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1. Introdution

Dynami ontrolled proesses are widely found in surrounding life: in engi-

neering, business, eonomis, mediine, soial hanges, tra�, eduation, et. See,

for example, (Bellman, 1957; 8; Leitmann, 1962; Krasovskii, 1968; Mihel, 1977;

Petrosjan and Zen kevih, 1996). Importane of management for these proesses

lead to the need to study and solve not only diret ontrol problems aimed at

onstruting ontrols that optimize quality riteria. For prediting, planning and

deision making in the future, it is important also to analyse and solve inverse

problems direted on ontrol reonstrution and based on inaurate measurements

of realized motions. See, (Sabatier, 2000; Osipov et al., 2011; D'Autilia et al., 2017;

Liu et al., 2018), where many methods were suggested to solve di�erent inverse

problems. The methods applied ideas and results of algebra, geometry, funtional

analysis, the theory of approximations, the theory of perturbations and so on. But

reonstrution problems are still atual and many new applied inverse problems

require new e�etive methods.

It should be underlined the approah suggested by Yu.S. Osipov and A.V. Krya-

zhimskii (Kryazhimskii and Osipov, 1984, Osipov and Kryazhimskii, 1995). It sour-

es in the theory of optimal feedbaks (Krasovskii and Subbotin, 1988) developed

by N.N. Krasovskii's shool. The approah is more lose to the presented below one.

It uses the method of extreme aiming to motions of a guide model, whose dynamis

opy dynamis of the original ontrolled system. So, this approah to solution of

inverse problems appeals a oupled dynami system: the original dynami system

and a similar guide system.

The presenting method was suggested in (Subbotina and Tokmantsev, 2013;

Subbotina et al., 2015). There was used a new variational approah based on solu-

tions of auxiliary problems of alulus of variation with integral regularized disrep-

any funtionals. Aording to neessary optimality onditions in these variational

problems, a oupled system is also introdued: the original system and an addi-

tional system of onjugate variables. The key new feature of the approah is that
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the disrepany is onave-onvex. This harater of disrepany provides osilla-

tions motions of the reonstruted system around inaurate measurements of the

real states of ontrolled system.

At �rst papers this approah was developed for solving inverse problems at the

end of the ontrolled proess by the use a posteriori information about history

of measurements of states (Subbotina and Krupennikov, 2017; Krupennikov, 2018;

Subbotina and Krupennikov, 2018). Now the same ideas are developed to solve dy-

nami reonstrution problems in real time.

Note, that both mentioned above approahes an be also onsidered as develop-

ments of Tikhonov regularization method (Tikhonov, 1963).

The paper is organized as follows. The setion Statement ontains desription of

a ontrol reonstrution problem (CRP): ontrolled dynamis, inorret measure-

ments and main hypotheses on input data, and also a de�nition of solution of CRP.

The next setion Auxiliary Construtions ontains statement of auxiliary problems

of alulus of variations (CVP) and neessary optimality onditions in CVP. An al-

gorithm of ontrol reonstrution by the use CVP is desribed and disussed in the

setion Solutions CRP. Illustrative examples of numerial solutions of ontrol reon-

strution problems in maroeonomis and navigation are exposed at the setion

Examples.

2. Statement

We onsider ontrol systems with dynamis of the form

ẋ(t) = G(x(t), t)u(t), t ∈ [0, T ]. (1)

where x(t) ∈ Rn
are state variables. The admissible ontrols u(·) : [0, T ] → Rm

,m ≤
n, are pieewise ontinuous funtions with �nite number of points of disontinuity,

and they satisfy the following geometri restritions.

u(t) ∈ U, t ∈ [0, T ], (2)

where U = {ai ≤ ui ≤ bi, i = 1, . . . ,m} ⊂ Rm
.

It is assumed that a trajetory x∗(·) : [0, T ] → Rn
of system (1) is realizing in

real time. Disrete measurements x(tk, δ) of this basi trajetory x
∗(·) beome to

be known in real time at instants tk.
Measurements x(tk, δ) = x̂δ(tk) of the base trajetory x

∗(·) satisfy the relations

‖x̂δ(tk)− x∗(tk)‖ ≤ δ, (3)

t0 = 0; tk = k∆t; k = 1, 2, . . . , N ; tN = T.
We put

δ ∈ (0, δ∗], ∆t ∈ (0, ∆∗]. (4)

We hoose a onstant K1 > 0 and onstrut step-by-step, for instants tk, k =
1, . . . , N , ontinuous interpolations yδ(t) : [0, T ] → Rn

of measurements ŷδ(tk),
k = 1, . . . , N , whih are twie di�erentiable funtions on eah subinterval [tk−1, tk],
and satisfy the estimations:

‖yδ(t)‖ ≤ K1, ‖dy
δ(t)

dt
‖ ≤ K1 ∀t ∈ [0, T ]; (5)
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‖d
2yδ(t)

dt2
‖ ≤ K1, ∀t ∈ [0, T ] \Θδ, (6)

where the sets Θδ
have measures βδ = β(Θδ), and βδ → 0, as δ → 0. and the

following relations are true:

‖yδ(t)− x∗(t)‖ ≤ 2δ, t ∈ [0, T ].

Note, that we an do it as apply splines with nodes de�ned by yδ(tk).
The problem is: to reonstrut in real time a ontrol generated the basi traje-

tory x∗(·) by the use of interpolations yδ(·) of inorret measurements x̂δ(tk).

2.1. Hypothesis

We onsider the ontrol reonstrution problem (1)-(3) under the following as-

sumptions.

H1. Coordinates gij(t, x), i ∈ 1, n, j ∈ 1,m, of the matrix-funtion G(t, x) are
de�ned in the strip ΠT = [0, T ]× Rn

, and there are no osillating omponents of

gij(t, x); the funtions gij(t, x), i ∈ 1, n, j ∈ 1,m, are ontinuously di�erentiable

in the domain (0, T )×Rn
, and their partial derivatives

∂gij(t,x)
∂t ,

∂gij(t,x)
∂xk

, k ∈ 1, n

are extendable on any ompat set D ⊂ ΠT = [0, T ]×Rn
.

H2. There exist: a positive number d0, and suh a ompat set D0 ⊂ ΠT

ontaining the graph of the basi trajetory x∗(·) that

{[0, T ]× {x ∈ Rn : ‖x‖ ≤ d0}}
⋂
D0 = ∅, (7)

and the rank of the m × m�matrix {gi,j(t, x), i, j ∈ 1,m} is equal to m for all

(t, x) ∈ D0.

H3 For any ∆t ∈ (0, ∆], there exist suh numbers δ0 ∈ (0, δ∗], and α∗ > 0
satis�ed the relations

2δ0 ≤ K1(∆t)
2, 4δ0 + α∗ < d0, (8)

where K1 > 0 is de�ned by the set D0 and assumptions H.1�H.2., that

Ωδ = {(t, x) : ‖x− yδ(t)‖ ≤ 4δ + α∗, t ∈ [t0, T ]} ⊂ D0, ∀δ ∈ (0, δ0]. (9)

2.2. Statement of Control Reonstrution Problem

Fix parameters ∆t ∈ (0, ∆∗], δ ∈ (0, δ0] and the an interpolation yδ(·) of urrent
disrete inorret measurements,

We onsider the following Control Reonstrution Problem (CRP).

Problem 1. Find an admissible ontrol uδ(·) generating the trajetory xδ(·) of

system (1) step-by-step on the intervals [tk−2, tk], k = 2, . . . , N , to satisfy, at the

end, the onditions:

• C1.
(t, xδ(t)) ∈ D0, ∀t ∈ [0, T ], (10)

• C2.
lim

δ→0,∆t→0
‖xδ(·)− x∗(·)‖C = 0, (11)

• C3.
lim

δ→0,∆t→0
‖uδ(·)− u∗(·)‖L2 = 0. (12)
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Here the symbols ‖x(·)‖C and ‖u(·)‖L2 means the norms in the spaes C([0, T ], Rn)
and L2([0, T ], R

m). The "normal" ontrol u∗(·) has the minimal norm in L2 among

all admissible ontrols generating x∗(·). Note, that the ontrol reonstrution prob-

lem (1-(3) has the unique "normal" ontrol under assumptions H1−−H3.

3. Auxiliary Construtions

We suggest to use for solutions of CRP the following auxiliary variational prob-

lems.

3.1. Calulus of Variations Problems

We introdue a modi�ed dynamial system of the form

dx(τ)

dτ
= Ĝ(τ, x(τ))v(τ), τ ∈ [tk−2, tk], (13)

where ontrols v = (u1, . . . , um, vm+1, . . . , vn) ∈ Rn
and n × n - matrix Ĝ(t, x) is

onstruted as

ĝi,j(τ, x) =





gi,j(τ, x), i ∈ 1, n, j ∈ 1,m,

0, i ∈ 1,m, j ∈ m+ 1, n,

0, i ∈ m+ 1, n, j ∈ m+ 1, n, i 6= j

ε, i ∈ m+ 1, n, j ∈ m+ 1, n, i = j.

(14)

where ε is a small positive parameter of approximation.

Fix parameters ∆t ∈ (0, ∆], δ ∈ (0, δ0], α > 0, ε > 0. For any urrent instant

tk, k ≥ 2, let us de�ne an interpolation yδ(t), t ∈ [tk−2, tk] of measurements and

introdue the following ost disrepany funtional

Iδ,α(x(·), u(·)) =
tk∫

tk−2

[‖x(t)− yδ(t)‖2
2

− α2‖v(t)‖2
2

]
dt, (15)

on the set F of pairs of ontinuously di�erentiable funtions {x(·) : [tk−2, tk] →
Rn, u(·) : [tk−2, tk] → Rn}. Here α > 0 is a small regularising parameter.

We onsider pairs of ontinuously di�erentiable funtions (x(·) : [tk−2, tk] → Rn
,

v(·) : [tk−2, tk] → Rn) ∋ F that satisfy di�erential equations (13) and the following

terminal onditions

x(tk−2) = yδ(tk−2), ẋ(tk−2) = ẏδ(tk−2). (16)

We onsider the following auxiliary Calulus of Variations Problem (CVP).

Problem 2. Find a pair of funtions {xδ,α(·), vδ,α(·)} ∈ F satis�ed (13), (16) and

provided a loal minimum for the ost disrepany funtional (16).
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3.2. CVP Neessary Optimality Conditions

Neessary optimality onditions in CVP (13),(15),(16) provide the following

Hamiltonian system:

ẋ(t) = −(1/α2)Ĝ(x(t), t)ĜT (x(t), t)s(t),

ṡi(t) = xi(t)− yδi (t)+

+(1/α2)sT (t) ∂Ĝ
∂xi

(x(t), t)ĜT (x(t), t)s(t), i ∈ 1, n,

(17)

where the vetor s(t) is the adjoint variables vetor, the symbol T
denotes transpo-

sition, and the boundary onditions are satis�ed

x(tk−2) = yδ(tk−2), ẋ(tk−2) = ẏδ(tk−2). (18)

4. CRP Solutions

In this setion we desribe an algorithm of onstrution of CRP solution. It is a

modi�ation of an algorithm desribed and justi�ed in (Subbotina, 2019).

4.1. Guiding Dynamis

Let us onsider on the interval [tk−2, tk] the following linearized system obtained

from (17)

˙̄z(t) = −(1/α2)Qks̄(tk−2)− ẏδ(tk−2),

˙̄s(t) = z̄(t),
(19)

where z̄(t) = x̄(t)− yδi (t),

Qk = Ĝ(x̄(tk−2), tk−2)Ĝ
T (x̄(tk−2), tk−2)

and the following boundary onditions followed from (18)

z̄(tk−2) = 0, s̄(tk−2) = s̄k(tk−2) = s̄k−1(tk−2) (20)

where the upper index k means that the orresponding variable is obtained for the

CVP on interval [tk−2, tk], k = 2, . . . , N , and

s̄(t0) = −α2Q−1
0 ẏδ(t0) (21)

where Q−1
0 is the inverse matrix for the non degenerate matrix

Q0 = Ĝ(yδ(t0), t0)Ĝ
T (yδ(t0), t0).

.

4.2. Guiding Control

In problems (19)�(21), for �xed α, δ, we have obtained the guiding ontrol

vδ,α(t) = −(1/α2)ĜT (x̄δ,α(tk−2), tk−2)s̄
δ,α(t), (22)

where z̄δ,α(t), s̄δ,α(t), are solutions of system (19)�(21), t ∈ [tk−2, tk−1), x̄
δ,α(tk−2) =

z̄δ,α(tk−2) + yδ(tk−2), k = 2, . . . , N,.
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Let us introdue the ut-o� funtion

ûδ,α(t) =





[v]δ,αm (t), as [v]δ,αm (t) ∈ U ;

û ∈ argmin
u∈U

‖[v]δ,αm (t)− u‖, as [v]δ,αm (t) /∈ U,
(23)

where [v]m = {v1, . . . , vm} for v ∈ Rn, n ≥ m.

We hoose the funtions ûδ,αi (t), i ∈ 1,m, t ∈ [tk−2, tk−1], k = 2, ..., N to onsider

them as solutions of inverse Prob.1.

4.3. On Justi�ations

This algorithm of solving Prob.1 is a modi�ation and a simpli�ation of an

algorithm of solving CRP suggested and justi�ed in (Subbotina, 2019). Namely,

the new algorithm uses boundary onditions (18) for auxiliary dynamis (17). So,

we need not onstrut inverse matries Q−1
k for eah subinterval [tk−2, tk]. Thiese

proedure is made only one times (21) at the initial instant t0 . The novelity provides
also better onvergene of the method. Taking it in to aount, one an modify

shemes of proofs from (Subbotina, 2019) to get the following assertions.

Proposition 1. There exist suh parameters δ0 ∈ (0, δ∗], ε ∈ (0, ε0], α
0 = α(δ0, ∆0)

that for all ∆t ≤ ∆0, δ ≤ δ0, ε ≤ ε0, α ≤ α0
, solutions of system (1 xδ,α(·), started

at the state xδ,α(t0) = yδ(t0) and generated by the ontrol ûδ,α(t) (22), (22), are

extendable on [0, T ] and xδ,α(t) ∈ D0 .

Proposition 2. There exists the onordane of parameters ∆t, δ, α, ε , suh that

the ut-o� funtion ûδ,α(·) of the form (22), satis�es onditions C1 − −C3, when
∆t→ 0, δ → 0, α→ 0, ε→ 0.

Note, that the last oordinates vδ,αi (t), i ∈ m+ 1, N , t ∈ [tk−2, tk−1], k =
2, . . . , N in (22) satisfy the relations

‖vδ,αi (·)‖C → 0, i ∈ m+ 1, N

as ∆t→ 0, δ → 0, α→ 0, ε→ 0.

5. Examples

The following two examples illustrate simulation of solution of inverse problems

in maroeonomis and navigation by the use of the new algorithm.

5.1. Example 1. Control Reonstrutions in Maroeonomis

We onsider a model of maroeonomi proesses with dynamis

dx1(t)

dt
=
∂G(x1(t), x2(t))

∂x1
u1(t),

dx2(t)

dt
=
∂G(x1(t), x2(t))

∂x2
u2(t),

(24)

t ∈ [0, T ], T = 15, x1(·) is the prodution, x2(·) is the prodution ost, u1, u2 are

ontrols, and G(x1, x2) is the pro�t,

G(x1, x2) = x1x2(a0 + a1x1 + a2x2). (25)
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Controlling parameters u1, u2 are restrited

u21 + u22 ≤ U, (26)

where U is a positive onstant. The rate of taxation, the refunding rate and the

urreny exhange ourse are inluded in ontrolling parameters beause they de-

termine eonomial onditions for prodution ativity in Russia. This model was

suggested by E.H. Albreht

1

We use real statisti data on the work of industry of the Ural Region for the

period 1970-1984 (10000 Rubles = 1).

Table 1. The Ural region's industry during 1970-1985.

Year Gross Regional Produt x1,i Costs x2,i

1970 37.88 21.69

1971 40.63 23.70

1972 43.25 25.45

1973 46.00 27.30

1974 49.33 29.44

1975 53.04 32.16

1976 57.03 35.01

1977 59.85 36.92

1978 62.72 38.69

1979 63.45 38.76

1980 65.74 39.96

1981 65.90 39.75

1982 69.22 41.31

1983 64.52 37.86

1984 71.03 42.04

1985 74.69 45.05

We onsider ontinuous piee-wise linear interpolation of the data as the ba-

si trajetory x∗1(·), x∗2(·), whose disrete measurements on interval [0, 15] beome

known in real time at instants tk with a �xed time step ∆t < 1. A spline interpo-

lations yδ1(·), yδ2(·) of the measurements is onstruted.

The onsidering inverse problem is:

Problem 3. Reonstrut the ontrols u∗1(·), u∗2(·), generating the basi trajetory

(x∗1(·), x∗2(·)), by known urrent measurements yδ1(·), yδ2(·).
We apply the desribed above algorithm and get the following results.

We denote by the line (a) the interpolation yδ1(·), the line (b) means the reon-

struted trajetory xα,δ1 (·), the line (c) denotes the basi trajetory x∗1(·) in pitures

below. The similar results we get for variables x2 and u2. Here T = 15.

5.2. Example 2. A Flight at the Presribed Altitude

We onsider the following model of a �ight at the presribed altitude from the

book (Letov, 1969).

1

Al'brekht, E.G. Methods of onstrution and identi�ation of mathematial mod-

els for maroeonomi proesses.// Eletroni Journal "Investigated in Russia",

http://zhurnal.ape.relarn.ru/artiles/2002/005.pdf (in Russian)
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Fig. 1. reonstruted trajetory xα,δ
1

(·), δ = 0.1, α = 0.1, △t = T/50.

Fig. 2. reonstruted trajetory xα,δ
1

(·), δ = 0.1, α = 0.1, △t = T/100.

Fig. 3. reonstruted ontrol ûδ,α
1

(·), δ = 0.1, α = 0.1, ∆t = T/50.
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Fig. 4. reonstruted ontrol ûδ,α
1

(·), δ = 0.01, α = 0.01, ∆t = T/100.

The dynamis of �ight is:

dx1
dt

= x2;

dx2
dt

=
cu−Q(x2)

m(t)
;

(27)

Here x1 is the great-irle ar starting from a ertain point, x2 is the ship

veloity along its trajetory, m(t) is fuel mass, m(t) ≥ m0 > 0, ontrol u is the

fuel onsumption. The following restritions are satis�ed:

u ∈ U = {0 ≤ u ≤ β}, (28)

The symbol Q denotes the aerodynami drag de�ning via the formula (Letov, 1969)

Q = cxpS
(x2)

2

2
, (29)

the symbol S denotes the wing area, p is the the air density, known as a funtion

of altitude H at a onstant temperature, the symbol cx means the drag oe�ient,

whih is given by the known funtion of

M =
x2
a
,

where a is equal to the sound speed.

We take into onsideration the basi trajetory (x∗1(t), x
∗
2(t)) simulated by the

use of the following ontrol

u∗(t) =

{
10, 0 ≤ t < 2.5,
10 + 10 sin(t), 2.5 ≤ t ≤ 10.

(30)

Wathing the �ight (x∗1(t), x
∗
2(t)), we get in real time inaurate disrete state

measurements (x1(tj), x2(tj)) :

‖xi(tj)− x∗i (tj)‖ ≤ δ, i = 1, 2,
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t0 = 0 < t1 < t2, . . . , < tN = T, δ > 0.
Continuous interpolations (yδ1(t), y

δ
2(t)) of the measurements are onstruted as

splines.

The above presented method is applied to obtain the reonstrution uα,δ(t) of
the ontrol u∗(t) with a small delay in time ∆t in real time.

We put S = 10, p = 0.526(kg/m3), H = 8(km), M = 0.4, cx = 0.85.
Results of simulations of solution of the ontrol reonstrution problem are ex-

posed at the pitures below.

Fig. 5. interpolation of measurements yδ
1(·)

Fig. 6. di�erene between interpolation yδ
1(·) and reonstruted trajetory xα,δ

1
(·)
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Fig. 7. interpolation of measurements yδ
2(·)

Fig. 8. di�erene between interpolation yδ
2(·) and reonstruted trajetory xα,δ

2
(·)

Fig. 9. unknown ontrol u∗(·) ((a) line) and reonstruted ontrol uαδ(·) ((b) line)
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6. Conlusion

In the paper, the new method is presented to solve dynami reonstrution prob-

lems in real time using information about inaurate urrent state measurements.

This method relies on neessary optimality onditions in auxiliary variational prob-

lems with onave-onvex integral disrepany funtional. A new algorithm of nu-

merial solution of inverse problems is suggested. Results of simulation of solution

of inverse problems in maroeonomis and navigation are exposed.

Let us underline, that realization of the algorithm requires standard mathemat-

ial tools and software. The new feature of it is that the inverse matrix Q−1
0 is

alulated only at the beginning of the reonstrution proess. One needn't alu-

late matrixes Q−1
k on eah step of the reonstrution proess. This method has also

disovered properties of stability relative to perturbations to input data. All of it

makes the suggested proedure great e�etive.
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