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Abstract—The use of the neighborhood of collinear libration
point (L1 or L2) of the Sun-Earth system has long been of
practical importance in connection with projects implemented
by NASA and ESA. A celestial body motion is considered in a
rotating frame within the Hill’s problem of the circular res tricted
three-body problem. It is known that collinear libration po ints
are unstable but its instability can be used as a positive factor
for maneuvering a celestial body in the near-Earth space. For
example, it may be used to solve the problem of comet and aster-
oid hazard to monitor space objects posing threat to the Earth.
We offer a methodology for constructing control algorithms
for the orbital motion of a celestial body. This methodologyis
based on the properties of a specially introduced phase variables
function called “hazard function”. Numerical simulation r esults
are given.

I. I NTRODUCTION

Comprehension of the real collision threat to Earth with a
large celestial body can be attributed to the middle 90’s of the
XXth century when astronomers could directly observe falling
fragments of Comet Shoemaker-Levy 9 on Jupiter. Since that
time, astronomical observations, as well as discoveries ofnew
objects in the Solar System, which may pose a threat to
the Earth had intensified. One of solutions to the problem
of comet and asteroid hazard is impact on the menacing
object. In [1] a suitable asteroid of a sufficiently small size
with controlled orbital motion is proposed to be used. Such
controlled asteroid could significantly affect the trajectory of
the dangerous asteroid and prevent its impact to the Earth.
To reduce the energy consumption, it is supposed to use
gravitational maneuvering. Here, the instability property of the
collision trajectory is used. In our paper we propose using
a different type of instability, in particular, the instability of
collinear libration points of the Sun-Earth system [2]. This type
of instability may be used for interception maneuvering.

To describe the motion of a celestial body, a modified
mathematical model of the circular restricted three-body prob-
lem is used [3].

Investigating the orbital motion in the neighborhood of
the collinear libration point of the Sun-Earth system has
intensified with respect to projects (ISEE-3, SOHO, WIND,
ACE, Genesis, etc.) implemented by the National Aeronautics
and Space Administration (NASA) and the European Space
Agency (ESA).

Using the theoretical properties of collinear libration points
caused many projects connected with space exploration and

protection of the Earth from potentially dangerous space
objects. Since the libration pointsL1 and L2 are unstable,
the problem of retention or celestial body stabilization in
the neighborhood of these points [3]-[7] occurs. In some
cases instability of collinear libration point can be a positive
factor for space maneuvering with relatively small energy
consumption [8]-[10]. These maneuvers may occur during
sufficiently large period of time caused by gravitational forces
affect and other disturbing factors.

It is well known that a particular solution to the restricted
three bodies problem is the motion in the ecliptic plane [11]. In
our study the properties of planar motion provide instability of
L1. On the other hand the orbits of dangerous celestial bodies
can be inclined towards the ecliptic plane. To intercept such
celestial bodies, it is necessary the spatial coordinate tovary
in a sufficiently large range.

In the paper this property is provided by a specific way of
selecting a parking orbit.

II. M ANEUVERING SCHEME AND PROBLEM
FORMULATION

In the proposed maneuvering scheme countering comet and
asteroid hazard involves:

1) selection and calculation of the parking orbit;
2) constructing the boost-phase trajectory;
3) description of the interception trajectory.

In this study the parking orbit is chosen in such a way
that only a spatial coordinate is changed. Changing plane
variables should be small relative to the amplitude of the spatial
variables. The boost-phase trajectory is modeled as an instan-
taneous change of velocity. The impulses are chosen in such
a way that an increment of the “hazard function” [4], [5], [7]-
[10] describing the speed of departure from the neighborhood
of L1 is extremal. These impulses are necessary for modeling a
maneuver for departing from the neighborhood of the collinear
libration point. Then a numerical integrating equations of
uncontrolled orbital motion is provided.

In this paper the main problem is to study motions trajec-
tories after maneuvering with the use of the proposed scheme
using numerical modeling and especially the study of the
spatial variable behavior.

978-1-4799-6824-4/15/$31.00c©2015 IEEE



III. E QUATIONS OFMOTION

Equations of celestial body motion in a rotating frame
while using Hill’s problem for solar potential can be repre-
sented in the following form
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ẋ1 = x2 + y1,
ẋ2 = −x1 + y2,
ẋ3 = y3,

ẏ1 = − 3x1

‖x‖3 + 2x1 + y2,

ẏ2 = − 3x2

‖x‖3 − x2 − y1,

ẏ3 = − 3x3

‖x‖3 − x3,

(1)

wherex = (x1;x2;x3) is coordinate vector of the celestial
body andy = (y1; y2; y3) is an impulse vector [3]. The
center of mass of the Earth coincides with the origin of the
coordinate system, while theOx1 axis is directed along the
axis connecting the centers of mass of the Earth and the Sun.
‖·‖ is the Euclidean norm of a vector. In the considered model
the units of time and distance were chosen in such a way that
the unit of distance is approximately equal to1.5×106 km and
the unit of time is58.0916 days (the year divided by2π). The
libration pointsL1 andL2 in the rotating coordinate system are
stationary and have coordinatesx∗ = (1; 0; 0), y∗ = (0; 1; 0)
andx∗∗ = (−1; 0; 0), y∗∗ = (0;−1; 0), respectively.

Unit of velocity in the considered model is298.057 m/s
≈ 9.94211× 10−7 of light velocity in vacuum.

System (1) is Hamiltonian where the HamiltonianH

H =
1

2
‖y‖2 − 3

‖x‖ − 3

2
x2
1 +

‖x‖2
2

+ x2y1 − x1y2.

To select a parking orbit and initial impulse the properties
of the linear approximation of equation system (1) in the
neighborhood ofL1 are necessary.

Linearized motion equations in the neighborhood ofL1 can
be represented in the following form
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ẋ1 = x2 + y1,
ẋ2 = −x1 + y2,
ẋ3 = y3,
ẏ1 = 8(x1 − 1) + (y2 − 1),
ẏ2 = −4x2 − y1,
ẏ3 = −4x3.

(2)

The matrix of linearized system (2) has the following
eigenvalues:

λ1,2 = ±
√

1 + 2
√
7 = ±l,

λ3,4 = ±i
√

2
√
7− 1 = ±iωe,

λ5,6 = ±2i = ±iωn.

Positivity of the eigenvalueλ1 implies instability of the
libration pointL1.

Further the solution of linearized system (2) can be repre-
sented in the following form
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x1 − 1 = b11(c1e
lt + c2e

−lt) +Ae sin(ωet+ ϕe),
x2 = b21(c1e

lt − c2e
−lt)− κ1Ae cos(ωet+ ϕe),

x3 = An sin(ωnt+ ϕn),
y1 = b31(c1e

lt − c2e
−lt) + κ2Ae cos(ωet+ ϕe),

y2 − 1 = b41(c1e
lt + c2e

−lt) + κ3Ae sin(ωet+ ϕe),
y3 = κ4An cos(ωnt+ ϕn),

where c1, c2, Ae, ϕe, An, ϕn can be defined by initial
conditions;l, ωe, ωn, b11, b21, b

3
1, b

4
1, κ1, κ2, κ3, κ4 are model

parameters.

Eigenvector matrix of system (2) corresponding to the
eigenvalueλ1 has the form

b1 = (b11; b
2
1; 0; b

3
1; b

4
1; 0) = (λ2

1 + 5;
λ2
1 − 3

λ1
; 0;

λ2
1 + 3

λ1
; 2; 0).

Let us denote
d1 = b1z,

wherez = (x1 − 1;x2;x3; y1; y2 − 1; y3) is a vector-column.

Equations (2) have an invariant 5-dimensional manifold
filled with bounded trajectories approaching asymptotically to
the two-frequency oscillations with frequenciesωe and ωn.
This manifold is defined by equation

d1 = 0,

where functiond1 is called “hazard function”.

IV. CONSTRUCTING APARKING ORBIT

In the middle 60’s Farquhar proposed using orbits in
the neighborhood of libration pointL1 as an ideal location
for continuous monitoring the interplanetary environment. For
example, Farquhar constructed a trajectory of the first libration
point mission (ISEE-3) [12]. In this project it was proposed
using the orbit atAn = 120000 km. In the SOHO project
the valueAn was of the same order. In the projects ACE and
WMAP the orbits in the neighborhood of the collinear libration
pointsL1 andL2 whereAn = 157000 km were suggested to
be used.

In this paper the parking orbits are constructed in the
neighborhood of the collinear libration pointL1 with values
An = 150000 km andAe = 0 km. Within considered mathe-
matical model the valueAn is approximately equal to0.1
distance units, then an approximate analytical representation
in the form of power series with respect to a parameterε may
be used for the parking orbits. Considering expansion termstill
the second order of smallness the solution of the system (1)
can be written as

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x1(t, ε) = 1 + ε2
(

− 1
4 − 13

116 cos(4t+ 2α)
)

+ o(ε2),
x2(t, ε) = ε2 2

29 sin(4t+ 2α) + o(ε2),
x3(t, ε) = ε cos(2t+ α) + o(ε2),
y1(t, ε) = ε2 11

29 sin(4t+ 2α) + o(ε2),
y2(t, ε) = 1 + ε2

(

− 1
4 + 19

116 cos(4t+ 2α)
)

+ o(ε2),
y3(t, ε) = −2ε sin(2t+ α) + o(ε2).

(3)

Within the accuracy of up to the second order of smallness
of ε plane variables have oscillation frequency 4, while spatial
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Fig. 1. L1 parking orbits around the Sun-Earth system withεi = 0.01 +

0.03i, i = 0, . . . , 4

variables have 2. The solutions obtained in [13] are called
Lyapunov vertical trajectories.

V. SELECTING THE INITIAL IMPULSE

Let a celestial body be moving along the parking orbit
described approximately by equations (3). In view of linearized
system of motion equations (2) the behavior of “hazard func-
tion” d1 on the trajectories can be represented as

d1(t) = d1(t0)e
λ1(t−t0),

wheret0 is initial time.

On the parking orbit the value of the “hazard function”
is very small. To provide speedy departure from the neigh-
borhood of libration pointL1, initial value of d1 should be
changed. It can be made with the use of small impact changing
the value of the impulsesy1 andy2 instantly.

Let the vector of initial impulse change (∆y1; ∆y2) be
subject to restriction∆y21 + ∆y22 = ∆y2. Then the vector
(∆y1; ∆y2) should be parallel to the vector (b31; b

4
1) in order to

obtain the highest increment of the “hazard function”. From
here we get
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∆y1 = ∆y
±b31

√

(b31)
2 + (b41)

2
,

∆y2 = ∆y
±b41

√

(b31)
2 + (b41)

2
.

Some examples are given further.

VI. N UMERICAL RESULTS

Let us present the results of numerical modeling of celes-
tial body motion after departing the neighborhood ofL1 at
different variations of initial impact. The results of numerical
experiments are illustrated in the Figures below.

In Fig. 2 and Fig. 3 it is shown that small impact initiates
the celestial body to perform an extended maneuver in the

-1.0
-0.5

0.0
0.5

1.0
x1Hto SunL

-0.5
0.0

x2

-0.10

-0.05

0.00

0.05

0.10

x3

Fig. 2. The flight trajectory of the celestial body from the neighborhood of
the parking orbitL1 (ε = 0.1) in the neighborhood of libration pointL2

(initial impulse∆y1 = −0.803 and flight timeT = 7)
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Fig. 3. Projection of celestial body orbit (shown in Fig. 2) on an ecliptic
plane
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Fig. 4. Graph of dependence ofx3 from time in the trajectory of Fig. 2.

near-Earth space; the time of motion along trajectories is 1.17
years. In Fig. 5 and Fig. 6 the celestial body maneuvers with
returning back to the neighborhood of libration pointL1, which
corresponds to a longer period of time — about 1.67 years.
Fig. 4 and Fig. 7 show the graph of spatial coordinatex3

and time of flight maneuvers, which are shown in Fig. 2 and
Fig. 5, respectively. The initial time and method of applying the
control impact are selected in accordance with the maneuver
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Fig. 5. Celestial body flight trajectory from the neighborhood of the parking
orbit L1 (ε = 0.1) in the neighborhood of libration pointL1 (initial impulse
∆y1 = −0.421 and flight timeT = 10)
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Fig. 6. Projection of celestial body orbit (shown in Fig. 5) on an ecliptic
plane
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Fig. 7. Graph of dependence ofx3 from time in the trajectory of Fig. 5.

scheme provided.

Fig. 8 shows how the celestial body maneuvers using a
small initial impulse∆y = 0.298 m/s in order to sufficiently
quickly depart the neighborhood of the parking orbit of the
collinear libration pointL1. For example, to bring the celestial
body from low-Earth orbit to a parabolic one it is necessary
to give impulse approximately equal to 3.3 km/s, which is the
difference between the second and the first cosmic velocities.
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Fig. 8. The trajectories of speedy departure from the neighborhood of the
parking orbit of collinear libration pointL1 (ε = 0.1) to the near-Earth space.
Initial impulse∆y1 = −0.879939×10−3 , ∆y2 = −0.475087×10−3 and
flight time T = 4

Motion along the trajectory corresponds to a time interval of
about 8 months. Fig. 8 shows the behavior of the mentioned
above trajectories depending on the celestial body position in
the parking orbit of collinear libration pointL1.

VII. C ONCLUSION

This study on the orbital motion of a celestial body shows
that a small initial impulse can provide sufficiently rapid de-
parture from the neighborhood of the collinear libration point
L1. Given examples of orbital motion show the theoretical
possibility of celestial body maneuvering in the near-Earth
space using the neighborhoods of collinear libration points
L1 andL2. In these cases instability is achieved by the use
of sufficiently small control impacts, so it allows to change
the trajectory of the celestial body significantly with minimal
energy costs. Theoretically the energy costs for removal of
the controlled object from an unstable state can be arbitrarily
small. It makes attractive our maneuvering scheme in order to
control the orbital motion of celestial bodies with a large mass.
In particular, these bodies may be used to impact on hazardous
asteroids. From given results it is clear that the instability
of a collinear libration point has a significant impact on the
behavior of plane variablesx1, x2, y1, y2 and has virtually
no effect on the changes of spatial variablesx3, y3. There are
oscillations with amplitude close to the amplitudeAn of the
parking orbit (see. Fig. 2 and Fig. 4, Fig. 5 and Fig. 7) are
characteristic ofx3.
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