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Abstract—This paper studies the problem of construct inter-
cept trajectory when using of the neighborhood of the collinear
libration point L1 of the Sun-Earth system. A celestial body
motion is considered in a rotating frame within the Hill’s problem
of the circular restricted three-body problem. It is known that
collinear libration points are unstable but its instability can
be used as a positive factor for maneuvering a celestial body
in the near-Earth space. Development methodology of control
algorithms for the orbital motion of a celestial body when
using the instability of collinear libration points is offer. The
construct intercept trajectory is based on the properties of a
specially introduced phase variables function, called “hazard
function”. The results of the numerical integration are graphically
illustrated.

I. INTRODUCTION

Currently known and recorded cases of natural celestial
bodies fall to the surface of the Earth. This largely determines
the problem of asteroid and comet hazard. Within the frame-
work of solutions to this problem are carried out astronomical
observations and monitoring of near-Earth space. As a result,
a cataloging of such objects is conducted, their potential threat
to the Earth at the international level is assessed, projects to
counter this threat are being developed [1].

To solve this problem explores the idea of impact on a
potentially dangerous celestial body to alter its trajectory and
thus prevent the threat of collision. To achieve this goal in [2]
proposed to use gravity assist in near-Earth space. It uses
properties of unstable trajectory collision. In our paper, we
propose the use of another type of instability, the instability
property of the collinear libration points [3].

The theoretical properties of the collinear libration points
related to many projects as the NASA and the ESA space
activities and protect the Earth from potentially dangerous
space objects are used. Since the libration point L1 and L2

are unstable [4], the questions of retention or stabilization of
the motion of the celestial bodies in the neighborhood of these
points are relevant [5]–[10]. In some cases, instability may be
a positive factor that helps reduce energy costs while maneu-
vering [3], [11]. These maneuvers may occur on a sufficiently
large interval of time by gravity, and other disturbing factors.

To intercept maneuvers in near-Earth space in [3] the devel-
oped scheme maneuvering is described. This scheme involves

the selection and calculation of the orbit of expectations, and
the construction of the active part of the trajectory.

The motion of the celestial bodies in near-Earth space
is described by a mathematical model of a special circular
restricted three-body problem [5].

The paper presents the results of research and numerical
construction of the set of trajectories to intercept potentially
dangerous celestial body in the near-Earth space.

II. EQUATIONS OF CONTROL MOTION

The equations of control motion of a celestial body in a
rotating reference frame Ox1x2x3 using Hill’s problem for
solar potential have the form





ẋ1 = x2 + y1,
ẋ2 = −x1 + y2,
ẋ3 = y3,

ẏ1 = − 3x1

‖x‖3 + 2x1 + y2 + u1,

ẏ2 = − 3x2

‖x‖3 − x2 − y1 + u2,

ẏ3 = − 3x3

‖x‖3 − x3,

(1)

where x = (x1; x2;x3) is coordinate vector of the celestial
body and y = (y1; y2; y3) is an impulse vector [5]. The
center of mass of the Earth coincides with the origin of the
coordinate system, while the Ox1 axis is directed along the
axis connecting the centers of mass of the Earth and the Sun.
‖·‖ is the Euclidean norm of a vector. In the considered model
the units of time and distance were chosen in such a way that
the unit of distance is approximately equal to 1.5 × 106 km
and the unit of time is 58.0916 days (the year divided by 2π).
The libration point L1 in the rotating coordinate system are
stationary and have coordinates

x∗ = (1; 0; 0), y∗ = (0; 1; 0).

Here, the unit of speed in the adopted model is 298.057
m/s ≈ 9.94211×10−7 the speed of light in a vacuum. The unit
of acceleration is equal to 5.93844× 10−5 m/s2 ≈ 6.05552×
10−6 × g, where g is the standard acceleration of free fall for
the Earth.



Uncontrollable system (1) when u1 = u2 = 0 is a
Hamiltonian system, where Hamiltonian function H(x;y) is
represented by the formula

H(x;y) =
1
2
‖y‖2 − 3

‖x‖ −
3
2
x2

1 +
1
2
‖x‖2 + x2y1 − x1y2.

Note also that the uncontrolled system (1) has no first in-
tegrals except the energy integral H(x;y) = const. Generally
the energy integral is written in the form

−2H(x;y) = C,

where C is called constant Jacobi.

To select a control action, we need properties of linear ap-
proximation of the system of equations (1) in the neighborhood
of L1.

Linearized equations of control motion in the neighborhood
of collinear libration point L1 can be represented as





ẋ1 = x2 + y1,
ẋ2 = −x1 + y2,
ẋ3 = y3,
ẏ1 = 8(x1 − 1) + (y2 − 1) + u1,
ẏ2 = −4x2 − y1 + u2,
ẏ3 = −4x3.

(2)

The matrix of linearized system (2) has the following set
of eigenvalues:

λ1,2 = ±
√

1 + 2
√

7 = ±l,

λ3,4 = ±i
√

2
√

7− 1 = ±iωe,
λ5,6 = ±2i = ±iωn.

The positive value of λ1 entails instability of collinear
libration point L1.

The eigenvector of the matrix of system (2) corresponding
to eigenvalue λ1 has the form

b1 =
(
b1
1; b

2
1; 0; b3

1; b
4
1; 0

)
=

(
l2 + 5;

l2 − 3
l

; 0;
l2 + 3

l
; 2; 0

)
.

Let us denote

d1(x;y) = b1z,

where z = (x1 − 1; x2;x3; y1; y2 − 1; y3) is a vector-column.

In equations (2), there is an invariant 5-dimensional mani-
fold filled with bounded trajectories asymptotically approach-
ing two-frequency oscillations with frequencies ωe and ωn.
This variety is defined by the equation

d1(x;y) = 0,

where the function d1(x;y) is called “hazard function”.

III. CONSTRUCT CONTROL LAW

Let a celestial body be moving along the parking orbit,
the condition d1(x;y) ≈ 0 is satisfied. In view of linearized
system of equations of motion (2), the behavior of “hazard
function” d1(x;y) on the trajectories can be represented as

ḋ1(x;y)
∣∣∣
(2)

= ld1(x;y) + b3
1u1 + b4

1u2. (3)

In the parking orbit, the value of the “hazard function” is
very little. To ensure speedy departure from the neighborhood
of libration point L1, the value of ḋ1(x;y) needs to be
changed optimally. We can do this with a small impact. This
impact we model by a pulse controls u1 and u2. Equality (3)
provides a mathematical basis for constructing algorithms for
stabilization the celestial bodies in the neighborhood of the
collinear libration points and maneuvering in near-Earth space
using a collinear libration points.

Let the vector of a control action (u1; u2) be subject to
restriction u2

1 + u2
2 = u2. Then in order to secure the highest

increment in the “hazard function”, the vector (u1; u2) should
be collinear to the vector (b3

1; b
4
1). From here we get





u1 = ±u
b3
1√

(b3
1)2 + (b4

1)2
,

u2 = ±u
b4
1√

(b3
1)2 + (b4

1)2
.

Here is an example.

IV. EXAMPLE OF INTERRUPTION TRAJECTORIES

Let a celestial body is in the neighborhood of the parking
orbit in the phase space. The calculation of such an orbit has
been represented in [3]. We present the results of numerical
construction of the set of trajectories to intercept when the
control action u approximately 10−9g.

Graphs of the control components shown in Fig. 1. Control
operates on the time interval of about 14 hours.
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Fig. 1. Control actions u1 and u2 (T = 0.01)

Fig. 2 shows the results of numerical integration of the
system (1), where the trajectories of a celestial body with
the uncontrolled motion (left) and the active control (right).
Trajectories are correspond to the time interval of about 6
months.

Fig. 3 shows the dependence of the thrust τ of the mass m
of a celestial body when the control action is approximately
equal to 10−8 m/s2. It is noted that the order of thrust is
estimated as 10−5 N when the order of mass of a celestial
body is several tonnes.
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Fig. 2. Motion of the celestial body (T = π)
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Fig. 3. The dependence of the thrust τ (N) of the mass m (kg) of a celestial
body

Fig. 4 shows how to use a very small control action u =
10−8 m/s2 celestial body performs a maneuver that provides a
sufficiently rapid departure from the neighborhood of a parking
orbit of the collinear libration point L1. Trajectories of the
corresponding period of time of about 14 months. Fig. 4 shows
the behavior of the trajectories depending on the celestial body
position in the parking orbit of a collinear libration point L1.
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Fig. 4. The set of the intercepting trajectories (T = 7)

V. CONCLUSION

This study dedicated to the orbital motion of a celestial
body shows that a small control action can secure sufficiently
rapid departure from the neighborhood of collinear libration
point L1. The example of orbital motion considered show
the theoretical possibility of maneuvering a celestial body in

the near-Earth space by using the neighborhoods of collinear
libration points L1. In these cases, instability is achieved by
the use of sufficiently small control impacts and thus allows
to significantly alter the trajectory of the celestial body at
minimal energy costs. Ideally, the energy costs for removal of
the managed object from an unstable state can be arbitrarily
small. Thus, this makes us an attractive proposition scheme
maneuvering to control the orbital motion of celestial bodies
with a large mass. These bodies can be used, in particular for
impact on potentially dangerous asteroids.

Note also that in [3] have shown that the instability of
a collinear libration point has a significant impact on the
behavior of plane variables x1, x2, y1, y2 and has virtually
no effect on the changes in spatial variables x3, y3. For
x3 characteristic oscillations with an amplitude close to the
amplitude of the parking orbit.
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