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Abstrat We onsider in�nite n-person stohasti games with limiting av-

erage payo�s riteria for the players. The main results of the paper are

onerned with the existene of stationary Nash equilibria and determining

the optimal strategies of the players in the games with �nite state and ation

spaes. We present onditions for the existene of stationary Nash equilib-

ria in the onsidered games and propose an approah for determining the

optimal stationary strategies of the players if suh strategies exist.
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1. Introdution

In this paper we study the problem of the existene and determining station-

ary Nash equilibria in average stohasti games with �nite state and ation spaes.

Stohasti games, named sometimes Markov games, were introdued by Shapley,

1953. He onsidered two-person zero-sum stohasti games for whih he proved the

existene of the value and the optimal stationary strategies of the players with

respet to a disounted payo� riterion. Later, this lass of games has been ex-

tended to general n-person stohasti games with disounted and average payo�s

riteria (Gillette, 1957; Fink, 1964; Takahashi, 1964; Vrieze, 1987; Filar et al., 1991;

Neyman and Sorin, 2003). The most important results for n-person stohasti games

with disounted payo�s have been obtained by Fink, 1964, Takahashi, 1964 and

Sobel, 1971 who proved the existene of stationary Nash equilibria in suh games.

Shultz, 1986, Filar et al., 1991 showed that the problem of determining stationary

Nash equilibria in a general n-person stohasti game with disounted payo�s an

be represented as a nonlinear programming problem with linear onstraints and the

global minimum of the objetive funtion equal to zero. Mertens and Neyman, 1981

studied two-person zero-sum games and proved the existene of uniform ε-optimal

strategies for the players, i.e. they showed that for every ε > 0 eah of the two players
has a strategy that guarantees the disounted value up to ε for every disount fator
su�iently lose to 0. These results have been extended by Vieille, 2009 to an arbi-

trary nonooperative stohasti game of two players and afterwards they have been

used for studying the problem of the existene of Nash equilibria in non-stationary

strategies for two-player average stohasti games (Vieille, 2002, 2009, Solan, 2009;

Solan and Vieille, 2010). Algorithmi approahes onerned with determining the

optimal strategies of the players in some lasses of stohasti games an be found

in (Shultz, 1986; Filar et al., 1991; Neyman and Sorin, 2003; Solan, 2009).
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The n-person stohasti games with limiting average payo�s have been studied

by many authors (Neyman and Sorin, 2003; Rogers, 1969; Sobel, 1971; Solan, 2009;

Solan and Vieille, 2010; Vieille, 2002; Vieille, 2009; Vrieze, 1987) however the exis-

tene of stationary Nash equilibria has been proved only for some lasses of suh

games. Rogers, 1969 and Sobel, 1971 showed that stationary Nash equilibria exist

for nonzero-sum stohasti games with average payo�s when the transition prob-

ability matries indued by any stationary strategies of the players are unihain.

An important lass of average stohasti games for whih stationary Nash equi-

libria exist represents stohasti positional games (Lozovanu, 2018, 2019). Further-

more Lozovanu, 2018, 2019 shown that for average stohasti positional games with

unihain property and for two-player zero-sum stohasti positional games there

exist stationary Nash equilibria in pure strategy. The main results onerned with

the existene and determining Nash equilibria in two-player average stohas-

ti games an be found in (Mertens and Neyman, 1981; Neyman and Sorin, 2003;

Vieille, 2002, 2009, Vieille, 2009; Solan, 2009; Solan and Vieille, 2010). In the gen-

eral ase for an average stohasti game with given starting state a stationary Nash

equilibrium may not exist. This fat has been shown by Flesh et al., 1997 that

onstruted an example of a 3-player average stohasti game with �xed starting

state for whih a stationary Nash equilibrium does not exist. Moreover, they shown

that for an m-player (m ≥ 3) average stohasti game may not exist also stationary

ε-equilibrium (ε > 0). In general, for an average stohasti game there may exist

a nonempty subset of states suh that if the game starts in one of them then a

stationary Nash equilibrium exists (Tijs and Vrieze, 1986). However, the problem

of determining the initial states in an average stohasti game for whih stationary

equilibria exist is an open problem.

In this ontribution we onsider average stohasti games with �nite state and

ation spaes. We show that an arbitrary average stohasti game in stationary

strategies an be represented as a game in normal form where eah payo� is quasi-

monotoni (quasi-onave and quasi-onvex) with respet to the strategy of the

orresponding player. Furthermore we show that if the game in normal form has a

pure Nash equilibrium then suh an equilibrium orresponds to a stationary Nash

equilibrium of the average stohasti game and vie versa. Based on this result and

results of Debreu, 1952, Gliksberg, 1952, Dasgupta and Maskin, 1986, Reny, 1999

related to existene of Nah equilibria in the games with quasi-onave (quasi-onvex)

payo�s we formulate onditions for the existene and determining stationary Nash

equilibria in average stohasti games.

2. Average Stohasti Games in Pure and Mixed Stationary Strategies

We �rst present the framework of a n-person stohasti game and then speify

the formulation of stohasti games with average payo�s when the players use pure

and mixed stationary strategies.

2.1. The Framework of a n-person Average Stohasti Game

A stohasti game with n players onsists of the following elements:

- a state spae X (whih we assume to be �nite);

- a �nite set Ai(x) of ations with respet to eah player i ∈ {1, 2, . . . , n}
for an arbitrary state x ∈ X ;
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- a payo� f i(x, a) with respet to eah player i ∈{1, 2, . . . , n} for eah

state x ∈ X and for an arbitrary ation vetor a ∈∏
i

Ai(x);

- a transition probability funtion p : X × ∏
x∈X

n∏
i=1

Ai(x)×X → [0, 1]

that gives the probability transitions pax,y from an arbitrary x ∈ X

to an arbitrary y ∈ Y for a �xed ation vetor a ∈∏
i

Ai(x), where
∑
y∈X

pax,y = 1, ∀x ∈ X, a ∈∏
i

Ai(x);

- a starting state x0 ∈ X .

The game starts in the state x0 and the play proeeds in a sequene of stages.

At stage t the players observe state xt and simultaneously and indepen-

dently hoose ations ait ∈ Ai(xt), i = 1, 2, . . . , n. Then nature selets a state

y = xt+1 aording to probability transitions pat
xt,y for the given ation vetor

at = (a1t , a
2
t , . . . , a

n
t ). Suh a play of the game produes a sequene of states and

ations x0, a0, x1, a1, . . . , xt, at, . . . that de�nes a stream of stage payo�s f1
t =

f1(xt, at), f
2
t = f2(xt, at), . . . , f

n
t = fn(xt, at), t = 0, 1, 2, . . . . The in�nite

average stohasti game is the game with payo�s of the players

ωi
x0

= lim
t→∞

inf E

(
1

t

t−1∑

τ=0

f i
τ

)
, i = 1, 2, . . . , n,

where E is the expetation operator with respet to the probability measure in a

Markov proess with rewards indued by the initial state x0 and the orresponding

vetor ations at in the states xt ∈ X (see Kallenberg, 2016; Puterman, 2005). Here

ωi
xo

expresses the average payo� per transition of player i in the in�nite game. Eah

player in this game has the aim to maximize his average payo� per transitions. In

the ase n = 1 this game beomes the average Markov deision problem with a

probability transition funtion p : X × ∏
x∈X

A(x) × X → [0, 1] and step rewards

f(x, a) = f1(x, a) in the states x ∈ X for given ations a ∈ A(x) = A1(x).
In the paper we will study the stohasti games when players use pure and mixed

stationary strategies of seletion the ations in the states.

2.2. Pure and Mixed Stationary Strategies of the Players

A strategy (poliy) of player i ∈ {1, 2, . . . , n} in a stohasti game is a mapping

si that provides for every state xt ∈ X a probability distribution over the set of

ations Ai(xt). If these probabilities take only values 0 and 1, then s
i
is alled a pure

strategy, otherwise si is alled a mixed strategy. If these probabilities depend only

on the state xt = x ∈ X (i. e. si do not depend on t), then si is alled a stationary

strategy, otherwise si is alled a non-stationary strategy .

Thus, a pure stationary strategy of player i ∈ {1, 2, . . . , n} an be regarded as a

map si : x → ai ∈ Ai(x) for x ∈ X that determines for eah state x an ation

ai ∈ Ai(x), i.e. si(x) = ai. Obviously, the orresponding sets of pure stationary

strategies S1, S2, . . . , Sn
of the players in the game with �nite state and ation

spaes are �nite sets.

In the following we will identify a pure stationary strategy si(x) of player i with
the set of boolean variables six,ai ∈ {0, 1}, where for a given x ∈ X six,ai = 1 if
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and only if player i �xes the ation ai ∈ Ai(x). So, we an represent the set of pure

stationary strategies Si
of player i as the set of solutions of the following system:





∑
ai∈Ai(x)

six,ai = 1, ∀x ∈ X ;

six,ai ∈ {0, 1}, ∀x ∈ X, ∀ai ∈ Ai(x).

If in this system we hange the restrition six,ai ∈ {0, 1} for x ∈ X, ai ∈ Ai(x) by

the ondition 0 ≤ six,ai ≤ 1 then we obtain the set of stationary strategies in the

sense of Shapley, 1953, where six,ai is treated as the probability of the hoies of

the ation ai by player i every time when the state x is reahed by any route

in the dynami stohasti game. Thus, we an identify the set of mixed stationary

strategies of the players with the set of solutions of the system





∑
ai∈Ai(x)

six,ai = 1, ∀x ∈ X ;

six,ai ≥ 0, ∀x ∈ X, ∀ai ∈ Ai(x)
(1)

and for a given pro�le s = (s1, s2, . . . , sn) of mixed strategies s1, s2, . . . , sn of the

players the probability transition psx,y from a state x to a state y an be alulated

as follows

psx,y =
∑

(a1,a2,...,an)∈A(x)

n∏

k=1

skx,akp
(a1,a2,...,an)
x,y . (2)

In the sequel we will distinguish stohasti games in pure and mixed stationary

strategies.

2.3. Average Stohasti Games in Pure Stationary Strategies

Let s = (s1, s2, . . . , sn) be a pro�le of pure stationary strategies of the players

and denote by a(s) = (a1(s), a2(s), . . . , an(s)) ∈ ∏
x∈X

n∏
i=1

Ai(x) the ation vetor

that orresponds to s and determines the probability distributions psx,y = p
a(s)
x,y in

the states x ∈ X . Then the average payo�s per transition ω1
x0
(s), ω2

x0
(s), . . . , ωn

x0
(s)

for the players are determined as follows

ωi
x0
(s) =

∑

y∈X

qsx0,yf
i(y, a(s)), i = 1, 2, . . . , n,

where qsxo,y represent the limiting probabilities in the states y ∈ X for the Markov

proess with a probability transition matrix P s = (psx,y) when the transitions start

in x0. So, if for the Markov proess with probability matrix P s
the orresponding

limiting probability matrix Qs = (qsx,y) is known then ω1
x, ω

2
x, . . . , ω

n
x an be

determined for an arbitrary starting state x ∈ X of the game. The funtions

ω1
x0
(s), ω2

x0
(s), . . . , ωn

x0
(s) on S = S1 × S2 × · · · × Sn

de�ne a game in normal

form that we denote by 〈{Si}i=1,n, {ωi
x0
(s)}i=1,n 〉. This game orresponds to

an average stohasti game in pure stationary strategies that in extended form is

determined by the tuple (X, {Ai(x)}i=1,n, {f i(x, a}i=1,n, p, x0).

If an arbitrary pro�le s = (s1, s2, . . . , sn) of pure stationary strategies in a

stohasti game indues a probability matrix P s
that orresponds to a Markov

unihain then we say that the game possesses the unihain property and shortly we

all it unihain stohasti game; otherwise we all it multihain stohasti game.
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2.4. Average Stohasti Games in Mixed Stationary Strategies

Let s = (s1, s2, . . . , sn) be a pro�le of mixed stationary strategies of the players.

Then elements of the probability transition matrix P s = (psx,y) in the Markov

proess indued by s an be alulated aording to (2). Therefore if Qs = (qsx,y)
is the limiting probability matrix of P s

then the average payo�s per transition

ω1
x0
(s), ω2

x0
(s), . . . , ωn

x0
(s) for the players are determined as follows

ωi
x0
(s) =

∑

y∈X

qsx0,yf
i(y, s), i = 1, 2, . . . , n, (3)

where

f i(y, s) =
∑

(a1,a2,...,an)∈A(y)

n∏

k=1

sky,akf
i(y, a1, a2, . . . , an) (4)

expresses the average payo� (immediate reward) in the state y ∈ X of player

i when the orresponding stationary strategies s1, s2, . . . , sn have been applied by

players 1, 2, . . . , n in y.

Let S
1
, S

2
, . . . , S

n
be the orresponding sets of mixed stationary strategies for

the players 1, 2, . . . , n, i.e. eah S
i
for i ∈ {1, 2, . . . , n} represents the set of so-

lutions of system (2). The funtions ω1
x0
(s), ω2

x0
(s), . . . , ωn

x0
(s) on S = S

1 × S
2 ×

· · · × S
n
, de�ned aording to (3),(4), determine a game in normal form that we

denote by 〈{Si}i=1,n, {ωi
x0
(s)}i=1,n 〉. This game orresponds to an average stohas-

ti game in mixed stationary strategies that in extended form is determined by the

tuple (X, {Ai(x)}i=1,n, {f i(x, a}i=1,n, p, x0).

2.5. Average Stohasti Games with Random Starting State

In the paper we will onsider also average stohasti games in whih the starting

state is hosen randomly aording to a given distribution {θx} on X . So, for

a given stohasti game we will assume that the play starts in the states x ∈ X
with probabilities θx > 0 where

∑
x∈X

θx = 1. If the players use mixed stationary

strategies of seletion the ations in the states then the payo� funtions

ψi
θ(s

1, s2, . . . , sn) =
∑

x∈X

θxω
i
x(s

1, s2, . . . , sn), i = 1, 2, . . . , n

on S = S
1 × S

2 × · · · × S
n
de�ne a game in normal form 〈{Si}i=1,n, {ψi

θ(s)}i=1,n〉
that in extended form is determined by the following tuple (X, {Ai(x)}i=1,n,

{f i(x, a}i=1,n, p, {θx}). In the ase θx = 0, ∀x ∈ X \ {x0}, θxo
= 1 the onsidered

game beomes a stohasti game with �xed starting state x0. In analogues way

we an speify the game in normal form 〈{Si}i=1,n, {ψi
θ(s)}i=1,n〉 for the average

stohasti game with random starting state x0 when players use pure stationary

strategies of seletion the ations in the states.

2.6. De�nition of Stationary Nash Equilibria

Let s = (s1, s2, . . . , sn) ∈ S
∗
. De�ne s−i = (s1, s2, . . . , si−1, si+1, . . . , sn)

as the vetor of stationary strategies of all players other than i and denote

s=(si, s−i), i = 1, 2, . . . , n. The pro�le s∗ =(s1
∗
, s2

∗
, . . . , sn∗) is alled stationary
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Nash equilibrium for an average stohasti game 〈{Si}i=1,n, {ωi
x0
(s)}i=1,n 〉 with

given starting state x0 if

ωi
x0
(si

∗
, s−i∗) ≥ ωi

x0
(si, s−i∗), ∀si ∈ S

i
, i = 1, 2, . . . , n. (5)

The pro�le s∗ = (s1
∗
, s2

∗
, . . . , sn∗) is alled stationary Nash equilibrium for an

average stohasti game 〈{Si}i=1,n, {ψi
θ(s)}i=1,n 〉 when the starting state is hosen

randomly aording to a given distribution {θx} on X if

ψi
θ(s

i∗, s−i∗) ≥ ψi
θ(s

i, s−i∗), ∀si ∈ S
i
, i = 1, 2, . . . , n. (6)

3. An Approah for Determining Stationary Nash Equilibria in

Average Stohasti Games with Unihain Property

In this setion we show that an unihain average stohasti game in stationary

strategies an be represented as a ontinuous game in normal form where the payo�s

are quasi-monotoni with respet to the orresponding strategies of the players. Us-

ing suh a model we propose an approah for determining stationary Nash equilibria

for unihain average stohasti games.

3.1. A Continuous Model for the Average Markov Deision Problem

with Unihain Property

In (Lozovanu, 2011) has been shown that an average Markov deision problem

with unihain property an be formulated as the following optimization problem:

Maximize

ψ(s, q) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,a qx, (7)

subjet to 



qy −
∑
x∈X

∑
a∈A(x)

pax,ysx,aqx = 0, ∀y ∈ X ;

∑
x∈X

qx = 1;

∑
a∈A(x)

sx,a = 1, ∀x ∈ X ;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(8)

Here f(x, a) represents the step reward in the state x ∈ X for a given ation

a ∈ A(x) in the unihain problem and pax,y expresses the probability transition from
x ∈ X to y ∈ X for a ∈ A(x). The variables sx,a orrespond to strategies of

seletion of the ations a ∈ A(x) in the states x ∈ X and qx for x ∈ X represent

the orresponding limiting probabilities in the states x ∈ X for the probability

transition matrix P s = (psx,y) indued by the stationary strategy s.
In this problem the average reward ψ(s, q) is maximized under the onditions

(8) that determines the set of feasible stationary strategies in the unihain problem.

An optimal solution (s∗, q∗) of problem (7), (8) with s∗x,a ∈ {0, 1} orresponds to an
optimal stationary strategy s∗ : X → A where a∗ = s∗(x) for x ∈ X if s∗x,a = 1.
Using the notations αx,a = sx,aqx, for x ∈ X, a ∈ A(x), problem (7), (8) an be
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easily transformed into the following linear programming problem:

Maximize

ψ(α) =
∑

x∈X

∑

a∈A(x)

f(x, a)αx,a (9)

subjet to 



qy −
∑
x∈X

∑
a∈A(x)

pax,yαx,a = 0, ∀y ∈ X ;

∑
x∈X

qx = 1;

∑
a∈A(x)

αx,a − qx = 0, ∀x ∈ X ;

αx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(10)

This problem an be simpli�ed by eliminating qx from (10) and �nally we obtain

the problem in whih it is neessary to maximize the objetive funtion (9) on the

set of solutions of the following system:





∑
a∈A(y)

αy,a −
∑
x∈X

∑
a∈A(x)

pax,y αx,a = 0, ∀y ∈ X ;

∑
x∈X

∑
a∈A(x)

αx,a = 1;

αx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(11)

Based on the relationship mentioned above between problem (7), (8) and problem

(9), (11) in (Lozovanu, 2011) the following result has been announed.

Lemma 1. Let an average Markov deision problem be given, where an arbitrary

stationary strategy s generates a Markov unihain, and onsider the funtion

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,a qx

where qx for x ∈ X satisfy the ondition





qy −
∑
x∈X

∑
a∈A(x)

pax,ysx,aqx = 0, ∀y ∈ X ;

∑
x∈X

qx = 1.

Then the funtion ψ(s) on the set S of solutions of the system





∑
a∈A(x)

sx,a = 1, ∀x ∈ X ;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)

depends only on sx,a for x ∈ X, a ∈ A(x), and ψ(s) is quasi-monotoni on S
(i.e. ψ(s) is quasi-onave and quasi-onvex on S Boyd and Vandenberghe, 2004).

Moreover, ψ(s) = ωx(s), ∀x ∈ X.

The full proof of this lemma in a more general form is presented in (Lozovanu, 2018).
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3.2. Stationary Equilibria for Average Stohasti Games with Unihain

Property

An average stohasti game with unihain property an be formulated in terms

of stationary strategies as follows.

Let S = S
1×S2×· · ·×Sn

, where eah S
i
for i ∈ {1, 2, . . . , n} represents the set

of solutions of system (2), i.e. S
i
represents the set of mixed stationary strategies

for player i. On S we de�ne the average payo�s for the players as follows:

ψi(s1, s2, . . . , sn) =
∑
x∈X

∑
(a1,a2,...,an)∈A(x)

n∏
k=1

skx,akf
i(x, a1, a2, . . . , an)qx,

i = 1, 2, . . . , n,

where qx for x ∈ X are determined uniquely from the following system of linear

equations





∑
x∈X

∑
(a1,a2,...,an)∈A(x)

n∏
k=1

skx,akp
(a1,a2,...,an)
x,y qx = qy, ∀y ∈ X ;

∑
x∈X

qx = 1,

where si ∈ S
i
, i = 1, 2, . . . , n. The funtions ψi(s1, s2, . . . , sn), i = 1, 2, . . . , n

on S de�ne a game in normal form 〈{Si}i=1,n, {ψi(s)}i=1,n〉 that

orresponds to a stationary average stohasti game with unihain property,

where ψi(s1, s2, . . . , sn) = ωi
x(s

1, s2, . . . , sn), ∀x ∈ X, i = 1, 2, . . . , n.
From Lemma 1 we obtain the following result.

Lemma 2. For an arbitrary unihain stohasti game 〈{Si}i=1,n, {ψi(s)}i=1,n〉 eah
payo� funtion ψi(si, ŝ−i), i ∈ {1, 2, . . . , n} is quasi-monotoni with respet to

si ∈ S
i
for arbitrary �xed ŝ−i ∈ S

−i
.

Based on Lemma 2 and results from (Debreu, 1952; Gliksberg, 1952) we obtain

the following theorem.

Theorem 1. Let 〈{Si}i=1,n, {ψi(s)}i=1,n〉 be an average stohasti game de-

termined by (X, A, {Xi}i=1,n, {f i(x, a)}i=1,n, p, x). If for an arbitrary

s = (s1, s2, . . . , sn) ∈S of the game the transition probability matrix P s = (psx,y)

orresponds to a Markov unihain then for the game 〈{Si}i=1,n, {ψi(s)}i=1,n〉 there
exists a Nash equilibrium s∗ = (s1

∗
, s2

∗
, . . . , sn∗) whih is a Nash equilibrium for

an arbitrary starting state x ∈ X of the game.

Proof. Aording to Lemma 2 eah payo� ψi(si, ŝ−i), i ∈ {1, 2, . . . , n}) is quasi-
monotoni with respet to si ∈ S

i
for �xed ŝ−i ∈ S

−i
. Additionally, eah payo�

ψi(s), i ∈ {1, 2, . . . , n} is ontinuous on S beause the stohasti game is unihain.

Then aording to (Debreu, 1952; Gliksberg, 1952) the game 〈{Si}i=1,n, {ψi(s)}i=1,n〉
possesses a pure Nash equilibrium s∗ ∈ S whih is a stationary Nash equilibrium for

the unihain average stohasti game with an arbitrary starting state x ∈ X . ⊓⊔
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Thus, if we �nd a pure Nash equilibrium s∗ for the game in normal form

〈{Si}i=1,n, {ψi(s)}i=1,n〉 then s∗ is a stationary Nash equilibrium for the average

stohasti game with unihain property.

4. Some Results for a Multihain Average Markov Deision Problem

In this setion we extend the results from Setion 3.1. for the multihain average

Markov deision problem, i.e. we show how this deision problem an be formulated

in terms of stationary strategies. These results we shall use in the next setion for

the average stohasti games in general ase.

4.1. A Linear Programming Approah for a Multihain Deision

Problem

The basi model that we shall use in the sequel for formulation and study-

ing a Markov deision problem in terms of stationary strategies represents the fol-

lowing linear programming problem (Kallenberg, 2016; Lozovanu and Pikl, 2015;

Puterman, 2005):

Maximize

ψ(α, β) =
∑

x∈X

∑

a∈A(x)

f(x, a)αx,a (12)

subjet to





∑
a∈A(y)

αy,a −
∑
x∈X

∑
a∈A(x)

pax,y αx,a = 0, ∀y ∈ X ;

∑
a∈A(y)

αy,a +
∑

a∈A(y)

βy,a −
∑
x∈X

∑
a∈A(x)

pax,yβx,a = θy, ∀y ∈ X ;

αx,a ≥ 0, βy,a ≥ 0, ∀x ∈ X, a ∈ A(x),

(13)

where θy for y ∈ X represent arbitrary positive values that satisfy the ondition∑
y∈X

θy = 1. Reall that f(x, a) denotes the step reward in a state x ∈ X for a given

ation a ∈ A(x) in the deision problem and pax,y represent the orresponding

probability transitions from a state x ∈ X to the states y ∈ X for a ∈ A(x), where∑
y∈X

pax,y = 1.

This problem generalizes the unihain linear programming model (9), (11) from

Setion 3.1.. In (13) the restritions

∑

a∈A(y)

αy,a +
∑

a∈A(y)

βy,a −
∑

x∈X

∑

a∈A(x)

pax,yβx,a = θy, ∀y ∈ X (14)

with the ondition

∑
y∈X

θy = 1 generalize the onstraint

∑
x∈X

∑
a∈A(y)

αy,a = 1 in the

unihain model. This onstraint is obtained if we sum (14) over y. The relationship
between feasible solutions of problem (12), (13) and stationary strategies in the

average Markov deision problem is the following(see Puterman, 2005):

Let (α, β) be a feasible solution of the linear programming problem (12), (13)

and denote Xα = {x ∈ X | ∑
a∈X

αx,a > 0}. Then (α, β) possesses the properties that
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∑
a∈A(x)

βx,a > 0 for x ∈ X \Xα and a stationary strategy that orresponds to (α, β)

is determined as follows

sx,a =





αx,a∑

a∈A(x)

αx,a

if x ∈ Xα;

βx,a∑

a∈A(x)

βx,a

if x ∈ X \Xα,
(15)

where sx,a expresses the probability of hoosing the ations a ∈ A(x) in the

states x ∈ X . It is easy to see that the set of feasible solutions of problem (12),(13)

generate through (15) the set of stationary strategies S that orresponds to the set

of solution of the following system





∑
a∈A(x)

sx,a = 1, ∀x ∈ X ;

sx,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x)

In (Kallenberg, 2016; Lozovanu and Pikl, 2015; Puterman, 2005) the problem

(12), (13) is regarded as the dual model of the following linear programming prob-

lem:

Minimize

φ(ε, ω) =
∑

x∈X

θxωx (16)

subjet to





εx + ωx ≥ f(x, a) +
∑
y∈X

pax,yεy, ∀x ∈ X, ∀a ∈ A(x);

ωx ≥ ∑
y∈X

pax,yωy, ∀x ∈ X, ∀a ∈ A(x).
(17)

The optimal value of the objetive funtion in this problem as well as the optimal

values of the objetive funtions in problems (12), (13) and (16), (17) express the

optimal average reward when the initial state is hosen aording to distribution

{θx}. Solving problem (16), (17) we obtain the value ω∗
x for eah x ∈ X that

represents the optimal average reward when a transition starts in x with probability
equal to 1. This means that if (α∗, β∗) is an optimal solution of problem (12), (13)

then we an determine the optimal strategy s∗ and the optimal values of objet

funtions of problems (16), (17) and (12), (13), where φ(ε∗, ω∗) = ψ(α∗, β∗). An
arbitrary optimal solution of problem (12), (13) or of problem (16), (17) determine

an optimal strategy s∗ that is an optimal stationary strategy for the multihain

deision problem with an arbitrary starting state x ∈ X .

Remark 1. Problems (12),(13) and (16),(17) an be onsidered also for the ase

when θx = 0 for some x ∈ X. In partiular, if θx = 0, ∀x ∈ X \{x0} and θx0 = 1
then these problems are transformed into the models with �xed starting state x0.
In this ase for a feasible solution (α, β) the subset X \Xα may ontain states for

whih

∑
a∈A(x) βx,a = 0. In suh states it ouldn't be used (15) for determining sx,a.

Formula (15) an be used for determining the strategies sx,a in the states x ∈ X
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for whih either

∑
a∈A(x) αx,a > 0 or

∑
a∈A(x) βx,a > 0 and these strategies

determine the value of the objetive funtion in the deision problem. In the states

x ∈ X0, where

X0 = {x ∈ X |
∑

a∈A(x)

αx,a = 0,
∑

a∈A(x)

βx,a = 0},

the strategies of the seletion of the ations may be arbitrary beause they do not

a�et the value of the objetive funtion.

4.2. A Multihain Markov Deision Model in Terms of Stationary

Strategies

The multihain average Markov deision model in terms of stationary strategies

that generalizes the unihain model (7), (8) from Setion 3.1. is the following:

Maximize

ψ(s, q, w) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx (18)

subjet to 



qy −
∑
x∈X

∑
a∈A(x)

pax,y sx,aqx = 0, ∀y ∈ X ;

qy + wy −
∑
x∈X

∑
a∈A(x)

pax,ysx,awx = θy, ∀y ∈ X ;

∑
a∈A(y)

sy,a = 1, ∀y ∈ X ;

sx,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x); wx ≥ 0, ∀x ∈ X,

(19)

where θy are the same values as in problem (12), (13) and sx,a, qx, wx for x ∈ X ,

a ∈ A(x) represent the variables that must be found.

Theorem 2. Optimization problem (18), (19) determines the optimal stationary

strategies of the multihain average Markov deision problem.

Proof. Indeed, if we assume that eah ation set A(x), x ∈ X ontains a single

ation a′ then system (13) is transformed into the following system of equations





qy −
∑
x∈X

px,yqx = 0, ∀y ∈ X ;

qy + wy −
∑
x∈X

px,ywx = θy, ∀y ∈ X

with onditions qy, wy ≥ 0 for y ∈ X , where qy = αy,a′ , wy = βy,a′ , ∀y ∈ X

and px,y = pa
′

x,y, ∀x, y ∈ X . This system uniquely determines qx for x ∈ X and

determines wx for x ∈ X up to an additive onstant in eah reurrent lass of

P = (px,y) (see Puterman, 2005). Here qx represents the limiting probability in

the state x when transitions start in the states y ∈ X with probabilities θy and

therefore the ondition qx ≥ 0 for x ∈ X an be released. Note that wx for some

states may be negative, however always the additive onstants in the orresponding

reurrent lasses an be hosen so that wx beame nonnegative. In general, we

an observe that in (19) the ondition wx ≥ 0 for x ∈ X an be released and
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this does not a�et the value of the objetive funtion of the problem. In the ase

|A(x)| = 1, ∀x ∈ X the average ost is determined as ψ =
∑
x∈X

f(x)qx, where

f(x) = f(x, a), ∀x ∈ X .

If the ation sets A(x), x ∈ X may ontain more than one ation then for a

given stationary strategy s ∈ S of a seletion of the ations in the states we an

�nd the average ost ψ(s) in a similar way as above by onsidering the probability

matrix P s = (psx,y), where

psx,y =
∑

a∈A(x)

pax,ysx,a (20)

expresses the probability transition from a state x ∈ X to a state y ∈ X when the

strategy s of seletions of the ations in the states is applied. This means that we

have to solve the following system of equations





qy −
∑
x∈X

psx,yqx = 0, ∀y ∈ X ;

qy + wy −
∑
x∈X

psx,ywx = θy, ∀y ∈ X.

If in this system we take into aount (20) then this system an be written as follows





qy −
∑
x∈X

∑
a∈A(x)

pax,y sx,aqx = 0, ∀y ∈ X ;

qy + wy −
∑
x∈X

∑
a∈A(x)

pax,ysx,awx = θy, ∀y ∈ X.
(21)

An arbitrary solution (q, w) of the system of equations (21) uniquely determines qy
for y ∈ X that allows us to determine the average ost per transition

ψ(s) =
∑

x∈X

∑

a∈X

f(x, a)sx,aqx (22)

when the stationary strategy s is applied. If we are seeking for an optimal stationary

strategy then we should add to (21) the onditions

∑

a∈A(x)

sx,a = 1, ∀x ∈ X ; sx,a ≥ 0, ∀x ∈ X, a ∈ A(x) (23)

and to maximize (22) under the onstraints (21), (23). In suh a way we obtain

problem (18), (19) without onditions wx ≥ 0 for x ∈ X . As we have noted the

onditions wx ≥ 0 for x ∈ X do not a�et the values of the objetive funtion (18)

and therefore we an preserve suh onditions that show the relationship of the

problem (18), (19) with problem (12), (13). ⊓⊔
Corollary 1. If θx > 0, ∀x ∈ X then an arbitrary optimal strategy s∗ of problem

(18),(19) is an optimal stationary strategy for the multihain average deision prob-

lem with an arbitrary starting state x ∈ X. If θx = 0, ∀x ∈ X \ {x0} and θx0 = 1
then an optimal strategy s∗ of problem (18), (19) is an optimal stationary strategy

for the multihain deision problem with starting state x0.

The relationship between feasible solutions of problem (12), (13) and feasible

solutions of problem (18), (19) an be established on the basis of the following

lemma.
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Lemma 3. Let (s, q, w) be a feasible solution of problem (18), (19). Then

αx,a = sx,aqx, βx,a = sx,awx, ∀x ∈ X, a ∈ A(x) (24)

represent a feasible solution (α, β) of problem (12), (13) and ψ(s, q, w) = ψ(α, β).
If (α, β) is a feasible solution of problem (12),(13) with θx > 0, ∀x ∈ X then a

feasible solution (s, q, w) of problem (18), (19) an be determined as follows:

sx,a =





αx,a∑

a∈A(x)

αx,a

for x ∈ Xα, a ∈ A(x);

βx,a∑

a∈A(x)

βx,a

for x ∈ X \Xα, a ∈ A(x);
(25)

qx =
∑

a∈A(x)

αx,a, wx =
∑

a∈A(x)

βx,a for x ∈ X.

If (α, β) is a feasible solution of problem (12),(13) for whih θx = 0, ∀x ∈ X \ {x0}
then a feasible solution (s, q, w) of problem (18), (19) an be determined as follows:

sx,a =





αx,a∑

a∈A(x)

αx,a

for x ∈ Xα, a ∈ A(x);

βx,a∑

a∈A(x)

βx,a

for x ∈ X \ (Xα ∪X0), a ∈ A(x);

arbitrary for x ∈ X0, a ∈ A(x),

qx =
∑

a∈A(x)

αx,a, wx =
∑

a∈A(x)

βx,a for x ∈ X,

where X0 = {x ∈ X | ∑a∈A(x) αx,a = 0,
∑

a∈A(x) βx,a = 0}.

Proof. If (s, q, w) is a feasible solution of problem (18), (19) and (α, β) is deter-

mined aording to (24) then by introduing (24) in (12),(13) we obtain that (13)

is transformed in (19) and ψ(s, q, w) = ψ(α, β), i.e. (α, β) is a feasible solution of

problem (12), (13). The seond part of lemma follows diretly from the properties

of a feasible solutions of problems (12),(13) and (18),(19). ⊓⊔

4.3. The Main Properties of the Problem in Stationary Strategies

Using problem (18), (19) we an now extend the results from Setion 3.1. for

the general ase of an average Markov deision problem.

Theorem 3. Let an average Markov deision problem be given and onsider the

funtion

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x,a)sx,a qx, (26)
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where qx for x ∈ X satis�es the ondition





qy −
∑
x∈X

∑
a∈A(x)

pax,y sx,aqx = 0, ∀y ∈ X ;

qy + wy −
∑
x∈X

∑
a∈A(x)

pax,ysx,awx = θy, ∀y ∈ X.
(27)

Then on the set S of solutions of the system





∑
a∈A(x)

sx,a = 1, ∀x ∈ X ;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)
(28)

the funtion ψ(s) depends only on sx,a for x ∈ X, a ∈ A(x) and ψ(s) is quasi-

monotoni on S (i.e. ψ(s) is quasi-onvex and quasi-onave on S ).

The proof of this theorem an be found in (Lozovanu, 2018).

5. The Main Results for Average Stohasti Games

In this setion we extend the results from Setion 3.2. for the ase of multihain

average stohasti game in stationary strategies. We show that a multihain average

stohasti game in normal form an be formulated as the game in whih the payo�s

possess of quasi-monotoni property with respet to the orresponding strategies of

the players. Based on this property we present some onditions for the existene of

stationary Nash equilibria in the multihain average stohasti game.

5.1. A Normal Form of Average Stohasti Game in Stationary

Strategies

The multihain average stohasti game in stationary strategies that generalizes

the unihain game model from Setion 3.2. is the following:

Let S
i
, i ∈ {1, 2, . . . n} be the set of solutions of the system





∑
ai∈Ai(x)

six,ai = 1, ∀x ∈ X ;

six,ai ≥ 0, ∀x ∈ X, ai ∈ Ai(x).
(29)

that determines the set of stationary strategies of player i. Eah S
i
is a onvex

ompat set and an arbitrary extreme point orresponds to a basi solution si of

system (29), where six,ai ∈ {0, 1}, ∀x ∈ X, ai ∈ A(x), i.e eah basi solution

of this system orresponds to a pure stationary strategy of player i. On the set

S = S
1 × S

2 × · · · × S
n

we de�ne n payo� funtions




ψi
θ(s

1, s2, . . . , sn) =
∑
x∈X

∑
(a1,a2,...,an)∈A(x)

n∏
k=1

skx,akf
i(x, a1, a2 . . . an)qx,

i = 1, 2, . . . , n,

(30)
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where qx for x ∈ X are determined uniquely from the following system of linear

equations





qy −
∑
x∈X

∑
(a1,a2,...,an)∈A(x)

n∏
k=1

skx,akp
(a1,a2,...,an)
x,y qx = 0, ∀y ∈ X ;

qy + wy −
∑
x∈X

∑
(a1,a2,...,an)∈A(x)

n∏
k=1

skx,akp
(a1,a2,...,an)
x,y wx = θy, ∀y ∈ X,

(31)

for an arbitrary �xed s = (s1, s2, . . . , sm) ∈ S. The funtions ψi
θ(s

1, s2, . . . , sn),
i = 1, 2, . . . , n, represent the payo� funtions for the average stohasti game

in normal form 〈{Si}i=1,n, {ψi
θ(s)}i=1,n 〉. This game is determined by the tuple

(X, {Ai(x)}i=1,n, {f i(x, a}i=1,n, p, {θy}) where θy for y ∈ X are given nonnega-

tive values suh that

∑
y∈X θy = 1.

If θy = 0, ∀y ∈ X \ {x0} and θx0 = 1 then we obtain an average stohasti

game in normal form 〈{Si}i=1,n, {ωi
x0
(s)}i=1,n 〉 when the starting state x0 is �xed,

i.e. ψi
θ(s

1, s2, . . . , sn) = ωi
x0
(s1, s2, . . . , sn), i = 1, 2, . . . , n. So, in this ase the

game is determined by (X, {Ai(x)}i=1,n, {f i(x, a}i=1,n, p, x0).
If θy > 0, ∀y ∈ X and

∑
y∈X θy = 1 then we obtain an average stohasti game

when the play starts in the states y ∈ X with probabilities θy. In this ase for the

payo�s of the players in the game in normal form we have

ψi
θ(s

1, s2, . . . , sn) =
∑

y∈X θyω
i
y(s

1, s2, . . . , sn), i = 1, 2, . . . , n.
(32)

5.2. The Main Properties of Average Stohasti Games in Normal

Form

Based on results from the previous setion we an prove the following results.

Theorem 4. Let 〈{Si}i=1,n, {ψi
θ(s)}i=1,n〉 be the game in normal form for

the average stohasti game in stationary strategies determined by (X, {Ai(x)}i=1,n,

{f i(x, a}i=1,n, p, {θy}) where θy > 0, ∀y ∈ X,
∑

y∈X θy = 1. If for this

game there exists a Nash equilibrium s∗ = (s1
∗
, s2

∗
, . . . , sn∗) then it is a Nash

equilibrium for the game in normal form 〈{Si}i=1,n, {ωi
y(s)}i=1,n 〉 with an ar-

bitrary y ∈ X, i.e. s∗ = (s1
∗
, s2

∗
, . . . , sn∗) is a stationary Nash equilibrium of

the average stohasti game with an arbitrary starting state y ∈ X. Conversely,

if for an arbitrary starting state y ∈ X the orresponding game in normal form

〈{Si}i=1,n, {ωi
y(s)}i=1,n〉 has a Nash equilibrium then for an arbitrary distribution

funtion {θy} on X with θy > 0, ∀y ∈ X (
∑

y∈X θy = 1) the orresponding game

in normal form 〈{Si}i=1,n, {ψi
θ(s)}i=1,n 〉 of the average stohasti game deter-

mined by (X, {Ai(x)}i=1,n, {f i(x, a}i=1,n, p, {θy}) has a Nash equilibrium s∗ =

(s1
∗
, s2

∗
, . . . , sn∗) whih is a Nash equilibrium for eah of the game in normal form

〈{Si}i=1,n, {ωi
y(s)}i=1,n 〉 with the orresponding starting states y ∈ Y .

Proof. (⇒) Let s∗ = (s1
∗
, s2

∗
, . . . , sn∗) be a Nash equilibrium for the game in nor-

mal form 〈{Si}i=1,n, {ψi
θ(s)}i=1,n 〉 determined by (X, {Ai(x)}i=1,n, {f i(x, a}i=1,n,

p, {θy}), where θy > 0, ∀y ∈ X,
∑

y∈X θy = 1. Then (s1
∗
, s2

∗
, . . . , sn∗) is a Nash
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equilibrium for the average stohasti game 〈{Si}i=1,n, {ψi
θ′(s)}i=1,n 〉 with an

arbitrary distribution {θ′y} on X, where θ′y > 0, ∀y ∈ X,
∑

y∈X θ′y = 1, i.e

ψi
θ′(si

∗
, s−i∗) ≥ ψi

θ′(si, s−i∗), ∀si ∈ S
i
, i = 1, 2, . . . , n.

If here we express ψi
θ′ via ωi

y using (32) then we obtain

∑

y∈X

θ′y(ω
i
y(s

i∗, s−i∗)− ωi
y(s

i, s−i∗)) ≥ 0, ∀si ∈ S
i
, i = 1, 2, . . . , n.

This property holds for arbitrary θ′y > 0, ∀y ∈ X suh that

∑
y∈Y θ

′
y = 1 and

therefore for an arbitrary y ∈ X we have

ωi
y(s

i∗, s−i∗)− ωi
y(s

i, s−i∗) ≥ 0, ∀si ∈ S
i
, i = 1, 2, . . . , n.

So, (s1
∗
, s2

∗
, . . . , sn∗) is a Nash equilibrium for eah of the game in normal form

〈{Si}i=1,n, {ωi
y(s)}i=1,n 〉 with the orresponding starting states y ∈ X.

(⇐) Assume that for eah starting state y ∈ X the average stohasti game

〈{Si}i=1,n, {ωi
y(s)}i=1,n 〉 has a Nash equilibrium. Let us show that for the game

〈{Si}i=1,n, {ψi
θ(s)}i=1,n 〉, determined by (X, {Ai(x)}i=1,n, {f i(x, a}i=1,n, p, {θy}),

where θy > 0, ∀y ∈ X,
∑

y∈X θy = 1 there exists a Nash equilibrium. We prove

this using an auxiliary average stohasti game with a new starting state z and

the set of states X ∪ {z}, where for an arbitrary state x ∈ X eah player i ∈
{1, 2, . . . , n} has the same set of ations Ai(x), the same payo�s f i(x, a) for a ∈
A(x) and the same transition probability distributions pax,y for a ∈ A(x) as in

the game determined by (X, {Ai(x)}i=1,n, {f i(x, a}i=1,n, p, {θy}); in the state

z of the auxiliary game eah player i ∈ {1, 2, . . . , n} has a single ation aiz
and A(z) ontains a unique pro�le az = (a1z, a

2
z, . . . , a

n
z ) for whih paz

z,z =

0, paz
z,y = θy, ∀y ∈ X and f i(z, az) = 0, i = 1, 2, . . . , n. Obviously, for the auxiliary

average stohasti game with starting state z, determined by (X ∪ {z}, {Ai(x) ∪
Ai(z)}i=1,n, {f i(x, a), f i(z, az)}i=1,n, p ∪ {paz

x,y}, z) there exists a stationary Nash

equilibrium beause a Nash equilibrium exists for an arbitrary average stohasti

game 〈{Si}i=1,n, {ωi
y(s)}i=1,n 〉 with starting state y ∈ Y . Taking into aount

that the auxiliary game is equivalent to the average stohasti game, determined by

(X, {Ai(x)}i=1,n, {f i(x, a}i=1,n, p, {θy}), where θy > 0, ∀y ∈ X,
∑

y∈X θy = 1, we
obtain that the onsidered average stohasti game with a random starting state

has a stationary Nash equilibrium s∗ = (s1
∗
, s2

∗
, . . . , sn∗) whih is a stationary

Nash equilibrium for the average stohasti game 〈{Si}i=1,n, {ωi
y(s)}i=1,n 〉 with an

arbitrary starting state y ∈ Y . ⊓⊔
From Theorem 3 we an easily obtain the following result.

Lemma 4. For an arbitrary game in normal form 〈{Si}i=1,n, {ψi
θ(s)}i=1,n 〉 with

θx ≥ 0, ∀x ∈ X,
∑

y∈X θy = 1 eah payo� funtion ψi
θ(s

1, s2, . . . , sn), i ∈
{1, 2, . . . , n} possesses the property that ψi

θ(s
i, ŝ−i) is quasi-monotoni with

respet to si ∈ S
i
for arbitrary �xed ŝ−i ∈ S

−i
.

Proof. Indeed, if players 1, 2, . . . , i − 1, i + 1, . . . , n �x their stationary strategies

ŝk ∈ S
k
, k = 1, 2, . . . , i − 1, i + 1, . . . , n, then we obtain an average deision
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problem with respet to si ∈ S
i
and an average ost funtion ψi

θ(s
i, ŝ−i). Aording

to Theorem 3 ψi
θ(s

i, ŝ−i) possesses the property that the value of this funtion is

uniquely determined by si ∈ S
i
and it is quasi-monotone with respet to si on

S
i
. ⊓⊔

Using this lemma we an prove the following result.

Theorem 5. Let 〈{Si}i=1,n, {ψi
θ(s)}i=1,n〉 be the normal form game for the aver-

age stohasti game determined by (X,A, {Xi}i=1,n, {f i(x, a)}i=1,n, p, {θx}) where

θx > 0, ∀x ∈ X,
∑

y∈X θy = 1. If eah funtion ψi
θ, i ∈ {1, 2, . . . , n} is ontinuous

on S = S1×S2×· · ·×Sn
then the game 〈{Si}i=1,n, {ψi

θ(s)}i=1,n 〉 possesses a Nash

equilibrium s∗ = (s1
∗
, s2

∗
, . . . , sn∗) whih is a stationary Nash equilibrium for

the average stohasti game with an arbitrary starting state y ∈ X.

Proof. Indeed, aording to Lemma 4 eah funtion ψi(s1, s2, . . . , sn),
i ∈ {1, 2, . . . , n} satis�es the ondition that ψi(si, s−i), is quasi-monotoni with

respet to si ∈ S
i
for arbitrary �xed s−i ∈ S

−i
. In the onsidered game eah subset

S
i
is onvex and ompat and aording to the ondition of the theorem eah payo�

funtion ψi
θ(s

1, s2, . . . , sn), i ∈ {1, 2, . . . , n} is ontinuous on S. Based on results

from (Dasgupta and Maskin, 1986; Debreu, 1952; Reny, 1999; Simon, 1987) these

onditions provide the existene of a Nash equilibrium s∗ = (s1
∗
, s2

∗
, . . . , sn∗) for

the game 〈{Si}i=1,n, {ψi
θ(s)}i=1,n 〉. Aording to Theorem 4 suh an equilibrium

is a Nash equilibrium for the game 〈{Si}i=1,n, {ωi
y(s)}i=1,n 〉 with an arbitrary

starting state y ∈ X . ⊓⊔

Remark 2. Theorems 4 and 5 are valid also for the ase of the game 〈{Si}i=1,n,

{ψi
θ(s)}i=1,n 〉 when θy = 0 for some y ∈ X , however in this ase we obtain sta-

tionary Nash equilibria only for the games 〈{Si}i=1,n, {ωi
z(s)}i=1,n〉 with starting

states z ∈ X+
, where X+ = {z ∈ X |θz > 0}.

Remark 3. Theorem 5 holds also for the ase when the payo�s are not ontinuous

but satisfy so-alled graph-ontinuous property from (Dasgupta and Maskin, 1986).

6. Stationary Equilibria for Average Stohasti Positional Games

Average stohasti positional games have been introdued in (Lozovanu, 2018)

as a generalization of mean payo� games from (Ehrenfeuht and Myielski, 1979).

An average stohasti positional game represents an average stohasti game in

whih the set of states is divided into several disjoint subsets suh that eah subset

represents the position set for one of the player and eah player ontrols the Markov

proess only in his position set. In suh a game eah player hooses ations in his

position set in order to maximize his average reward per transition.

An average stohasti positional game with n prlayers is determined by the

following elements:

- a state spae X (whih we assume to be �nite);

- a partition X = X1 ∪X2 ∪ · · · ∪Xn where Xi represents the position set

of player i ∈ {1, 2, . . . , n};
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- a �nite set A(x) of ations in eah state x ∈ X ;

- a step reward f i(x, a) with respet to eah player i ∈{1, 2, . . . , n} in eah

state x ∈ X and for an arbitrary ation a ∈ A(x);

- a transition probability funtion p : X× ∏
x∈X

A(x)×X → [0, 1] that gives

the probability transitions pax,y from an arbitrary x ∈ X to an arbitrary

y ∈ X for a �xed ation a ∈ A(x), where
∑
y∈X

pax,y = 1, ∀x ∈ X, a ∈ A(x);

- a starting state x0 ∈ X .

The game starts at the moment of time t = 0 in the state x0 where the player

i ∈ {1, 2, . . . ,m} who is the owner of position x0 (x0 ∈ Xi) hooses an ation

a0 ∈ A(x0) and determines the rewards f1(x0, a0), f
2(x0, a0), . . . , f

m(x0, a0) for the
orresponding players 1, 2, . . . ,m. After that the game passes to a state y = x1 ∈ X
aording to probability distribution {pa0

x0,y}. At the moment of time t = 1 the

player k ∈ {1, 2, . . . , n} who is the owner of the state position x1 (x1 ∈ Xk) hooses

an ation a1 ∈ A(x1) and players 1, 2, . . . ,m reeive the orresponding rewards

f1(x1, a1), f
2(x1, a1), . . . , f

n(x1, a1). Then the game passes to a state y = x2 ∈ X
aording to probability distribution {pa1

x1,y} and so on inde�nitely. Suh a play

of the game produes a sequene of states and ations x0, a0, x1, a1, . . . , xt, at, . . .
that de�nes a stream of stage rewards f1(xt, at), f

2(xt, at), . . . , f
n(xt, at), t =

0, 1, 2, . . . . The average stohasti positional game is the game with payo�s of the

players

ωi
x0

= lim
t→∞

inf E

(
1

t

t−1∑

τ=0

f i(xτ , aτ )

)
, i = 1, 2, . . . , n.

If px,a ∈ {0, 1} then the average stohasti positional game beomes a mean payo�

game. The problem of the existene of pure and mixed stationary equilibria in a

stohasti positional games has been studied in (Lozovanu, 2018; Lozovanu, 2019).

The pure and mixed stationary strategies in suh a game an be de�ned in analogous

way as for a stohasti game, taking into aount that eah player selet ations only

in his state positions and determines in these states the step rewards for all players.

Thus, a stationary strategy of player i ∈ {1, 2, . . . , n} in a stohasti positional game

is a mapping si that provides for every state x ∈ Xi a probability distribution over

the set of ations A(x). This means that the set of stationary strategies S
i
of player

i ∈ {1, 2, . . . , n} an be identi�ed with the set of solutions of the system





∑
ai∈A(x)

six,a = 1, ∀x ∈ Xi;

six,a ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x).
(33)

The payo�s ψi
θ(s

1, s2, . . . , sm), i = 1, 2, . . . , n on S = S
1×S2×· · ·×Sn

for the game

in normal form for the onsidered positional game we an obtain from (30), (31) if

we take into aount the partiularity of the average stoshasti positional game. So,

ψi
θ(s

1, s2, . . . , sm) =

m∑

k=1

∑

x∈Xk

∑

a∈A(x)

skx,af
i(x, a)qx, i = 1, 2, . . . ,m, (34)
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where qx for x ∈ X are determined uniquely from the following system of linear

equations





qy −
m∑

k=1

∑
x∈Xk

∑
a∈A(x)

skx,a p
a
x,y qx = 0, ∀y ∈ X ;

qy + wy −
m∑

k=1

∑
x∈Xk

∑
a∈A(x)

skx,a p
a
x,y wx = θy, ∀y ∈ X

(35)

In (Lozovanu, 2018) is shown that the game 〈{Si}i=1,n, {ψi
θ(s)}i=1,n 〉 de�ned

aording to (2) - (35) possesses a Nash equilibrium whih is a stationary Nash

equilibrium for the average stohasti positional game with an arbitrary starting

state y ∈ X . Moreover, in (Lozovanu, 2019) is shown that for two-player zero-sum

stohasti positional games and for n-player average stohasti positional games

with unihain property there exist stationary Nash equilibria in pure strategies.

7. Conlusion

An arbitrary average stohasti game with �nite state and ation spaes an

be formulated in terms of stationary strategies as a game in normal form where

eah payo� is quasi-monotoni (quasi-onave and quasi-onvex) with respet to the

strategy of the orresponding player. Suh a normal form game (the game model

from Setion 5) allows to determine all stationary Nash equilibria of the average

stohasti game if stationary Nash equilibria exist. If the payo�s of the game in

normal form are ontinuous or graph ontinuous then stationary Nash equilibria

exist. For an average stohasti game with unihain property and for an average

stohasti positional game stationary Nash equilibria always exist and all stationary

equilibria an be found by using the orresponding game models in normal form

from Setion 4 and Setion 6. For two-player zero-sum average stohasti positional

games and for n-player average stohasti positional games with unihain property

there exist stationary equilibria in pure strategies
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