let us consider a numerical example [20] with the following
linear plant model of the first order:

T=—-z+u, (51)

where the controlled variable x and the control u are scalar values. The performance of
the motion for plant (51) can be specified by the non-quadratic functional

J = / (2% + ' +u?) at. (52)
0

The MIF problem counsists of designing the stabilizing controller u = wu.o(x) design,
thereby providing a minimum of the functional (52) on the set U = E*.
It was shown in [20] that the exact solution of HJB equation (39) is the value function

Vi(z) = -2 + ; [(2 + 22)3/% 2\/5] : (53)

A corresponding optimal controller can be presented by the formula

u=uc(r) =o—2V2+ 22 (54)

This solution provides the minimal value Jy = 0.579 of functional (52) for the motion
of the closed-loop system (51), (54) with the initial condition x(0) = 1.

Let us next address the OD problem for constructing the approximate solutions of
the aforementioned MIF problem. To this end, as proposed in Section 4, we introduce a
set Ryo C RNy of the CLF V*, which are determined by the formula

V* =V*(x,h) = h?2>.
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Introducing the metric compact set H, = [0,1.2] C E!, it can be readily seen that
he H, = V*(x,h) € Ro.

Giving the initial condition of (0) = 1 for plant (51), one can solve the OD problem
with respect to the functional to be damped of the form

¢
L =L(z,u)=V*(x,h) +/x+x4+u2)d7,
0

which leads to the relationships

*(z,h
@[z, V*(x,h)] ;= arg min {M(—m+u)+m2+m4+u2} = (55)
ueEt or
— are min OV*(x, h) L2l _19V*(z,h)
s or (T2 e
As long as av;(;’h) = 2h%x, we obtain the following linear OD controller from (55):
u=uj(x,h) = —h’z. (56)
For the equation
-1+ h2) x

of the closed-loop system (51), (56), it is possible to solve the Cauchy problem with the
initial condition x(0) = 1, which determines the motion z4(¢,h) and the corresponding
control uq(t, h) = u}(t,zq(t,h), h). The value of the functional (52) for this motion can
be presented as a function of h:

Jg = Ja(h) = / (23 (t, h) + zg(t, h) + uj(t, h)) dt.
0

Minimizing the aforementioned function Jg4(h) on the set H,, i. e., considering the
optimization problem as follows:

Ja = Ja(h) — Juin , hq := arg min Ja(h), Jao = Ja(ha),

we obtain the values hy = 0.762 and J49 = 0.581.
The corresponding approximation for the value function V;(z) (53) is

Vio(x) = V*(x, hg) = h3z? = 0.58122,
which leads to the approximate optimal controller
u = uiy(z) = ul(r, hg) = —h3x = —0.581z. (57)
For the optimal value Jy, the expression
AJ = (Jao— Jo)/Jo=0.35%

represents a relative degradation of the performance index, which is determined by a
transition to the approximate optimal solution. Since the value AJ = 0.35 % seems to be
highly convincing, controller (57) can be practically implemented instead of the optimal
solution (54).
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Figure 1 illustrates a graph of the function J;(h). The optimal value of the functional
(52) is also shown here.

Jq(h)

T

0.75

0.7

0.65

0.6

0 0.2 0.4 0.6 0.8 1 1.2

Fig. 1. The graph of the function J4(h) compared
to the optimal value Jo = 0.579 of the functional (52)

Figure 2 presents the graphs of the Lyapunov functions Vi(z) and Vyo(z). As
mentioned above, the first is a value function with respect to functional (52), i. e., this
function is a solution for the corresponding HJB equation. The next one, Vyo(z) =

V*(z, ha), can be treated as an approximate representation of the value function. A
comparison can illustrate their vicinity.

V(x)
- - ' ' ' 4
0.8 || m—1"(x,hy) R
LI Vt(x)
0 0.2 0.4 0.6 0.8 1 1.2
X

Fig. 2. The graphs of the Lyapunov functions V;(z) and Vg (z) = V*(z, ha)
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The dynamics of the closed-loop system (51), (57) are illustrated by Figure 3, where
the motion x4(t,hq) and the corresponding control wy(t,hy) are presented. A nearly
identical process corresponds to the closed-loop connection (51), (54) with the optimal
controller (54).

x u
1 ol
08
_02 L
06
04 _04 [
02 06}
0
: : ‘ : —038 : : : :
0 1 2 3 4 5 0 1 2 3 4 5
1, sec 1, sec

Fig. 3. The motion z4(t, hg) and the corresponding control uq(t, hq)
for the closed-loop system (51), (57)

7. Conclusions. This work aimed to discuss some vital questions connected to various
design applications of the modern optimization theory for the modeling, analysis, and
synthesis of nonlinear and nonautonomous control systems. There are many practical
problems to be mathematically formalized based on the optimization approach.

Nevertheless, most such problems involve providing desirable dynamic features,
usually presented in the form of (5). This allows one to attract different ideas for their
formalization using Bellman’s theory and Zubov’s optimal damping concept [1-3, 9-11].
These approaches are closely connected, but the latter has certain advantages related to
the practical requirements for the dynamic features of a closed-loop connection.

First, the numerical solution of the OD problem is considerably simpler than that
of the MIF problem. This factor facilitates the fair formalization of functional choice
considering the optimal damping concept. This is one of the main issues discussed above,
which is based on the fundamental coincidence of the mention problems’ solutions under
the execution of certain conditions.

This paper focused on two principal questions: the construction of an approximate
solution for the MIF problem using the OD approach, and the choice of the integral
items of the functional to be damped. Both the questions are oriented toward the initial
requirements for the dynamic features of stability and performance. The corresponding
numerical methods for controllers synthesis are proposed considering the aforementioned
questions. Finally, the proposed approach was illustrated using a simple numerical example
of approximate optimal controller synthesis.

The results of the above investigations could be expanded to consider the robust
features of the optimal damping controller and to take into account transport delays in
both the input and the output of a controlled plant. The obtained results are intended for
application in studies for the multipurpose control of marine vehicles [21-24].
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O mpakTu4eckoMm IpuMeHeHuu 3yOOBCKOTrO IIPUHIUIIA
OIITUMAJIBHOTO JAeMII(pUpPpOBaAHUA"

E. U. Bepemeti

Cankr-IleTepbypreckuit rocymapcrBeHubiit yuusepcuret, Poccuiickas Penepanus,
199034, Caukr-IleTepOypr, YHuBepcuTeTckas Hab., 79

Hast murupoBauusi: Veremey E. I. On practical application of Zubov’s optimal damping con-
cept // Becruuk Cankr-IlerepGyprckoro yHusepcurera. llpukiajnas maremaruka. WHpopMma-
tuka. [Iporeccer ynpasmenns. 2020. T. 16. Bem. 3. C. 293-315.
https://doi.org/10.21638 /11701 /spbul0.2020.307

Jannasi paboTa IIpeJiCTaBiIsieT HEKOTOPbIE HOBBIE UJIEH, CBSI3aHHbIE C CHHTE30M HEJIMHEHHBIX
1 HEaBTOHOMHBIX 3aKOHOB yIIPaBJIeHNUsl, 6a3UPYIONUXCs HA IIPUMEHEHNUN OIITUMU3AIMOHHOTO
nonxoza. MiMeeT MecTo cyniecTBeHHAsl CBS3b MEXK Ly TPAKTUIeCKUMU TpeboBaHusaMu 1 DyHK-
[IMOHAJIOM, KOTOPBIH IOJJIEZKUT MUHUMU3AIUU. DT CBA3b OIPEJIEJIsieT OCHOBY IIPEJIaraeMbIX
meros0B. O6cyxtenne cOKyCHPOBAHO Ha IIPUHIIMIIE OIITHUMAJIBLHOIO JAeMII(PUPOBAHUST, KOTO-
potit 6611 BrepBbie npepgoxked B. U. 3yboseim B Hagage 1960-x romos. llerTpanbuoe BHE-
MaHMe VJ/EJIEHO Pa3JINYHBIM COBPEMEHHBIM ACIHEKTaM I[PAKTHYECKOrO IIPUMEHEHUsS] TEOPUHN
ONITUMAJILHOIO JieMIIUPOBaHNs. YapeHue CIAeJIaHO Ha CIEIMaJIbHOM Bbibope (byHKIMOHA-
Jla, TIOJJIEXKAINETO JIeMII(pPUPOBAHUIO, JJIsi OOECIEeYEHUs KEeJAEMbIX CBOMCTB yCTOWYMBOCTH
U KadecTBa 3aMKHYTOH cucrembl. PaborocrocobHOCTh 1 3 (MEKTUBHOCTD MIPEJIJIOKEHHOIO
[TOJIXO/A IIOJTBEPKIEHBI MILIIOCTPATUBHBIM YHCJIOBBIM IIPUMEDPOM.

Kmouesvie caosa: obpaTHasi CBsI3b, yCTOWIUBOCTD, MEMII(PUPYIOIIee yIpaBaeHne, OyHKINO0-
HaJI, ONTUMHU3AIHSI.
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