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Abstrat In the paper authors present a new approah to determination

and omputation of a solution for di�erential games with presribed dura-

tion in the ase when players lak ertain information about the dynamial

system and payo� funtion on the whole time interval on whih the game

is played. At eah time instant players reeive information about dynami-

al system and payo� funtions, however the duration of the period of this

information is unknown and an be represented as a random variable with

known parameters. At ertain periods of time the information is updated.

A novel solution is desribed as a ombination of imputation sets in the

trunated subgames that are analyzed using Looking Forward Approah

with random horizon. A resoure extration game serves as an illustration

in order to ompare a ooperative trajetory, imputations, and imputation

distribution proedure in the game with Looking Forward Approah and

in the original game with presribed duration. Looking Forward Approah

is used for onstruting game theoretial models and de�ning solutions for

on�it-ontrolled proesses where information about the proess updates

dynamially.

Keywords: di�erential games; time-onsisteny; preditive ontrol.

1. Introdution

The ooperative di�erential game theory o�ers soially onvenient and group

e�ient solutions to di�erent deision problems involving strategi ations. One of

the fundamental elements in this theory is the formulation of optimal behavior for

players or eonomi agents. A design of ooperative strategy and the orresponding

payo�, the manner to distribute the payo� between players, and the time onsisteny

of the orresponding solution an be onsidered as main problems of this theory.

Haurie analyzed the problem of dynami instability of Nash bargaining solutions

in di�erential games (Haurie, 1976). The notion of time onsisteny of di�erential

game solutions was formalized mathematially by Petrosyan (Petrosyan, 1977). In

the present researh we examine a speial ase of ooperative di�erential games

in whih the game struture an hange or update with time (time-dependent for-

mulation) and assume that the players do not have information about the hange

of the game struture on the full time interval, but they have ertain information

⋆
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about the game struture on the trunated time interval. However, the duration

of this interval is unknown and it is supposed to be a random variable, so that

the players only know the distribution parameters. Under the information about

the game struture we understand information about the dynamial system and

payo� funtions. The interpretation an be given as follows: players have ertain

information about the game struture, but the duration of the period when this

information is orret is unknown in advane. Evidently, this trunated informa-

tion is valid only for ertain time and has to be updated. In order to de�ne the

best possible behavior for players in this type of ooperative di�erential game, it is

needed to develop a speial approah, whih we all the Looking Forward Approah

with random horizon. The approah brings up the following points: how to de�ne a

ooperative trajetory, how to de�ne a ooperative solution and alloate the oop-

erative payo�, and what properties the obtained solution will have. The objet of

this paper is to answer the stated questions. O�ered solution is based on the IDP-

ore introdued in (Petrosian et al., 2016), it is built up using the partiular lass

of imputation distribution proedures (IDP) (Petrosyan and Danilov, 1979). It is

demonstrated that newly built solution is not only time-onsistent (whih is a very

rare event in the ooperative di�erential games), but also strong time-onsistent.

The onept of the Looking Forward Approah is new in game theory espeially

in ooperative di�erential games and gives the foundation for further study of dif-

ferential games with dynami updating. At the moment there are pratially no

results in onstruting approahes for modeling on�it-ontrolled proesses where

information about the proess updates in time. In the present work we examine the

Looking Forward Approah with random horizon whih is one of the variations of

Looking Forward Approah introdued in (Petrosian, 2016a). There we supposed

that the duration of trunated information is a �xed value. To get more informa-

tion about the approah one may read the following papers: (Petrosian et al., 2017;

Yeung and Petrosian 2017; Gromova and Petrosian, 2016; Petrosian, 2016a; Petro-

sian, 2016b; Petrosian and Barabanov, 2017; Petrosian et al., 2019; Petrosian and

Kuhkarov, 2019). In paper (Petrosian, 2016a) the Looking Forward Approah was

applied to the ooperative di�erential game with �nite horizon. The notion of trun-

ated subgame, proedure for de�ning optimal strategies, onditionally ooperative

trajetory and solution onept, and solution property of ∆t-time onsisteny for a

�xed information horizon were determined. The paper (Petrosian and Barabanov,

2017) was foused on studying of Looking Forward Approah with stohasti fore-

ast and dynami adaptation in ase when information about the on�iting pro-

ess an hange during the game. In the papers (Gromova and Petrosian, 2016)

the Looking Forward Approah was applied to a ooperative di�erential game of

pollution ontrol. The aim of the paper was to study dependeny of the resulting

solution upon the value of information horizon, orresponding optimization problem

was formulated and solved. The paper (Petrosian et al., 2017) is devoted to apply

the Looking Forward Approah to the game model of oil market. Further papers

on this subjet are to be published in near future. In the paper (Petrosian, 2016b)

the Looking Forward Approah was applied to the ooperative di�erential game

with in�nite horizon. The paper (Yeung and Petrosian 2017) is devoted to study

the Looking Forward Approah for dynami non-ooperative games. Speial type

of Hamilton-Jaobi-Bellman equations are derived for a di�erent information stru-

tures available to the players during the game. Another interesting lass of games
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is onneted to the lass of di�erential games with ontinuous updating was onsid-

ered in the papers (Petrosian and Tur, 2019; Kuhkarov and Petrosian, 2019), here

it is supposed that the updating proess evolves ontinuously in time. In the paper

(Petrosian and Tur, 2019), the system of Hamilton-Jaobi-Bellman equations are

derived for the Nash equilibrium in a game with ontinuous updating. In the pa-

per (Kuhkarov and Petrosian, 2019) the lass of linear-quadrati di�erential games

with ontinuous updating is onsidered and the expliit form of the Nash equilibrium

is derived.

In the artile we use speial form of Hamilton-Jaobi-Bellman equation for dif-

ferential games with random horizon presented in (Shevkoplyas, 2011; Shevkoplyas,

2014; Petrosjan and Shevkoplyas, 2003). A harateristi funtion of a oalition is

an essential onept in the theory of di�erential games. This funtion is de�ned as

indiated in (Chander and Tulkens, 1995) as total payo� of players from oalition S
in Nash equilibrium in the game with following set of players: oalition S (ating as

one player) and players from the set N \S. A omputation of Nash equilibrium fully

desribed in (Basar and Olsder, 1995) is neessary for this approah. A set of impu-

tations or a solution of the game is determined by the harateristi funtion at the

beginning of eah subinterval. For any set of imputations the imputation distribution

proedure (IDP) �rst introdued by L. Petrosyan in (Petrosyan and Danilov, 1979)

is analysed. See reent publiations on this topi in (Petrosyan and Yeung, 2006;

Jorgensen and Yeung, 1999; Jorgensen et al., 2003). In order to determine a solu-

tion for the whole game it is required to ombine partial solutions and their IDP

on subintervals. The harateristis of time onsisteny and strong time onsisteny

introdued by L. Petrosyan in (Petrosjan, 1993) and (Petrosyan, 1977) are also ex-

amined for the o�ered solution.

Looking Forward Approah has similarities with the Model Preditive Con-

trol theory worked out within the framework of numerial optimal ontrol. We

analyze (Goodwin et al., 2005; Rawlings and Mayne, 2009; Wang, 2005; Kwon and

Han, 2005) to get reent results in this area. Model preditive ontrol is a method

of ontrol when the urrent ontrol ation is ahieved by solving at eah sampling

instant a �nite horizon open-loop optimal ontrol problem using the urrent state

of an objet as the initial state. This type of ontrol is able to ope with hard

limitations on ontrols and states, whih is de�nitely its strong point over the rest

of the methods. It has got, therefore, a wide appliation in petro-hemial and re-

lated industries where key operating points are loated lose to the set of admissible

states and ontrols. The main problem that is solved in Model Preditive Control

is the provision of movement along the target trajetory under the onditions of

random perturbations and unknown dynamial system. At eah time step the op-

timal ontrol problem is solved for de�ning ontrols whih will lead system to the

target trajetory. Looking Forward Approah on the other hand solves the problem

of modeling players behavior when information about the proess updates dynami-

ally. It means that Looking Forward Approah does not use target trajetory, but

answers the question of omposing trajetory whih will be used by players, as well

as the question of alloating ooperative payo� along the omposed trajetory.

To demonstrate the Looking Forward Approah we present the example of o-

operative resoure extration game with �nite horizon. The original example was

introdued by David Yeung and Ste�en Jorgensen in (Jorgensen and Yeung, 1999),

the problem of time onsisteny in this game was examined by David Yeung in
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(Yeung and Petrosyan, 2012). In the artile, we analyze three player resoure ex-

tration game with IDP-ore desribed in (Petrosian et al., 2016) used as a oop-

erative solution. We present both analytial and numerial solutions for spei�

parameters. The omparison between the original approah and the Looking For-

ward Approah with random horizon is presented. In the �nal part of the example

model we demonstrate the strong time onsisteny property of the onstruted solu-

tion. The struture of the artile is as follows. The basi game models are presented

in Setion 2. A sequene of the auxiliary random trunated subgames is determined

in Setion 3. Solutions to these subgames are o�ered in Setion 4. It involves a oop-

erative behavior of players for the whole game and an alloation of the ooperative

payo� between the players at eah stage of the game. In Setion 5 we present a new

onept of the game solution for the ase of updating information. The time onsis-

teny and strong time-onsisteny properties of the solution are stated and proved.

In Setion 6 the Looking Forward Approah is applied to the game of Cooperative

Resoure Extration with �nite horizon.

2. The Original Game

The n-person di�erential game Γ (x0, T − t0) with �nite horizon T − t0, with
the initial state x0 ∈ Rm

and initial time instant t0 is given (t0 and T are a �xed

values). The struture of the game is de�ned by the following dynamial system:

ẋ = g(t, x, u), x(t0) = x0, (1)

where x takes values in Rm
, u = (u1, . . . , un). Denote the set of players by N =

{1, . . . , n}. A player i hooses a ontrol ui for i = 1, . . . , n. For eah time instant

t, ui(t) ∈ Ui ⊂ CompRk
. When the open-loop strategies are used, we require

pieewise ontinuity with �nite number of breaks. For feedbak strategies we follow

(Basar and Olsder, 1995). We require that for any n-tuple of strategies u(t, x) =
(u1(t, x), . . . , un(t, x)) the solution of Cauhy problem exists and is unique on the

time interval [t0, T ]. For more sophistiated de�nition of feedbak strategies in zero-

sum di�erential game see (Krasovskii and Kotel'nikova, 2010).

The payo� funtion of the player i is desribed as

Ki(x0, T − t0;u) =

T∫

t0

hi(x(τ), u(τ))dτ, (2)

where x(τ) is the trajetory (the solution) of the system (11) with the ontrol input

u = (u1, . . . , un).

3. Random Trunated Subgame

Suppose information for players is updated at �xed time instants t = t0 + j∆t,
j = 0, . . . , l, where t0 < ∆t < T , l = T−t0

∆t − 1. During the time interval [t0 +
j∆t, t0 + (j + 1)∆t], players have full information about the dynamis of the game

desribed by g(t, x, u) and payo� funtion desribed by hi(x(t), u(t)). The problem
is that the players are not sure about the period of time when this information is

valid, all they know is that it is de�ned on the time interval [t0 + j∆t, T j ], where
duration T j is a random variable with known harateristis. Realization of random

variable T j we denote as tj , j = 0, . . . , l.
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As was mentioned before during the time interval [t0 + j∆t, t0 + (j + 1)∆t]
players have full information about the dynamis of the game and payo� funtion

on the time interval [t0+j∆t, T j ], where T j is a random variable whih takes values

from the time interval [max(t0 +(j+1)∆t, tj−1), T ], tj−1 is a realization of random

variable T j−1 (T j−1 is realized at the time instant t = t0+j∆t). At the time instant

t = t0 + (j + 1)∆t the information about the game is being updated and random

variable T j is realized, i.e. tj beomes known to players. On the next time interval

(t0+(j+1)∆t, t0+(j+2)∆t] players have full information about the game struture

on the time interval (t0 + (j + 1)∆t, T j+1], where T j+1 is a random variable whih

takes values from the time interval [max(t0+(j+2)∆t, tj), T ]. For j = 0 we suppose
that tj−1 = 0.

It may remain unlear why the random variable T j is realized at time instants

t = t0 +(j+1)∆t, but its value tj exeeds t = t0 +(j +1)∆t. Interpretation an be

the following. Suppose that at time instants t = t0 + j∆t players reeive informa-

tion about the game, but in order to aurately estimate the duration of information

horizon whih is random variable T j they need time ∆t (to make alulations et.).

At the time instant t = t0 + (j +1)∆t alulations are performed and ertain value

of information horizon T j beomes known to players, i.e. tj . Another interpretation
is that during urrent ∆t-time interval [t0+j∆t, t0+(j+1)∆t] players reeive addi-
tional information whih helps them to estimate the time on whih the information

about the proess is ertain, i.e. de�ne the value of information horizon tj . At the
time instant t = t0+(j+1)∆t after the estimation is performed players reeive new

information about the game struture with random information horizon T j+1 and

the same proedure ontinues.

To model this kind of situation we introdue the following de�nition (Fig. 1).

Denote vetor xj,0 = x(t0 + j∆t).

Fig. 1. Eah oval represents random trunated information, whih is known to players

during the time interval [t0 + j∆t, t0 + (j + 1)∆t], j = 0, . . . , l.

De�nition 1. Let j = 0, . . . , l. A random trunated subgame Γ̄j(xj,0, t0+j∆t) is
de�ned on the time interval [t0+j∆t, T j ], where T j is a random variable whih takes

values from the time interval [max(t0 + (j + 1)∆t, tj−1), T ], tj−1 is a realization of

random horizon T j−1 in the previous trunated subgame Γ̄j−1(xj−1,0, t0+(j−1)∆t).
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Realization of T j−1 ours at time instant t = t0 + j∆t. The dynamial system and

the payo� funtion on the time interval [t0 + j∆t, T j ] oinide with that of the

game Γ (x0, T − t0) on the same time interval. The dynamial system and the initial

ondition of the trunated subgame Γ̄j(xj,0, t0 + j∆t) have the following form:

ẋ = g(t, x, u), x(t0 + j∆t) = xj,0. (3)

The payo� funtion of player i in random trunated subgame j is equal to

Kj
i (xj,0, t0 + j∆t;u) =

T∫

t0+j∆t

t∫

t0+j∆t

hi (x(τ), u(τ))dτdFj (t), (4)

where Fj(t) is a distribution funtion of T j :

T∫

t0+j∆t

dFj(t) =

T∫

max(t0+(j+1)∆t,tj−1)

dFj(t) = 1, (5)

due to the de�nition, Fj(t) is a onditional distribution funtion, i.e. Fj(t) =
Fj(t | T j−1 = tj−1). Further by notation Fj(t) we will refer to Fj(t | T j−1 = tj−1).

Suppose that the realization of random horizon T j−1 in the game Γ̄j−1(xj−1,0,
t0 + (j − 1)∆t) exeeds time t = t0 + (j + 1)∆t:

tj−1 > t0 + (j + 1)∆t, (6)

then the random horizon T j must exeed the realization of T j−1, beause the in-

formation about the game struture is already known on the time interval [t0 +
j∆t, tj−1]. That is why in the formula (5) the probability of T j taking values from

time interval [t0 + j∆t, tj−1] equals zero:

max(t0+(j+1)∆t,tj−1)∫

t0+j∆t

dFj(t) = 0. (7)

In the papers on the topi of ooperative di�erential games with random hori-

zon (Shevkoplyas, 2009; Shevkoplyas, 2010; Shevkoplyas, 2011; Shevkoplyas, 2014;

Petrosjan and Shevkoplyas, 2003) the distribution funtion of T j is de�ned on the

in�nite time interval. In this paper T j takes values from the �nite time interval

beause the original game is de�ned on the �nite time interval [t0, T ].
In (Kostyunin and Shevkoplyas, 2011) the order of integration in the double

integral (4) was hanged aording to Tonelli's theorem:

Kj
i (xj,0, t0 + j∆t;u) =

T∫

t0+j∆t

(1− Fj(τ))hi(x(τ), u(τ))dτ. (8)

3.1. Solution of Random Trunated Cooperative Subgame

Consider a trunated ooperative subgame Γ̄ c
j (xj,0, t0 + j∆t) de�ned on the

time interval [t0 + j∆t, T j ] with the initial ondition x(t0 + j∆t) = xj,0, where T j
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Fig. 2. Behavior of players in the game with random trunated information an be modeled

using the random trunated subgames Γ̄j(xj,0, t0 + j∆t), j = 0, . . . , l.

is a random variable with distribution funtion (5). Classially on the �rst step of

ooperative di�erential games we de�ne ooperative strategies and orresponding

ooperative trajetory. On the seond step we de�ne the rule for alloating oopera-

tive payo� between the players along the ooperative trajetory. To do this we de�ne

harateristi funtion and orresponding ooperative solution. The total payo� of

players to be maximized in this game is

∑

i∈N

Kj
i (xj,0, t0 + j∆t;u) =

∑

i∈N

T∫

t0+j∆t

t∫

t0+j∆t

hi(x(τ), u(τ))dτdFj (t) (9)

subjet to

ẋ = g(t, x, u), x(t0 + j∆t) = xj,0. (10)

This is an optimal ontrol problem. Su�ient onditions for the solution and the

optimal feedbak are given by the Theorem 1 �rstly presented in (Shevkoplyas, 2014).

Denote the maximum value of joint payo� of the players (9) by the funtion

W (j∆t)(t, x):

W (j∆t)(t, x) = max
u∈U

{
∑

i∈N

Kj
i (x, t;u)

}
, (11)

where x, t are the initial state and time of subgame of random trunated game

orrespondingly and U = U1 × . . .× Un.

Theorem 1. Assume there exists a ontinuously di�erential funtionW (j∆t)(t, x) :
[t0 + j∆t, T j ]×Rm → R satisfying the partial di�erential equation

fj(t)

1− Fj(t)
W (j∆t)(t, x) =

W
(j∆t)
t (t, x) + max

u∈U

{
n∑

i=1

hi(t, x, u) +W (j∆t)
x (t, x)g(t, x, u)

}
, (12)
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where lim
t→T−

W (j∆t)(t, x) = 0, fj(t) is a probability density funtion for random

variable T j (5). Assume that maximum in (12) is ahieved under ontrols u∗j (t, x).
Then u∗j (t, x) is optimal in the ontrol problem de�ned by (9), (10).

Theorem 1 (presented in (Shevkoplyas, 2014)) requires that the funtionW (j∆t)

be C1
. However, it is possible to assume only ontinuity onsidering visosity-

solutions using Subbotin approah (Subbotin, 1984; Subbotin, 1995). But due to

the shortage of spae, it is not possible to properly introdue and de�ne this solu-

tion in the paper. In the example model we de�ne and get solution W (j∆t)
from

C1
.

3.2. Conditionally Cooperative Trajetory

During the game Γ (x0, T − t0) players posses only trunated information about

its struture. Obviously, it is not enough to onstrut optimal ontrol and orre-

sponding trajetory for the game Γ (x0, T − t0). As a ooperative trajetory in the

game Γ (x0, T − t0) we propose to use a onditionally ooperative trajetory de�ned
in the following way:

De�nition 2. Conditionally ooperative trajetory {x̂∗(t)}Tt=t0 is de�ned as a

omposition of ooperative trajetories x∗j (t) in the trunated ooperative subgames

Γ̄ c
j (x

∗
j−1(t0 + j∆t), t0 + j∆t) de�ned on the suessive time intervals [t0 + j∆t, t0 +

(j + 1)∆t] (Fig.3):

{x̂∗(t)}Tt0 =





x∗0(t), t ∈ [t0, t0 +∆t),

. . . ,
x∗j (t), t ∈ [t0 + j∆t, t0 + (j + 1)∆t),
. . . ,
x∗l (t), t ∈ [t0 + l∆t, t0 + (l + 1)∆t],

(13)

On the time interval [t0 + j∆t, t0 + (j + 1)∆t] onditionally ooperative traje-

tory oinides with the ooperative trajetory x∗j (t) in the trunated ooperative

subgame Γ̄ c
j (x

∗
j−1(t0 + j∆t), t0 + j∆t). At the time instant t = t0 + (j + 1)∆t in-

formation about the game struture updates in the position x∗j (t0 + (j +1)∆t). On
the time interval (t0 + (j + 1)∆t, t0 + (j + 2)∆t] trajetory x̂∗(t) oinides with

ooperative trajetory x∗j+1(t) in the trunated ooperative subgame Γ̄ c
j+1(x

∗
j (t0 +

(j+1)∆t), t0 +(j+1)∆t) whih starts at the time instant t = t0 +(j+1)∆t in the

position x∗j (t0 + (j + 1)∆t). For j = 0: x∗j−1(t0 + j∆t) = x0.

3.3. Charateristi Funtion

For eah oalition S ⊂ N and j = 0, . . . , l de�ne the values of harateristi

funtion as it was done in (Chander and Tulkens, 1995):

Vj(S;x
∗
j,0, t0 + j∆t) =





∑
i∈N

Kj
i (x

∗
j,0, t0 + j∆t;u∗j ), S = N,

Ṽj(S, x
∗
j,0, t0 + j∆t), S ⊂ N,

0, S = ∅,
(14)

where Ṽj(S, x
∗
j,0, t0 + j∆t) is de�ned as total payo� of players from oalition S

in Nash equilibrium uNE
j = (uNE,j

1 , . . . , uNE,j
n ) in the game with following set of

players: oalition S (ating as one player) and players from the set N \S, i.e. in the

game with |N \ S|+ 1 players.
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Fig. 3. Solid line represents the onditionally ooperative trajetory {x̂∗(t)}Tt=t0
. Dashed

lines represent parts of ooperative trajetories that are not used in the omposition, i.e.,

eah dashed trajetory is no longer optimal in the urrent random trunated subgame.

An imputation ξj(x
∗
j,0, t0+j∆t) for eah random trunated ooperative subgame

Γ̄ c
j (x

∗
j,0, t0 + j∆t) is de�ned as an arbitrary vetor whih satis�es the onditions

ξji (x
∗
j,0, t0 + j∆t) ≥ Vj({i}, x∗j,0, t0 + j∆t), i ∈ N,

∑

i∈N

ξji (x
∗
j,0, t0 + j∆t) = Vj(N, x

∗
j,0, t0 + j∆t). (15)

Denote the set of all possible imputations for random trunated subgame by

Ej(x
∗
j,0, t0 + j∆t). As an optimality priniple or solution

Wj(x
∗
j,0, t0 + j∆t) ⊂ Ej(x

∗
j,0, t0 + j∆t) (16)

in eah random trunated ooperative subgame Γ̄ c
j (x

∗
j,0, t0 + j∆t) we use IDP-ore

introdued in (Petrosian et al., 2016). Constrution of this solution is based upon

the speial lass of IDP (Petrosyan and Danilov, 1979).

De�nition 3. Funtion βj(t, x
∗
j ), t ∈ [t0 + j∆t, T j ] is alled Imputation Distri-

bution Proedure for imputation ξj(x
∗
j,0, t0 + j∆t) ∈ Ej(x

∗
j,0, t0 + j∆t), if

ξj(x
∗
j,0, t0 + j∆t) =

∫ T

t0+j∆t

(1− Fj(τ))βj(t, x
∗
j (t))dτ. (17)

Using IDP βj(t, x
∗
j ) it is possible to de�ne the rule for alloating imputation ξj(x

∗
j,0,

t0 + j∆t) on the time interval [t0 + j∆t, T j ], where T j is a random variable. It is

obvious that the number of funtions βj(t, x
∗
j (t)) that satisfy the equation (17) is

in�nite, i.e. the ways of alloation of ooperative payo� between players is in�nite,

but aording to the formula for a lass of games with random horizons presented

in (Shevkoplyas, 2009; Shevkoplyas, 2010)

βj(t, x
∗
j (t)) =

fj(t)

1− Fj(t)
ξj(x

∗
j (t), t)−

d

dτ
ξj(x

∗
j (t), t) (18)
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to de�ne the unique βj(t, x
∗
j (t)) that ensures the time onsisteny property (Pet-

rosyan and Danilov, 1979) of the imputation ξj(x
∗
j,0, t0+j∆t) or ooperative solution

Wj(x
∗
j,0, t0 + j∆t) (in ase of multiple priniple of optimality):

De�nition 4. Solution Wj(x
∗
j,0, t0 + j∆t) (ξj(x

∗
j,0, t0 + j∆t)) is alled time-

onsistent if for any imputation ξj(x
∗
j,0, t0 + j∆t) ∈ Wj(x

∗
j,0, t0 + j∆t) exists IDP

βj(t, x
∗
j ) whih ∀t ∈ [t0 + j∆t, T ] satis�es:

{∫ T

t

(1− Fj(t))β
j
i (τ, x

∗
j )dτ

}
∈

W (x∗j (t), t)

({∫ T

t

(1− Fj(t))β
j
i (τ, x

∗
j )dτ

}
= ξj(x

∗
j,0, t0 + j∆t)

)
.

3.4. IDP-ore

In the paper we used the approah proposed in (Petrosian et al., 2016) in whih

we onstruted funtions that an be used as IDPs for some imputations and then

omposed orresponding solutions. Suppose that harateristi funtion Vj(S;x
∗
j (t), t),

S ⊂ N is ontinuously di�erentiable by t, t ∈ [t0 + j∆t, T ] along the ooperative

trajetory x∗j (t). Introdue the following notation:

Uj(S;x
∗
j (t), t) = − d

dt
Vj(S;x

∗
j (t), t), (19)

where t ∈ [t0 + j∆t, T ] and S ⊆ N .

De�ne Bj(t, x
∗
j ) as a set of integrable vetor funtions βj(t, x

∗
j ) satisfying the

following inequalities:

Bj(t, x
∗
j ) =

{
βj(t, x

∗
j ) = (βj

1(t, x
∗
j ), . . . , β

j
n(t, x

∗
j )) :

∑

i∈S

(1− Fj(t))β
j
i (t, x

∗
j ) ≥ Uj(S, x

∗
j (t), t),

∑

i∈N

βj
i (t, x

∗
j ) = Uj(N, x

∗
j (t), t), ∀S ⊂ N

}
. (20)

Suppose that Bj(t, x
∗
j ) 6= ∅, ∀t ∈ [t0 + j∆t, T ], j = 0, . . . , l. Then using the set

Bj(t, x
∗
j ) it is possible to de�ne the following set of vetors:

De�nition 5. Set of all possible vetors ξj(x
∗
j (t), t) for some integrable seletors

βj(t, x
∗
j ) ∈ Bj(t, x

∗
j ) we shall all IDP-ore and denote as Cj(x

∗
j (t), t), where

Cj(x
∗
j (t), t) =

{
ξj(x

∗
j (t), t), t ∈ [t0 + j∆t, T ]

}
(21)

and for t ∈ [t0 + j∆t, T ]

ξj(x
∗
j (t), t) =

T∫

t

(1 − Fj(τ))βj(τ, x
∗
j )dτ. (22)

In (Petrosian et al., 2016) it was proved that IDP-ore is a subset of Core:

Theorem 2. The set Cj(x
∗(t), t) is a subset of Core Cj(x

∗(t), t) in random oop-

erative trunated subgame Γ̄ c
j (x

∗
j (t), t), t ∈ [t0 + j∆t, T ].
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Core is a lassial solution in the theory of games (Shapley, 1952). In our ase

Core Cj(x
∗(t), t) for eah random trunated subgame is de�ned as a set of im-

putations ξj(x
∗
j,0, t0 + j∆t) = (ξj1(x

∗
j,0, t0 + j∆t), . . . , ξjn(x

∗
j,0, t0 + j∆t)) satisfying

∀t ∈ [t0 + j∆t, T ]:

1. e�ieny:

∑
i∈N

ξji (x
∗
j (t), t) = Vj(N ;x∗j (t), t)

2. oalitional rationality:

∑
i∈S

ξji (x
∗
j (t), t) ≥ Vj(S;x

∗
j (t), t), ∀S ⊂ N .

The main result of paper (Petrosian et al., 2016) is the proof that IDP-ore is

strong time onsistent in di�erential games with presribed duration. The same

result an be obtained for random trunated subgame.

De�nition 6. Set Wj(x
∗
j,0, t0 + j∆t) is alled strong time-onsistent if for any

solution in the game Γ̄ c
j (x

∗
j (t), t)

1. Wj(x
∗
j (t), t) 6= ∅, ∀t ∈ [t0 + j∆t, T ]

2. for eah imputation ξj(x
∗
j (t), t) ∈ Wj(x

∗
j (t), t) exists IDP βj(τ, x

∗
j ) =

(βj
1(τ, x

∗
j ), . . . , β

j
n(τ, x

∗
j )), τ ∈ [t0 + j∆t, T ], suh that

ξj(x
∗
j (t), t) =

∫ T

t

(1− Fj(τ))βj(τ, x
∗
j )dτ, (23)

and

∫ t

t0+j∆t

(1− Fj(τ))βj(τ, x
∗
j )dτ ⊕Wj(x

∗
j (t), t) ⊂Wj(x

∗
j,0, t0 + j∆t) (24)

for eah t ∈ [t0 + j∆t, T ],
⊕: a⊕B = {a+ b : b ∈ B}, a ∈ Rn

, B ⊂ Rn
.

Strong time onsisteny of solution means that the solution obtained by "op-

timal" reonsidering initial solution at any time instant during the game will be-

long to the initial solution. Partiularly for IDP-ore in random trunated sub-

game it means that for eah ξj(x
∗
j,0, t0 + j∆t) from Cj(x

∗
j,0, t0 + j∆t) deviation

from this imputation along the ooperative trajetory x∗j (t) in any moment t ∈
[t0 + j∆t, T j ] to any other imputation in urrent IDP-ore ξj(x

∗
j (t), t) ∈ Cj(x

∗
j , t)

leads to the imputation whih belongs to the initial IDP-ore Cj(x
∗
j,0, t0 + j∆t). In

paper (Petrosian et al., 2016) is the proof that IDP-ore is strong time onsistent:

Theorem 3. Suppose Cj(x
∗
j (t), t) 6= ∅, ∀t ∈ [t0+ j∆t, T ]. Then IDP-ore Cj(x

∗
j,0,

t0 + j∆t) is strong time onsistent in the game Γ̄ c
j (x

∗
j,0, t0 + j∆t).

In the paper (Petrosian et al., 2016) the properties of the IDP-ore as a ooper-

ative solution are disussed and the tehni for its onstrution is demonstrated on

the linear quadrati game model of pollution ontrol.

It is easy to suggest that distribution of the total payo� of players in the game

Γ (x0, T − t0) along the onditionally ooperative trajetory {x̂∗(t)}Tt=t0 an be or-

ganized as a omposition of IDPs for eah time interval [t0 + j∆t, t0 + (j + 1)∆t],
j = 0, . . . , l, in aordane with the struture of the game Γ (x0, T − t0). This will
be formalized in this setion as a new solution onept.
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The family of setsWj(x
∗
j,0, t0+j∆t) = Cj(x

∗
j,0, t0+j∆t) do not ompose diretly

a solution for the game Γ (x0, T − t0). For any j = 0, . . . , l the optimal solution for

the trunated subgame Γ̄ c
j (x

∗
j,0, t0+j∆t) is de�ned on the time interval [t0+j∆t, t0+

j∆t+T j ]. This partiular solution makes sense on the interval [t0+j∆t, t0+(j+1)∆t]
only, beause the information about the game struture updates after every∆t time

interval and it is irrelevant to use a solution whih is based upon the outdated

information. The neessary information an be extrated by using the IDP for eah

trunated subgame. Therefore in order to onstrut optimal solution for the whole

game Γ (x0, T − t0) we use the set of IDPs Bj(t) instead of set of imputations

Cj(x
∗
j,0, t0 + j∆t).

4. Conept of Solution

In order to introdue a solution onept for the di�erential game Γ (x0, T − t0)
with Looking Forward Approah we use a family of sets Bj(t, x

∗
j ), j = 0, . . . , l. First

we onstrut the set of IDPs for the whole game Γ (x0, T − t0) in the following

way: for eah �xed omposition of IDPs βj(t, x
∗
j ) ∈ Bj(t, x

∗
j ), j = 0, . . . , l we de�ne

resulting IDP β̂(t, x̂∗).

De�nition 7. Resulting IDP β̂(t, x̂∗) is a funtion de�ned as a ombination of

imputation distribution proedures βj(t, x
∗
j ) ∈ Bj(t, x

∗
j ) in all trunated ooperative

subgames Γ̄ c
j (x

∗
j,0, t0 + j∆t), j = 0, . . . , l:

β̂(t, x̂∗) =





(1− F0(t))β0(t, x
∗
0), t ∈ [t0, t0 +∆t],

· · ·
(1− Fj(t))βj(t, x

∗
j ), t ∈ [t0 + j∆t, t0 + (j + 1)∆t],

· · ·
(1− Fl(t))βl(t, x

∗
l ), t ∈ [t0 + l∆t, t0 + (l + 1)∆t].

(25)

The set of all possible resulting IDPs β̂(t, x̂∗) (25) for di�erent ompositions

βj(t, x
∗
j ) ∈ Bj(t, x

∗
j ), j = 0, . . . , l we denote by B̂(t, x̂∗).

Using resulting IDP β̂(t, x̂∗) ∈ B̂(t) it is possible to determine a resulting impu-

tation whih an be used as an imputation in the game Γ (x0, T − t0) with Looking

Forward Approah. But the question stands, will the resulting imputation atu-

ally alloate joint ooperative payo� along the onditionally ooperative trajetory

x̂∗(t), this fat is proved in Theorem 4.

De�nition 8. Resulting imputation ξ̂(x0, T − t0) is a vetor de�ned in the

following way:

ξ̂(x0, T − t0) =

T∫

t0

β̂(τ, x̂∗(τ))dτ =

l∑

j=0

[ (j+1)∆t∫

j∆t

(1− Fj(τ))βj(τ, x
∗
j (τ))dτ

]
. (26)

Denote by resulting solution Ŵ (x0, T − t0) the set of all resulting imputations

ξ̂(x0, T − t0) omposed by (25), (26). In game models with Looking Forward Ap-

proah we propose to use the set Ŵ as a solution.

Theorem 4. With any ξ̂(x0, T − t0) ∈ Ŵ (x0, T − t0) it is possible to alloate joint

payo� of players (9) along the onditionally ooperative trajetory x̂∗(t) during the
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Fig. 4. Combination of IDPs βj(t, x
∗

j ) ∈ Bj(t, x
∗

j ) de�ned for eah ξj(x
∗

j,0, t0 + j∆t) ∈

Wj(x
∗

j,0, t0 + j∆t), j = 0, . . . , l determines the random trunated distribution β̂(t, x̂∗) ∈

B̂(t, x̂∗).

game Γ (x0, T − t0) and for ∀t ∈ [t0 + j∆t, t0 + (j + 1)∆t], j = 0, . . . , l:

n∑

i=1

t∫

t0

β̂i(τ, x̂
∗(τ))dτ =

n∑

i=1

[
j−1∑

k=0

[ (k+1)∆t∫

k∆t

(1− Fk(τ))hi(x̂
∗(τ), û∗(τ))dτ

]
+

t∫

t0+j∆t

(1− Fj(τ))hi(x̂
∗(τ), û∗(τ))dτ

]
. (27)

Proof. To prove this theorem we start from the last random trunated subgame

Γ̄l(x
∗
l,0, t0 + l∆t), i. e. prove that for ∀t ∈ [t0 + l∆t, T ]

n∑

i=1

t∫

t0+l∆t

β̂i(τ, x̂
∗(τ))dτ =

n∑

i=1

t∫

t0+l∆t

(1− Fl(τ))hi(x̂
∗(τ), û∗(τ))dτ. (28)

Indeed, maximum joint payo� in this game is de�ned by funtion W (l∆t)(t0 +
l∆t, x∗l,0) (11). Aording to the de�nition of this funtion for ∀t ∈ [t0 + l∆t, T ]:

W (l∆t)(t, x̂∗(t)) =

max
u∈U

{
∑

i∈N

K l
i(x̂

∗(t), t;u)

}
=

n∑

i=1

T∫

t

(1− Fl(τ))hi(x̂
∗(τ), û∗(τ))dτ =

n∑

i=1

T∫

t

ξli(x̂
∗(τ), τ)dτ =

n∑

i=1

T∫

t

βl
i(τ, x̂

∗(τ))dτ =

n∑

i=1

T∫

t

β̂i(τ, x̂
∗(τ))dτ. (29)
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However,

W (l∆t)(t0 + l∆t, x∗l,0)−W (l∆t)(t, x̂∗(t)) =

n∑

i=1

t∫

t0+l∆t

(1− Fl(τ))hi(x̂
∗(τ), û∗(τ))dτ, (30)

where ∀t ∈ [t0 + l∆t, T ]. From (29) and (30) it follows that for ∀t ∈ [t0 + l∆t, T ]
(28) holds. Using this result prove that it also holds for random trunated subgame

Γ̄l−1(x
∗
l−1,0, t0 + (l − 1)∆t), i. e. prove that

n∑

i=1

t∫

t0+(l−1)∆t

β̂i(τ, x̂
∗(τ))dτ =

n∑

i=1

t∫

t0+(l−1)∆t

(1− Fl−1(τ))hi(x̂
∗(τ), û∗(τ))dτ, (31)

where ∀t ∈ [t0 + (l − 1)∆t, t0 + l∆t]. Similarly as in the game Γ̄l(x
∗
l,0, t0 + l∆t) for

∀t ∈ [t0 + (l − 1)∆t, t0 + l∆t]

W ((l−1)∆t)(t0 + (l − 1)∆t, x∗l−1,0)−W ((l−1)∆t)(t, x̂∗(t)) =

n∑

i=1

t∫

t0+(l−1)∆t

(1− Fl−1(τ))hi(x̂
∗(τ), û∗(τ))dτ. (32)

Then it follows that (31) is satis�ed. We need to proeed until the �rst random

trunated subgame Γ̄0(x0, t0). This will enables us to ombine results (28), (31) and
show that for ∀t ∈ [t0, T ] (27) holds. This ompletes the proof.

4.1. Time-onsisteny of the Solution Conept

It is easy to see that the resulting solution Ŵ (x0, T − t0) is time-onsistent, but

there is another surprising property of Ŵ (x0, T − t0).

Theorem 5. The resulting solution Ŵ (x0, T − t0) is strong time-onsistent in the

game Γ (x0, T − t0).

Proof. Suppose that in the game Γ (x0, T − t0) players agreed to hoose an im-

putation ξ̂(x0, T − t0) ∈ Ŵ (x0, T − t0). It means that during the game, in eah ran-

dom trunated subgame Γ̄ c
j (x

∗
j,0, t0 + j∆t) they agreed on hoosing the imputation

ξj(x
∗
j,0, t0 + j∆t) ∈ Cj(x

∗
j,0, t0 + j∆t) with orresponding IDP βj(t, x

∗
j ) ∈ Bj(t, x

∗
j ),

t ∈ [t0 + j∆t, T ]. In fat, during the game players use IDP β̂(t, x̂∗) = βj(t, x
∗
j ) and

alloate ooperative payo� in the following way:

T∫

t0

β̂(τ, x̂∗(τ))dτ =

l∑

j=0

∫ t0+(j+1)∆t

t0+j∆t

(1 − Fj(t))βj(t, x
∗
j )dt.
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Suppose that in a given time instant t = tbr, where tbr ∈ [t0 + k∆t, T ] in random

trunated subgame Γ̄ c
k (x

∗
k,0, t0 + k∆t) players deide to hoose another imputa-

tion ξ′k(x
∗
k(tbr), tbr) from the IDP-ore Ck(x

∗
k(tbr), tbr). Therefore, there exists IDP

β′
k(t, x

∗
k) ∈ Bk(t, x

∗
k), t ∈ [tbr, T ] whih orresponds to the imputation:

ξ′k(x
∗
k(tbr), tbr) =

T∫

tbr

(1− Fj(t))β
′
k(t, x

∗
k)dt. (33)

In this ase, during the game players will alloate ooperative payo� aording to

ξ̂′(xt0 , T − t0) using the following resulting IDP:

β̂′(t) =





(1− Fk(t))βk(t, x
∗
k), t ∈ [t0 + k∆t, tbr),

(1− Fk(t))β
′
k(t, x

∗
k), t ∈ [tbr, t0 + (k + 1)∆t],

(1− Fj(t))βj(t, x
∗
j ), t ∈ [t0 + j∆t, t0 + (j + 1)∆t],

where j 6= k, j = 0, . . . , l. Corresponding resulting imputation will have the following

form:

ξ̂′(x0, T − t0) =

T∫

t0

β̂′(t, x̂∗)dt =

l∑

j=0
j 6=k

∫ t0+(j+1)∆t

t0+j∆t

(1− Fj(t))βj(t, x
∗
j )dt+

∫ tbr

t0+k∆t

(1− Fk(t))βk(t, x
∗
k)dt+

∫ t0+(k+1)∆t

tbr

(1− Fk(t))β
′
k(t, x

∗
k)dt. (34)

Sine β′
k(t, x

∗
k) ∈ Bk(t, x

∗
k), t ∈ [tbr, T ] then the resulting IDP β̂′(t, x̂∗) belongs

to B̂(t, x̂∗). Aording to the de�nition of Ŵ (x0, T − t0), all vetors ξ̂(x0, T − t0)

obtained by the formula (26) using β̂(t, x̂∗) from the set B̂(t, x̂∗) are alled the

resulting solution Ŵ (x0, T − t0) of the game Γ (x0, T − t0). In (34) we onstruted

the imputation ξ̂′(x0, T − t0) with the IDP β̂′(t, x̂∗) from the set B̂(t, x̂∗) and we

saw that the resulting imputation ξ̂′(xt0 , T − t0) belongs to the initial solution

Ŵ (x0, T − t0). That ompletes the proof.

5. Looking Forward Approah with Random Horizon in Cooperative

Extration Game

The following example of the resoure extration game with two players was

onsidered by Jorgensen and Yeung (1999). The problem of time onsisteny in the

onsidered example was studied by David Yeung et. al. (2012). In the previous paper

on Looking Forward Approah (Petrosian and Barabanov, 2017) the same example

for two players was onsidered, but with the new foreast fator. Three ompeti-

tive models were implemented: with the stohasti foreast, with the deterministi

foreast, and without a foreast. In this paper we onsider resoure extration game

with three players with a speial form of ooperative solution desribed in Setion

3.3 and in (Petrosian et al., 2016). An analytial form of harateristi funtion for

eah oalition is derived aording to (Chander and Tulkens, 1995) and presented

below. Furthermore, we apply the Looking Forward Approah with random hori-

zon to the example. In the �nal part of the example the strong time onsisteny

property of the onstruted solution onept is demonstrated.
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In the following model we derive the analytial solution to the problem, but

general analytial solution annot be found. In order to apply the Looking Forward

Approah to the general lass of ooperative di�erential games we need to solve

two main problems. First problem is to solve (9) subjet to (10) for eah trunated

subgame. Mathematially this is a lassial ontrol problem, there are numerous

methods for solving it. Solving this problem we obtain approximate ooperative

strategies, ooperative trajetories x∗j (t) and orresponding joint payo� (9). Seond

problem is the problem of de�ning of how to alloate ooperative payo� between

the players. We need to alulate harateristi funtion (14) for eah trunated

subgame along the ooperative trajetory, to do this we an use oevolutionary

algorithms (Eiben and Smith, 2003) suitable for game theoretial problems. After

alulating harateristi funtions we an determine solution for eah trunated

subgame (for example IDP-ore), then alulate orresponding resulting solution

(26).

5.1. The Original Game

Consider an eonomy endowed with a single renewable resoure, with n ≥ 2
resoure extrators (�rms). Let ui(t) denote the quantity of the resoure extrated

by �rm i at time t, for i ∈ N , where eah �rm ontrols its rate of extration. Let

x(t) ∈ X ⊂ R be the size of the resoure stok at time t. The growth dynamis of

the renewable resoure stok beomes

ẋ = a
√
x(t)− bx(t)−

3∑

i=1

ui, x(t0) = x0, (35)

where a
√
x(t)− bx(t) is the natural rate of evolution of the resoure and ui ∈ [0, d],

d > 0, i = 1, 3.
The extration ost for �rm i ∈ N depends on the quantity of the resoure

extrated ui(t), the resoure stok size x(t), and parameter ci, i = 1, 3

Ki(x0, t0;u) =

T∫

t0

√
ui(τ) −

ci√
x(τ)

ui(τ)dτ, (36)

where ci is onstant and ci 6= ck, ∀i 6= k = 1, 3. We onsider set of parameters x0, T ,
a, b, d, ci, i = 1, 3 suh that it is always non-negative in the orresponding ontrol

problem.

5.2. Random Trunated Subgame

The original game Γ (x0, T − t0) is de�ned on the time interval [t0, T ]. Suppose
for any t ∈ [t0+ j∆t, t0+(j+1)∆t], j = 0, . . . , l players have trunated information

about the struture of the game. It inludes information about dynamial system

and payo� funtion on the time interval [t0+j∆t, T j ], where T j is a trunated expo-

nentially distributed random variable with distribution funtion Fj(t) and density

funtion fj(t):

Fj(t) =
1− exp(−λ(t−max(t0 + (j + 1)∆t, tj−1)))

1− exp(−λ(T −max(t0 + (j + 1)∆t, tj−1)))
, (37)

fj(t) =
λ exp(−λ(t−max(t0 + (j + 1)∆t, tj−1)))

1− exp(−λ(T −max(t0 + (j + 1)∆t, tj−1)))
. (38)
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Exponential distribution is widely used for desribing the time between events in a

Poisson proess. Under the events we an understand the hange in game struture.

Also, let us denote Λj(t):

Λj(t) =

{
fj(t)

1−Fj(t)
, t ∈ [max(t0 + (j + 1)∆t, tj−1), T ],

0, t ∈ [t0 + j∆t,max(t0 + (j + 1)∆t, tj−1)].

The trunated information is formalized in the random trunated subgame

Γ̄j(xj,0, t0 + j∆t). The dynamial system and the initial onditions for this sub-

game have the following form:

ẋ = a
√
x(t)− bx(t) −

3∑

i=1

ui, x(t0 + j∆t) = xj,0. (39)

Aording to (8) the payo� funtion of the extrator i is equal to

Kj
i (xj,0, t0 + j∆t;u) =

T∫

t0+j∆t

(1 − Fj(τ))hi(x(τ), u(τ))dτ. (40)

Consider the ase when the resoure extrators agree to at ooperatively in the

random trunated subgame Γ̄ c
j (xj,0, t0 + j∆t). They follow the optimality priniple

under whih they would maximize their joint payo�s and share the exess of the

total expeted ooperative payo� over the sum of individual non-ooperative payo�s

proportional to the agents non-ooperative payo�s.

5.3. Cooperative Trajetory

Next, onsider the random trunated subgame Γ̄j(xj,0, t0+j∆t). The maximized

joint payo� in the game Γ̄ c
j (xj,0, t0 + j∆t) has the following form (Jorgensen and

Yeung, 1999):

W j∆t(t, x) = Aj(t)
√
x+ Cj(t), (41)

where funtions Aj(t), Cj(t) satisfy the equations

Ȧj(t) =

[
Λj(t) +

b

2

]
Aj(t)−

3∑

i=1


 1

4
[
ci +

Aj(t)
2

]


 ,

Ċj(t) = Λj(t)C
j(t)− a

2
Aj(t) (42)

with boundary onditions lim
t→T−

Aj(t) = lim
t→T−

Cj(t) = 0.

The optimal ooperative trajetory x∗j (t) of the random trunated subgame

Γ̄ c
j (xj,0, t0+ j∆t) an be represented expliitly (Jorgensen and Yeung, 1999) on the

full interval [t0 + j∆t, T ]. The trajetory with the initial ondition x = x∗j,0 is

x∗j (t) = ̟2
j (t0 + j∆t, t)

[√
x∗j,0 +

1

2
a ·

t∫

t0+j∆t

̟j(t0 + j∆t, τ)−1dτ
]2
, (43)
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where t ∈ (t0 + j∆t, t0 + (j + 1)∆t],

̟j(t0 + j∆t, t) = exp

t∫

t0+j∆t

−



1

2
b+

3∑

i=1




1

4
[
ci +

Aj(τ)
2

]2





 dτ. (44)

The initial ondition are de�ned reursively by the optimal trajetory of the previous

game: x∗0,0 = x0 and x
∗
j,0 = x∗j−1(t0 + j∆t) for j = 0, . . . , l. The onditionally oop-

erative trajetory x̂∗(t) is de�ned in aordane with Looking Forward Approah

as

x̂∗j (t) = x∗j (t), t ∈ [t0 + j∆t, t0 + (j + 1)∆t], (45)

for j = 0, . . . , l.

5.4. Charateristi Funtion

In order to alloate ooperative payo� in eah random trunated subgame it is

neessary to de�ne values of harateristi funtion Vj(S;xj,0, t0+j∆t) (Vj(S;x
∗
j (t), t))

for eah oalition S ⊂ N . Aording to the formula (14) maximized joint payo�

Wj(t0 + j∆t, xj,0) (41) orresponds to the value of harateristi funtion of grand

oalition Vj(N ;xj,0, t0 + j∆t) in the random trunated subgame Γ̄ c
j (xj,0, t0 + j∆t):

Vj(N ;x∗j (t), t) =W j∆t(t, x∗j (t)), (46)

where t ∈ [t0 + j∆t, T ], j = 0, . . . , l. Next, we need to de�ne values of harateristi

funtion for the following oalitions:

{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. (47)

Aording to (14), for a single player oalitions {i}, i = 1, 3 we need to determine

Nash equilibrium point and as a result Vj({i};x∗j(t), t).
5.5. Single Player Coalitions

Random trunated subgame Γ̄j(xj,0, t0 + j∆t) has a Nash equilibrium point

de�ned by the feedbak

uji (t, x) =
x

4[ci +Aj
i (t)/2]

2
, i = 1, 3, (48)

where funtions Aj
i (t) are de�ned by the equations

Ȧj
i (t) = Aj

i (t)


Λj(t) +

b

2
+
∑

k 6=i

1

8(ck +Aj
k(t)/2)

2


− 1

4(ci +Aj
i (t)/2)

,

Ċj
i (t) = Λj(t)C

j
i (t)−

a

2
Aj

i (t)

for i = 1, 3, with boundary onditions lim
t→T−

Aj
i (T ) = 0 and lim

t→T−
Cj

i (T ) = 0.

The value funtion of the extrator i = 1, 3 in the Nash equilibrium point is

equal to

V j
i (t, x) = Aj

i (t)
√
x+ Cj

i (t), i = 1, 3. (49)

Therefore, value of harateristi funtion for single oalitions S = {i}, i ∈ N an

be alulated in the following way:

Vj({i};x∗j(t), t) = V j
i (t, x

∗
j (t)), (50)

where t ∈ [t0 + j∆t, T ], j = 0, . . . , l.
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5.6. Two Player Coalitions

Aording to the formula (14) harateristi funtion Vj(S;xj,0, t0+j∆t) (Vj(S;
x∗j (t), t)) for two player oalitions S = {1, 2}, {1, 3}, {2, 3} is de�ned as total payo�

of players from oalition S in Nash equilibrium uNE
j = (uNE,j

1 , uNE,j
2 , uNE,j

3 ) in the

game with following set of players: oalition S (ating as one player) and players

from the set N \ S, i.e. in the game with |N \ S| + 1 = 2 players. It means that

players from oalition S behave as one player and other players from the set N \ S
are ating separately. Using this approah we de�ne Nash equilibrium between two

players: ombined player (oalition S), and the seond player (oalition N/S).
Consider alulations of Vj(S;xj,0, t0+j∆t) in ase when S = {1, 2}, alulations

for other oalitions have the same algorithm. Payo� of players in this ase has the

following form:

V j
{1,2}(t, x) = Aj

{1,2}(t)
√
x+ Cj

{1,2}(t),

V j
3 (t, x) = Aj

3(t)
√
x+ Cj

3(t),

where the funtions Aj
{1,2}(t), A

j
3(t), C

j
{1,2}(t), C

j
3(t) satisfy the equations

Ȧj
{1,2}(t) = Aj

{1,2}(t)

[
Λj(t) +

b

2
+

1

8(c3 +Aj
3(t)/2)

2

]
−
∑

k∈S

1

4(ck +Aj
{1,2}(t)/2)

,

Ȧj
3(t) = Aj

3(t)

[
Λj(t) +

b

2
+
∑

k∈S

1

8(ck +Aj
{1,2}(t)/2)

2

]
− 1

4(c3 +Aj
3(t)/2)

,

Ċj
{1,2}(t) = Λj(t)C

j
{1,2}(t)−

a

2
Aj

{1,2}(t),

Ċj
3(t) = Λj(t)C

j
3(t)−

a

2
Aj

3(t)

with initial onditions lim
t→T−

Aj
{1,2}(t) = lim

t→T−
Aj

3(t) = 0, lim
t→T−

Cj
{1,2}(t) =

lim
t→T−

Cj
3(t) = 0.

Therefore, the value of harateristi funtion for oalition S = {1, 2} an be

alulated in the following way:

Vj({1, 2};x∗j(t), t) = V j
{1,2}(t, x

∗
j (t)), (51)

where t ∈ [t0 + j∆t, T ], j = 0, . . . , l.

5.7. IDP-ore

Using the values of harateristi funtion Vj(S;xj,0, t0 + j∆t), ∀S ⊂ N (46),

(50), (51) and formula (20) we onstrut set Bj(t, x
∗
j ) as a set of integrable vetor
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funtions βj(t, x
∗
j ) satisfying:

3∑

i=1

(1 − Fj(t))β
j
i (t, x

∗
j ) = − d

dt
Vj({1, 2, 3};x∗j(t), t),

(1− Fj(t))(β
j
1(t, x

∗
j ) + βj

2(t, x
∗
j )) ≥ − d

dt
Vj({1, 2};x∗j(t), t),

(1− Fj(t))(β
j
1(t, x

∗
j ) + βj

3(t, x
∗
j )) ≥ − d

dt
Vj({1, 3};x∗j(t), t),

(1− Fj(t))(β
j
2(t, x

∗
j ) + βj

3(t, x
∗
j )) ≥ − d

dt
Vj({2, 3};x∗j(t), t),

(1− Fj(t))β
j
1(t, x

∗
j ) ≥ − d

dt
Vj({1};x∗j (t), t),

(1− Fj(t))β
j
2(t, x

∗
j ) ≥ − d

dt
Vj({2};x∗j (t), t),

(1− Fj(t))β
j
3(t, x

∗
j ) ≥ − d

dt
Vj({3};x∗j (t), t). (52)

Then, ombining sets Bj(t, x
∗
j ), t ∈ [t0 + j∆t, t0 + (j + 1)∆t], j = 0, . . . , l for all

random trunated subgames we onstrut set B̂(t, x̂∗). Further we alulate the set

of all possible imputations ξ̂(x0, T − t0) ∈ Ŵ (x0, T − t0) (26).
The step by step onstrution of the IDP-ore for a linear quadrati game model

of pollution ontrol is presented in the paper (Petrosian et al., 2016).

5.8. Numerial Example

Consider a numerial example, where information about the struture of the

game during the time intervals [t0 + j∆t, t0 + (j +1)∆t] is known for next the time

interval with length T j , where T j is a random variable distributed by (37) with

λ = 0.5. The total game length T = 4. Information about the game updates every

∆t = 1. Parameters of the dynamial system are following: a = 10, b = 0.5. Assume

c1 = 0.15, c2 = 0.65, and c3 = 0.45 in the payo� funtion and the initial onditions

t0 = 0, x0 = 200. During the realization of the game information horizon take the

following values:

t0 = 2.423, t1 = 3.538, t2 = 3.871, t3 = 4.

Generated values of information horizon in�uene the distribution of the time untill

the available trunated information being orret. In Fig. 5 it is easy to see how

the information horizon T j was generated and how the probability density funtion

fj(t) (38) hanges between random trunated subgames.

In Fig. 6-8 we an see ooperative strategies for eah player de�ned with Looking

Forward Approah with random horizon (non smooth solid line) and ooperative

strategies in the original game in (Jorgensen and Yeung, 1999) (smooth dotted line).

Conditionally ooperative trajetory x̂∗(t) is omposed from solutions of the

random trunated subgames Γ̄ c
j (x

∗
j,0, t0 + j∆t) with the dynamial system (39).

In Fig. 9 the following omparison is presented: onditionally ooperative traje-

tory x̂∗(t) (thik solid line) de�ned using Looking Forward Approah with random

horizon, onditionally ooperative trajetory x̄∗(t) (thin solid line) de�ned with las-
sial Looking Forward Approah (Petrosian, 2016a) (where T j = 2 is a determined

value), and ooperative trajetory x∗(t) (dotted line) in the original game Γ (x0, T−



380 Ovanes Petrosian, Sergei Pogozhev

Fig. 5. Probability density funtion fj(t), j = 0, 1, 2, 3 (38) for eah random trunated

subgame.

Fig. 6. Cooperative strategies for player 1 de�ned with Looking Forward Approah

with random horizon (non-smooth), and ooperative strategies in the original game in

(Jorgensen and Yeung, 1999) (smooth)

Fig. 7. Cooperative strategies for player 2 de�ned with Looking Forward Approah

with random horizon (non-smooth), and ooperative strategies in the original game in

(Jorgensen and Yeung, 1999) (smooth)
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Fig. 8. Cooperative strategies for player 3 de�ned with Looking Forward Approah

with random horizon (non-smooth), and ooperative strategies in the original game in

(Jorgensen and Yeung, 1999) (smooth)

t0). Cooperative trajetory x
∗(t) is de�ned in (Jorgensen and Yeung, 1999). In the

other two �gures you an see onditionally ooperative trajetory x̂∗(t) or x̄∗(t) and
orresponding ooperative trajetories for eah trunated subgame.

Fig. 9. The trajetory of the resoure stok x̂∗(t) (thik solid line) with Looking Forward

Approah with random horizon, trajetory x̄∗(t) (thik dotted line) de�ned with lassial

Looking Forward Approah, and ooperative trajetory x∗(t) (thin dotted line) in the

original game Γ (x0, T − t0).

Next, in order to alloate ooperative payo� between players it is neessary to

de�ne a set of IDPs βj(t, x
∗
j ) for eah random trunated subgame Γ̄ c

j (x
∗
j,0, t0+j∆t),

j = 0, . . . , l. For that using �xed parameters of the model we numerially alulate

values of harateristi funtion Vj(S;x
∗
j (t), t), S ⊂ N for eah random trunated

subgame Γ̄ c
j (x

∗
j,0, t0 + j∆t).

Using values of harateristi funtion Vj(S;x
∗
j (t), t), S ⊂ N we onstrut the

set Bj(t, x
∗
j ), j = 0, . . . , l (20). By ombination of sets Bj(t, x

∗
j ) we an onstrut set

of IDPs for the whole game B̂(t, x̂∗). On the basis of B̂(t, x̂∗) we onstrut solution
onept Ŵ (x0, T − t0) using formula (26).

Let us demonstrate the property of strong time-onsisteny of solution onept

Ŵ . Suppose that at the beginning of the game Γ (x0, T − t0) players agreed to

use proportional solution. For eah random trunated subgame Γ̄ c
j (x

∗
j,0, t0 + j∆t)
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Fig. 10. The trajetory of the resoure stok x̂∗(t) (thik solid line) with Looking Forward

Approah with random horizon, and orresponding ooperative trajetories (dotted lines).

Fig. 11. The trajetory of the resoure stok x̄∗(t) (thik solid line) de�ned with lassial

Looking Forward Approah, and orresponding ooperative trajetories (dotted line).

proportional solution for players i ∈ N is de�ned using the IDP in the following

way:

(1 − Fj(t))β
Prop
i,j (t, x∗j ) =

Uj({i};x∗j,0, t0 + j∆t)
∑
i∈N

Uj({i};x∗j,0, t0 + j∆t)
Uj(N ;x∗j,0, t0 + j∆t), (53)

where Uj(S;x
∗
j,0, t0 + j∆t), ∀S ⊂ N is de�ned in (19). Aording to the Looking

Forward Approah proportional solution should alloate ooperative payo� during

the whole game Γ (x0, T − t0) using the following IDP:

β̂Prop(t, x̂
∗) = (1− Fj(t))β

Prop
j (t, x∗j ), t ∈ [j∆t, (j + 1)∆t], j = 0, . . . , l. (54)

Via integration of β̂Prop(t, x̂
∗) by t it is possible to de�ne the proportional imputa-

tion ξ̂Prop(x̂
∗(t), T−t) (26). In the Fig. 13,14 it an be seen that β̂Prop(t, x̂

∗) onsists

in the set B̂(t, x̂∗), whih means that proportional solution is strong time-onsistent

with given parameters.

Suppose that at the moment of time tbr ∈ [t0, T ] players deide that proportional
solution is no longer fair for them and they hoose another imputation from the

solution onept Ŵ (x̂∗(tbr), T − tbr), for example solution, whih is based upon the

Shapley value for eah random trunated subgames. For eah random trunated
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subgame Shapley Value is alulated aording to the formula:

Shji (x̂
∗(tbr), tbr) =

∑

S⊂N
i∈S

(|N | − |S|)!(|S| − 1)!

|N |! ·
(
Vj(S; tbr, x̂

∗(tbr))− Vj(S\{i}; tbr, x̂∗(tbr))
)
. (55)

Using Shapley value it it possible to de�ne IDP for eah random trunated subgame

(17). Aording to the Looking Forward Approah proportional solution should

alloate ooperative payo� during the whole game using the following IDP:

β̂Sh(t, x̂
∗) = (1− Fj(t))β

Sh
j (t, x∗j ), t ∈ [t0 + j∆t, t0 + (j + 1)∆t], j = 0, . . . , l,

where βSh
j (t, x∗j ) is de�ned using the formula (18). It is worth mentioning that the

IDP for Shapley value βSh
j (t, x∗j ) and the IDP for proportional solution βProp

j (t, x∗j )
are alulated in the way to ensure the time-onsisteny property, i.e. using the

formula (18). The extended desription of the step by step solution of IDP for a

Shapley value is presented in (Shevkoplyas, 2009).

Let us set the moment tbr = 1.2 when players deide to reonsider the propor-

tional solution. Then, aording to (25), the formula for the IDP for the whole game

has the following form:

β̂(t, x̂∗) =

{
β̂Prop(t, x̂

∗), t ∈ [t0, tbr],

β̂Sh(t, x̂
∗), t ∈ (tbr, T ].

(56)

In Fig. 12 IDP β̂Prop(t, x̂
∗) for the proportional solution (54) (thik solid line) and

IDP β̂(t, x̂∗) for the ombined solution (56) (dotted line) are presented.

Fig. 12. IDP β̂Prop(t, x̂
∗) for the proportional solution (53) (thik solid line), IDP β̂(t, x̂∗)

for the ombined solution (56) (dotted line).

Via the diret integration of β̂(t, x̂∗) (56) by t it is possible to de�ne formula (26)

for resulting alloation ξ̂(x̂∗(t), T − t). Aording to ξ̂(x̂∗(t), T − t), players alloate
ooperative payo� in the game Γ (x0, T − t0) in the following way:

ξ̂(x̂∗(t), T − t) = (12.3, 30.2, 16.8). (57)

In Fig. 13,14 it an be seen that β̂(t, x̂∗) (56) is within the set B̂(t, x̂∗) (20), whih

means that orresponding imputation ξ̂(x̂∗(t), T−t) ∈ Ŵ (x̂∗(t), T−t) with given pa-
rameters. This fat demonstrates the property of strong time-onsisteny of solution
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onept

Ŵ (x0, T − t0). Also, in Fig. 13,14 it an be seen that the proportional solution

β̂Prop(t, x̂
∗) (54) is within the set B̂(t, x̂∗).

Fig. 13. Axis: β1, β2, t. β3 an be alulated using (20).

Fig. 14. Axis: β2, β3, t. β1 an be alulated using (20).

In Fig. 15 the di�erene between the ξ̂(x̂∗(t), T − t) and ξ̂Prop(x̂
∗(t), T − t) is

presented.

6. Conlusion

A novel approah to de�nition of a solution for a di�erential game is presented.

The game is de�ned on a time interval divided into subintervals. The players do

not have full information about the struture of the game on the full time interval.

Instead, they know parameters of the dynamial system and of the payo� funtion,

but the duration of this information is unknown in advane. A ombined trajetory

is omposed reursively by the loal trajetories. As a solution IDP-ore is used.

Solution for the whole game is desribed as a new solution onept. It is proved that

the new solution is not only time-onsistent but also strong time-onsistent whih

is a rare property of ooperative di�erential games.

The approah is illustrated by an example of the resoure extration game.

The omparison between the original approah and the Looking Forward Approah

with random horizon is presented. Combined trajetories for both approahes are

presented. Solution onept based on the IDP-ore is onstruted. In the �nal part
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Fig. 15. Imputation ξ̂Prop(x̂
∗(t), T − t) for the proportional solution (thik solid line),

imputation ξ̂(x̂∗(t), T − t) for the ombined solution (dotted line).

of the example the strong time onsisteny property of the onstruted solution is

demonstrated. It is supposed that players agreed on using a proportional solution

from the solution set, but at some point they deide to swith to a Shapley value.

As it turns out the resulting solution belongs to the solution set.
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