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Abstract—In this paper a method of constructing a model
of control over compliant motion of robot manipulators is
considered. In this method the elastic deformations of flexible
manipulators elements are used as feedback signals.

I. INTRODUCTION

At the moment there exist a lot of methods for constructing a
system of force-torque control over compliant motion of robot
manipulators. These methods are generally focused on solving
the problems of using robots to automate the assembly and
other operations which require interaction between robot and
mechanically constrained objects [1]. Nevertheless, application
of these methods in practice has not given the desired results. It
is related to the fact that the applied approaches do not allow
to construct the force-torque control system with the good
enough dynamic properties. This negates the effectiveness of
robots and economic justifiability of robot-based applications.
In addition, the methods being in use differ in dependences of
the dynamic properties on the parameters variations of control
system and controlled object. It should be also noted that there
is poor effectiveness in use of the pointed control laws in case
of robot manipulators with flexible elements, in particular with
flexible segments mostly used in space robotics [2]-[5]. The
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Fig. 1. Scheme of the manipulator with elastically deformable segments and
transmission

proposed approach to construction of an active force-torque
control system is based on the use of the elastic deformations
of the flexible manipulator’s elements as feedback signals,
rather than the traditional forces and reaction moments that
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occur while contacting of gripper with being moved objects
[1]. Control laws as the functions of the feedback data are
proposed to be built so that they could generate potential
and quasi-potential control forces for the joints of the robot
manipulator. It is also important the minimum sum of original
and artificial potential energies of the system “manipulator -
object” to be in the target point or on the program trajectory
of the manipulator. The stability conditions of the controlled
process imply that for any variation of the control law’s
parameters the forces would stay potential. In this case, the
manipulator being applied only potential forces and dissipative
forces of friction will have a stable balance in the target
point or on the program trajectory [6]-[9]. The proposed
method is applicable to any real robot manipulators with
elastic compliance in the joints.

II. DYNAMIC MODEL OF ROBOT MANIPULATOR

The scheme of the manipulator equipped with direct cur-
rent drives is shown in Fig. 1. The current position of the
manipulator equipped with controlled drives is defined by the
joint coordinates g; (z = 1,2,...,n). They are the angles of
rotation or linear displacement of one i-segment relative to the
(i — 1)-th segment. These coordinates can be combined into
an n-dimensional vector § = (g1, 2, ..., Jn)" of joint coordi-
nates.

Joint coordinates change is performed with the use of drives
with the current state determined by n-dimensional vector of
drives coordinates d = (dy,ds,...,d,). Its components are
the rotation angles of the electric motors shafts. Communica-
tion between these vectors is represented by the relation:

9= P(d), )

where g is n-dimensional vector of the joints rotation angles of
the shaft motors drives, 7 = (71,72, ..., 7,) is n-dimensional
vector of the shaft gear’s elastic deformations, P(d) is
n-dimensional vector-function of the reduction transforma-
tions.

Suppose that manipulator segments are elastically de-
formable, i.e. flexible. To take this into account in the models
the finite element method is used. In other words, each of
segments is approximated by the chain of k solid bodies
which are connected to each other by elastic elements of zero
dimensions and zero masses. Moreover, the elastic deforma-
tion of each segment is defined by coordinates 1,15, . .., lgxk,

§:g+7_7



which are the elastic deformations quantities of all k elastic
elements approximating the segment. Deformation of all n
parts is defined by the coordinates of all (6 x k x n) elastic
elements approximating these segments and integrated into
vector | = (l1,l2,...,lexkxn). The load-carrying structure
of force-torque sensor gives elastic deformations presented by
six wrist coordinates of vector w = (w1, wa, W3, W4, W5, We).
Thus, the current state of the manipulator is determined by
vector § = (g,d,g,7,l,w). However, since n-dimensional
vectors g, g, T,d are related by equations (1), description of
current state for the manipulator is sufficient to include two
of these vectors, for example, g and 7. Then the vector of
manipulator state is used ¢ = (g,7,l,w) = (g,e), where
e = (1,1, w) is elastic deformation vector of all the flexible
manipulator elements. The dimension of the vector ¢ is equal
to n + m, the dimension e equals m =n+6 x k x n + 6.

The constraints imposed on the movable objects which are
rigidly grasped by manipulator gripper, can be described by r
algebraic equations (r < 6):

M(X):O7 X:(y17y27y3791192793):L(gve)» (2)

where M (X)) is r-dimensional continuously differentiable vec-
tor function, X is 6-dimensional vector of gripping position,
which determines coordinates yi,y2,ys for position of its
characteristic point in the fixed coordinate system and the
Euler rotation angles 61, 02,03 for the coordinate system of
gripping relative to the stationary coordinate system.
Equation (2) can be transformed into the following system:

Q(gve):M[L(g76)] =0. 3

This system relates coordinates of state vector ¢ = (g,e).
System (3) is a system of r equations for holonomic mech-
anism constraints. This system allows presenting r vector
components in an explicit form whereas the components are
integrated into the vector ¢g" in the function of all the remaining
independent coordinates of vector ¢ = (g, e)

g" = (D(gnirve) = (D((j), 4
where ¢g" " is (n—r)-vector composed of (n—r) component
of vector ¢ that are not included in ¢", ¢ = (¢" ", e) is

(n — r 4+ m)-vector of independent generalized coordinates.
The state vector ¢ may be presented through ¢ by using (4)
as following:

q=1(9",9""",¢e) = (2(q),q) S))

The dynamic model is represented by two subsystems
of equations. The first one describes the behavior of the
mechanical manipulation part:

d (0L oL
E(q,4,§) = — | = | — = = HF, + Fyis + STX. (6
(an7q) dt (aq) 8(] a+ dis + ( )
The second subsystem

U= Laja + RaIa + ksd7 fa = kn]zu (7)

describes the processes in the electric circuits of direct current
motors. In this model the following notation is used: Fj, is

n-dimensional vector of generalized control forces assigned
to the vector g, Fy;s = Krg and ST are (n + m)-vectors
of generalized dissipative forces and generalized reactions
assigned to the vector q, K is symmetric positively defined
(n+m) x (n+m)-matrix of friction coefficients, E(q, ¢, §) is
Euler operator from the Lagrange function L =T — P, T and
P are kinematic and potential energies of the manipulator with

drives, \ is r-dimensional Lagrange multiplier, H” = [E:0]
is block n x (n 4+ m)-matrix, E is unity n x n-block, I, is
n-dimensional current vector for armatures of motor electric
drives R,, L, are diagonal n x n-matrices of active resistance
and armature windings inductance, U is n-dimensional vector
of voltages applied to the armature windings, which perform
the control, f, is n-dimensional vector of generalized control
forces assigned to the vector d; ks and k,, are diagonal n X n-
matrices of transformation of rotative speed vector for motors
armatures into back electromotive force (EMF) and armatures
current vector I, into the vector f,, Z = OP(d)/0d is n X n-
matrix of reduction.

Differential normalized form of constraint equations ob-
tained by differentiating system (2), has the following form:

nX =0, (8)

where 7 = R™1(OM/0X) is normalized (r x 6)-matrix of
constraints, R = {Ry, Ra, ..., R,} is diagonal (r X r)-matrix;
R; is Euclidean norm of ¢ th matrix row.

The following statements are true for X:

X=X,+X,=5G X,=J.g and X.=Je&, (9)
where X, and X, are the velocity vectors of gripping dis-
placement generated by vectors and ¢ and é respectively, since
Jr,Je and S are 6 X n,6 x m,6 x (n + m)-Jacobians.
Then it follows from (8) that

aSG=0, nJyg=—nJe, ¢ =-S7'Sq  (10)
where: S; and Sy; are r X r and (n — r X m)-blocks of the
matrix S with the rank r. The velocity vector of manipulator
state changing ¢ = (¢", ¢) can be presented through the veloc-
ity vector ¢ of independent generalized coordinates changing

as following:
. . 1
g=(4",q) =Wgq, W{I

where W = (n+m) x (n—r+m) is matrix of rank (n—r+m),
I is a unity matrix.

Subsystem (1) with (n + m) equations, subsystem (2),
(3) with 2n equations and subsystem (10) with r constraint
equations consist of (n+m+2n+r) variables integrated into
vectors G, Fy, L, A

These subsystems are transformed into the system of (2n+
m — r) differential equations with the following subsystems:

G =-A'(B+K+K")§, +Cq+D—-WTHF,], (11)

§=q, eFy=-TF,—kU—k.,T.R,'ksZ "H"W§,. (12)



In these subsystems the described further notation is used:
A = WTaW positively defined symmetric a — (n + m —
r) X (n +m — r)- and (n + m) X (n + m)-matrices of
inertia for the manipulator with drives, assigned to the vectors
g and q, respectively, B = 0A/dt — 0,50(§ A)/0G and
K = WITKpW are (n —r + m) x (n — 7 + m)-matrix
for representing centrifugal and Coriolis forces manipulator
elements and positively defined symmetric matrix of friction

0 ! 0 - QT, I_ Q _ 9 -
coefficients. C' = [0 :707 ] and Ce = | 0 1C.1 0
e 0'0'e

are positively semidefined and defined symmetric matrices
of rigidity, C,,C;,C, are rigidity matrices of redactors,
segments and wrist

To = L.R,", T,=|TolTy", Ki=KnToRy" .

The obtained system of 2n — r + m differential equations
relative to the same amount of variables integrated into vectors
q and F,, appears as the dynamic model of the manipulator.
Its peculiarity is that some of the equations from subsystem
(12) included in this system has a very small value of the
scalar parameter ¢ at the derivative of the variable F},, which is
resulted from dynamic properties of the electrical manipulator
drives.

III. METHOD OF ACTIVE CONTROL

The system (11), (12) satisfies Tikhonov’s theorem [10].

In particular, its singularly perturbed subsystem (12) has an
isolated root at € = 0:

FO =T kU — T 'k, Z P HTW G,

a

13)

And this root is a stable stationary point of adjoint subsystem
obtained from (12) if the vector (g, q1) is considered to be a
parameter such as zero.

Indeed, the adjoint subsystem presented in deviations has
the following form: eAF, = —T, F§, where AF, = F, — FV.
This corresponds to system of n isolated first order equations
describing damped aperiodic, which means stable processes.
According to Tikhonov’s theorem, this allows using a gener-
ative system instead of initial system (11), (12) as a dynamic
model of the manipulator. This is important for analysis of
its dynamic properties, in particular the stability of the force-
torque control process. The system is formed by replacing
vector F, with vector FV presented by expression (13) in
initial system. This leads to the following simplified form of
the dynamic model which can be presented as a system of
(n — 7 4+ m) second order equations

E.q,3,§) = Aj+(B+ K+ K"+ Cq+D = W' Hk,U, (14)

where K* = WTHE,R; 'k, Z *HW is (n —r +m)(n —
r+m)-symmetric positively defined matrix of electromagnetic
friction coefficients. The matrix is assigned with vector .
The main terms in the used control laws are given in the
table below. In these laws k, and kg are 6 x G-matrices of
gripping position intensification and artificial rigidity, x4, and
x, are vectors of desired and current positions of the manip-
ulator operating tool, G4 and G = (JI)~!(Cpw + 911, /Ow)
are vectors of desired and current constraint reactions values

Method
Rigidity control
The explicit force control
The hybrid position-
-force control
Impedance control

The main terms from control laws
kU = JTkp(xg, — xr + kgG)
U= kap(G —Gad)
kU =JT(I — Al w)kp(zar — zr)+
+JTkanTn(G — Gg)
kU = JTkp (x4, — xr + kgG)

presented in the system of gripping coordinates, 011, /0w is
the weight of the gripping.

The first term of force G is defined by using a wrist force-
torque sensor from the measured values of elastic deformations
w, the second one is calculated with the use of measured
coordinates of vector ¢, while the components of vector [
defining the elastic deformations are usually not taken into
account because of their smallness.

The new approach proposed in the paper assumes replacing
the vectors G and Gy from the table of the control laws
by vectors X, and X4, of the current and desired gripping
motions. Here the vectors X, and X, are generated by the
vectors of the current and desired elastic deformations of
manipulator structure. The substitution is hold with taking
into account that for small increments Ae = (eq — e) and
Ag = (gq — g) in (9) and (10) the terms Ag and Ae may be
used instead of ¢ and é. Then J,.Ag = J.(94—g) = ©4, — Ty,
JoAe = J.(eq —e) = xq, — 2. and NJp(gq — g) =
—nJe(eq — e).

In this case the system (14) has the following form:

e

EO(ga.é_]ag) = R(q_d - q)7

For the law analogical to the hybrid, rigidity and explicit
force control law:

15)

R=WTHJI k"0 + ky(E —aTh)J.H'W].  (16)
R=WTHJ k" + kpJJ, H ' W]. (17)
R=WTHJ kn"nJ, H"W. (18)

It is obvious that R is a symmetric positively defined matrix,
which follows from its structure. Therefore R(Gy — ) is a
potential force while determining ¢ in the neighborhood close
to the vector qp.

To obtain the conditions of stability for the compliant
motion control system when using control laws derived above,
variable A = ¢ — Go(t) is introduced. This variable is a
deviation of trajectory g(t) from trajectory Go(t) of steady
motion. Then assuming that the steady process is quasi-
stationary, i.e. go(t) & const,q,(t) ~ 0 gives the system in
the linearized form:

AoA + (Ko + KD)A+ (Py+ Co+ R)A =0.  (19)

Matrices Ao, Ko, K&, Py = OD/OA are constant values of
corresponding matrices A, K, K*, P, R at argument value g of
their elements equaled to g ~ const. Matrix by = (0A/9q)q
vanishes at g,(t) = 0.

It is important to note that g,(t) = 0 are symmetric posi-
tively defined matrices, as well as (n+m—r) x (n,, —r)-matrix
(Co + Ry), which follows from the structure C presented in



the notes to the equations (11) for Cy and the structure R,
presented in the expressions (16), (17), (18).

Here the possibility of achieving the stability ”in the large”
process A(t) described by obtained system (19) is tested.
For that purpose the following function is used as Lyapunov
function:

. T

kX - 1, —
V=-A AOA+§AT(PO+CO+RO)A,

1
2
which vanishes at the point of equilibrium, i.e. at A = A =0
and shows positive definiteness. This follows from the positive
definiteness of Ag, as well as (Py + Cy + Rp). The last
statement is due to the positive definiteness of symmetric
matrix (Ry + Cp), which can be increased indefinitely by
increasing coefficients k4 and k, and by increasing the rigidity
matrix of the manipulator construction C.. For this reason it
appears possible to suppress the effect of the symmetric, but
not necessarily positively defined Hessian 0211, /0A% = P,
to make (Pp+Co+ Ry) positively defined. The time derivative
of V due to the equation (19) has the form

. LT g LT — LT
V=A AA+A (Py+Co+Ro)A =—A (Ko+ KA.

This function is a negative definite function of vector A and
semidefinite function of vector (A, A) vanishing at A = 0. It
follows from the above that being analyzed system is stable,
and that the point A = 0 and A the unique point of stable
equilibrium, since if"A # 0,A = 0, then in accordance with
(19) AgA # 0, ie. A # 0, and any point A # 0, A # 0 can
not be stable.

Therefore, not only is there a stable equilibrium at the point
A =0, A = 0 that is actually asymptotic. This means that the
real parts of all the characteristic equation roots in system
(19) are negative. In other words there are neither roots with
positive real part, nor and imaginary ones among all the roots.

It is also very important to note that the only condition for
sustainability is a symmetry positive definiteness of matrix
artificial rigidity matrix k, and intensification matrix k, in
control laws, as well as permutability with the matrix AT,
which makes R positive semi-definite. The magnitude of these
matrices is not limited. If the term dependent from § is used in
the control law, then this term must included linearly as K,q,
where K, is a symmetric positive semidefinite matrix. There
are no any limits for the parameters characterizing manipulator
structure. Since symmetry and positive definiteness of matrix
R in equation (15) do not depend on the steady trajectory
go = qo(t) or equilibrium point ¢y = const, the proof of
asymptotic stability holds true for any point from position
acceptable region of the manipulator.

It is useful to note that calculating the program value of
vector X4, and measuring its current value X, = X, + X; +

X, used in the obtained control laws instead of traditional
programmed and current values G4 and G of reaction forces,
is performed as follows: X; = C'];[lGd, where G4 and the
rigidity of manipulator construction C; are known in advance.
To obtain X, = X, + X; + X, only values of X, and X
must be measured, as X,, = 0 due to absence of wrist force-
torque sensor. The value of X, is generated by using strain
gage sensors measuring the value of elastic torsion for output
shafts of joint drives. It appears to be more complex to measure
the value of bending for the segments of manipulator arms.
For this purpose optical techniques may be used.

IV. CONCLUSION

The paper presents a new approach to the force-torque
control over robot manipulators in case of contact with sta-
tionary surfaces of the environment while performing service
operations. This approach proposes using control laws of such
a structure that provides the manipulator drives to transform
the joint control forces to the form of artificial potential forces.
In the paper the new way for transforming the structures of
these control laws is presented.
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