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Abstrat One lass of di�erential games with random duration is onsid-

ered. It is assumed that duration of the game is a random variable with

values from a given �nite interval. The game an be interrupted only on this

interval. Methods of onstrution feedbak and open-loop Nash equilibria

for suh games are proposed.
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1. Introdution

Di�erential game theory is ommonly used to desribe realisti on�it-ontrolled

proesses with many partiipants. When modeling eonomi or environmental pro-

esses, many researhers turn to the use of di�erential games with �nite or in�nite

duration. However, the reently popular diretion of studying games with random

duration allows to simulate a proess lose to the real one, in whih the terminal

time of the game is not known in advane, but is an implementation of some random

variable (Petrosjan and Murzov, 1966; Petrosjan and Shevkoplyas, 2000; Shevko-

plyas, 2014). For the �rst time the lass of di�erential games with random duration

was introdued in (Petrosyan and Murzov, 1966) for a partiular ase of a zero-sum

pursuit game. Later, the general formulation of the di�erential games with random

duration was given in (Petrosyan and Shevkoplyas, 2000).

The aim of this paper is to investigate the ase when the ending of the game is

possible not over the whole period of the game, but only at a ertain given interval.

Players know that the game will not be interrupted until a ertain point. After this

moment, the game may abruptly end. Consideration of the problem in this vein

leads to the fat that payo�s of players an be represented as sums of integrals with

di�erent but adjoint time intervals. The paper provides ways to onstrut open-loop

and feedbak Nash equilibria in this lass of games.

The paper is strutured as follows. In setion 2 the problem formulation is given.

One method of onstrution feedbak Nash equilibrium is onsidered in setion 3.

This method is applied to an illustrative example in setion 3.1. The onstrution

of Nash equilibrium in open-loop strategies is investigated in setion 4. In setion

4.1 open-loop Nash equilibrium strategies are studied for the example from se. 3.1.

⋆
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2. Problem Formulation

Consider di�erential n-player game Γ (x0, T − t0) de�ned on the interval [t0, T ]
with the system dynamis desribed by di�erential equations:

ẋ(t) = g(t, x, u),
x(t0) = x0,
x ∈ Rl, u = (u1, . . . , un), ui = ui(t) ∈ Ui ⊂ ompRk.

(1)

The game Γ (x0, T − t0) starts from initial state x0 at the time instant t0. But
duration of the game is not �xed. We assume that T is a random variable with

some predetermined distribution law. Let a umulative distribution funtion has

the form:

F (τ) =





0, for τ < T − δ,
ϕ(τ), for T − δ ≤ τ < T + δ,
1, for τ ≥ T + δ,

(2)

where ϕ(τ) is assumed to be an absolutely ontinuous nondereasing funtion sat-

isfying the following onditions: ϕ(T − δ) = 0, ϕ(T + δ) = 1. This means that the

game ould end only during the period [T − δ, T + δ], where δ ∈ [t0, T ].
The expeted payo� of player i ∈ N in Γ (x0, T − t0) is de�ned in the following

way:

Ki(x0, T − t0;u) =

T−δ∫

t0

hi[s, x(s), u]ds+

T+δ∫

T−δ

τ∫

T−δ

hi[s, x(s), u]dsdF (τ). (3)

Aording to (Gromova and Tur, 2017), where the transformation proedure of

the double integral funtional and its redution to a single integral is desribed, the

expeted payo� of player i ∈ N an be represented in the form:

Ki(x0, T − t0;u) =

T−δ∫

t0

hi[s, x(s), u]ds+

T+δ∫

T−δ

hi[s, x(s), u](1− F (s))ds. (4)

And the expeted payo� of player i in subgame Γ (x(t), T − t), starting at the

moment t from x(t) is:

Ki(x(t), T − t;u) =

=





T−δ∫
t

hi[s, x(s), u]ds+
T+δ∫

T−δ

hi[s, x(s), u](1 − F (s))ds, for t ∈ [t0, T − δ),

1
1−F (t)

T+δ∫
t

hi[s, x(s), u](1− F (s))ds, for t ∈ [T − δ, T + δ).

(5)

We assume an existene of a probability density funtion f(t) = F ′(t).

3. Feedbak Nash Equilibrium. Hamilton-Jaobi-Bellman Equations

One of the priniples of optimality in non-ooperative di�erential games is a

feedbak Nash equilibrium. Feedbak Nash equilibrium strategies depend only on
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the time variable and the urrent value of the state, but not on memory (inlud-

ing the initial state x0) (Ba�sar and Olsder, 1995). We use the su�ient onditions

of Hamiltom-Jaobi-Bellman equations in order to �nd a feedbak Nash equilib-

rium. The Hamilton-Jaobi-Bellman equations for di�erential games with random

duration was proposed in (Shevkoplyas, 2014). Here this method is adapted for the

problem under onsideration.

In the framework of this approah the Bellman funtion V i(t, x) is de�ned as

the payo� of player i in feedbak Nash equilibrium uNE(t, x) in the subgame of

Γ (x(t), T − t) starting at the instant t ∈ [T −δ, T+δ] in the state x(t). And W i(t, x)
is a payo� of player i in feedbak Nash equilibrium uNE(t, x) in the subgame of

Γ (x(t), T − t) starting at the instant t ∈ [t0, T − δ] in the state x(t).
The following theorem takes plae:

Theorem 1. uNE(t, x) is the Nash equilibrium in feedbak strategies in the dif-

ferential game Γ (x0, T − t0), if there exist ontinuously di�erentiable funtions

V i(t, x) : [T − δ, T + δ]×Rl → R, i ∈ N and W i(t, x) : [t0, T − δ]×Rl → R, i ∈ N ,

satisfying the following system of partial di�erential equations:

ϕ̇(t)
1−ϕ(t)V

i(t, x)− V i
t (t, x) = max

φi

{
hi(t, x, uNE

−i ) + V i
x(t, x)g(t, x, u

NE
−i )

}
=

= hi(t, x, uNE) + V i
x(t, x)g(t, x, u

NE), i ∈ N,

V i(T + δ, x(T + δ)) = 0, i ∈ N,

−W i
t (t, x) = max

φi

{
hi(t, x, uNE

−i ) +W i
x(t, x)g(t, x, u

NE
−i )

}
=

hi(t, x, uNE) +W i
x(t, x)g(t, x, u

NE) i ∈ N,

W i(T − δ, x(T − δ)) = V i(T − δ, x(T − δ)), i ∈ N,

(6)

where uNE
−i (φi) = (uNE

1 , . . . , φi, . . . , u
NE
n ).

Proof. De�ne I1 = [t0, T − δ] and I2 = [T − δ, T + δ].
First, onsider our problem on the segment I2. The payo� of player i ∈ N on I2

is given by

KI2
i (x(t), T − t;u) =

1

1− F (t)

T+δ∫

t

hi[s, x(s), u](1− F (s))ds, for t ∈ [T − δ, T + δ).

(7)

The Bellman funtion V i(t, x) is de�ned as the payo� of player i in feedbak

Nash equilibrium uNE(t, x) in the subgame of Γ (x(t), T − t) starting at the instant
t ∈ [T − δ, T + δ] in the state x(t).

Aording to (Shevkoplyas, 2014) HJB equations for �nding Nash equilibrium

in the game with payo�s of the form (7) are as follows:

ϕ̇(t)
1−ϕ(t)V

i(t, x)− V i
t (t, x) = max

φi

{
hi(t, x, uNE

−i ) + V i
x(t, x)g(t, x, u

NE
−i )

}
=

= hi(t, x, uNE) + V i
x(t, x)g(t, x, u

NE), i ∈ N,

V i(T + δ, x(T + δ)) = 0, i ∈ N,

(8)
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where uNE
−i (φi) = (uNE

1 , . . . , φi, . . . , u
NE
n ).

Consider now our problem starting at some moment t ∈ I1. The payo� of player

i ∈ N is:

KI1
i (x(t), T − t;u) =

T−δ∫

t

hi[s, x(s), u]ds+ Vi(T − δ, x(T − δ)), (9)

where Vi(T − δ, x(T − δ)) � the payo� of player i in Nash equilibrium for the period

I2. The value Vi(T − δ, x(T − δ)) is onsidered as a terminal payo� of player i for
the period I1. So we get the seond part of (6):

−W i
t (t, x) = max

φi

{
hi(t, x, uNE

−i ) +W i
x(t, x)g(t, x, u

NE
−i )

}
=

hi(t, x, uNE) +W i
x(t, x)g(t, x, u

NE) i ∈ N,

W i(T − δ, x(T − δ)) = V i(T − δ, x(T − δ)), i ∈ N,

(10)

where uNE
−i (φi) = (uNE

1 , . . . , φi, . . . , u
NE
n ).

3.1. Di�erential Game of Investment

Consider an illustrative example. Assume that there are n individuals who invest

in a publi stok of knowledge (Dokner et al., 2000). Let x(t) be the stok of

knowledge at time t and ui(t, x) � the investment of agent i in publi knowledge at

time t. The stok of knowledge evolves aording to the aumulation equation:

ẋ(t) = u1(t) + u2(t) + . . .+ un(t), x(0) = x0. (11)

If eah agent derives linear utility from the onsumption of the stok of knowl-

edge, the expeted payo� of player i ∈ N is given by

Ki(x0, T ;u) = E

∫ T

0

(
qix(t) − riu

2
i (t)
)
dt. (12)

Assume that the random variable T distributed uniformly on [T − δ, T + δ]. The
umulative distribution funtion has the form:

F (τ) =





0, for τ < T − δ,
t−T+δ

2δ , for T − δ ≤ τ < T + δ,
1, for τ ≥ T + δ.

(13)

3.2. Feedbak Nash Equilibrium

To �nd the feedbak Nash equilibrium in the subgame, starting at the time

instant T − δ from the state x(T − δ), onsider the �rst part of HJB equations (6):

1
T+δ−t

V i(t, x) − V i
t (t, x) = max

ui

(qix− riu
2
i + V i

x(t, x)(ui +
∑
j 6=i

uNE
j )),

Vi(T + δ, x(T + δ)) = 0, i ∈ N.
(14)

Bellman funtion is de�ned in the form: V i(t, x) = ai(t)x+bi(t). The maximiza-

tion problem in (14) yields a strategy for player i:

uNE
i (t, x) =

V i
x(t, x)

2ri
=
ai(t)

2ri
.
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Substituting it into (14) we have the following system of di�erential equations for

ai(t):

ȧi(t) =
1

T + δ − t
ai(t)− qi, i ∈ N, (15)

ai(T + δ) = 0.

Then

ai(t) =
qi
2
(T + δ − t).

For bi(t) we have:

ḃi(t) =
1

T + δ − t
bi(t)−

a2i
4ri

−
∑

i6=j

aiaj
2rj

, i ∈ N, (16)

bi(T + δ) = 0.

So we get

bi(t) =
mi

4
(T + δ − t)3, i ∈ N, (17)

where mi =
q2i
16ri

+
∑
i6=j

qiqj
8rj

.

Then the feedbak Nash equilibrium strategies on I2 are:

uNE
i (t, x) =

qi
4ri

(T + δ − t), i = 1 ∈ N, t ∈ [T − δ, T + δ].

The payo� of player i ∈ N in Nash equilibrium for the period I2 looks as follows:

Vi(T − δ, x(T − δ)) = qiδx(T − δ) + 2miδ
3, i ∈ N. (18)

Then, the bound ondition for the problem on I1 is:

Wi(T − δ, x(T − δ)) = qiδx(T − δ) + 2miδ
3, i ∈ N.

To �nd the feedbak Nash equilibrium in the subgame, starting at the time

instant t0 from x0 and ending at T − δ in x(T − δ), onsider the system of HJB

equations:

−W i
t (t, x) = max

ui

(qix− riu
2
i +W i

x(t, x)(ui +
∑

j 6=i

uNE
j )), i ∈ N, (19)

W i(T − δ, x(T − δ)) = qiδx(T − δ) + 2miδ
3, i ∈ N.

Bellman funtion is de�ned in the form: W i(t, x) = ci(t)x + di(t). The maxi-

mization problem in (19) yields a strategy for player i: uNE
i (t, x) =

W i
x(t,x)
2ri

= ci(t)
2ri

.
Substituting it into (19) we have the following system of di�erential equations for

ci(t):
ċi(t) = −qi, i ∈ N (20)

ci(T − δ) = qiδ.

Then

ci(t) = qi(T − t).
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For di(t) we have:

ḋi(t) = − c2i
4ri

−
∑

i6=j

cicj
2rj

, i ∈ N, (21)

di(T − δ) = 2miδ
3.

We get

di(t) =
4mi(T − t)3

3
+

2miδ
3

3
, i ∈ N, (22)

where mi =
q2i
16ri

+
∑
i6=j

qiqj
8rj

.

Then the feedbak Nash equilibrium strategies in the game Γ (x0, T − t0) are:

uNE
i (t) =

{ qi
2ri

(T − t), i = 1 ∈ N, t ∈ [t0, T − δ],
qi
4ri

(T + δ − t), i = 1 ∈ N, t ∈ [T − δ, T + δ].

4. Open-Loop Nash Equilibrium

The seond part of the paper is devoted to onstrution of open-loop Nash

equilibrium for the game under onsideration, whih depends only on the time

parameter t and the initial state of the system (Ba�sar and Olsder, 1995).

The method we introdue here is based on Pontryagin's maximum priniple

(Pontryagin et al., 1963).

We will �nd the solution on two intervals I1 = [t0;T − δ] and I2 = [T − δ;T + δ].
The boundary onditions at time T − δ are onsidered as parameters. We will �nd

their values at the end of the solution from the maximization ondition.

Let's start with studying the game at the period I1.

Eah player i ∈ N tries to maximize

T−δ∫
t

hi[s, x(s), u]ds for dynami (1). The

problem will be solved with two �xed ends: x(t0) = x0 and x(T − δ) = x1. Intro-
due x1 as a parameter of the solution (we will see that x1 is indeed a funtion

of n parameters). The use of suh a method for ooperative di�erential games was

proposed in (Gromov and Gromova, 2017), (Gromova and Magnitskaya, 2019). Here

we adapt it for non-ooperative games.

On the interval I1 the Hamiltonian for player i is:

Hi(x, u
NE
−i , ψ) = ψig(t, x, u

NE
−i ) + hi(t, x, uNE

−i ), i ∈ N. (23)

The equilibrium strategies uNE
i are found from the �rst order extremality on-

dition:

∂Hi(x, u
NE
−i , ψ)

∂ui
= 0.

The adjoint equations are:

∂ψi

∂t
= −∂Hi(x, u

NE , ψ)

∂x
. (24)
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We introdue the boundary onditions ψi(T − δ) = zi as parameters of the solu-

tion. Let uNE
I1

(s, z1, . . . , zn) � equilibrium strategies on I1. And the equilibrium tra-

jetory xNE
I1

(t, z1, . . . , zn) we an found from (1). And x1 = xNE
I1

(T − δ, z1, . . . , zn).
Now turn to studying the solution on the seond interval I2.

Player i maximizes

T+δ∫

T−δ

hi[s, x(s), u](1 − F (s))ds for dynami (1) with initial

ondition x(T − δ) = x1 = xNE
I1

(T − δ, z1, . . . , zn), and with a loose right end.

The Hamiltonian for player i is:

Hi(x, u
NE
−i , ψ) = ψig(t, x, u

NE
−i ) + (1 − F (t))hi(t, x, uNE

−i ). (25)

To �nd equilibrium strategies uNE
i we use the neessary ondition for the max-

imum:

∂Hi(x, u
NE
−i , ψ)

∂ui
= 0.

The adjoint equations are:

∂ψi

∂t
= −∂Hi(x, u

NE , ψ)

∂x
, (26)

with transversality onditions

ψi(T + δ) = 0.

Let uNE
I2

(t, z1, . . . , zn) � equilibrium strategies on I2 and xNE
I2

(t, z1, . . . , zn) -

equilibrium trajetory on I2.
On the last step of our solution we �nd the value of parameters z∗1 , . . . , z

∗
n in the

following way:

z∗i = argmax
zi

(
T−δ∫

t0

hi[s, xNE
I1 (s, z∗−i), u

NE
I1 (s, z∗−i)]ds+

+

T+δ∫

T−δ

hi[s, xNE
I2 (s, z∗−i), u

NE
I2 (s, z∗−i)](1− F (s))ds

)
, (27)

where z∗−i = (z∗1 , . . . , z
∗
i−1, zi, z

∗
i−1, . . . , z

∗
n).

Finally we get equilibrium strategies:

uNE
i (t) =

{
uNE
i (t, z∗1 , . . . , z

∗
n)I1 , t ∈ [t0, T − δ],

uNE
i (t, z∗1 , . . . , z

∗
n)I2 , t ∈ [T − δ, T + δ].

(28)

The method of onstruting strategies (28) ensures that they are equilibrium

strategies.
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4.1. Di�erential Game of Investment. Open-Loop Nash Equilibrium

Consider again the example suggested in setion 3. Find the solution in the lass

of open-loop strategies.

Intervals I1
Let's start with studying the game at the period I1.

Payo� of player i on I1 is

T−δ∫
0

(qix(t)− riu
2
i (t))dt for dynami (1).

The Hamiltonian for player i is:

Hi(x, u, ψ) = ψi(ui +
∑

j 6=i

uNE
j )) + qix(t)− riu

2
i (t). (29)

To �nd equilibrium strategies uNE
i we use the neessary ondition for the max-

imum:

∂Hi

∂ui
= ψi − 2riui(t) = 0,

uNE
i (t) =

ψi

2ri
.

The Hessian matrix is negative de�nite hene we onlude that Hamiltonian Hi

is onave w.r.t. ui, t ∈ [0, T − δ],

∂2Hi

∂u2i
= −2ri < 0.

The adjoint equations are as follows:

∂ψi

∂t
= −∂Hi(x, u, ψ)

∂x
= −qi. (30)

We introdue the boundary onditions ψi(T−δ) = zi, i = 1, . . . , n as parameters

of the solution.

Hene,

ψi(t) = zi − qit,

uNE
i (t, z)I1 =

zi − qit

2ri
. (31)

The dynami is:

ẋ(t) =

n∑

i=1

ui(t) =

n∑

i=1

zi − qit

2ri
= z − tq̃,

where z =
∑n

i=1
zi
2ri

, q̃ =
∑n

i=1
qi
2ri
.

We use the boundary ondition:

x(0) = x0. (32)

Then the optimal trajetory for the interval I1:

xNE
I1 (t, z) = zt− q̃t2

2
+ x0. (33)
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Then xNE
I1

(T − δ, z) = z(T − δ)− q̃(T−δ)2

2 + x0.
Intervals I2
Now turn to studying the solution on the seond interval I2.

Player i maximizes

T+δ∫

T−δ

(1− t−T+δ
2δ )(qix(t)−riu2i (t))dt for dynami (1) and initial

ondition x(T − δ) = xNE
I1

(T − δ, z1, . . . , zn).
The Hamiltonian for player i is:

Hi(x, u, φ) = φi(ui +
∑

j 6=i

uNE
j )) + (1− t− T + δ

2δ
)(qix(t)− riu

2
i (t)). (34)

To �nd equilibrium strategies uNE
i we use the neessary ondition for the max-

imum:

∂Hi

∂ui
= φi − 2(1− t− T + δ

2δ
)riui = 0,

uNE
i (t)I2 =

φiδ

(δ − t+ T )ri
.

The Hessian matrix is negative de�nite hene we onlude that Hamiltonian Hi

is onave w.r.t. ui, t ∈ [T − δ;T + δ],

∂2Hi

∂u2i
= −2(1− t− T + δ

2δ
)ri < 0.

The adjoint equations are:

∂φi
∂t

= −∂Hi(x, u, φ)

∂x
= −(1− t− T + δ

2δ
)qi, (35)

with transversality onditions:

φi(T + δ) = 0, i ∈ N. (36)

We get the solution of (35)-(36):

φi = −qi(δ + T )(t− T + δ)

2δ
+
qi(t

2 − (T − δ)2)

4δ
+ qiδ. (37)

To get the optimal trajetory substitute (37) into (11):

ẋ(t) =
δ

t− T + δ

n∑

i=1

φi
ri
.

The boundary ondition is the following: x(T − δ) = xNE
I1

(T − δ, z1, . . . , zn) =

z(T − δ)− q̃(T−δ)2

2 + x0.
Then the optimal trajetory is:

xNE
I2 (t) = z(T − δ)− q̃(T − δ)2

2
+ x0 + C(t), (38)

where C(t) is an expression independent of z1, . . . , zn.
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Optimal strategies on I2 have the form:

uNE
i (t)I2 = (−qi(δ + T )(t− T + δ)

2δ
+
qi(t

2 − (T − δ)2)

4δ
+ qiδ)

δ

(δ − t+ T )ri
=

=
qi(T + δ − t)

4ri
. (39)

Intervals I1, I2
We �nd z1, . . . , zn from the maximization ondition of the total payo� in the interval

[0, T + δ], i.e.

z∗i = argmax
zi

Ki(0, x0, u
NE(t, z∗−i)),

aording to the (33), (31), (38), (39). Substituting (33), (31), (38), (39) to the (27),

we get:

T−δ∫

0

(qix
NE(t)I1 − riu

NE
i (t)2I1)dt+

T+δ∫

T−δ

(1− t− T + δ

2δ
)(qix

NE(t)I2 − riu
NE
i (t)2I2 )dt =

=
qiz(T − δ)2

2
− z2i (T − δ)

4ri
+
qizi(T − δ)2

4ri
+ qiz(T − δ)δ +B(T , δ), (40)

where B(T , δ) is an expression independent of z1, . . . , zn.
To �nd z∗i we use the neessary ondition for the maximum:

∂Ki

∂zi
= 0, i = 1, . . . , n.

Solving

qi(T − δ)2

4ri
− 2zi(T − δ)

4ri
+
qi(T − δ)2

4ri
+
qi(T − δ)δ

2ri
= 0, i = 1, . . . , n,

we have:

z∗i = qiT .

Finally, we get

uNE
i (t)I1 =

qi(T − t)

2ri
, t ∈ [0, T − δ],

uNE
i (t)I2 =

qi(T + δ − t)

4ri
, t ∈ [T − δ, T + δ].

It an be noted, that in the game under onsideration open-loop and feedbak

equilibrium strategies oinide. This is also harateristi of lassial di�erential

games with a linear struture.

Note also that lim
δ→0

uNE
i (t) = qi(T−t)

2ri
, and these are Nash equilibrium strategies

in the di�erential game with presribed duration T − t0.
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4.2. Numeri Example

Consider the previous example with numeri parameters.

Let n = 3, T = 10, δ = 3, q1 = 4, q2 = 3, q3 = 6, r1 = 2, r2 = 1, r3 = 5, x0 = 20.
Consequently:

xNE
I1 (t) =

−31t2

20
+ 31t+ 20,

uNE
1 (t)I1 = 10− t,

uNE
2 (t)I1 = 15− 3t

2
,

uNE
3 (t)I1 = 6− 3t

5
, t ∈ [0, 7),

xNE
I2 (t) =

−31t2

40
+

403t

20
+ 57.975,

uNE
1 (t)I2 =

13

2
− t

2
,

uNE
2 (t)I2 =

39

4
− 3t

4
,

uNE
3 (t)I2 =

39

10
− 3t

10
, t ∈ [7, 13].
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Fig. 1. Nash equilibrium trajetory
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Fig. 2. Equilibrium strategy for player 1

5. Conlusion

The speial lass of di�erential games with random duration is investigated.

The method of onstrution feedbak Nash equilibrium based on Hamilton-Jaobi-

Bellman equations is proposed. The method of onstrution open-loop Nash equilib-

rium based on Pontryagin's maximum priniple is studied. An illustrative example

demonstrating both of two methods is onsidered. The numerial example is given.

The results are drawn.
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Fig. 3. Equilibrium strategy for player 2

0 2 4 6 8 10 12 14

0

2

4

6

t

u
3

u
N E
3 (t)I 1
u
N E
3 (t)I 2

Fig. 4. Equilibrium strategy for player 3
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