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Abstrat Di�erene and di�erential Stakelberg games of opinion ontrol

on marketing networks are onsidered. The prinipal alloates �nanial re-

soures to the �rms for marketing purposes. It is supposed that the struture

of a target audiene desribed by a weighted direted graph is already de-

termined in the stage of network analysis, and marketing ontrol ations are

applied only to the members of strong subgroups (opinion leaders). Condi-

tions of homeostasis (phase onstraints) whih re�et the requirements of

sustainable management are introdued additionally. The Stakelberg equi-

libria are found analytially. It is shown that the interests of the prinipal

and the �rms are ompletely ompatible.

Keywords: di�erene Stakelberg games, di�erential Stakelberg games,
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1. Introdution

The basi model of in�uene in a soial network is a weighted direted graph

where verties represent the members of the network (basi agents), and ars de-

sribe their mutual in�uene. Eah vertex is asribed a real value (an opinion

of this agent) whih is a funtion of time, and eah ar is asribed a onstant

real value (weight) whih haraterizes a degree of in�uene of an agent to an-

other (or trust of the latter to the former). Besides, there are one or several in-

�uene agents (�rms) whih exert impat to the basi agents in their (in�uene

agents) interests (Chkhartishvili et al., 2019). An approah lose to ours is used in

(Sedakov and Zhen, 2019; Zhen, 2019).

This paper represents formulations and solutions of the game theoreti models

of opinion ontrol in soial groups with a given network struture of the intera-

tions. The models are interpreted in (not unique) marketing terms. It is supposed

that there is a oordinating body whih determines the �rms' marketing budgets.

Thus, the Stakelberg games of the type "one prinipal - several agents" are on-

sidered. It is also supposed that in the stage of network analysis the target au-

diene is already segmented into strong subgroups (opinion leaders) and satellites

⋆
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(Agieva et al., 2019). Then the ontrol ations are restrited by the set of members

of the strong subgroups that redues the marketing expenditures essentially.

The objetive of the ontrol impat is maximization of the sum of opinions

of all agents at the whole period from t=1 till t=T. The impat in losed-loop

strategies is exerted to the urrent opinions of the members of strong subgroups.

Aordingly to the requirements of sustainable management, the state vetor of the

ontrolled dynamial system must belong to a ertain domain of the spae of states

(homeostasis onditions) (Ougolnitsky, 2011).

The dynamis of the ontrolled system (opinions of the agents) is desribed

by di�erene of di�erential equations. Respetively, the payo� funtionals of the

prinipal and the agents are or sum, or integral of their urrent payo� funtions.

An introdution of the disrete or ontinuous time are omplementary approahes

whih permit to re�et di�erent e�ets in real systems, and it is rational to use

both types of the models. Thus, both di�erene and di�erential Stakelberg games

with several agents are studied. The best response of the agents is de�ned as a Nash

equilibrium in their game in strategi form. The di�erene models are analyzed by

indution on the number of game periods, and the di�erential models are studied by

means of the Hamilton-Jaobi-Bellman equations. For the onsideration of budget

onstraints the Lagrange multipliers method is used.

The key problem in hierarhial systems is the oordination of interests of di�er-

ent ontrol levels. The most widespread formulation of this problem is a omparison

of the soially optimal outome of the game with outomes of the egoisti behav-

ior of the players (the problem of ine�ieny of equilibria) (Nisan et al., 2007). In

this paper the index of system ompatibility is used for the harateristi of the

oordination of interests. It is a fration in whih the numerator is a value of the

prinipal's payo� in the worst Nash equilibrium in the game of the agents, and the

denominator is the value of her globally maximal payo� (Sukhinov et al., 2020).

For the solution of the problems with the homeostasis ondition we use the fol-

lowing approah. First, we solve a basi optimization problem without this ondition

and �nd the optimal strategies of the players. In the basi model both prinipal and

agents maximize the summary opinions of the target audiene, and the prinipal

determines the marketing budgets of the agents. Given the optimal strategies and

the homeostasis ondition (the sum of the state variables should not exeed a given

value x∗), we suppose that the in�uene matrix A is stohasti (from the right).

This assumption permits to abstrat from the interation of the basi agents. In this

ase the multipliation by the matrix A from the left does not hange the sum of

omponents of the state vetor. Then the algorithm onsists in optimal inreasing

of the sum of the state variables up to the level x∗, and then to do nothing unless

the period of onsideration �nishes.

However, this assumption is too strong. The standard assumption in the ontrol

problems on networks is that the matrix A is stohasti from the left. The matrix

stohasti from the left has also a Frobenius eigenvalue equal to one, and a positive

Frobenius eigenvetor orresponding to this value. By means of the diagonal matrix

Ξ with the omponents of this Frobenius eigenvetor on the main diagonal, we an

perform the onjuntion operation and move from the initial in�uene matrix A
to the similar matrix P whih is stohasti from the right. Making a substitution

of the state variables by the transform matrix Ξ, we redue the initial problem

with the in�uene matrix A to the problem with the stohasti matrix P in the new
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oordinates. Solving this problem and making the inverse transform of the variables,

we reeive the solution of the initial problem.

The payment for this transform onsists in a small hange of the problem formu-

lation. The initial homeostasis ondition

∑n
j=1 xj ≤ x∗ takes the form

∑n
j=1 zjxj ≤

x∗, where zj are omponents of the Frobenius eigenvetor of the matrix A. Though
these two formulations are not equivalent, they do not di�er essentially. In fat, in

the initial formulation we ould take instead of x∗ the value x/
∑n

j=1 zj, and the

degree of the resulting values of the state variables remains the same. Besides, now

we have to maximize not simply the sum

∑n
j=1 xj of the values of state variables but

the projetion of the demand vetor to the Frobenius eigenvetor of the matrix A.
In other words, we maximize only the summary demand

∑n
j=1 zjxj along a general

diretion of the mutual in�uenes of the agents as it is done with a standard good

in the Leontief-Sra�a model (Leontief, 1987; Sra�a, 1960; Sra�a, 1962).

We use this approah both in the disrete and ontinuous time. Respetively, the

paper onsists of four parts. In the Setions 2 and 3 we study di�erene Stakelberg

game theoreti models of opinion ontrol in whih the prinipal should provide that

a given limit value of the summary opinion not be exeeded. In the Setion 2 the

problem is solved for the stohasti in�uene matrix A, and in the Setion 3 this

strong assumption is substituted by a weaker standard assumption that the matrix

A is stohasti from the left. The values of the system ompatibility index are

alulated. They are equal to one that witnesses about an ideal oordination of the

modeled system. It appears that for the prinipal it is not advantageous to alloate

to the agents more resoures than they need from the point of view of their rational

behavior. In the Setions 4 and 5 we analyze di�erential Stakelberg game theoreti

models of opinion ontrol with the homeostasis ondition by the ompletely similar

sheme. The Setion 6 onludes.

2. Di�erene Stakelberg Game with a Constraint on the Sum of State

Variables. Case of the Stohasti (from the Right) Matrix A

2.1. The Problem Statement

The model has the form

J0 =

T∑

t=0

δt




n∑

j=1

xtj −
m∑

i=1

rti


→ max, (1)

rti ≥ 0,
m∑

i=1

rti ≤ R, t = 0, 1, 2, . . . , T, i = 1, 2, . . . ,m, (2)

x∗ ≤
n∑

j=1

xtj ≤ R, t = 0, 1, 2, . . . , T − 1, T, (3)

Ji =

T∑

t=0

δt




n∑

j=1

(xtj − siju
i,t
j )


→ max, (4)

n∑

j=1

ui,tj ≤ rti , ui,tj ≥ 0, t = 0, 1, 2, . . . , T, i = 1, 2, . . . ,m, (5)
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xt+1
j =

m∑

i=1

bij

√
ui,tj +

n∑

l=1

aljx
t
l , x0j = xj0, j = 1, 2, . . . , n, (6)

sij =

{
1, if bij > 0,
0, if bij = 0.

(7)

Here n � a number of basi agents (a number of target audiene), m � a number

of ontrol agents (ompeting �rms), R � a total marketing budget of the leader, T �

a length of the game, J0, Ji � the payo� funtionals of the leader and the followers

(ontrol agents) respetively, rti � a marketing budget alloated to the i-th follower

by the leader in the moment (disrete period) of time t, xtj � an opinion of the j-th
basi agent in the moment t, rti � expenditures of the i-th ontrol agent for the

marketing impat (advertizing and so on) to the j-th basi agent in the moment t,
aij � a oe�ient of in�uene of the i-th basi agent to the j-th basi agent, bij �

a oe�ient of in�uene of the i-th ontrol agent to the j-th basi agent, δ denotes
a disount fator, i.e. δ = e−ρ

. As di�erent �rms an exert in�uene to di�erent

members of the strong subgroups, we simply assume that if the i-th �rm (ontrol

agent) does not in�uene to the j-th basi agent then bij = 0. Denote by A a matrix

of the oe�ients of in�uene among basi agents, i.e. A = {aij}i=1,2,...,n,j=1,2,...,n,

Aτ
� a transposed matrix of in�uenes, Xt

� a olumn vetor of the values of state

variables (opinions) in the moment t, ε � a row vetor of the dimension n formed

by units, I � the unit n× n-matrix.

Assume that matrix of in�uenes of the basi agents A is stohasti (from the

right), i.e.

n∑

j=1

aij = 1, i = 1, 2, . . . , n.

In this ase an ation of the matrix Aτ
from the left on any vetor does not hange

the sum of its omponents. Thus,

ε(Aτ )TX0 = ε(Aτ )T−1X0 = · · · = εAτX0 = εX0,

Aj = A2
j = · · · = AT

j = 1, j = 1, 2, . . . , n,

where ε is a row vetor of n units.

2.2. Solving the i-th Firm's Problem

Consider the problem of the i-th �rm (4) � (7). In the one-period (without

onsideration of the zero period) game eah i-th �rm solves the problem

n∑

j=1

x0j −
n∑

j=1

siju
i,0
j + δ

n∑

j=1

xi,1j =

=

n∑

j=1

x0j −
n∑

j=1

siju
i,0
j + δ

n∑

j=1

m∑

i=1

bij

√
ui,0j + δ

n∑

j=1

n∑

l=1

aljx
0
l −→
ui,0
j , j=1,2,...,n

max (8)

with onstraint

n∑

j=1

ui,0j ≤ r0i .
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Optimizing by the Lagrange multipliers method, we reeive the relations:

bij1
bij2

=

√√√√ui,0j1

ui,0j2

for any agents j1 and j2 impated by the i-th �rm, therefore

ui,0j2 = ui,0j1

(
bij2
bij1

)2

.

Denote

∑n
j=1 u

i,0
j by R0

i , then we have:

n∑

j=1

ui,0j =
ui,0j1(
bij1
)2

n∑

j=1

(
bij
)2

= R0
i ,

and, therefore,

ui,0j =

(
bij
)2
R0

i∑n
j=1

(
bij
)2 . (9)

The substitution of (9) into (8) gives

n∑

j=1

x0j −R0
i + δ

m∑

i=1

√√√√R0
i

n∑

j=1

(
bij
)2

+ δ

n∑

j=1

n∑

l=1

aljx
0
l −→
ui,0
j , j=1,2,...,n

max . (10)

A non-onditional optimization by R0
i implies

(
R0

i

)
max

=
δ2

4

n∑

j=1

(
bij
)2
.

Thus, the optimal strategy of the i-th �rm is

ui,0j =

(
bij
)2

∑n
j=1

(
bij
)2 min




δ2

4

n∑

j=1

(
bij
)2
, r0i



 .

Consider a two-period game. Eah �rm i solves the problem

n∑

j=1

(
x0j − siju

i,0
j

)
+ δ

n∑

j=1

(
x1j − siju

i,1
j

)
+ δ2

n∑

j=1

x2j −→
ui,0
j , j=1,2,...,n

max (11)

with onstraint

n∑

j=1

ui,0j ≤ r0i ,

where ui,1j , j = 1, 2, . . . , n, is the solution of the one-period game. We have

x1j =

m∑

i=1

bij

√
ui,0j +

n∑

l=1

aljx
0
l , (12)
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x2j =

m∑

i=1

bij

√
ui,1j +

n∑

l=1

aljx
1
l =

m∑

i=1

bij

√
ui,1j +

n∑

l=1

alj

(
m∑

i=1

bij

√
ui,0j +

n∑

p=1

aplx
0
p

)
=

=
m∑

i=1

bij

√
ui,1j +

n∑

l=1

alj

m∑

i=1

bil

√
ui,0l +

[
(Aτ )2X0

]
j
. (13)

Substituting (12) and (13) into (11) we reeive

n∑

j=1

(
x0j − siju

i,0
j

)
+ δ

n∑

j=1

(
m∑

i=1

bij

√
ui,0j +

n∑

l=1

aljx
0
l − siju

i,1
j

)
+

+δ2
n∑

j=1

m∑

i=1

bij

√
ui,1j + δ2

n∑

j=1

n∑

l=1

alj

m∑

i=1

bil

√
ui,0l + δ2ε (Aτ )2X0 −→

ui,0
j , j=1,2,...,n

max,

or, denote by Aj the sum of the elements of the j-th row of the in�uene matrix A,

n∑

j=1

(
x0j − siju

i,0
j

)
+ δ

n∑

j=1

(
m∑

i=1

bij

√
ui,0j +

n∑

l=1

aljx
0
l − siju

i,1
j

)
+

+δ2
n∑

j=1

m∑

i=1

bij

√
ui,1j + δ2

n∑

j=1

m∑

i=1

Ajb
i
j

√
ui,0j + δ2ε (Aτ )

2
X0 −→

ui,0
j , j=1,2,...,n

max, (14)

Maximizing (14) with onstraint

n∑

j=1

ui,0j ≤ r0i ,

by the Lagrange multipliers method, we reeive the relations

(1 + δAj2 ) b
i
j2

(1 + δAj1 ) b
i
j1

=

√√√√ui,0j2

ui,0j1

for any agents j1 and j2 impated by the i-th �rm, therefore

ui,0j2 = ui,0j1

(
(1 + δAj2) b

i
j2

(1 + δAj1) b
i
j1

)2

.

Denote

∑n
j=1 u

i,0
j by R0

i , then reeive:

n∑

j=1

ui,0j =
ui,0j1[

(1 + δAj1 ) b
i
j1

]2
n∑

j=1

[
(1 + δAj) b

i
j

]2
= R0

i ,

and, therefore,

ui,0j =

[
(1 + δAj) b

i
j

]2
R0

i∑n
j=1

[
(1 + δAj) bij

]2 . (15)
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Substituting (15) into (14) and hoosing only the terms with ui,0j , we reeive

−R0
i + δ

∑n
j=1

∑m
i=1 b

i
j

√
ui,0j
√
R0

i√∑n
j=1

[
bij (1 + δAj)

]2 + δ2

∑n
j=1

∑m
i=1 b

i
jAj

√
ui,0j
√
R0

i√∑n
j=1

[
bij (1 + δAj)

]2 =

= −R0
i + δ

m∑

i=1

√√√√R0
i

n∑

j=1

[
bij (1 + δAj)

]2
. (16)

A non-onditional maximization of (16) by R0
i gives:

(
R0

i

)
max

=
δ2

4

n∑

j=1

[
bij (1 + δAj)

]2
.

Thus, the optimal strategy of the i-th �rm is

ui,0j =

[
bij (1 + δAj)

]2
∑n

j=1

[
bij (1 + δAj)

]2 min




δ2

4

n∑

j=1

[
bij (1 + δAj)

]2
, r0i



 .

Now onsider the T -period game. Denote

(
m∑

i=1

bij

√
ui,tj

)n

j=1

= βt, t = 0, 1, 2, . . . T. (17)

Then we have

X1 = AτX0 + β0,

X2 = (Aτ )2 +Aτβ0 + β1,

and iterations by t give

Xt = (Aτ )tX0 + (Aτ )t−1β0 + (Aτ )t−2β1 + · · ·+Aτβt−2 + βt−1. (18)

Eah i-th �rm solves the problem

T∑

t=0

δt
n∑

j=1

(
xtj − siju

i,t
j

)
=

T∑

t=0

δt


εXt −

n∑

j=1

siju
i,t
j


 −→

ui,0
j , j=1,2,...,n

max, (19)

with onstraint

n∑

j=1

ui,0j ≤ r0i ,

where ui,1j , ui,2j , . . . , ui,T−1
j (j = 1, 2, . . . , n) are the respetive solutions of the (T−1)-

period, (T − 2)-period, ..., one-period problems.

Choosing in (19) only the terms whith variables ui,0j ,j = 1, 2, . . . , n, we reeive
the expression

−
n∑

j=1

siju
i,0
j + ε

[
δI + δ2Aτ + · · ·+ δT (Aτ )T−1

]
β0. (20)
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Maximizing (20) with the onstraint

n∑

j=1

ui,0j ≤ r0i , (21)

by the Lagrange multipliers method, we reeive the relations

(1 + δAj2 + · · ·+ δT−1AT−1
j2

)bij2
(1 + δAj1 + · · ·+ δT−1AT−1

j1
)bij1

=

√√√√ui,0j2

ui,0j1

for any agents j1 and j2 in�uened by the i-th �rm, where At
j denotes the sum of

elements of the j-th row of the t-th power of the in�uene matrix, t = 1, 2, . . . , T−1.
Denote as earlier the sum

∑n
j=1 u

i,0
j by R0

i , we reeive

ui,0j =

(
bij
∑T−1

t=0 δtAt
j

)2
R0

i

∑n
j=1

(
bij
∑T−1

t=0 δtAt
j

)2 . (22)

A substitution of (22) into (20) with onsideration of (17) gives

−
n∑

j=1

siju
i,0
j +

m∑

i=1

n∑

j=1

δbij

T−1∑

t=0

δtAt
j

bij
∑T−1

t=0 δtAt
j

√
R0

i√
∑n

j=1

(
bij
∑T−1

t=0 δtAt
j

)2 =

= −R0
i + δ

m∑

i=1

√√√√√R0
i

n∑

j=1

(
bij

T−1∑

t=0

δtAt
j

)2

. (23)

Maximizing (23) by R0
i without restritions, we reeive

1 =
δ

√
∑n

j=1

(
bij
∑T−1

t=0 δtAt
j

)2

2
√
R0

i

.

Therefore,

(R0
i )max =

δ2

4

n∑

j=1

(
bij

T−1∑

t=0

δtAt
j

)2

.

Thus, with onsideration of the onstraint (21),

ui,0j =

(
bij
∑T−1

t=0 δtAt
j

)2

∑n
j=1

(
bij
∑T−1

t=0 δtAt
j

)2 min




δ2

4

n∑

j=1

(
bij

T−1∑

t=0

δtAt
j

)2

, r0i



 .

Respetively, in the period t (t = 1, 2, . . . , T − 1) we have

ui,tj =

(
bij
∑T−1−t

s=0 δsAs
j

)2

∑n
j=1

(
bij
∑T−1−t

s=0 δsAs
j

)2 min




δ2

4

n∑

j=1

(
bij

T−1−t∑

s=0

δsAs
j

)2

, rti



 , (24)
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where rti are the resoures alloated to the i-th �rm by the prinipal in the t-
th period. As the prinipal in the period t never hooses a value rti greater than

δ2

4

∑n
j=1

(
bij
∑T−1−t

s=0 δsAs
j

)2
, the expression (24) may be substituted by

ui,tj =

(
bij
∑T−1−t

s=0 δsAs
j

)2
rti

∑n
j=1

(
bij
∑T−1−t

s=0 δsAs
j

)2 . (25)

Considering the stohastiity of the matrix A, the expression (25) takes the form

ui,tj =

(
bij
∑T−1−t

s=0 δsAs
j

)2
rti

∑n
j=1

(
bij
∑T−1−t

s=0 δsAs
j

)2 =

(
bij
∑T−1−t

s=0 δs
)2
rti

∑n
j=1

(
bij
∑T−1−t

s=0 δs
)2 =

(
bij
)2
rti∑n

j=1

(
bij
)2 (26)

and does not depend on the length of period T . Thus we have proved the statement.

Proposition 1. The optimal strategy of the i-th �rm in problem (4)�(7) is

ui,tj =

(
bij
)2
rti∑n

j=1

(
bij
)2 .

2.3. Solving the Prinipal's Problem

The prinipal annot derease the value

∑n
j=1 xj , and only inreases it by al-

loation the resoures between the �rms. It follows from the problem formulation

that x∗ ≤∑n
j=1 x

0
j < x∗, and the value

∑n
j=1 xj annot beome less than x∗. Then

the prinipal's optimal strategy is evident. The prinipal solves the problem (1)�(3),

(5)�(6).

It is lear that for the maximization of her objetive funtion the prinipal must

optimally inrease the value

∑n
j=1 x

t
j only up to the value x∗, after what she must

ease the alloation of resoures to the �rms. Then the value

∑n
j=1 x

t
j remains

equal to x∗ until the end of the period of onsideration. For the implementation

of this strategy the prinipal already in the instant of time t = 0 must determine

the instant t = H , when the value

∑n
j=1 x

H
j beomes greater than x∗ due to the

respetive strategy. At the instant t = H− 1 the value of alloated resoures should

be redued so that starting from the instant t = H the value

∑n
j=1 x

t
j be stritly

equal to x∗.
Consider the H-period game. The prinipal solves the problem

H∑

t=0

δt




n∑

j=1

xtj −
m∑

i=1

rti


 =

H∑

t=0

δt

(
εXt −

m∑

i=1

rti

)
−→

r0i , i=1,2,...,m

max, (27)

with onstraint

m∑

i=1

r0i ≤ R,

where r1i , r
2
i , . . . , r

H−1
i (i = 1, 2, . . . ,m) are the respetive solutions of the (H − 1)-

period, (H − 2)-period, ..., one-period problems, and

ui,tj =

(
bij
)2
rti∑n

j=1

(
bij
)2 , t = 1, 2, . . . , H − 1
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aording to (26). Using the denotation (17) and deomposition (18), hoosing in

(27) only the terms that inlude r0i , and onsidering that At
j = 1, we reeive the

expression

−
m∑

i=1

r0i +
(
δ + δ2 + · · ·+ δH

)
εβ0, (28)

where

β0 =

(
m∑

i=1

bij

√
ui,0j

)n

j=1

=




m∑

i=1

√
r0i (b

i
j)

2

√∑n
j=1

(
bij
)2




n

j=1

. (29)

Substituting (29) into (28), we reeive

−
m∑

i=1

r0i +
(
δ + δ2 + · · ·+ δH

) n∑

j=1

m∑

i=1

√
r0i (b

i
j)

2

√∑n
j=1

(
bij
)2 =

= −
m∑

i=1

r0i +

m∑

i=1

√
r0i

√√√√
n∑

j=1

(
bij
)2 H∑

t=1

δt. (30)

Maximizing (30) with onstraint

m∑

i=1

r0i ≤ R,

by the Lagrange multipliers method, we reeive the relations

∑n
j=1

(
bi2j
)2

∑n
j=1

(
bi1j
)2 =

r0i2
r0i1

for any in�uene agents i1 and i2. Denote as earlier the sum

∑m
i=1 r

0
i by R0

, we

reeive

m∑

i=1

r0i =

∑m
i=1

∑n
j=1

(
bij
)2
r0i1∑n

j=1

(
bi1j
)2 = R0,

therefore

r0i =

∑n
j=1

(
bij
)2
R0

∑m
i=1

∑n
j=1

(
bij
)2 . (31)

Substituting the expression (31) into (30) we reeive

−R0 +
√
R0

H∑

t=1

δt

√√√√
m∑

i=1

n∑

j=1

(
bij
)2
. (32)

Maximizing the expression (32) by R0
without onstraints, we reeive

1 =
δ
√∑m

i=1

∑n
j=1

(
bij
)2

2
√
R0

H−1∑

t=0

δt,
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and

(R0)max =
δ2

4

m∑

i=1

n∑

j=1

(
bij

H−1∑

t=0

δt

)2

.

Therefore, with onsideration of the onstraint R0 ≤ R the prinipal's optimal

strategy is

r0i =

∑n
j=1

(
bij
)2

∑m
i=1

∑n
j=1

(
bij
)2 min




δ2

4

m∑

i=1

n∑

j=1

(
bij
)2
(

H−1∑

t=0

δt

)2

, R



 . (33)

Completely similar to (33) we reeive for t = 1, 2, . . . , H − 1:

rti =

∑n
j=1

(
bij
)2

∑m
i=1

∑n
j=1

(
bij
)2 min




δ2

4

m∑

i=1

n∑

j=1

(
bij
)2
(

H−1−t∑

s=0

δs

)2

, R



 , i = 1, 2, . . . ,m.

(34)

Using the denotation (17), deomposition (18) and the formula (26), we an write

the value

∑n
j=1 x

H
j in the H-period game, t = 0, 1, 2, . . . , H , where H is exatly the

instant when the value

∑n
j=1 x

t
j �rst beomes equal to x∗, in the form

εXH = εX0 + εβ0 + εβ1 + · · ·+ εβH−2 + εβH−1 =

=

n∑

j=1

x0j +

m∑

i=1

√√√√r0i

n∑

j=1

(
bij
)2

+ · · ·+
m∑

i=1

√√√√rti

n∑

j=1

(
bij
)2

+ · · ·+
m∑

i=1

√√√√rH−1
i

n∑

j=1

(
bij
)2
.

(35)

Substituting (34) into (35), we reeive

εXH =

n∑

j=1

x0j +

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2
(

H−1∑

s=0

δs

)
,
√
R



+

+ · · ·+

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2
(

H−1−t∑

s=0

δs

)
,
√
R



+ · · ·+

+

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

(1 + δ) ,
√
R



+

+

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2
,
√
R



 . (36)

So, t = H is the time instant when the value

∆ =

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2
,
√
R



+
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+

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

(1 + δ) ,
√
R



+ · · ·+

+

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2
(

H−1−t∑

s=0

δs

)
,
√
R



+ · · ·+

+

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2
(

H−1∑

s=0

δs

)
,
√
R





�rst beomes greater or equal than x∗ −∑n
j=1 x

0
j (if it is possible for a t ≤ T ). In

this ase denote

∆1 = x∗ −
n∑

j=1

x0j −


∆−

√√√√
m∑

i=1

n∑

j=1

(
bij
)2

min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
bij
)2
,
√
R






 .

It is lear that the summary amount of resoures alloated by the prinipal between

the �rms in the instant H − 1 so that in the instant H the sum of the values of

state variables be stritly equal to x∗, must be equal to

R̃ =
(∆1)

2

∑m
i=1

∑n
j=1

(
bij
)2 . (37)

We obtain the statement.

Proposition 2. The prinipal has in the problem (1)�(3), (5)�(6) the following

optimal strategy. When 0 ≤ t ≤ H − 2

rti =

∑n
j=1

(
bij
)2

∑m
i=1

∑n
j=1

(
bij
)2 min




δ2

4

m∑

i=1

n∑

j=1

(
bij
)2
(

H−1−t∑

s=0

δs

)2

, R



 ;

when t = H − 1

rH−1
i =

∑n
j=1

(
bij
)2

∑m
i=1

∑n
j=1

(
bij
)2 R̃;

and when H ≤ t ≤ T

rti = 0, i = 1, 2, . . . ,m.

Corollary 1. The maximal guaranteed payo� of the prinipal is equal to

(
H−1∑

s=0

δs

)
n∑

j=1

x0j +

(
H−1∑

s=1

δs

)√√√√R0

m∑

i=1

n∑

j=1

(
bij
)2 −R0+

+

(
H−1∑

s=2

δs

)√√√√R1

m∑

i=1

n∑

j=1

(
bij
)2 − δR1 + · · ·+
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+

(
H−1∑

s=t+1

δs

)√√√√Rt

m∑

i=1

n∑

j=1

(
bij
)2 − δtRt + · · ·+

+δH−1

√√√√RH−2

m∑

i=1

n∑

j=1

(
bij
)2 − δH−2RH−2 − δH−1R̃+ x∗

T∑

h=H

δh, (38)

where

R0 = min




δ2

4

m∑

i=1

n∑

j=1

(
bij
)2
(

H−1∑

s=0

δs

)2

, R



 , (39)

R1 = min




δ2

4

m∑

i=1

n∑

j=1

(
bij
)2
(

H−2∑

s=0

δs

)2

, R



 , . . . , (40)

Rt = min




δ2

4

m∑

i=1

n∑

j=1

(
bij
)2
(

H−1−t∑

s=0

δs

)2

, R



 , . . . , (41)

RH−2 = min




δ2

4

m∑

i=1

n∑

j=1

(
bij
)2

(1 + δ)2, R



 , (42)

by Rt
is denoted the sum

∑m
i=1 r

t
i , t = 0, 1, 2, . . . , H − 2, and the value R̃ is deter-

mined by the expression (37).

Proof. It an be seen from (34). ⊓⊔

2.4. System Compatability Index

Denote the set of olletions of equilibrium strategies of �rms provided that

prinipal's strategy is {ri}mi=1 by NE({ri}mi=1). Calulate the system ompatibility

index for the onsidered problem:

SCI =
max{ri}m

i=1
min{ui

j}
m; n
i=1;j=1∈NE({ri}m

i=1)
J0
(
{ri}mi=1, {uij}m; n

i=1;j=1

)

max{ri}m
i=1

max{ui
j}

m; n
i=1;j=1

J0
(
{ri}mi=1, {uij}m; n

i=1;j=1

) . (43)

This index shows the measure of ompatability of system. The numerator of (43)

is the payo� of the prinipal in the ase if the �rms hoose the most unfavorable

for prinipal equilibrium strategies. The denumerator of (43) is the payo� of the

prinipal in the ase if the �rms hoose the most favorable for prinipal strategies.

Given the prinipal's strategy the set of equilibrium strategies of eah agent is

one-element in our ase, so the numerator of the expression (43) is equal to (38).

For alulation of the denominator in the expression (43) let us assume that eah

agent maximizes not his payo� but the prinipal's payo� given her strategy, i.e. the

agent solves the problem

J̃i =
T∑

t=0

δt
n∑

j=1

xtj → max,

with onstraint (3) and (5) � (6).
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If

∑n
j=1 x

0
j ≥ x∗ then the optimal strategy of eah �rm is evident: it does not

invest to the advertisement. Moreover, it is impossible beause in this ase the

prinipal does not alloate any �nanial resoures to the �rms, i.e. then ui,tj = 0.

Let

∑n
j=1 x

0
j < x∗. Unlike the prinipal, any agent is unable to estimate a priori

the number of time periods H whih is required for the sum of values of the state

variables beomes equal to x∗, but it is redundant beause the optimal strategies

of the �rms do not depend on the game's length.

Consider the H-period game. Denote as earlier

(
m∑

i=1

bij

√
ui,tj

)n

j=1

= βt, t = 0, 1, 2, . . .H − 1. (44)

Then

X1 = X0 + β0,

X2 = X0 + β0 + β1,

and so on, the iterations by t give

Xt = X0 + β0 + β1 + · · ·+ βt−2 + βt−1. (45)

Eah i-th �rm solves the problem

T∑

t=0

δt
n∑

j=1

xtj =

T∑

t=0

δtεXt −→
ui,0
j , j=1,2,...,n

max, (46)

with onstraint

n∑

j=1

ui,0j ≤ r0i , (47)

where ui,1j , ui,2j , . . . , ui,H−1
j (j = 1, 2, . . . , n) are the respetive solutions of the (H −

1)-period, (H − 2)-period, ..., one-period problems.

Choosing in (46) only the terms whith variables ui,0j ,j = 1, 2, . . . , n, we reeive
the expression

(
δ + δ2 + · · ·+ δH

)
εβ0 = δ

H−1∑

t=0

δt
n∑

j=1

m∑

i=1

bij

√
ui,0j . (48)

Maximizing (48) with the onstraint (47) by the Lagrange multipliers method, we

reeive the relations

bij2
bij1

=

√√√√ui,0j2

ui,0j1

for any agents j1 and j2 impated by the i-th �rm. Denote as earlier the sum∑n
j=1 u

i,0
j by R0

i , we reeive

ui,0j =

(
bij
)2
R0

i∑n
j=1

(
bij
)2 . (49)
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Substitution of (49) into (48) gives

δ

(
H−1∑

t=0

δt

)
m∑

i=1

√√√√R0
i

n∑

j=1

(
bij
)2
. (50)

Maximizing (50) by R0
i with onstraint (47), we reeive

(
R0

i

)
max

= r0i .

Thus we have

ui,0j =

(
bij
)2

∑n
j=1

(
bij
)2 r

0
i .

Let us write the strategy of the i-th �rm in theH-period game. For t = 0, 1, . . . , H−1
the optimal strategy of the i-th �rm is

ui,tj =

(
bij
)2

∑n
j=1

(
bij
)2 r

t
i .

If t = H then ui,Hj = 0, j = 1, 2, . . . , n.
Then the prinipal's problem is the same as the previous problem already solved

in searhing the numerator on (43), and the denominator of (43) is also expressed

by the formula (38). Therefore, in this problem the players' interests are ideally

ompatible, and SCI = 1.

Proposition 3. In the model de�ned in subsetion 2.1.

SCI = 1.

Remark 1. A non-trivial situation arises. In the t-th period the �rm should hoose

the advertisement ost equal to

δ2

4

∑n
j=1

(
bij
)2 (∑H−1−t

s=0 δs
)2

if this value does not

exeed rti , and hoose r
t
i if the value

δ2

4

∑n
j=1

(
bij
)2 (∑H−1−t

s=0 δs
)2

is greater than rti .

But the �rms do not know the index H , and therefore, the value

δ2

4

∑n
j=1

(
bij
)2 (∑H−1−t

s=0 δs
)2
. However, they know that the prinipal never alloates

them more resoures than

δ2

4

∑n
j=1

(
bij
)2 (∑H−1−t

s=0 δs
)2
, and respetively they al-

ways hoose rti . The prinipal ould use it and alloate to all �rms in the t-th

period more resoures than

δ2

4

∑n
j=1

(
bij
)2 (∑H−1−t

s=0 δs
)2
, and respetively om-

pel them to invest in the advertisement more than it is advantageous to them.

However, it is not advantageous to the prinipal herself to alloate more than

δ2

4

∑n
j=1

(
bij
)2 (∑H−1−t

s=0 δs
)2
! Therefore, the prinipal always alloates the value

δ2

4

∑n
j=1

(
bij
)2 (∑H−1−t

s=0 δs
)2

if it does not exeed her marketing budget R, oth-

erwise she alloates the resoures as it is optimal for herself. This remains valid

until the instant H − 1 when the prinipal alloates a redued amount of resoures

whih provides in the instant H that the sum of values of the state variables is

stritly equal to x∗. Thus, the interests of the prinipal and the agents (�rms) are

ompletely ompatible.
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3. Di�erene Stakelberg Game with a Constraint on the Sum of State

Variables. Case of the Stohasti from the Left Matrix A

Now take a standard assumption that the in�uene matrix A is stohasti from

the left, i.e.

n∑

j=1

aij = 1, j = 1, 2, . . . , n,

and other assumptions are the same as in the previous setion. The model takes the

form

J0 =

T∑

t=0

δt




n∑

j=1

zjx
t
j −

m∑

i=1

rti


→ max, (51)

rti ≥ 0,

m∑

i=1

rti ≤ R, t = 0, 1, 2, . . . , T, i = 1, 2, . . . ,m, (52)

x∗ ≤
n∑

j=1

zjx
t
j ≤ x∗, t = 0, 1, 2, . . . , T − 1, T, (53)

Ji =

T∑

t=0

δt




n∑

j=1

(zjx
t
j − siju

i,t
j )


→ max, (54)

n∑

j=1

ui,tj ≤ rti , ui,tj ≥ 0, t = 0, 1, 2, . . . , T, i = 1, 2, . . . ,m, (55)

xt+1
j =

m∑

i=1

bij

√
ui,tj +

n∑

l=1

aljx
t
l , x0j = xj0, j = 1, 2, . . . , n, (56)

sij =

{
1, if bij > 0,
0, if bij = 0,

(57)

where zj > 0, j = 1, 2, . . . , n, are omponents of the positive (right) eigenvetor

whih orresponds to the Frobenius eigenvalue 1 of the matrix A.
Let us redue the standard situation to the already onsidered ase. Let Z be

an eigenvetor orresponding to the eigenvalue 1 of the matrix A:

Z =




z1
z2
. . .
zn


 , zj > 0, j = 1, 2, . . . , n.

It is evident that the diagonal matrix

Ξ =




z1 0 . . . 0
0 z2 . . . 0
. . . . . . . . . . . .
0 0 . . . zn




is the matrix of transfer to the stohasti (from the right) matrix P :

P = Ξ−1AΞ.
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Then

A = ΞPΞ−1,

i.e.

Aτ = Ξ−1P τΞ,

and the problem (51)-(57) an be formulated in other oordinates.

Introdue a family of matries Bi
:

Bi =




bi1 0 . . . 0
0 bi2 . . . 0
. . . . . . . . . . . .
0 0 . . . bin




and vetors

√
U i,t =




√
ui,t1√
ui,t2
. . .√
ui,tn



, i = 1, 2, . . . ,m.

Then the onstraint (56) takes the matrix form

Xt+1 =

m∑

i=1

Bi
√
U i,t + Ξ−1P τΞXt,

i.e.

Y t+1 =

m∑

i=1

B̃i
√
U i,t + P τY t,

where

Xt =




xt1
xt2
. . .
xtn


 , Y t =




yt1
yt2
. . .
ytn


 = ΞXt,

B̃i = ΞBi =




z1b
i
1 0 . . . 0

0 z2b
i
2 . . . 0

. . . . . . . . . . . .
0 0 . . . znb

i
n


 =




b̃i1 0 . . . 0

0 b̃i2 . . . 0
. . . . . . . . . . . .

0 0 . . . b̃in


 ,

or in the oordinate form:

yt+1
j =

m∑

i=1

b̃ij

√
ui,tj +

n∑

l=1

pljy
t
l ,

and the onstraint (53) looks like

x∗ ≤
n∑

j=1

ytj ≤ x∗.
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The expression (54) takes the form

Ji =

T∑

t=0

δt




n∑

j=1

(ytj − siju
i,t
j )


→ max,

and (51) takes the form

J0 =

T∑

t=0

δt




n∑

j=1

ytj −
m∑

i=1

rti


→ max .

Other expressions in the problem (51)-(57) do not hange. Based on the solution of

the problem from the Setion 2, we �nd the optimal strategies of the �rms:

ui,tj =

(
b̃ij

)2
rti

∑n
j=1

(
b̃ij

)2 =

(
zjb

i
j

)2
rti∑n

j=1

(
zjbij

)2 , i = 1, 2, . . . ,m, t = 1, 2, . . . , T.

As for the prinipal, let in the moment t = H the value

∆ =

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
,
√
R



+

+

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
(1 + δ) ,

√
R



+ · · ·+

+

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
(

H−1−t∑

s=0

δs

)
,
√
R



+ · · ·+

+

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
(

H−1∑

s=0

δs

)
,
√
R





for the �rst time beomes greater or equal than x∗ −∑n
j=1 zjx

0
j (if it is possible for

some t ≤ T ). Denote

∆1 = x∗ −
n∑

j=1

zjx
0
j −


∆−

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
min




δ

2

√√√√
m∑

i=1

n∑

j=1

(
zjbij

)2
,
√
R






 ,

we �nd the total amount of resoures that the prinipal should alloate to the �rms

in the moment H − 1 so that in the moment H the sum

n∑

j=1

zjxj

be stritly equal to x∗:

R̃ =
(∆1)

2

∑m
i=1

∑n
j=1

(
zjbij

)2 . (58)
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Thus, the prinipal's optimal strategy is the following:

when 0 ≤ t ≤ H − 2

rti =

∑n
j=1

(
zjb

i
j

)2
∑m

i=1

∑n
j=1

(
zjbij

)2 min




δ2

4

m∑

i=1

n∑

j=1

(
zjb

i
j

)2
(

H−1−t∑

s=0

δs

)2

, R



 ;

when t = H − 1

rH−1
i =

∑n
j=1

(
zjb

i
j

)2
∑m

i=1

∑n
j=1

(
zjbij

)2 R̃;

when H ≤ t ≤ T
rti = 0, i = 1, 2, . . . ,m.

The maximal guaranteed payo� of the prinipal is equal to

(
H−1∑

s=0

δs

)
n∑

j=1

zjx
0
j +

(
H−1∑

s=1

δs

)√√√√R0

m∑

i=1

n∑

j=1

(
zjbij

)2 −R0+

+

(
H−1∑

s=2

δs

)√√√√R1

m∑

i=1

n∑

j=1

(
zjbij

)2 − δR1 + · · ·+

+

(
H−1∑

s=t+1

δs

)√√√√Rt

m∑

i=1

n∑

j=1

(
zjbij

)2 − δtRt + · · ·+

+δH−1

√√√√RH−2

m∑

i=1

n∑

j=1

(
zjbij

)2 − δH−2RH−2 − δH−1R̃+ x∗
T∑

h=H

δh,

where, as an be seen from (34),

R0 = min




δ2

4

m∑

i=1

n∑

j=1

(
zjb

i
j

)2
(

H−1∑

s=0

δs

)2

, R



 ,

R1 = min




δ2

4

m∑

i=1

n∑

j=1

(
zjb

i
j

)2
(

H−2∑

s=0

δs

)2

, R



 , . . . ,

Rt = min




δ2

4

m∑

i=1

n∑

j=1

(
zjb

i
j

)2
(

H−1−t∑

s=0

δs

)2

, R



 , . . . ,

RH−2 = min




δ2

4

m∑

i=1

n∑

j=1

(
zjb

i
j

)2
(1 + δ)2, R



 ,

where Rt
denotes the sum

∑m
i=1 r

t
i , t = 0, 1, 2, . . . , H − 2, and the value R̃ is deter-

mined by the expression (58).

It is lear that SCI = 1 as in the previous problem from the Setion 2. The

expressions for the maximal guaranteed payo� in this ase di�er from those in the

setion 2 only by the multipliers zj � the omponents of Frobenius eigenvetor of

matrix A. So, in this problem with the homeostasis ondition, as in the similar

problem without this ondition, the interests of players are ompletely ompatible.
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4. Di�erential Stakelberg Game with a Constraint on the Sum of

State Variables. Case of the Stohasti (from the Right) Matrix A

4.1. The Problem Statement

Consider this problem in ontinuous time. Now the model takes the form

J0 =

∫ T

0

e−ρt




n∑

j=1

xj(t)−
m∑

i=1

ri(t)


 dt→ max, (59)

ri(t) ≥ 0,

m∑

i=1

ri(t) ≤ R, t ∈ [0, T ], i = 1, 2, . . . ,m, (60)

x∗ ≤
n∑

j=1

xj(t) ≤ x∗, t ∈ [0, T ], (61)

Ji =

∫ T

0

e−ρt




n∑

j=1

(xj(t)− siju
i
j(t))


 dt→ max, (62)

n∑

j=1

uij(t) ≤ ri(t), uij(t) ≥ 0, t ∈ [0, T ], i = 1, 2, . . . ,m, (63)

ẋj =

m∑

i=1

bij

√
uij(t) +

n∑

l=1

ãljxl(t), xj(0) = xj0, j = 1, 2, . . . , n, (64)

sij =

{
1, if bij > 0,
0, if bij = 0.

(65)

Here aij is a oe�ient of in�uene of the i-th basi agent to the j-th basi agent in

the disrete model. When we move from the disrete desription to the ontinuous

one, the in�uene matrix A is substituted by the matrix Ã in the form

Ã = A− I.

Thus,

ãij =

{
aij , if i 6= j,

aij − 1, if i = j.

Let us �rst assume that the matrix A is stohasti (from the right), i.e.

n∑

j=1

aij = 1, i = 1, 2, . . . , n.

Solving the problem of the i-th �rm, we an substitute n state variables xj by

their sum and denote by x the only state variable:

n∑

j=1

xj = x,

n∑

j=1

xj0 = x0,
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then

n∑

j=1

n∑

l=1

ãljxl =

n∑

j=1

n∑

l=1

aljxl −
n∑

j=1

xj =

n∑

l=1

xl −
n∑

j=1

xj = x− x = 0,

and the onditions (62) and (64) respetively take the form

Ji =

∫ T

0

e−ρt


x−

n∑

j=1

siju
i
j(t)


 dt→ max, (66)

and

ẋ =

n∑

j=1

m∑

i=1

bij

√
uij(t), x(0) = x0. (67)

4.2. Solution the Problem of i-th Firm

The Hamilton-Jaobi-Bellman equation has the form

ρVi −
∂Vi
∂t

= max
ui
j ,1≤j≤n



x(t)−

n∑

j=1

siju
i
j(t) +

∂Vi
∂x

n∑

j=1

m∑

k=1

bkj

√
ukj (t)



 (68)

with onstraint

n∑

j=1

uij(t) ≤ ri(t).

Maximizing by uij , j = 1, 2, . . . , n, bij 6= 0, we reeive

∂Vi
∂x

bij
1

2

(
uij
)− 1

2 − 1 = µ,

where µ is a Lagrange multiplier. Then for any 1 ≤ j1, j2 ≤ n:

(∂Vi/∂x)b
i
j2

(∂Vi/∂x)bij1
=
bij2
bij1

=

(
uij2
uij1

) 1
2

.

Denote the sum

uij1(
bij1
)2

n∑

j=1

(
bij
)2

by Ri(t). Then

uij =
Ri(t)(b

i
j)

2

∑n
j=1(b

i
j)

2
. (69)

As we take the linear Bellman funtions,

Vi(x, t) = αi(t)x+ βi(t),

then we an write the equation (68) with onsideration of (69) in the form

ραi(t)x + ρβi(t)− α
′i(t)x − β

′i(t) = x−Ri(t) + αi(t)

m∑

k=1

n∑

j=1

bkj
√
Rk(t)b

k
j√∑n

j=1

(
bkj
)2 ,
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or

ραi(t)x+ ρβi(t)− α
′i(t)x − β

′i(t) = x−Ri(t) + αi(t)

m∑

k=1

√√√√Rk(t)

n∑

j=1

(
bkj
)2
. (70)

Equation of the oe�ients at the variable x in the left and right hand sides of

the equation (26), we reeive a di�erential equation for αi(t). Its solution gives

αi(t) = Ceρt +
1

ρ
.

Using the boundary ondition αi(T ) = 0, we �nd the integration onstant

C = −1

ρ
eρT .

Therefore,

αi(t) =
1

ρ

(
1− eρ(t−T )

)
.

Funtion αi(t) is the same for all �rms, then we will omit the index i of the
funtions αi(t). Equating the onstant terms in the left and right hand sides of the

equation (26), we reeive a di�erential equation for βi(t):

β
′i(t)− ρβi(t) = Ri(t)− αi(t)

m∑

k=1

√√√√Rk(t)
n∑

j=1

(
bkj
)2
,

and solve it by the method of variation of parameters. We have:

βi(t) = eρtC(t),

C
′

(t)eρt = Ri(t)− α(t)

m∑

k=1

√√√√Rk(t)

n∑

j=1

(
bkj
)2
,

C(t) =

∫ t

0

e−ρτ


Ri(τ) − α(τ)

m∑

k=1

√√√√Rk(τ)

n∑

j=1

(
bkj
)2

 dτ + C.

Considerating the boundary ondition βi(T ) = 0, we reeive

C = −
∫ t

0

e−ρτ


Ri(τ)− α(τ)

m∑

k=1

√√√√Rk(τ)

n∑

j=1

(
bkj
)2

 dτ.

Therefore,

βi(t) = eρt
∫ T

t

e−ρτ


α(τ)

m∑

k=1

√√√√Rk(τ)

n∑

j=1

(
bkj
)2 −Ri(τ)


 dτ.
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Choosing the maximal value of the right hand side of the expression (26) in

dependene of Ri(t), we have

−Ri(t) + αi(t)
√
Ri(t)

√√√√
n∑

j=1

(
bij
)2 → max,

hene

(Ri(t))max =
1

4
(α(t))

2
n∑

j=1

(
bij
)2
.

Thus, the value Ri(t) (omitting the index i at αi(t)) is equal to

Ri(t) = min





1

4
(α(t))

2
n∑

j=1

(
bij
)2
, ri(t)



 . (71)

Thus we have proved the statement.

Proposition 4. The optimal strategies of �rms in problem (66)�(67) are de�ned

by expression (69), where Ri(t) de�ned by (27) and

α(t) =
1

ρ

(
1− eρ(t−T )

)
.

4.3. The Prinipal's Problem

Now onsider the prinipal's strategy. The prinipal annot derease the value∑n
j=1 xj ; she an only inrease it by alloating the resoures to �rms. Then her op-

timal strategy is evident. From the problem formulation it follows that

∑n
j=1 xj0 ≥

x∗. The prinipal solves the problem:

J0 =

∫ T

0

e−ρt




n∑

j=1

xj(t)−
m∑

i=1

ri(t)


 dt→ max,

with onstraints (60)�(61), (63)�(65).

It is lear that for maximization of her payo� the prinipal should inrease

the value

∑n
j=1 xj(t) as in the previous disrete problem but only up to the value

x∗, after what she must ease to alloate resoures to the �rms. Then the value∑n
j=1 xj(t) will remain equal to x∗ until the end of the game. For implementation

of this strategy the prinipal should already at the instant t = 0 determine the

instant t = h when the value

∑n
j=1 xj(t) beomes equal to x∗ given the respetive

strategy.

As aording to (27) the prinipal will never alloate to any �rm i in any instant

t more resoures than

1

4
(α(t))2

n∑

j=1

(
bij
)2
,

we an rewrite the expression (69) in the form

uij =
ri(t)

(
bij
)2

∑n
j=1

(
bij
)2 . (72)
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Substituting to the equation (67) for the sum of variables x the expression (72),

we reeive

ẋ =

m∑

i=1

√√√√ri(t)

n∑

j=1

(
bij
)2
, x(0) = x0. (73)

Integration the equation (73), we �nd

x(t) =

∫ t

0

m∑

i=1

√√√√ri(τ)

n∑

j=1

(
bij
)2
dτ + x0. (74)

Thus, h = x−1(x∗) is the instant of time when the right hand side of the expression

(74) beomes equal to x∗.
Given the value of h and using the assumption about stohastiity of the in�u-

ene matrix, we an reformulate the prinipal's problem as follows:

J0 =

∫ h

0

e−ρt

(
x(t)−

m∑

i=1

ri(t)

)
dt→ max, (75)

with onstraints

ri(t) ≥ 0,

m∑

i=1

ri(t) ≤ R, t ∈ [0, h], i = 1, 2, . . . ,m

and (73).

The Hamilton-Jaobi-Bellman equation takes the form:

ρV0 −
∂V0
∂t

= max
ri,1≤i≤m



x(t) −

m∑

i=1

ri(t) +
∂V0
∂x

m∑

i=1

√√√√ri(t)
n∑

j=1

(
bij
)2


 (76)

with onstrain

m∑

i=1

ri(t) ≤ R.

We take the linear Bellman funtion:

V0(x, t) = α0(t)x + β0(t). (77)

Substituting (77) into (76), we reeive

ρα0(t)x + ρβ0(t)− α
′0(t)x− β

′0(t) =

= max
ri(t),1≤i≤m



x(t)−

m∑

i=1

ri(t) + α0(t)

m∑

i=1

√√√√ri(t)

n∑

j=1

(
bij
)2


 . (78)

Equating in the left and right hand sides of the equation (78) the oe�ients at the

variable x, we reeive a di�erential equation for α0(t):

α
′0(t)− ρα0(t) = −1.
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It oinides with the di�erential equations for αi(t) but has other boundary ondi-

tion

α0(h) = 0.

Therefore,

α0(t) =
1

ρ

(
1− eρ(t−h)

)
, t ∈ [0, h]. (79)

Equating the onstant terms in the left and right hand sides of the equation (78),

we reeive a di�erential equation for β0(t):

β
′0(t)− ρβ0(t) =

m∑

i=1

ri(t)− α0(t)
m∑

i=1

√√√√ri(t)
n∑

j=1

(
bij
)2
.

Its solution by the method of variation of parameters gives

β0(t) = C(t)eρt,

C
′

(t)eρt =

m∑

i=1

ri(t)− α0(t)

m∑

i=1

√√√√ri(t)

n∑

j=1

(
bij
)2
,

C(t) =

∫ t

0




m∑

i=1

ri(τ)− α0(τ)

m∑

i=1

√√√√ri(τ)

n∑

j=1

(
bij
)2

 e−ρτdτ + C.

Using the boundary ondition

β0(h) = 0,

we �nd

C = −
∫ t

0




m∑

i=1

ri(τ) − α0(τ)

m∑

i=1

√√√√ri(τ)

n∑

j=1

(
bij
)2

 e−ρτdτ.

Therefore,

C(t) =

∫ h

t


α0(τ)

m∑

i=1

√√√√ri(τ)

n∑

j=1

(
bij
)2 −

m∑

i=1

ri(τ)


 e−ρτdτ,

β0(t) = eρt
∫ h

t


α0(τ)




m∑

i=1

√√√√ri(τ)

n∑

j=1

(
bij
)2

−

m∑

i=1

ri(τ)


 e−ρτdτ.

Partiularly, when t = 0 we have

β0(0) =

∫ h

0


α0(τ)




m∑

i=1

√√√√ri(τ)
n∑

j=1

(
bij
)2

−

m∑

i=1

ri(τ)


 e−ρτdτ. (80)

Maximizing the right hand side of the expression (78) by ri(t), i = 1, 2, . . . ,m,

with onstraint

∑m
i=1 ri(t) ≤ R, we reeive

1− α0(t)

√∑n
j=1

(
bij
)2

2
√
ri(t)

= µ,
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where µ is a Lagrange multiplier. Then

√∑n
j=1

(
bi1j
)2

√∑n
j=1

(
bi2j
)2 =

√
ri1(t)√
ri2(t)

.

Therefore, for any 1 ≤ i1, i2 ≤ m it is true that

ri2 (t) =

∑n
j=1

(
bi2j
)2

∑n
j=1

(
bi1j
)2 ri1(t).

Denote the sum

∑m
i=1 ri(t) by r(t). Then

ri1 (t)

m∑

i=1

n∑

j=1

(
bij
)2

= r(t)

n∑

j=1

(
bi1j
)2
.

Therefore,

ri(t) = r(t)

∑n
j=1

(
bij
)2

∑m
k=1

∑n
j=1

(
bkj
)2 . (81)

Substituting (81) in the right hand side of (78) we reeive:

x(t)− r(t) + α0(t)

√√√√r(t)

m∑

i=1

n∑

j=1

(
bij
)2
.

A non-onditional optimization of this expression by r(t) gives

(r(t))max =
1

4

(
α0(t)

)2 m∑

i=1

n∑

j=1

(
bij
)2
.

Thus, for the instants t ∈ [0, h] when

R ≥ 1

4

(
α0(t)

)2 m∑

i=1

n∑

j=1

(
bij
)2
,

the prinipal's optimal strategy is

ri(t) =
1

4

(
α0(t)

)2 n∑

j=1

(
bij
)2
, i = 1, 2, . . . ,m.

For the instants t ∈ [0, h] when

R <
1

4

(
α0(t)

)2 m∑

i=1

n∑

j=1

(
bij
)2
,

the prinipal's optimal strategy is

ri(t) =

∑n
j=1

(
bij
)2

∑m
k=1

∑n
j=1

(
bkj
)2R i = 1, 2, . . . ,m.

Combining the two expressions for ri(t) in the one formula, we reeive following

statement.
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Proposition 5. The prinipal's optimal ontrol is

ri(t) =

∑n
j=1

(
bij
)2

∑m
k=1

∑n
j=1

(
bkj
)2 min





1

4

(
α0(t)

)2 m∑

k=1

n∑

j=1

(
bkj
)2
, R



 , t ∈ [0, h], (82)

ri(t) = 0, t ∈ [h, T ], i = 1, 2, . . . ,m,

where

α0(t) =
1

ρ

(
1− eρ(t−h)

)
.

Using (79) and (80), we an write:

max
ri,1≤i≤m

Ĵ0 = V0(x(0), 0) = α0(0)x(0) + β0(0) =

=
1

ρ

(
1− e−ρh

)
x0+

∫ h

0


α0(τ)




m∑

i=1

√√√√ri(τ)
n∑

j=1

(
bij
)2

−

m∑

i=1

ri(τ)


 e−ρτdτ, (83)

when the value ri(τ) is determined by the expression (82), and α0(τ) - by the

expression (79). Then aording to (83) the prinipal's guaranteed payo� is equal

to

max
ri,1≤i≤m

J0 + x∗
∫ T

h

e−ρtdt =
1

ρ

(
e−ρh − e−ρT

)
x∗ +

1

ρ

(
1− e−ρh

)
x0+

+

∫ h

0


α0(τ)




m∑

i=1

√√√√ri(τ)

n∑

j=1

(
bij
)2

−

m∑

i=1

ri(τ)


 e−ρτdτ, (84)

where the instant h is determined by the expression (74).

4.4. System Compatibility Index

Calulate the system ompatibility index:

SCI =
max{ri}m

i=1
min{ui

j}
m; n
i=1;j=1∈NE({ri}m

i=1)
J0
(
{ri}mi=1, {uij}m; n

i=1;j=1

)

max{ri}m
i=1

max{ui
j}

m; n
i=1;j=1

J0
(
{ri}mi=1, {uij}m; n

i=1;j=1

) . (85)

As soon, SCI shows the measure of ompatability of system. The numerator of (85)

is the payo� of the prinipal in the ase if the �rms hoose the most unfavorable

for prinipal equilibrium strategies. The denumerator of (85) is the payo� of the

prinipal in the ase if the �rms hoose the most favorable for prinipal strategies.

Given the prinipal's strategy the set of equilibrium strategies of eah agent is

one-element in our ase, so the numerator of the expression (85) is equal to the

right hand side of (84). For alulation of the denominator in the expression (85)

let us assume that eah agent maximizes not his payo� but the prinipal's payo�

given her strategy, i.e. the agent solves the problem

J̃i =

∫ T

0

e−ρt
n∑

j=1

xj(t)dt → max,

with onstraints (61) and (63) � (65).
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If

∑n
j=1 x

0
j ≥ x∗ then the optimal strategy of eah �rm is evident: it does not

invest to the advertisement. Moreover, it is impossible beause in this ase the

prinipal does not alloate any �nanial resoure to the �rms, i.e. then ui,tj = 0.

Let

∑n
j=1 x

0
j < x∗. Unlike the prinipal, any agent is unable to estimate a priori

in whih instant of time h the sum of values of the state variables beomes equal to

x∗, but it is redundant beause the optimal strategies of the �rms do not depend

on the game's length.

Consider the game in the time segment [0, h]. Similar to the Setion 3 we reeive

for the optimal strategies of all �rms the expressions similar to (69), (27), (79):

uij(t) =
Ri(t)

(
bij
)2

∑n
j=1

(
bij
)2 , Ri(t) = min





1

4
α(t)

n∑

j=1

(
bij
)2
, ri(t)



 , α(t) =

1

ρ

(
1− eρ(t−h)

)
.

As the prinipal will never alloate to any �rm more resoures than

1

4
α(t)

n∑

j=1

(
bij
)2
,

we an write

uij(t) =

(
bij
)2
ri(t)

∑n
j=1

(
bij
)2 , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, t ∈ [0, h].

Then the prinipal's problem is the same as already solved, and the denominator in

(85) is also expressed by the formula (84). Therefore, in the problem with onstraint

on the sum of state variables the interests of players are ompletely ompatible, i.e.

SCI = 1.

Proposition 6. In the problem de�ned in subsetion 4.1.

SCI = 1.

Remark 2. A non-trivial situation arises again. At the instant t the �rms should

hoose the advertisement ost equal to (1/4ρ)
(
1− eρ(t−h)

)∑n
j=1

(
bij
)2

if this value

does not exeed rti , and hoose rti , otherwise. But the �rms do not know the instant

h, and the value (1/4ρ)
(
1− eρ(t−h)

)∑n
j=1

(
bij
)2
, respetively. However, they know

that the prinipal will never alloate to them more resoures than

(1/4ρ)
(
1− eρ(t−h)

)∑n
j=1

(
bij
)2
, and they always hoose rti . The prinipal ould use

it and alloate to all �rms in the moment t more resoures than

(1/4ρ)
(
1− eρ(t−h)

)∑n
j=1

(
bij
)2
, and ompel them to invest more. However, it is not

advantageous for the prinipal herself to alloate more than

(1/4ρ)
(
1− eρ(t−h)

)∑n
j=1

(
bij
)2
. Therefore, she always alloates

(1/4ρ)
(
1− eρ(t−h)

)∑n
j=1

(
bij
)2
, if this value does not exeed her marketing budget

R, otherwise she alloates the resoures in the way optimal to her. This strategy

remains valid until the instant h, after what the prinipal does not alloate more

resoures beause the value x∗ is ahieved optimally. Thus, in the problem with

onstraint on the sum of state variables the interests of the prinipal and the �rms

are ompletely oordinated as in the problem without the homeostasis ondition.
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5. Di�erential Stakelberg Game with a Constraint on the Sum of

State Variables. Case of the Stohasti from the Left Matrix A

Now take a standard assumption that the in�uene matrix A is stohasti from

the left, i.e.

n∑

j=1

aij = 1, j = 1, 2, . . . , n.

Let zj > 0, j = 1, 2, . . . , n are omponents of the positive (right) eigenvetor orre-

sponding to the Frobenius eigenvalue 1 of the matrix A.
The model takes the form

J0 =

∫ T

t=0

e−ρt




n∑

j=1

zjxj(t)−
m∑

i=1

ri(t)


→ max, (86)

ri(t) ≥ 0,

m∑

i=1

ri(t) ≤ R, t ∈ [0, T ], i = 1, 2, . . . ,m,

x∗ ≤
n∑

j=1

zjxj(t) ≤ x∗, t ∈ [0, T ], (87)

Ji =
T∑

t=0

δt




n∑

j=1

(zjxj(t)− siju
i
j(t)


→ max, (88)

sij =

{
1, if bij > 0,
0, if bij = 0,

n∑

j=1

uij(t) ≤ ri(t), uij(t) ≥ 0, t ∈ [0, T ], i = 1, 2, . . . ,m,

ẋj(t) =

m∑

i=1

bij

√
uij(t) +

n∑

l=1

aljxl(t), xj(0) = xj0, j = 1, 2, . . . , n. (89)

Here aij is a oe�ient of in�uene of the i-th basi agent to the j-th basi agent in

the disrete model. As earlier, when we move from the disrete desription to the

ontinuous one, the in�uene matrix A is substituted by the matrix Ã in the form

Ã = A− I.

Therefore,

ãij =

{
aij , if i 6= j,
aij − 1, if i = j.

Let

Z =




z1
z2
. . .
zn


 , zj > 0, j = 1, 2, . . . , n.
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be the Frobenius eigenvetor of the matrix A, orresponding to the eigenvalue 1 of

the matrix A. The diagonal matrix

Ξ =




z1 0 . . . 0
0 z2 . . . 0
. . . . . . . . . . . .
0 0 . . . zn




is the matrix of transfer to the stohasti (from the right) matrix P :

P = Ξ−1AΞ.

Then

A = ΞPΞ−1,

i.e.

Aτ = Ξ−1P τΞ.

We an reformulate the problem (86)-(89) other oordinates. Introdue a family of

matries Bi
:

Bi =




bi1 0 . . . 0
0 bi2 . . . 0
. . . . . . . . . . . .
0 0 . . . bin




and a family of vetor funtions

√
U i(t) =




√
ui1(t)√
ui2(t)
. . .√
uin(t)


 , i = 1, 2, . . . ,m.

Then the onstraint (89) takes the matrix form

Ẋ(t) =

m∑

i=1

Bi
√
U i(t) + (Ξ−1P τΞ − I)X(t),

i.e.

Ẏ (t) =

m∑

i=1

B̃i
√
U i(t) + (P τ − I)Y (t),

where

X(t) =




x1(t)
x2(t)
. . .
xn(t)


 , Y (t) =




y1(t)
y2(t)
. . .
yn(t)


 = ΞX(t),

Ẋ(t) =




ẋ1(t)
ẋ2(t)
. . .
ẋn(t)


 , Ẏ (t) =




ẏ1(t)
ẏ2(t)
. . .
ẏn(t)


 = ΞẊ(t),
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B̃i = ΞBi =




z1b
i
1 0 . . . 0

0 z2b
i
2 . . . 0

. . . . . . . . . . . .
0 0 . . . znb

i
n


 =




b̃i1 0 . . . 0

0 b̃i2 . . . 0
. . . . . . . . . . . .

0 0 . . . b̃in


 , P̃ = P − I,

or in oordinates:

ẏj(t) =

m∑

i=1

b̃ij

√
uij(t) +

n∑

l=1

pljyl(t).

The onstraint (87) takes the form

x∗ ≤
n∑

j=1

yj(t) ≤ x∗, t ∈ [0, T ].

The expression (86) is written as

J0 =

∫ T

t=0

e−ρt




n∑

j=1

yj(t)−
m∑

i=1

ri(t)


 dt→ max,

and the expression (88) as

Ji =

∫ T

t=0

e−ρt




n∑

j=1

(yj(t)− siju
i
j(t)


 dt → max .

Other expressions in the formulation of the problem (86)-(89) do not hange.

Based on the previous solution, we �nd the optimal strategies of all �rms:

uij(t) =

(
b̃ij

)2
ri(t)

∑n
j=1

(
b̃ij

)2 =

(
zjb

i
j

)2
ri(t)

∑n
j=1

(
zjbij

)2 , i = 1, 2, . . . ,m, t ∈ [0, T ],

and the prinipal:

ri(t) =

∑n
j=1

(
zjb

i
j

)2
∑m

k=1

∑n
j=1

(
zjbkj

)2 min





1

4

(
α0(t)

)2 m∑

k=1

n∑

j=1

(
zjb

k
j

)2
, R



 , t ∈ [0, h],

ri(t), t ∈ (h, T ], i = 1, 2, . . . ,m,

where

α0(t) =
1

ρ

(
1− eρ(t−h)

)
, t ∈ [0, h].

The prinipal's maximal guaranteed result is equal to

1

ρ

(
e−ρh − e−ρT

)
x∗ +

1

ρ

(
1− e−ρh

)
x0+

+

∫ h

0


α0(τ)




m∑

i=1

√√√√ri(τ)

n∑

j=1

(
zjbij

)2

−

m∑

i=1

ri(τ)


 e−ρτdτ,
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where the instant of time h solves the equation

y(t) = x∗ =

∫ t

0

m∑

i=1

√√√√ri(τ)

n∑

j=1

(
zjbij

)2
dτ +

n∑

j=1

zjxj0, (90)

i.e. h is the instant t when the right hand side of (90 beomes equal to x∗.
As soon, SCI = 1 as in the previous problem from the Setion 4. The expressions

for the maximal guaranteed payo� in this ase di�er from those in the setion 4 only

by the multipliers zj � the omponents of Frobenius eigenvetor of matrix A. So,
the interests of players are ompletely ompatible as in the problem without the

onditions of homeostasis.

6. Conlusion

We studied di�erene and di�erential Stakelberg game theoreti models of opin-

ion ontrol in marketing networks in whih the prinipal should provide that a given

limit value of the summary opinion not be exeeded. First, the problem is solved

for the stohasti in�uene matrix A, and then this strong assumption is substi-

tuted by a weaker standard assumption that the matrix A is stohasti from the

left. It is possible to introdue a weaker assumption, namely that a non-negative

in�uene matrix has a stritly positive Frobenius eigenvetor. In this ase, it is only

required to introdue in the reeived formulas the Frobenius eigenvalue of the in�u-

ene matrix as a multiplier. It appears that for the prinipal it is not advantageous

to alloate to the forms more resoures than they need in their rational behavior.

In all ases in frame of the onsidered model the interests of players are ompletely

ompatible.

Other formulations of the homeostasis onditions are possible, for example, x∗ ≤∑n
j=1 xj ≤ x∗. But in the onsidered model, when all state variables an only

inrease their values or remain onstant, the onstraints from below are satis�ed

automatially.

Another formulation an use the onstraints only for the terminal values of the

variables, i.e. x∗ ≤ ∑n
j=1 x

T
j ≤ x∗, where xTj are the values of the state variables

in the end of the game. However, the satisfation of these onditions in any instant

along the game implies their satisfation in the �nal instant also. The inverse impli-

ation is also true beause the values of the state variables do not derease during

the game.

At last, the onstraints an bound eah state variable separately: x∗j ≤ xj ≤ x∗j

or x∗j ≤ xTj ≤ x∗j . In suh formulation it is neessary to evaluate in whih instant

of time whih variable reahes its boundary value. Starting from these instants, the

ontrol impat must be exerted only to the remaining state variable whih dereases

the problem dimension.
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