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Abstract We consider a dynamic Stackelberg game theoretic model of the
coordination of social and private interests (SPICE-model) of resource allo-
cation in marketing networks. The dynamics of controlled system describes
an interaction of the members of a target audience (basic agents) that leads
to a change of their opinions (cost of buying the goods and services of firms
competing on a market). An interaction of the firms (influence agents) is
formalized as their differential game in strategic form. The payoff functional
of each firm includes two terms: the summary opinion of the basic agents
with consideration of their marketing costs (a common interest of all firms),
and the income from investments in a private activity. The latter income is
described by a linear function. The firms exert their influence not to all basic
agents but only to the members of strong subgroups of the influence digraph
(opinion leaders). The opinion leaders determine the stable final opinions of
all members of the target audience. A coordinating principal determines the
firms’ marketing budgets and maximizes the summary opinion of the basic
agents with consideration of the allocated resources. The Nash equilibrium
in the game of influence agents and the Stackelberg equilibrium in a general
hierarchical game of the principal with them are found. It is proved that the
value of opinion of a basic agent is the same for all influence agents and the
principal. It is also proved that the influence agents assign less resources for
the marketing efforts than the principal would like.

Keywords: differential Stackelberg games, marketing, opinion control on
networks, resource allocation.

1. Introduction

Models of influence and opinion control on networks are widespread in the lit-
erature in the last several decades (Chkhartishvili, Gubanov and Novikov, 2019;
Jackson, 2008). The approach most close to the authors’ one is presented in the
papers (Sedakov and Zhen, 2019; Zhen, 2019). In those models a network is de-
scribed by a weighted directed graph in which the vertices represent the members
of the network (basic agents), and the weights of the arcs reflect an intensity of
their mutual influence. The basic agents have their opinions about an issue which
can change in time due to the network interaction. External influence agents can
impact the basic agents in their own interests. We suppose the following. First, it
is rational to exert control impact not to all basic agents but only to the members
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of strong subgroups of the influence digraph (opinion leaders). It is known that the
opinion leaders determine the stable final opinions of all basic agents. Second, we
consider marketing networks in which the opinions of basic agents are their costs
of buying of the goods and services providing by firms competing on a market (in-
fluence agents), and control variables of the influence agents are their marketing
efforts directed to the opinion leaders (Agieva, Korolev and Ougolnitsky, 2019).

Models of coordination of the social and private interests, including their dy-
namic formulation, are studied in the public economics (Long, 2010). In those mod-
els it is supposed that each agent divides his efforts between a private activity and
the production of a good which is common for all agents. In turn, the agent’s payoff
is a sum of the income from his private activity and his share in the utility from the
production of the common good. The author’s formulation of the models of coordi-
nation of social and private resources (SPICE-models) is given in (Gorbaneva, 2019),
and some examples of the application of SPICE-models in different problem domains
are described in (Anopchenko and others, 2019a; Anopchenko and others, 2019b;
Sukhinov, Ougolnitsky and Usov, 2020; Ugol’nitskii and Usov, 2020).

An important aspect of the control in complex systems consists in the evaluation
of a degree of coordination between the active agents. The most known formulation
is the problem of inefficiency of equilibria when the global maximal value of the
function of social welfare is compared with its value in the worst of Nash equilibria
in a game of the agents (Nisan, Roughgarden, Tardos and Vazirani, 2007).

This paper is based on the mentioned streams of research and makes the fol-
lowing contribution. We consider a hierarchical dynamic SPICE-model of resource
allocation in a marketing network. The dynamics of opinions of the basic agents
(members of the target audience) is determined by their interaction and marketing
efforts of several competing firms (influence agents) that form the lower control
level. The payoff functional of each firm includes two terms: the summary opinion
of all basic agents with consideration of the marketing cost (a common interest of
all influence agents), and the income from investments in a private activity. The
latter income is described by a linear function. It is assumed that in the stage of
analysis of the network the members of its strong subgroups (opinion leaders) are
already found, and the firms exert marketing influence only on them. On the upper
control level a coordinating principal is situated. The principal allocates marketing
budgets between the firms (influence agents) for the maximization of the summary
opinion of the basic agents. The unique Nash equilibrium in the game of influence
agents in strategic form and the unique Stackelberg equilibrium in the game of the
principal with them are found. The evaluation of the degree of coordination be-
tween the principal and the influence agents is made by means of a special system
compatibility index (Sukhinov, Ougolnitsky and Usov, 2020).

In Section 2 we describe the SPICE-model of resource allocation in marketing
networks, precise its specifics, and characterize the used methods. In Section 3 the
Nash equilibrium in the differential game of influence agents in strategic form is
built. In Section 4 the solution of the differential Stackelberg game between the
principal and the influence agents is built. In section 5 the system compatibility in-
dex is calculated. Section 6 concludes and contains the directions of future research.
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2. Dynamical Hierarchical SPICE-Model

The hierarchical dynamic SPICE-model of resource allocation in a marketing
network has the form:

( {ritiZy, {{u;}?:l}zllv {xj}?:ﬂ =
T n m
:/0 e | ai(t) = > ri(t)| dt — max, (1)
j=1

i=1
20,2 mil
Ji ( 7’“{“ }7 1a{IJ}7 1) = (2)

= /OT e P pi | i) — i ul(t) | + i[gc7 (t) — shul(t)] | dt — max, (3)

j=1 j=1
O<Zu <ri(t),i=1,...,m;t €[0,T]; (4)
&; :szr Zalja:l 0) =zjo,j=1,...,n, (5)
={oZo ®

Thus, (1)-(6) is a differential Stackelberg game of the principal with several influence
agents (firms). Here n is a number of basic agents (a number of target audience),
m — a number of influence agents (competing firms), R — a total marketing budget
of the leader, T' — a length of the game, Jy, J; — the payoff functionals of the leader
and the influence agents respectively, r;(t) — a marketing budget allocated to the
i-th influence agent by the leader in the moment of time ¢, x;(¢) — an opinion of
the j-th basic agent in the moment ¢ (cost of buying of goods and services), u’(t) -
expenditures of the i-th influence agent for the marketing impact (advertlzmg and
so on) to the j-th basic agent in the moment ¢, a;; — a coefficient of influence of
the i-th basic agent to the j-th basic agent, bé- — a coefficient of influence of the i-th
influence agent to the j-th basic agent, 6 denotes a discount factor, i.e. § = e~ 7.
As different firms can exert influence to different members of the strong subgroups,
we simply assume that if the i-th firm (influence agent) does not impact to the
j-th basic agent then bl = 0, s} characterizes the connection of the i -th agent of
influence and the j -th basm agent

The Principal has at any instant of time ¢ a value of resources to be allocated
to the influence agents. Each of the agents receives a value of resources r;(t) that
is a continuous function 7;(t) : [0,7] — [0, R]. The budget constraint means that
Yot ri(t) < R. After receiving the resources r;(¢) from the Principal the influence
agents use them in private and common interests. The common interests are modeled
by the function uz (t) which describes the share of the i-th influence agent’s resources
assigned for the marketing impact on the j-th basic agent at the moment t. The
continuous functions u’(t) : [0, T] — [0, r4(t)] are the strategies of the i-th influence
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agent which satisfy the budget constraint 377, ' (t) < ri(t). The marketing impact
includes advertizing, special actions, discounts, gifts, and so on.

A common (social) interest of the influence agents is modeled as maximization
of the summary opinion of the basic agents, and their private interests are repre-
sented by the income from an activity which is not concerned with marketing efforts
(for example, the private investments). We used the linear functions of the private
activity, i.e. p;(x) = p; - &, where p; > 0 is a constant value. In turn, the princi-
pal maximizes the summary opinion of all basic agents minus the cost of resources
allocated to the firms.

The unique Nash equilibrium in the game of influence agents in strategic form
and the unique Stackelberg equilibrium in the game of the principal with them are
found analytically by the Hamilton-Jacobi-Bellman equations.

3. Building the Nash Equilibrium in the Game of Influence Agents

Let us investigate the problem of the i-th firm (3)-(6). The Hamilton-Jacobi-
Bellman equation is

aV; = i i - i
pVi— = max §3 [r(t) = sjui(t)] +pi | mi(t) = Y _u
j=1 =1

ot ui,1<5<n
Z Zbkq/ Zaqul] } (7)

with condition 0 < 2?21 u; (t) < ri(t). Maximization by u;, ji=1,2,..n, bj» #0
gives

Rt (v 35)°

9V
Zgb; #0 (b] Ox )

uz (t) =

7 (8)

where > i o ul(t) = Ri(t) < rq(t).

. . . i Ri(t)<b; aI )
Notice that we can substitute the expression uj(t) = ) by uf(t) =

—6

Zj:bji.;é() b;HL

IRCICES no

= o anT CEDR and the expression R;(t) = >_ ;. b0 ul(t) by Ri(t) = 27, ui(t),
J=1\"Jj 61'

. , 2
as if b} = 0 then the summand (b? 6%) is equal to zero and can be inserted

in the common sum. Therefore, Y7, (bz gfj) =2 bi£0 (bz 8V) Similarly,

2?21 ui(t) = Zj:b;l;éo ul(t), as if b5 = 0 then u}(t) = 0. We consider the case when
the product of all bj» is not equal to zero, otherwise the problem has no practical
sense (there is no influence).

Let us use the linear Bellman functions

=" aj(ta; + B,
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then we can write the equation (7) with consideration of (8) as

P otz +pB(t Z Jz; — pB(t) =
=3 ai(t) = Ri(t) +pi- [ ri(t) = D_ub(@t) | £ ab(t)ayz +
j=1 j=1 =1 j=1
TN (Rk(>la ()b’“l
PO
k=1j=1 \/Z] 1 )

Equating in the left and right hand sides of the equation (9) the coefficients at the
first power of x, we receive the following differential equations for the coefficients a:

paz',(t) _a;i(t) = 1+Zaf(t)ajl,j =1,2,...,n. (10)

Rewrite the system of equations (10) in the matrix form
7 = (pI — Ao — ¢, (11)

where A = {a;;},_ 12, nii=1.2, .. is the influence matrix, o’ — the column vector

of the coefficients o, j =1, 2, ...,n, I — the unit matrix, ¢ — n-dimensional column
vector of units. System (11) is the same for all influence agents, therefore aj(t) =
= a3(t) = ... = of'(t) = a;(t) for any basic agent j = 1,2,...,n, and from this point
we will omit the superscript 4 of the coeflicients ;.

Solving the system of differential equations (10), we receive:

a=(pl - A"
a=ePl=MtC 4 (pI — A)7!

The column vector of the constants of integration is found from the boundary
conditions:

therefore
a=—eP=AED (] — A) et (pf — A)"le= (e(pI_A)(T_t) — I) (A—pI)~te
In particular, for t = 0 we have

a(0) = (e<P1—A>T - I) (A — pI)~Le. (12)

Considering that o/ (t) = af(t) for any k =1,2,...,n, we rewrite (9) in the form:

n

pza b+ 08'0) = Y i) = 5'0) = 3 ost) = Bt +
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Choosing the maximal value of the right hand side of (7) in dependence of the sum
R;(t), we have

and
> (o (1))
A1 +pi)*
Thus, the value R;(¢) in (13) with consideration of (4) is equal to

03050
R;(t) = min { z334_((—(;));7%@)} :

1+ p;i)

(Ri (t))max =

Let us call the amount aj»(t) the opinion value of the j-th basic agent for the
i-th influence agent. In fact, in the Bellman function of the i-th influence agent
Vi(z,t) = >5_, aj(t)z; +B'(t), the factor o (t) is a weight cqeﬂicient of the opinion
of the respective basic agent x;. Thus, from the condition oj(t) = af(t) we receive

Proposition 1. The opinion value of each basic agent is the same for all influence
agents.

Equating the constant terms in the left and right hand sides of (9), we receive the
differential equation for §*:

B(t) = pB(t) = — > V/Ri(t)

m
k=1

zn: (o (t)b§)2 +piRi(t) + Ri(t). (14)

The equation (14) is solved by the method of variation of parameters:

Bit)y= [ erd (aj (T)05)? = (pi + 1) Ry(7) p dr.

For ¢t = 0 we have

T m n
O = [ IS R Y () = i+ DR

k=1
where for any k = 1,2, ...,n (in particular, for the given i) we have

R,C(t):{znéfili])?” SOy <40+ R0, g5)
(1), S (o (6)2 < 41+ pi) ).

Thus, the maximal payoff of the influence agent is

max J; = Vi(z(0),0) = Zaj(())x] (0) +

i, 1<j<n

T m n
4 / e N B0 D (g (16)? = (i + DR(7) p dr,

k=1 J=1
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where the components «;(0), j = 1,2, ...,n of the vector «(0) are determined by the
expression (12), and Ri(7), kK = 1,2,...,m are determined by the expression (15).
The control values are determined by the expression (8):

i) = RO (Has®)

’ Z] 1 (blO‘J (t))

where

at) = (e(A_”I)(T_t) - I) (A—pI)~te

L0300
R;(t) = min {%,n(ﬂ} .

4. The Stackelberg Game of the Principal with the Influence Agents

Let us move to the principal’s problem (1)-(2),(5)-(6). The Hamilton-Jacobi-
Bellman equation has the form

a‘/o n m
Vo ——5p = e ;wj(t) - ;m(t) +

n V : n
z::a_ Z:: by Jul (t)-i—;alj:vl] (16)
with conditions 0 < 3>, r;(t) < R, ri(t) > 0,4=1,2,...,m , where

ui (t) — min (b;aj (t))2 . T (t) (b; Qa; (t))2
A= T S G OF |

The equation (16) takes the form:

Mo _ N~ Vo
pVo — TR P ;xg (t) — ;m(t) ; oz, Zazg:cz +
U bl (t) . I .
n ij [y (8)] — min 1 Z (b;aj(t))Q; 7i (1) .17
i=1 Z] 1 (bzo‘a( )) =

Let us take the linear Bellman function
(x,t) = Z t)z; + B2(t).

Let us show that of(t) = o;(t), j = 1,2,...,n , t € [0,T] . Equating in (17) the
coefficients at the ﬁrst power of x; in the left and right hand sides, we receive the
differential equation for a9(t):
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which coincides with (10) for the same boundary conditions

a(T) =0,
therefore

a?(t) = a;(t) =..=a'(t)=a;t),j =1,2,...,n,t € [0;T]. (18)

Let us call ag(t) the opinion value of the j-th basic agent for the principal. In the

principal’s Bellman function Vo(x,t) = 377, af(t)z; + B°(t) the factor af(t) is
the weight coefficient of the opinion of the respectlve basic agent. Thus, from the

condition (18) we receive

Proposition 2. The opinion value of each basic agent is the same for all influence
agents and the principal.

With consideration of (18) we can rewrite (17) as

n

= 33 a(t) = Do nl+ 303" ag(tas +

zj 1(%@););)2

If the minimum is attained in the first expression, the function decreases on r;(t),
and the optimal value of 7;(¢) is minimal. It is minimal if the expressions under the
sign of minimum are equal. Thus, the minimum is attained in the second expression
or it is absent.

Notice that the non-conditional maximization of the expression (19) gives the
amount of resources

2": bzozj

MH

In this case

i 2
: 2, Ghos(t) }_ : (biay ()"

ué(t) = min{m (bﬁa.j(f)) T 4 CA(1 4 pi)?

It means that it is not advantageous for the principal to allocate the amount of
resources

1 n
:ZZ blOéJ

Thus, the principal allocates to an influence agent as many resources as the latter
is ready to assign for the common purposes, i.e.

ri(t) = m Z (la; (1)’ (20)
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and we receive the following

Proposition 3. The influence agents assign less resources for the marketing efforts
than the principal would like.

Thus if
2

- 2= (855 ()
3 (B504 (1))

<4R
(I+p)?

i=1

then the principal allocates to each agent the amount of resources equal to (20).
n i 2

How the principal should allocate the resources if >\, W > 4R? The

answer is given by the conditional maximization of the expression (19). Maximizing
the right hand side of (19) by r;(¢), i = 1,2,...,m with condition Y ., r;(t) < R,
we receive

ri(t) = R > (s (1)b)) .

i Z?:l (aj (t)b;)

Thus, in the instants ¢ € [0,7] when

i S (b, (1)

<A4R,
i=1 (I+pi)? N
the optimal control of the principal is
ri(t) = ;Xn:(b?a-(t))r" i=1,2,...m
A+ po & ) T R
and in the instants ¢ € [0, 7] when
m n i 2
Z Zj:l (bjO‘j (t))
—————— > 4R,
i=1 (1 +pi)?
the optimal control of the principal is
n i\ 2
(g (E)b
ri(t) 21 (45(0F) Ri=1,2,..,m.

TS Y ()’

Combining both expressions for r;(¢) in the same formula, we receive the final
optimal control of the principal:

Y (oy0p)° 1 &g 2.
TN Y () T 2 2 (0Oh) s o 21

i=1,2,...,m,te0,T]

T (t)

where

at) = (e(A_pI)(T_t) - I) (A—pl)~ e
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Given (21) we can simplify (19) because
n ; 2
- 1on Yot (B505(8)
5 t) = : - J J
;7’() mln{4; (1+p7,)2 aR 5

and the last term in (19) is

mE ()’ . 1
2.0 T e ) 20+ )

m X (bhey(1)? m X (bhay(1)?
sy, B0l s ZR00) g,

- m n i 2 m > b;-a,-(t) :
\/R DI DI (C171(9) N i W > 4R.

Equating the constant terms in the left and right hand sides of (19), we receive the
differential equation for 3°(t) :

BOt) - pBO(t) = f(t), (22)

where

Lxm s (i 2 20t m i (Bey(0)”
ft) = ZZi:le:l (bjaj(t)) (1+p:)2 ,Zizl Trp)2 < 4R, (23)

m n i 2 m Z;l: b;‘)‘j(t) :
\/R it 2oy (Mhey(0)” = R, 3T, W > 4R.

Solving the equation (22) by the method of variation of parameters, we receive:

T
0(t) = =Tt (1 Vdr.
8°(t) / P f(r)d

When ¢t = 0 we have

T
0 = e PT f(T)dT.
5(0) = / f(r)d

Thus, the maximal guaranteed payoff of the principal is
n T
max Jo = Vp(2(0),0) = Y _ a;(0)z;(0) + / e~ PT f(1)dr, (24)
0

ri, 1<i<m —
1=

where the components «;(0), j = 1,2, ..., n of the vector «(0) are determined by the
expression (12), and f(7) is determined by the expression (23).
5. System Compatibility Index
Now let us calculate the system compatibility index:
maxy, (t) minu§(t)eNE(m(t)) Jo({ri}ity, {{u;}?:l};ilv {z; }?:1)

aXy; (¢) MAXyL (1) Jo({ri}ity, {{u; ?:1}211, {‘Tj}?:l)

SCI = . (25)

where the set NE(r;(t)) is the Nash equillibrium of the agents of influence in re-
sponce to the resource amount 7;(t).



18 Movlatkhan T. Agieva, Olga I. Gorbaneva

This index shows the measure of compatability of system. The numerator of (25)
is the payoff of the principal in the case if the firms choose the most unfavorable
for principal equilibrium strategies. The denumerator of (25) is the payoff of the
principal in the case if the firms choose the most favorable for principal strategies.
It is evident that 0 < SCI < 1. A similar formula is used in the paper (Agieva,
Korolev and Ougolnitsky, 2019).

In our case the set of equilibrium strategies of each influence agent given the
principal’s strategy is a singleton, therefore, the numerator in (25) is equal to the
right hand side of the formula (24).

For the calculation of the denominator in the expression (25) let us assume that
each influence agent maximizes not his payoff but the principal’s payoff given her
strategy, i.e. the influence agent solves the problem

- T n
Ji({a; (0),) = / e (1)t — ma,

with conditions (4)-(6). This function is introduced for finding the influence agent
stratigies which maximize the payoff function of the Centre.
The Hamilton-Jacobi-Bellman equation has the form

Z bj V uf(t) + Z Gljivl] (26)
k=1 =1

with co'ndition 0 < 3770, ul(t) < ri(t). Maximization by u}, j = 1,2,...,n, b} # 0,
we receive

av; S —~ 9V,
Vi —r = (¢ B
p T ;xg( )+; )

i OV; 2
ul(t) = M

i (055%)

and, naturally,

Taking the linear Bellman functions
Z Bz; + B(1), (27)
we can write the equation (26) with consideration of (27) as

Py ai(t)w; + pBi(t) Za” Juj — pB() =
j:

:ij(t)+zzaﬂ QZJIZ+ZZQ . (28)
j=1 \/Z7 1 (

=1 j=1 h=1j—=1 )
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Equating the coefficients at the first power of x in the left and right hand sides of
(28), we receive differential equations for the coefficients a:

)+ aj(t)az = —1, (29)
=1

coinciding with the equations (10) solved by the expression (12).
Choosing the maximal value of the right hand side of (28) in dependence on the
sum of R;(t), we have

R;(t) = ryi(t),

that is natural because the influence agents care for the principal’s payoff instead
of their own one. Thus, the strategies of all influence agents are:

ri(t) (bha (1))

ul(t) = .
ZJ 1 (bZO‘J( ))

(30)

and, therefore,

where o (t), j = 1,2, ..., n are the components of the vector «(t) which is determined
by the expression (12).

Let us move to the principal’s problem (1)-(2),(5). The condition (5) with con-
sideration of (30) can be immediately written as

DG

—|—Zaljxl
Z? 1( ()bl =1

The Hamilton-Jacobi-Bellman equation has the form

A% n m
Vo~ =, max_ ;mw-;mm

Vo | & » a;(
Z o | 2o V(B ——= £ agn( (31)
perie > 1(a ()bz) =

with condition Y ", ri(t) < R, 7(t) > 0,i=1,2,...,m
Let us use the linear Bellman function:

Za ) + BO(t),

then the equation (31) takes the form

n n
0 0 10 0 _
pl|B —l—E ajz; | — | B —i—E ajrj | = max E x;(t)—
— — ri(t),1<i<m | 4
j= j=

=S om)+ > [ Vb =+ Z ayjz(t (32)
] j i=1
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with condition > ", 7 (t) < R, 75(t) > 0,i=1,2,....,m

Let us show that of(t) = a;(t), j = 1,2,...,n, t € T. Equating in (32) the
coefficients at the first power of x; in the left and right hand sides, we receive the
differential equation for a9(t):

a —l—Zal Jaji = —1,

which coincides with (10) for the same boundary conditions
therefore

With consideration of (33) we can rewrite (32) as

n n m
p Bo—i—zaﬂj - [3/04.2049@ = max ij(t) —Zﬁ(t)—i-
7j=1 i—1 r;(t),1<i<m ;

+ Zl lz 2% (t)aljxl + Zl Vri(t)
Jj=11=1 1=

with condition > ", 7;(t) < R, ri(t) > 0, i = 1,2,...,m. Notice that the non-
conditional maximization of the expression (34) gives the value of resources

1=,
ZZ blay(t))”. (35)

Thus, the principal is interested to allocate to each influence agent i the value of
resources (35). Therefore if

i i blaj < 4R,
i=1 j=1

then the principal allocates to each influence agent i the value of resources (35). How
the principal should allocate the resources if Y ;" Z?:l (b; a; (t))2 > 4R? Maximiz-
ing the right hand side of (34) by r;(t), i = 1,2, ..., m with condition Y ;" | r;(t) < R,
we receive
S (o (0)0)”
5
D Zj:l (O‘J'( ) j)

Thus, in the instants ¢ € [0,7] when

Z: Z (b;aﬂ (t))2 )

T‘i(t) =R

)J>|>—‘
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the principal’s optimal control value is

1 n
z :ZZ bZOéJ

In the instants ¢t € [0, 7] when

n

m
<722 (B0
the principal’s optimal control value is

i (a S()bE)
pR 127 1(%( )2

Combining both expressions for r;(t) in the same formula, we receive the final
principal’s optimal control:

%I»—'

Ri=1,2,...m

T (t)

e

T (t) =

no

Zn L ( ( )bl) m n
: a;(O05)" R Y, (36)
Zk:l Zj:l (aj( f) kz:: z::

=1,

2,...,m,t €[0,T],

where
a(t) = (e<A*PI><T*t> - 1) (A—pD) !

Given (36) we can simplify (34) because

Zri(t) = min iZZ(béaj(t))z,R ,
i=1 =1 j=1
and the last term in (34) is equal to
Do\ 2o ()" = 137D (s (0)p) min § 1573 (o
i=1 \ j=1 k=1j=1 k=1 j=1

Equating the constant terms in the left and right hand sides of (34), we receive the
differential equation for 3°(t):

BOt) = pB2(t) = ¥(1), (37)

where

¥ (t) = min

SN ke )s [N (thes) — Ry, (39)

k=1j=1 k=1j=1

] =
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o(t) = { YD PR (Vi (’5))2 i 2 (bé'aj(t))Q < 4R,
VRIS, S (Bay(0)® — RS, S (Bay () > 4R,

Thus, the equation (37) coincides with the equation (22) for the same boundary
conditions, therefore,

(39)

T
Bo(t):/t eiP(T*t)z/J(T)dT.

When ¢t = 0 we have
T
20 = [ erimar,
0

where 1(t) is determined by the expression (37).

Thus, the denominator of the expression (25) maxy,cy max,cz Jo(y, z), or the
global maximum of the principal’s payoff in the case of cooperative behavior, is
equal to:

n T
> ay0)r,0)+ [ e rmuiryar

where «;(0), j =1,2,...,n , are determined by the formula (12), and 9(7) is deter-
mined by the expression (37).
The system compatibility index in this problem is equal to

S (0)z;(0) + [ e o7 f(r)dr
-~ T <1
ijl a;(0)z;(0) + jo e~PT(T)dT

Notice that the complete system compatibility is achieved only if f(7) = ¥(7),
and this is possible only in the case when for all influence agents the inequality

DY DI (e (t))2 < 4R(1+p;)? is true, and they lack resources for the common
purpose.

SCI =

6. Conclusion

We considered a dynamic SPICE-model of resource allocation in a marketing
network. The network includes a coordinating principal that allocates resources,
several influence agents (competing firms), and basic agents which form the target
audience. The model represents a differential Stackelberg game of the principal
with the influence agents. In the case of linear functions of private income of the
influence agents we found analytically the unique Nash equilibrium in the game of
agents and Stackelberg equilibrium in the general game by means of the Hamilton-
Jacobi-Bellman equations. We proved that the opinion value of any basic agent is
equal for all influence agents and the principal. Also we proved that the influence
agents assign less resources for the marketing efforts than the principal would like.

We plan to spread the received results to the functions of private income in more
general form. Besides, it seems rational to consider in more details the firm’s utility
from buying by the basic agents the goods and services of this specific firm instead
of all firms in the totality.
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