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Many important properties of crystals are the result of the

local defects. However, when one address directly the problem

of a crystal with a local defect one must consider a very large

system despite the fact that only a small part of it is really

essential. This part is responsible for the properties one is

interested in. By extracting this part from the crystal one

obtains a so-called cluster. At the same time, properties of a

single cluster can deviate significantly from properties of the

same cluster embedded in crystal. In many cases, a single clus-

ter can even be unstable. To bring the state of the extracted

cluster to that of the cluster in the crystal one must apply a

so-called embedding potential to the cluster. This article dis-

cusses a case study of embedding for ion-covalent crystals. In

the case considered, the embedding potential has two qualita-

tively different components, a long-range (Coulomb), and a

short-range. Different methods should be used to generate

different components. A number of approximations are used

in the method of generating an embedding potential. Most of

these approximations are imposed to make the equations and

their derivation simple and these approximations can be easily

lifted. Besides, the one-determinant approximation for the

wave function is used. This is a reasonably good approxima-

tion for ion-covalent systems with closed shells, which simpli-

fies the problem considerably and makes it tractable. All

employed approximations are explicitly stated and discussed.

Every component of generation methods is described in

details. The proofs of used statements are provided in a rele-

vant appendix. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/qua.25041

Introduction

An immediate solution of the Schroedinger equation for a real

crystal is impossible due to an enormous number of particles

in the system and a complicated system structure. However, a

real crystal consists of similar, almost identical, repeating parts.

Therefore, one can substitute a real crystal with its model as

an infinite system with translational symmetry. This model is

usually referred to as a perfect crystal. The first methods which

were applied to a perfect crystal problem are: the Wigner–

Seitz cell method,[1,2] the tight-binding method,[3,4] the ortho-

gonalized plane wave method,[5] the augmented plane wave

method,[6] the Korringa–Kohn–Rostoker method[7,8] and their

modifications. There are, at present, a wide variety of methods

that can be used to calculate the perfect crystals properties.

However, many technologically important crystal properties

are the result of crystal defects and impurities. These defects

and impurities break down the perfect crystal translational

symmetry. Many of these defects are local and their properties

are determined by a comparatively small region of the crystal.

Although the actual region is small, it is still part of the large

system. There are two general approaches to this problem.

One of them uses the well-developed methods of band struc-

ture calculations. The system is accordingly transformed to fit

these methods. In this approach, a polyatomic system is used

as an elementary unit cell of the crystal. This polyatomic sys-

tem is referred to as a quasimolecule. It is referred to as a qua-

simolecule, because it is not an isolated molecule but is a

fragment of the crystal, although the number and arrange-

ment of atoms in a quasimolecule is similar to that in a real

molecule. A large enough part of the crystal around an impu-

rity is selected. This part contains an integer number of quasi-

molecules carefully arranged to preserve the translational

symmetry with translation vectors being the integer number

of the initial lattice translation vectors. This large part is

referred to as the main region. Calculations are performed for

the main region with periodic boundary conditions (the Born–

von Karman boundary conditions) imposed on it.

In the simplest case, the main region is one quasimolecule.

This is the so-called Cyclic Cluster Model,[9–11] which takes

account of translationally equivalent atoms of a quasimolecule.

In a 1-D case, it corresponds to a linear molecule bent into a

closed chain. In the general case, the main region contains

many quasimolecules.

In the case of the crystal defect problem, a crystal with a

single defect is replaced by a crystal with periodically situated

defects. The unit cell (the quasimolecule) of a new crystal is

referred to as a supercell[12,13]; and the method itself is

referred to as a supercell approach. The supercell is generated

to have defect in its center and to make the distance between

defects large enough to minimize defects interaction.
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Currently, the supercell method is widely applied to crystals

with small radius defects.

A quasimolecule can be generated with the help of not only

translational symmetry operations, as in the supercell method,

but also using point symmetry operations. In the large unit

cell (LUC) method,[12,14,15] the unit cell is generated so that

one-electron energies, calculated in its Brillouin zone center,

correspond to energies at the main important points of the

minimal unit cell Brillouin zone. Therefore, the results of LUC

calculations can be directly compared with the results of the

standard band structure calculations for a perfect crystal.[16–18]

Another approach to the defect crystal problem is to con-

sider the finite system that is part of the infinite crystal. Not

being single this part is under the influence of an external

potential chosen to minimize the difference between state of

the finite system in this potential and state of the same sys-

tem as part of the infinite crystal. In this approach, the finite

part of the crystal is usually referred to as a cluster, the poten-

tial is referred to as the embedding potential and the

approach itself can be referred to as cluster in the embedding

potential method.

The advantage of the cluster approach is the possibility to

use the well-developed high-quality methods of molecule elec-

tronic structure calculations. However, a single cluster is not

an appropriate system. Indeed, single cluster properties

depend on the cluster shape. In a single cluster, there are sur-

face states, which are absent in the crystal. When one sepa-

rates a cluster from the rest of the crystal one has to break

some chemical bonds which entails consequent broken bonds

saturation. All these problems are absent when one considers

a cluster in a properly chosen embedding potential.

In the simplest cases, such as strongly ionic solids for exam-

ple, an embedding potential can be generated with the help

of classical point charges potential. In more complex cases,

quantum-mechanical contributions to the embedding poten-

tial must be used. All quantum-mechanical embedding poten-

tial methods can be divided into two groups: the wave

function-based methods and the density functional theory

(DFT)-based methods.

In accordance with their name, in the wave function-based

methods, the embedding potential is generated using system

and subsystems wave functions. For example, in the ab initio

model potential (AIMP) method the fixed one-electron atomic

functions of crystalline environment are used.[19,20] The AIMP

embedding potential consists of a point charge potential, a

nonpoint charge contribution, that is, a Coulomb potential

due to electron density, a quantum-mechanical exchange

potential due to the interaction between environment elec-

trons and cluster electrons, and a quantum-mechanical Pauli

repulsion contribution due to environment electrons. Although

the wave function-based methods are approximate, they are

open to systematic improvement. In the DFT-based embed-

ding methods, the frozen density embedding theory (FDE) is

used[21–24]; and the Kohn-Sham (KS) DFT one-electron equa-

tions for a cluster in the embedding potential are developed

by minimizing the total energy of the system, assuming that

the crystal environment density is frozen. The DFT-based

embedding methods take account of correlation effects. This is

an evident advantage of the DFT-based embedding methods.

Unfortunately, both the KS and embedding potentials depend

on the density functionals whose exact form is unknown. It

makes impossible the systematic improvement of DFT-based

methods results.

Apart from the methods where Shroedinger equation is

used immediately, Green function methods are also applied to

the crystal with defect problem, two opposite approaches

being employed. In one approach, a crystal with a single

defect is considered as a crystal perturbed by a defect,[25–27] in

another approach a cluster perturbed by a perfect crystal is

considered.[28,29] The later approach is formulated using the

linear combination of atomic orbitals (LCAO) and is based on

the assumption that molecular cluster density of states pro-

jected on the crystal is the same as in the perfect crystal

under consideration.

Some point defects produce crystal perturbation in such a

large region that corresponding cluster becomes too big for

direct quantum-mechanical calculations. A charged defect is

an example. However, in many of these cases, the crystal

quantum state is changed essentially only in some small inner

part of the perturbed region. While the most part of perturba-

tion results from crystal atoms displacement, this displacement

is usually too important to be neglected. In these cases, a

hybrid quantum mechanic/molecular mechanic approach is

used which is known as a QM/MM method suggested by War-

shell and Levitt[30,31] for biomolecules investigation. The quan-

tum mechanical (QM) methods are used to calculate a QM

cluster (the inner part of the perturbed region). The molecular

mechanics (MM) force fields, based on empirical potentials

describing small vibrations, van der Waals interactions, and so

on are used to calculate cluster environment (the outer part of

the perturbed region) and cluster–environment interaction.

The QM/MM method combines quantum mechanical

description accuracy and the low computational cost of molec-

ular mechanics; therefore, it is widely used in organic and

no-organic systems investigations[32,33] and in solids for

modeling defects,[34–36] excitations,[37] properties,[38–40] inter-

faces,[41] future molecular devices,[42] and so on.

The detailed review of embedding methods can be found in

the recently published papers.[43–46]

A comprehensive review of different models applicability for

description of the real crystals bulk and surface properties can

be found in.[47–49]

In this article, the wave function-based embedding for ion-

covalent crystals is considered.

This article outline is the following. First, the embedding is

demonstrated in the simple case of one electron in the peri-

odic potential with a single local impurity potential. It is

shown that using Green function one can describe the influ-

ence of the crystal on the electron in the impurity region as

the embedding potential.

Then the ion-covalent crystal electronic structure is consid-

ered in the closed shells one-determinant Hartree-Fock (HF)

approximation. Here noncanonical localized orbitals are intro-

duced; the division of the crystal into a cluster and cluster
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environment is discussed; the environment is divided into a far

environment and a near environment; a cluster in crystal

molecular orbitals are introduced.

Next, the long-range part of the embedding potential, con-

ditionally named Coulomb embedding, is considered. Usually,

the long-range part of embedding potential, for which the far

environment is responsible, is modeled by the potential pro-

duced by the finite system of point charges. The general

method to generate the finite system of charges modeling the

infinite point ion crystal potential with any desirable precision

and applicable to any lattice is described.

The long-range part of the near environment potential is

described next and a simple approximation to it is introduced.

Finally, the short-range part of the embedding potential is

described considering both the single cluster and the same

cluster as part of the crystal. A common quantum-mechanical

stationary state problem is stated as follows: given the exter-

nal potential, calculate a system molecular orbitals and ener-

gies. At the same time, an inverse problem can be considered

as well: given the molecular orbitals and energies, generate an

external potential that will produce these orbitals and ener-

gies. Short-range embedding potential generation is a second

type problem. In this section of the article, a particular method

is described to generate a cluster in finite crystal molecular

orbitals and energies. Then, assuming that all occupied and

virtual molecular orbitals of the cluster are eigenfunctions of

the same equation (one-determinant HF or DFT KS), it is

shown that the potential with the following property can be

made: the self-consistent field calculations of a cluster in this

potential produce exactly the predefined orbitals and energies

of the cluster in the crystal.

Each part is described in details and the proof of every used

statement is provided in a relevant appendix.

One electron in the periodic potential with single local

impurity

In this section, the embedding approach is considered in

application to the case of one electron in the potential of par-

ticular form. The potential was chosen to model a single local

impurity in a perfect crystal. This potential is assumed to be

the sum of a periodic potential V0ðrÞ (modeling the perfect

crystal) and a finite radius local potential VðrÞ (modeling the

impurity). The finite radius potential means that there exists a

radius R such that the potential VðrÞ is equal to zero outside

the radius R sphere. The stationary bounded state of one elec-

tron in the potential described above is considered. A corre-

sponding wave function is the solution of the Schroedinger

equation

2
1

2
D 1 V0ðrÞ1 VðrÞ

� �
wðrÞ5 E wðrÞ (1)

with zero boundary conditions at the infinity. Equation (1) is

valid in the whole infinite space. However, in the case consid-

ered, the problem can be confined only to the impurity

region. To do this, one can use a closed surface S to divide

the whole space X into two subspaces X1 and X2, X5X1�X2,

the subspace X2 being selected so that the impurity potential

is equal to zero in it (Fig. 1). Then boundary conditions at the

surface S can be generated so that a properly normalized solu-

tion of Eq. (1) in the subspace X1 with the said boundary con-

dition will coincide in X1 with the solution of the same Eq. (1)

in the whole space with zero boundary conditions at the infin-

ity. In other words, the boundary conditions can be transferred

from the infinity to the surface S.

It can be done with the help of the periodic potential Green

function G0
[50,51] (Appendix A). In addition to the Green func-

tion G0, it is necessary to define the surface inverse G21
0 of G0

as

ð
S

G21
0 ðrs; r

00

s ; EÞG0ðr
00

s ; r
0

s; EÞ d2r
00

s 5 d2ðrs; r
0

sÞ:

The subscript s means that rs belongs to the surface S. With

G0 and G21
0 , the function Uðrs; r

0
s; EÞ of surface variables rs; r

0
s

and energy E can be defined as

Uðrs; r
0

s; EÞ5G21
0 ðrs; r

0

s; EÞ1 1

2

ð
S

G21
0 ðrs; r

00

s ; EÞ @
@n0s

G0ðr
00

s ; r
0

s; EÞ d2r
00

s :

In the Appendix A, it is shown that any solution of Eq. (1) with

zero at infinity boundary conditions satisfies the equation

1

2

@

@ns
wðrsÞ5

ð
S

Uðrs; r
0

s; EÞwðr0sÞ d2r
0

s: (2)

This equation is the nonlocal form of an ordinary boundary

condition connecting the value of a function’s derivative at the

boundary and the value of the function at the boundary.

Therefore, if one needs the wave function in the impurity

region X1 only, one can solve Eq. (1) in X1 space

2
1

2
D 1 V0ðrÞ1 VðrÞ

� �
wðrÞ5 E wðrÞ; r 2 X1 (3)

imposing (2) as the boundary condition.

Consequently, in the case of one electron in the considered

potential, the problem of the electronic structure calculation

in the whole infinite space can be turned into a problem in

the finite space X1, the embedding being done by imposing

the boundary conditions on the space X1 outer surface S.

In the electronic structure calculations, it is always useful

and convenient to know the energy functional corresponding

to the wave function equation. In the case of one electron in

Figure 1. The closed surface S divided the total space into subspaces X1

and X2.
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the considered potential, the energy functional with a trial

function uðrÞ, depending on r in the space X1 and on the sur-

face S only, is

W½u�5
ð
X1

1

2
jruðrÞj2 1 V0ðrÞjuðrÞj2 1 VðrÞjuðrÞj2

� �
d3r

2

ð
S

ð
S

u�ðrsÞUðrs; r
0
s; EÞuðr0sÞ d2r

0
sd2rs:

(4)

The corresponding normalization condition is

N½u�5
ð
X1

juðrÞj2 d3r51:

To obtain the wave function equations, one can use either the

constrained variation of the functional W½u� with an additional

condition N½u�51, or the unconstrained variation of the func-

tional W½u�2kN½u� with a Lagrange multiplier k. In the latter

case, it is expedient to use the equation

ð
X1

jruðrÞj2 d3r52

ð
X1

u�ðrÞDuðrÞ d3r 1

ð
S

u�ðrsÞ
@

@ns
uðrsÞd2rs

and rewrite the functional in the form

W½u�2kN½u�5
ð
X1

u�ðrÞ 2
1

2
D1V0ðrÞ1VðrÞ2k

� �
uðrÞ d3r

1

ð
S

u�ðrsÞ
1

2

@

@ns
uðrsÞ2

ð
S

Uðrs; r
0

s; EÞuðr0sÞ d2r
0

s

8<
:

9=
; d2rs:

(5)

Variation of the first term in the right-hand side of (5) results

in Eq. (3) for the wave function and variation of the second

term results in the boundary conditions (2). Therefore, bound-

ary conditions (2) are the natural boundary conditions for

functional (5).

Using Eq. (4), one can write the equation for the electron in

single local impurity potential energy

E 5

ð
X1

1

2
jrwðrÞj2 1 V0ðrÞjwðrÞj2 1 VðrÞjwðrÞj2

� �
d3r

2

ð
S

ð
S

w�ðrsÞUðrs; r
0
s; EÞwðr0sÞ d2r

0
sd2rs;

ð
X1

jwðrÞj2 d3r51:

This equation shows that the value

Eembd52

ð
S

ð
S

w�ðrsÞUðrs; r
0

s; EÞwðr0sÞ d2r
0

sd2rs

can be considered as the embedding potential energy and the

quantity Uðrs; r
0
s; EÞ as the nonlocal embedding potential core.

Two points should be mentioned here. First, boundary con-

ditions are determined by the potential V0ðrÞ of the perfect

system and does not depend on a particular impurity poten-

tial. Hence for given perfect system the function U can be cal-

culated only once and be used for different impurities.

Second, complications may arise if the energy will be deter-

mined in the process of solving the equation. These complica-

tions are due to the fact that the energy E enters not only the

equation directly, but also the boundary conditions through

the function U.

Ion-covalent crystal

In this section, the electronic structure of an ion-covalent crys-

tal is discussed. Instead of the infinite crystal approximation

and localized Wannier functions[52] approach, the large finite

crystal will be considered here within closed shells one-

determinant HF approximation. Similar results can be obtained

with a KS DFT approximation. In the closed shells case, the

standard HF equation for one-electron orbitals wiðrÞ (both

occupied and virtual) is

F̂ðrÞwiðrÞ5eiwiðrÞ: (6)

where F̂ is Fock operator of the finite crystal and ei are one-

electron energies (ionization potentials). All one-electron orbi-

tals wiðrÞ are orthonormal eigenfunctions of the same opera-

tor. They are usually referred to as canonical orbitals and Eq.

(6) is referred to as canonical HF equation. The Fock operator

is the sum

F̂ðrÞ5T̂ ðrÞ1V̂ ðrÞ1ĴðrÞ2K̂ ðrÞ

of kinetic energy operator T̂ ðrÞ, electron–nucleus interaction

energy operator V̂ ðrÞ, Coulomb operator ĴðrÞ

ĴðrÞ5
ð

qðr0jr0Þ
jr2r0j dr0;

and exchange operator K̂ ðrÞ

K̂ ðrÞf ðrÞ5 1

2

ð
qðrjr0Þf ðr0Þ
jr2r0j dr0;

where the electron density matrix of the crystal is

qðrjr0Þ52
XN

i51

wiðrÞw�i ðr0Þ; (7)

where N is the number of occupied orbitals (each orbital is

occupied by two electrons).

For the large enough finite crystal, the properties of its

inner part, which is far from crystal boundaries, are almost

independent of the crystal size. Besides, properties of two sim-

ilar inner parts, which can be obtained one from the other by

a crystal translational symmetry operation, are almost identical.

Hence a comparatively small inner part of a finite crystal can

provide information about the state of the whole crystal. This

inner part is usually referred to as a cluster and the rest of the

crystal—as a cluster environment.
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At the same time, the crystal canonical occupied orbitals wiðrÞ
are spread over the whole crystal volume. Therefore, all crystal

canonical orbitals must be used to describe even small cluster

properties. However, Eq. (6) can be transformed to have linear

combinations of canonical orbitals (separately occupied and vir-

tual) for its solution instead of the canonical orbitals themselves.

The linear combinations of canonical orbitals are usually referred

to as noncanonical orbitals. The particular noncanonical orbitals

divided into two groups can be obtained, each group being

localized in different regions. The orbitals of one group are large

in the cluster region and are small in the cluster environment

region; the orbitals of another group are small in the cluster

region and are large in the cluster environment region. The orbi-

tals localized in the cluster (first group orbitals) can be consid-

ered as a cluster in crystal orbitals; and the system of equations

for them can be considered as an equation for a cluster in

crystal.

The above transformation of orbitals into the localized ones is

based on one-determinant approximation for the total wave

function and on the fact that the determinant with particular

orbitals differs only by a constant factor from the determinant in

which instead the particular orbitals their linear combinations are

used, providing that orbitals transformation is not singular.

Canonical HF equations (6) are Euler–Lagrange variational princi-

ple equations obtained from the quantum system total energy

minimization subject to auxiliary conditions of orbital orthonor-

mality. These conditions are taken into account with the help of

Lagrange multipliers. The Lagrange multipliers make a N3N

matrix, where diagonal multipliers are responsible for orbitals

normalization, and nondiagonal multipliers are responsible for

orbitals orthogonalization. However, if (in the case considered),

the nondiagonal multipliers are set equal to zero then each

equation in the Euler–Lagrange system of equations is the eigen-

function and eigenvalue equation for some operator; and the

operator is the same in all equations. Thus, all occupied orbitals

are eigenfunctions of one operator; and in the case of nonde-

generate eigenvalues, they are automatically orthogonal. In the

case of degenerate eigenvalue, the corresponding eigenfunctions

can be made orthonormal with an appropriate linear transforma-

tion. Therefore, the simplest choice of nondiagonal multipliers to

make orbitals orthogonal is to set them equal to zero. This

choice of nondiagonal Lagrange multipliers was adopted in Eq.

(6) derivation.

However, orthogonality requirement is too strong. In fact, in

the corresponding variational principle, the only necessary

condition, which should be imposed on orbitals, is their linear

independence. In this case, instead Eqs. (6), the following sys-

tem of equations for occupied orbitals can be obtained from

the variational principle[53] (Appendix B)

F̂ujðrÞ5q̂F̂ q̂ujðrÞ; j51; . . . ;N; (8)

where q̂ is the integral operator with the density matrix qðrjr0Þ
for kernel

q̂f ðrÞ5
ð

qðrjr0Þf ðr0Þdr0:

In the general case, the equation for the density matrix is

qðrjr0Þ5
XN

j;k51

ujðrÞðS21Þjku�kðr0Þ; (9)

where

Sjk5

ð
u�j ðrÞukðrÞdr

is the orbitals overlap integrals matrix. In the case of orthonor-

mal orbitals wjðrÞ, the overlap matrix is equal to the unit matrix

and Eq. (7) is obtained. It should be noted that the density

matrix (7) is invariant under any unitary transformation of occu-

pied orbitals wjðrÞ and the density matrix (9) is invariant under

any nonsingular transformation of occupied orbitals ujðrÞ.
Equation (8) can be considered as an eigenvalue and eigen-

function equation

F̂2q̂F̂ q̂
� �

ujðrÞ50; j51; . . . ;N

with one operator F̂2q̂F̂ q̂ and one N-times degenerate eigen-

value equal to zero. Due to this degeneracy, any linear combi-

nation of Eq. (8) eigenfunctions is also the eigenfunction of

Eq. (8). Equation (8) is the general equation satisfied by any

system of N valid occupied orbitals. It should also be noted

that although in the equation for the noncanonical orbitals

derivation the orthogonality conditions were lifted, it does not

mean that the noncanonical orbitals are necessarily nonor-

thogonal. Indeed, any unitary transformed canonical orbitals

are the noncanonical orbitals, and they are still orthonormal.

The orbitals of a cluster in crystal are the particular nonca-

nonical orbitals of a ion-covalent crystal localized in the cluster.

There are many ways to achieve orbitals localization.[54,55] One

of the simplest ways is to consider the orbital uðrÞ as localized

the in cluster that brings maximum to the integral

W5

ð
u�ðrÞwðrÞuðrÞdr;

where wðrÞ is some positive function equal to zero outside

the cluster. Different equations for the functional W can be

used for different criteria of localization. It is possible (Appen-

dix B) to derive equations for orbitals ujðrÞ which are solutions

to the Eq. (8), normalized to 1, and bring extremum to the

additional functional W

W5
XN

j51

ð
u�j ðrÞŵujðrÞdr:

These equations are

F̂1q̂ ŵ2F̂
� �

q̂
� �

uiðrÞ5kiuiðrÞ: (10)

Equations (10) can be written in the form

F̂1q̂Âq̂
� �

uiðrÞ5kiuiðrÞ; (11)

known as Adams–Gilbert equations.[56,57] Here,
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Â5ŵ2F̂ :

With different operators Â one can obtain orbitals localized in

cluster, atoms, or bonds. Orbitals in crystal localization meth-

ods are discussed in details in [54,55]. Application of the

Adams–Gilbert method to an MgO crystal is given in [58].

In the perfect ion-covalent crystal with closed shells, the

atomic core orbitals, the bonds between nearest neighbors, and

the lone-pairs (if any) can be considered as the most appropriate

doubly occupied noncanonical localized orbitals. One of the prac-

tical methods of localization in this case is the following: it is

always possible to define the region that a particular localized

orbital should occupy. In this region, a set of well-localized basis

functions can be generated, and a projector onto this set can be

made. A matrix of the projector can be calculated using as basis

the crystal occupied canonical orbitals. This matrix eigenvector,

which corresponds to the largest eigenvalue modulus, provides

the coefficients of the localized on cluster noncanonical orbital

expansion over the canonical crystal orbitals. Note, that standard

atomic bases used in the electronic structure calculations may be

inconvenient to use as the basis for localization, because the

overlap of different atoms bases can be too large.

In what follows, a valence electrons only approximation is

adopted for simplicity. In this approximation, all atomic core

electrons are taken into account with the help of atomic core

pseudopotentials (ECP—the effective core potentials). In the

case of a finite crystal, the number of valence electrons is strictly

defined: it should be double the number of occupied orbitals

inside a finite crystal. The cluster in the crystal should be chosen

such that both the cluster and the cluster environment were the

closed shells systems. Therefore, the border between the cluster

and the cluster environment should be drawn so as to break no

bonds and to leave no bonds entirely at the border. It means that

the border between the cluster and the cluster environment

should pass through atoms and there should be no nearest

neighboring atoms at the border.

The crystal division into the cluster and the cluster environ-

ment is schematically shown in Figure 2 in the 2-D case. Figure

2a shows a crystal represented as a periodic array of atoms;

the rectangular part at the figure center marks the selected

cluster. Figure 2b shows a crystal represented as a collection

of diatomic bonds. The cluster border passes through atoms.

There are no bonds cut by the cluster border, and there are

no bonds at the border. Figure 2c shows a cluster as a collec-

tion of bonds, while Figure 2d shows a cluster environment

represented as a collection of bonds.

If a cluster is selected and occupied bond orbitals belonging to

the cluster are calculated as noncanonical orbitals of the crystal,

then cluster in the crystal functional space of occupied orbitals is

found, and it can be considered as given. The problem is to gen-

erate an embedding potential so that occupied orbitals of the

cluster in the embedding potential span the given functional

space.

Figure 2. a) The crystal with atoms of two types and square lattice. The cluster is marked by bold lines. b) The same crystal as a collection of bonds. The

cluster is marked by bold lines. c) Cluster as a collection of bonds. d) Cluster environment as a collection of bonds. e) Cluster environment as a collection

of directed orbitals. f ) Cluster environment as a collection of inner atoms (circles) and directed orbitals at the cluster border.
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When considering an embedding potential, it is convenient to

generate its long-range part using an electrostatic potential pro-

duced by the cluster environment, its nuclear charges, and its

bonds electron density. To avoid unnecessary complications, it is

assumed that the crystal contains atoms of only two types, Types

1 and 2 (one is cation and the other is anion), and all bonds of

the crystal are similar. In the general case, the approach is the

same but the resulting equations are rather elaborated.

Each bond orbital can be considered as one that is made by

directed orbitals of the two nearest neighboring atoms (see

Fig. 2e for the 2-D case). Each bond density contributes

charges to Types 1 and 2 atoms of the bond. These charges

will be denoted as x1 and x2. The bond contains two elec-

trons, so x11x2522. In the perfect crystal, m1 bonds are

attached to the Type 1 atom, and m2 bonds are attached to

the Type 2 atom. Thus, in the perfect crystal charges

e15Z11m1x1; e25Z21m2x2; (12)

are assigned to the Types 1 and 2 atoms, where Z1 and Z2 are

nuclear charges of Types 1 and 2 atoms. One of the charges,

say x1 (or e1), can be considered as a free parameter either to

adjust the known values of crystal ionic charges (if reliable

information about ionic charges exists), or as an adjusting

parameter in embedding potential generation.

The cluster environment can be divided into two compo-

nents. One component consists of all nuclear charges of atoms

not belonging to the cluster and of all bonds in which no

atoms belong to the cluster. This component will be referred

to as the far environment. Another component consists of all

directed orbitals attached to the cluster border atoms and

directed outward the cluster (Fig. 2f ). This component will be

referred to as the near environment.

The charges of the far and near environment produce the

potential the long-range part of which will be referred to as

the Coulomb embedding potential. It will be considered in the

next section.

Coulomb embedding

In this section, the long-range part of a cluster embedding

potential is considered separately for the far and for the near

cluster environment discussed in the previous section. For this

part of an embedding potential the short name “Coulomb

embedding” is used although only a point charges potential is

considered here; the nonpoint correction to the potential

attributed to a short-range potential will be considered later. A

perfect point ion lattice potential will be considered first.

Point ion lattice potential. The point ion lattice potential of

the perfect lattice can be written as

VðrÞ5
X
‘

Xn0

j51

ej

jr2R‘2qjj
;

R‘5‘1a11‘2a21‘3a3;

(13)

where a1; a2; a3 are the elementary translation vectors, R‘ is

the lattice vector, ej and qj are the charge and position vector

of jth atom in the unit cell, n0 is the number of atoms in the

unit cell.

The common practice is to consider the sum in (13) as an

infinite series over all lattice sites. However, with infinite series

there arise a convergence problem complicated by the three-

dimensionality of the series considered. In a 1-D series, there is

a predefined order of summation: a term with an index

increased by 1 should be added with each next step. There

are three types of series in a 1-D case. The first type includes

the series for which the series of absolute values of terms con-

verges. These series are referred to as absolutely convergent.

The sum of absolutely convergent series does not depend on

the summation order. The second type includes the series that

is convergent, but the series of absolute values of terms is

divergent. These series are referred to as conditionally conver-

gent. The sum of conditionally convergent series depends on

the order of summation and, according to the Riemann series

theorem, for any real number, there exists the order of sum-

mation with which the series converges to this number. The

third type includes the divergent series.

In a 3-D case, there is no predefined order of summation; so

there are only two types of 3-D series, convergent and diver-

gent, corresponding to whether the series of absolute values

is convergent or not.

Infinite series (13) is divergent because the sum of absolute

values of its terms is infinite. At the same time, in any solid

state electronic structure calculations, series (13) is dealt with

as 1-D, the order of summation being defined by the calcula-

tion program. Indeed, even in the case of multiprocessor cal-

culations, the sum is calculated by adding one number at a

time. However, the employed 1-D series is conditionally con-

vergent, so one can obtain different results using different cal-

culation programs. It would be much better to use from the

very beginning an absolutely convergent series for the crystal

potential. In other words, it is desirable to find the proper

order of summation for the crystal potential series and fix it,

the procedure known as diverging series regularization.

Considering a crystal potential, it is worth noting that in

reality there is no such thing as an infinite periodic atomic sys-

tem. This is simply a mathematical model introduced to make

practical calculations of atomic systems with an extremely

large number of atoms by changing a large finite sum into an

infinite sum for which there exists an exact closed form.

To find the proper order of summations, one can try various

rearrangements in the infinite series in Eq. (13) for the point

lattice potential, taking into account the real system properties

to obtain physically sound results. There are two rearrange-

ments proposed about a hundred years ago. One, proposed

by Madelung[59] can be referred to as regrouping. According

to this rearrangement, the electrostatic potential of the lattice

is considered as a sum of potentials in which each potential is

produced by a group of atoms and not by a single atom. Con-

sider the finite group of c atoms with charges qj and position

vectors dj . It is assumed that being translated with all transla-

tion vectors Dk , the group will reproduce an infinite lattice.

The group electrostatic potential is
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UðrÞ5
Xc

j51

qj

jr2djj
; (14)

and the infinite lattice potential can be written as

VðrÞ5
X

k

Uðr2DkÞ; (15)

where Dk are the position vectors of the translated group. The

group of atoms should be carefully selected to produce absolutely

convergent series (15), preferably with fast convergence. In princi-

ple, several different groups can be used in the regrouping

approach.

Another rearrangement was proposed by Ewald[60] (Appen-

dix C). In this approach, a special form of potential is derived

for the potential produced by the finite system of point

charges. Then the equation obtained for the finite system of

charges is applied to the infinite periodical system of charges

and the point ion lattice potential VðrÞ is obtained as sum of

two absolutely convergent series

VðrÞ5 V1ðrÞ1 V2ðrÞ; (16)

where

V1ðrÞ5
p

XG2

X0
m

Xn0

j51

eje
iðgm;r2qjÞ e2vm

vm
; vm5

g2
m

4G2
;

V2ðrÞ5
X

k

Xn0

j51

ej

erfcðGjr2Rk2qjjÞ
jr2Rk2qjj

; (17)

where gm is the reciprocal lattice vector and G is the positive

parameter controlling the rate of convergence in sums over

direct and reciprocal lattices. The potential VðrÞ value does not

depend on G.

Equations (16) and (17) are in fact the regularization of the

infinite lattice potential series and not its evaluation because

the summation and integration operations were interchanged

at one stage of these equations derivation [from Equation

(C.1) to (C.3), see Appendix C] which is justified in cases of a

finite sum and uniformly convergent series only. The initial

infinite series for the periodic system of charges is divergent

and the said summation and integration operations inter-

change is not valid. However, the Ewald equation for the

potential was found to produce reasonable results, it is sim-

ple enough for calculations, and it can be applied to any per-

fect lattice. Therefore, the Ewald potential is widely used in

solid state physics.

Contrary to the Ewald method, which is fixed, different

groups of atoms can be used in the regrouping method.

Therefore, different approximations can be made with the help

of the regrouping method. Since the number of charges in the

group is finite, the group potential UðrÞ (14) decreases with

increasing r. If a group is selected so that U decreases as 1=r4

or faster, then the series in (15) will be absolutely convergent.

Indeed, assume that U decreases as 1=r41a with a > 0. Poten-

tial (15) can be written as a sum of two terms

VðrÞ5
X
Dk�R

Uðr2DkÞ1
X
Dk>R

Uðr2DkÞ:

The first sum here is finite and for the second sum the follow-

ing estimation

X
Dk>R

jUðr2DkÞj �
ð1
R

1

D41a
D2dD � 1

R11a
(18)

shows that the second sum tends to zero with increasing R.

Hence, the series in (13) is absolutely convergent.

The group potential U will decrease as 1=r4 if the group

multipole moments of zero, first, and second order (the

charge, dipole, quadrupole, and quadrupole trace) were equal

to zero. The convergence will be faster [the sum (18) will

decrease faster with increasing R] if higher multipole moments

of the group will be equal to zero as well.

Different groups were used in the regrouping method con-

taining integer and fractional charges situated at lattice sites

and at artificial sites.[61,62] Constrains can be set[63] within the

regrouping method in the case of a perfect lattice to ensure

the constant (independent on r) difference between Ewald

potential and potential calculated with the regrouping

method.

In the regrouping method with a unit cell as a group, the

importance of the unit cell dipole and quadrupole moments

was understood a long time ago. The unit cell with zero

moments for ‘50; 1; 2 was generated in[64] for three cubic

crystals. The unit cell with zero moments up to ‘54 including

was generated for several particular crystals in[65]. In

papers[66,67], the problem of the unit cell dipole moment and

its relation to the crystal surface reconstruction was analyzed

in details. It was shown in[63] that if the charge and dipole

moment of the unit cell are equal to zero and the quadruple

moment is not zero, then the value of the potential depends

on the summation region shape.

The electrostatic potential calculation for imperfect lattices,

especially for complex lattices with a large atomic basis, can

be a problem. One possible approach is to calculate the per-

fect lattice potential with the Ewald method and add to it the

difference between the potential produced by the defect

region and the potential produced by the corresponding

region of the perfect lattice. Unfortunately, this method

requires the Ewald potential calculation in many points. The

amount of calculations can be reduced[68] if unit cells will be

accumulated around the local defect in the form of a parallele-

piped and distant atoms charges, especially the charges at the

parallelepiped corner regions, are adjusted to reproduce the

Ewald potential at important lattice sites. However, the poten-

tial produced by the spherical inner part of the parallelepiped

diverges with the increase of the parallelepiped size and this

creates problems with controlling the accuracy of potential

approximation.

Unit cell for the point ion lattice potential. The advantage of

the regrouping method is in the fact that it can be applied

both to the perfect lattice and to the lattice with defect. The
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key point in this method is group selection. The simplest

group is a perfect lattice unit cell. The total charge of this

group is equal to zero due to the crystal electroneutrality. At

the same time, the dipole and quadrupole moments of the

unit cell can be equal to zero only in some particular cases

with high-point symmetry. Therefore, in the general case, the

conventional unit cell cannot be used as a proper group. How-

ever, it was shown in[69] that the unit cell, complemented by a

number of additional charges, can be a simple and convenient

group resulting in absolute convergent series for the point lat-

tice potential for any lattice.

Consider a group with the following properties

1. The group contains all charges of the original perfect lat-

tice unit cell.

2. The group contains additional charges at several specifi-

cally chosen lattice sites.

3. Being translated with all possible translation vectors of

the original lattice the group reproduces the original

lattice.

4. All the lowest multipole moments of the group up to the

‘-th moment including are equal to zero.

Any group with the above properties and ‘ � 2 will be

referred to as an LP unit cell (a unit cell for the lattice poten-

tial). The LP unit cell reproduces the original lattice. Used in

Eq. (15), it also results in absolutely convergent series for the

potential. The LP unit cell differs from the conventional unit

cell and the difference is the following. Different atoms of

the conventional unit cell translated with different translation

vectors occupy different lattice sites, and only one atom in

the conventional unit cell contributes charge to a particular

atom in the lattice. At the same time, different atoms of the

LP unit cell, translated with different translation vectors, can

occupy the same lattice site and, in general, several atoms of

the LP unit cell contribute charge to a particular atom in the

lattice.

To generate an LP unit cell, one can use simple geometrical

considerations. The multipole moments of an LP unit cell are

Qðm1;m2;m3Þ5
Xc

j51

qj dm1

jx dm2

jy dm3

jz ; 0 � m1;m2;m3;

where qj and dj are the LP unit cell charge value and position

vector and c is the number of charges. Each component of

mth multipole moment corresponds to three non-negative

integers, m1, m2, m3, and can be considered as a point with

three integer Cartesian coordinates m1;m2;m3. For each com-

ponent of mth multipole moment one has

m11m21m35m:

Therefore, points corresponding to all components of the mth

moment can be considered as integer points in the triangle

with vertices ðm; 0; 0Þ, ð0;m; 0Þ, and ð0; 0;mÞ. The components

of all moments up to ‘th including correspond to integers m1,

m2, m3 in the range

0 � m1;m2;m3; m11m21m3 � ‘: (19)

Hence, they can be considered as integer points in the tetrahe-

dron with vertexes at points (0, 0, 0), ð‘; 0; 0Þ, ð0; ‘; 0Þ, ð0; 0; ‘Þ.
In what follows the set of triads ðm1;m2;m3Þ in the range (19)

will be denoted as T‘. The number of triads in the set T‘ is

N‘5
1

6
ð‘11Þð‘12Þð‘13Þ:

It is equal to the number of integer points in the mentioned

above tetrahedron.

To generate the LP unit cell, the N‘ multipole moments

must be annulled. At the same time, each component of mul-

tipole moment is linear combinations of charges. Therefore, to

annul N‘ moments one can use N‘ additional charges. It is

expedient to put additional charges eðn1; n2; n3Þ at lattice

points

dðn1; n2; n3Þ5n1a11n2a21n3a3; n1; n2; n3 2 T‘; (20)

where integers n1, n2, n3 make the same tetrahedron as inte-

gers m1, m2, m3 of the multipole moments. Then the values of

additional charges can been found from the system of

equations

Q0ðm1;m2;m3Þ1
X

n1;n2;n32T‘

eðn1; n2; n3Þ3ðdxðn1; n2; n3ÞÞm1

ðdyðn1; n2; n3ÞÞm2ðdzðn1; n2; n3ÞÞm3 50; m1;m2;m3 2 T‘;

(21)

where

Q0ðm1;m2;m3Þ5
Xn0

j51

ej q
m1

jx qm2

jy qm3

jz ;

m11m21m35m:

are multipole moments of the original unit cell. In this equa-

tion, n0 is the number of charges in the original unit cell, ej

and qj are the value and position vector of jth charge in the

original unit cell. A direct solution to the system (21) with

standard routines is not convenient because the equation

matrix dm1
x dm2

y dm3
z could be ill-defined. Indeed, the matrix ele-

ment is equal to 1 if m15m25m350. At the same time, the

equation matrix contains elements proportional to ‘‘ which

can be many orders of magnitude greater than 1. Still, the

system of Eqs. (21) is useful, because it can be solved analyti-

cally[69] in the general case for any lattice and for any value

of ‘. The analytical method of solving this system is described

in Appendix E.

In what follows, it will be assumed that Eqs. (21) are solved

and the LP unit cell additional charges

eðnÞ5eðn1; n2; n3Þ

at points
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dðnÞ5dðn1; n2; n3Þ5n1a11n2a21n3a3

are known.

The LP unit cell potential at point r is the sum

UðrÞ5U1ðrÞ1U2ðrÞ (22)

of the original unit cell potential

U1ðrÞ5
Xn0

j51

ej

jr2qjj

and the additional charges potential

U2ðrÞ5
X
n2T‘

eðnÞ
jr2Rnj

:

The system of LP unit cell additional charges has one impor-

tant property, namely the sum of all additional charges is

equal to zero

X
n2T‘

eðnÞ50: (23)

Indeed, in the particular case m50, (m15m25m350) Eq. (21)

reads

X
n2T‘

eðnÞ52Q0ð0; 0; 0Þ

and the initial lattice unit cell is electrically neutral

Q0ð0; 0; 0Þ50.

Equation (23) is important because using this equation, one

can prove that although the LP unit cell contains additional

charges compared to the initial ones, the Ewald potential cal-

culated with the LP unit cell coincides with the Ewald poten-

tial calculated with the initial lattice unit cell (Appendix E for

proof ). Besides, Eq. (23) makes it possible to generate a finite

system of charges entirely outside the finite cluster to repro-

duce a perfect lattice potential in the cluster with any desira-

ble precision. It will be shown the next section.

LP unit cell modifications. Apart from charges of the initial

unit cell, the LP unit cell contains additional charges to annul

the cell multipole moments. The LP unit cell additional charges

occupy the lattice sites and form the tetrahedron. An example

of this tetrahedron for the case of a maximal annulled

moment ‘52 is shown in Figure 3. Due to additional charges,

the symmetry of an LP unit cell differs significantly from the

symmetry of a conventional unit cell. However, the embedding

potential will be calculated for the finite crystal obtained by

the LP unit cell translations and not for one unit cell. These

translations result in cancellation of all additional charges in

the inner part of the finite crystal leaving only a comparatively

thin layer of charges in the finite crystal border. Therefore, the

effect of the unit cell symmetry difference on the embedding

potential will be rather small. Nevertheless, it is desirable to

minimize this difference, especially if some degenerate by the

symmetry states should be considered.

It is possible to reduce the symmetry difference by accumu-

lating the LP unit cell additional charges from eight tetrahe-

drons[70] instead from one, the additional charges in each

tetrahedron annulling 1/8 of every multipole moment under

consideration. There are two variants of these eight tetrahe-

drons dispositions, which will be demonstrated below in the

case of simple cubic lattice.

The tetrahedron vertex at which three orthogonal edges of

the tetrahedron meet will be referred to as a primary vertex.

In the first variant, the primary vertex of each tetrahedron is

put into the frame of reference origin and three orthogonal

edges of each tetrahedron are directed along the Cartesian

coordinate lines alternately in the positive or negative direc-

tions. The positions of the obtained additional charges in the

LP unit cell in the case of maximal annulled moment ‘52 are

shown in Figure 4.

In the second variant, the primary vertex of the tetrahedron

is put at the initial unit cell vertex and three orthogonal edges

of the tetrahedron are directed along the initial unit cell edges

so that the unit cell center will be inside the tetrahedron. This

is done for each of the eight vertices of the initial unit cell.

The positions of the additional charges in this LP unit cell are

shown in Figure 5. It should be noted that in the second vari-

ant the more compact LP unit cell is obtained.

Some extra improvement can be achieved by moving the

positions of the primary vertex.[70]

Far environment Coulomb potential. The far environment

Coulomb (fec) potential is a point ion lattice potential involv-

ing all ions that do not belong to the cluster. It can be calcu-

lated as a potential of the perfect point ion lattice minus the

potential produced by a finite number of charges correspond-

ing to cluster atoms.

Let us first consider the perfect point ion lattice potential.

Using an LP unit cell for a group and taking the lattice vector

Rk for the group position vector Dk, one will obtain an abso-

lute (and fast) convergent series for the infinite point lattice

potential

Figure 3. Tetrahedron of the unit cell additional charges for ‘52.
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VðrÞ5
X1

k1;k2 ;k3521
Uðr2RkÞ; Rk5k1a11k2a21k3a3; (24)

where UðrÞ is given by Eq. (22). Equation (24) describes the

potential which coincides with the Ewald potential of the orig-

inal lattice.

In what follows it will be assumed that the frame of refer-

ence origin is put at some point inside the cluster and the

point lattice potential will be considered in some region

around the frame of reference origin. Series (24) is absolutely

convergent and its sum does not depend on the order of sum-

mation. Therefore, one can use the most convenient one. It is

expedient to consider an integer N and to write series (24) as

sum of the two series

VðrÞ5
X
k2@

Uðr2RkÞ1
X
k 62@

Uðr2RkÞ; (25)

where the summation region @ contains all points Rk with

k5ðk1; k2; k3Þ; 2N � k1; k2; k3 � N:

Because of the series absolute convergence, the second sum in

(25) tends to zero when N tends to infinity. Hence, for any given

precision e one can find the finite value of N large enough to

make the second sum absolute value smaller than e. Therefore,

within given precision one can take the potential

VðaÞðrÞ5
X
k2@

Uðr2RkÞ (26)

as an approximation to the infinite lattice potential VðrÞ.
In Eq. (26), U is the sum (22) of U1 and U2. Therefore, the

equation for the lattice potential can be written as

VðrÞ � VðaÞðrÞ5V
ðaÞ
1 ðrÞ1V

ðaÞ
2 ðrÞ;

where

V
ðaÞ
1 ðrÞ5

X
k2@

U1ðr2RkÞ5
X
k2@

Xc

j51

ej

jr2qj2Rkj

and

V
ðaÞ
2 ðrÞ5

X
k2@

U2ðr2RkÞ5
X
k2@

X
n2T‘

eðnÞ
jr2Rn2Rkj

:

Both potentials V
ðaÞ
1 and V

ðaÞ
2 are due to a finite number of

charges each. The potential V
ðaÞ
1 is due to the finite lattice

with integer number of initial unit cells. The correction for the

infinite lattice is the potential V
ðaÞ
2 .

In the potential V
ðaÞ
2 , the sum Rn1Rk is the lattice vector Ri.

By !, it will be denoted the region occupied by points i when

n run over T‘ and k run over @. The region ! is larger than

the region @ and the same point Ri can be occupied by

charges from different LP unit cells. The following equation is

valid for the total charge qðiÞ5qði1; i2; i3Þ accumulated at a

point Ri

qðiÞ5
X
k2@

X
n2T‘

eðnÞdðk1n2iÞ:

With these notations on can write the equation for the poten-

tial V
ðaÞ
2 ðrÞ as

V
ðaÞ
2 ðrÞ5

X
i2!

qðiÞ
jr2Rij

: (27)

Formally, the sum over i in (27) is over all points belonging to

!. However, because of (23) some charges qðiÞ are equal to

Figure 5. Eight tetrahedrons, variant 2.

Figure 4. Eight tetrahedrons, variant 1.
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zero. Corresponding points Ri occupy the inner part of the

region !. Indeed, consider point Ri with

2N1‘ � i1; i2; i3 < N; (28)

where N determines the summation region @ and ‘ is the

maximal annulled moment. For any point n 2 T‘, one has

0 � n1; n2; n3 � ‘:

Therefore, for the corresponding point k5i2n, the following

inequality is valid

2N � k1; k2; k3 � N;

which means that point k belong to the summation region @.

Hence, for any point n 2 T‘ in the summation region @, there

exists point k for which

k5i2n:

Consequently,

X
k2@

dðk1n2iÞ51; 8n 2 T‘

and

qðiÞ5
X
n2T‘

X
k2@

dðk1n2iÞeðnÞ5
X
n2T‘

eðnÞ50

due to (23). So the total charge qðiÞ at inner points i (28) is

equal to zero. The nonzero charge qðiÞ can only be located in

the border part of the region !. This border part will be

denoted as !b. The shape of this part is rather complicated. It

is described in details in [69].

The results of the LP unit cell summation and additional

charges cancellation in the inner region are shown below in

the case of the 2-D lattice, where additional charges occupy

triangle instead of the 3-D case tetrahedron. The square lattice

is considered and the largest annulled multipole moment is

chosen to be ‘52. In Figure 6, the positions of the resulting

nonzero additional charges are shown for the case of original

LP unit cell, the white circles indicating the positive charges

and black circles indicating the negative charges. The nonzero

additional charges occupy only the border region but the

square symmetry is lost. Similar results are shown in Figure 7

for the case of modified LP unit cell, variant 1. The square

symmetry is restored but the size of the border layer is

increased. The case of modified LP unit cell, variant 2, is shown

in Figure 8. The square symmetry is restored and the size of

the border region is less than that in the variant 1 of modified

LP unit cell.

In the real finite crystal, the border region experiences vari-

ous relaxation processes minimizing the potential outside the

crystal. In the lattice potential calculations, the nonzero

charges are added to the border region and minimized the

electrostatic potential outside the crystal. Although the partic-

ular processes are different the total effect is the same. There-

fore, one can consider calculation of the lattice potential with

the help of an LP unit cell with additional charges as qualita-

tive modeling the situation with the real finite crystal.

Considering the part of the perfect crystal near the frame of

reference origin as a cluster, it is expedient to write the point

ion lattice potential in somewhat different form. The part of

the summation region @, which corresponds to the cluster

itself, will be denoted as @c and the rest of the region @,

which corresponds to the cluster environment, will be denoted

Figure 6. Nonzero additional charges in result of summation, 2-D case one

triangle, ‘52.

Figure 7. Nonzero additional charges in result of summation, 2-D case, four

triangles, variant 1, ‘52.
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as @e. Then the point ion lattice potential can be written as

sum

VðrÞ5VcðrÞ1VeðrÞ (29)

of the point ion lattice potential due to the cluster

VcðrÞ5
X
k2@c

U1ðr2RkÞ5
X
k2@c

Xn0

j51

ej

jr2qj2Rkj
;

and the point ion lattice potential due to the cluster

environment

VeðrÞ5Ve1ðrÞ1Ve2ðrÞ;

where

Ve1ðrÞ5
X

m2@e

U1ðr2RmÞ5
X
k2@e

Xn0

j51

ej

jr2qj2Rkj

is the point ion finite lattice potential and

Ve2ðrÞ5
X
i2!b

qðiÞ
jr2Rij

is the correction for the infinite lattice. This is potential V
ðaÞ
2 ðrÞ

but contrary to the Eq. (27), the summation here is over only

border part of the region ! containing nonzero charges qðiÞ.
All charges producing potential VeðrÞ are situated outside

the cluster. Hence, VeðrÞ is the potential due to the cluster far

environment. Therefore, it can be considered as a contribution

to the embedding potential. It is expedient to refer to poten-

tial VeðrÞ as the fec embedding potential

VfecðrÞ � VeðrÞ5
X
k2@e

Xn0

j51

ej

jr2qj2Rkj
1
X
i2!b

qðiÞ
jr2Rij

: (30)

Note that potential VfecðrÞ is determined by charges outside

the cluster, and therefore, the same potential VfecðrÞ can be

used in the calculations of both a perfect crystal and a crystal

with defect, providing the defect is local.

Near environment Coulomb potential. The cluster near envi-

ronment consists of border atoms orbitals directed outward

the cluster. The near environment Coulomb (nec) potential is

the long-range part of the near environment potential and the

potential of a point charges system will be taken to represent

it. Each charge corresponds to one border atom. The position

of this charge is not really important because the potential dif-

ference resulting from different positions of the point charges

will be taken into account together with the short-range part

of the embedding potential. Therefore, the border atom

nucleus position has been selected for the point charge posi-

tion. The value of this charge can be calculated as follows. All

border atoms of the cluster are of the same type (Types 1 or

2). Each border atom has the same number m (m1 or m2) of

bonds attached to it but different border atoms can have a

different number of bonds directed outward the cluster. For

jth border atom, the number of bonds directed inward the

cluster is denoted as l
0
j and the number of bonds directed

outward the cluster is denoted as l
00
j , where

l
0

j1l
00

j 5m:

Each bond contributes charge x [x1 or x2, see Eq. (12)] to the

border atom (all bonds are equivalent). So the total charge

q
ðnecÞ
j due to all outward bonds of the border ion j is

q
ðnecÞ
j 5xl

00

j :

Consequently, the nec embedding potential is

VnecðrÞ5
Xnb

j51

q
ðnecÞ
j

jr2Rjj
: (31)

The sum is over all border atoms. The number nb of border

atoms is comparatively small, and this sum can be easily

calculated.

Short-range embedding

The Coulomb embedding potential is the long-range part of

the embedding potential. The difference between a total

embedding potential and its long-range part can be consid-

ered as the short-range part of the embedding potential. Sev-

eral different methods were proposed to generate the short-

range part of an embedding potential. For example, the

Adams–Gilbert equations (11) were used for the self-consistent

calculations of several overlapping electron groups.[54,58,71] The

particular form of potential depends on the localization func-

tional employed. Two particular functionals,[58] one of which

Figure 8. Nonzero additional charges in result of summation, 2-D case, four

triangles, variant 2, ‘52.
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maximizes the Mullikens[72] net atomic population in the

selected region[54,55,73,74] and the other[53,54] use a Fock opera-

tor for the localizing operator Â, produce similar results.

In the AIMP approach,[19] the approximate one-electron orbi-

tals are used for the cluster environment, and the embedding

potential is derived using the corresponding coulomb-

exchange operators.

In [75], a number of simple trial potentials with parameters

are selected and parameters are defined with the trial and

error method to reproduce a number of specifically chosen

properties of the cluster in a crystal. One-center and multicen-

ter potentials were used.

The approach described below is based on the cluster in

crystal notion and on the division of the crystal into the clus-

ter and cluster environment discussed in “Ion-covalent crystal”

section. Using the finite crystal molecular orbitals and applying

a localization procedure to them, one can calculate the nonca-

nonical molecular orbitals of the crystal, which can be consid-

ered as molecular orbitals of a cluster in a crystal and with

their help one can generate an embedding potential. In this

approach, both the occupied and virtual states of a cluster in

a crystal should be used.

As in previous sections, the ion-covalent crystals are consid-

ered here. To avoid the unnecessary complications, the valence

electrons only approximation is adopted. It is assumed that

the crystal contains atoms of only two types, one anion and

one cation, and all the nearest anion–cation bonds are equiva-

lent. The cubic phase of ZrO2 crystal is the convenient system

with all described above properties. In this crystal, each oxy-

gen contributes six electrons and each zirconium contributes

four electrons to the valence electrons system. All other elec-

trons of oxygen and zirconium are taken into account with

the help of ECP. As a particular finite crystal, the cluster shown

in Figure 9 was chosen. This cluster is under the influence of

ZrO2 Coulomb embedding potential. It contains 64 oxygen

and 13 zirconium ions in its inner part and only zirconium ions

at its border. There are 30 zirconium ions situated at the cube

faces. Four out of eight bonds connected with each of these

zirconiums belong to the cluster and the other four belong to

the cluster environment. Besides, there are 12 zirconiums at

the cube edges with two bonds belonging to the cluster and

six bonds belonging to the cluster environment. Finally, there

are 8 zirconiums at the cube vertices with one bond belong-

ing to the cluster and seven bonds belonging to the cluster

environment. Therefore, this cluster can be designated as

O64Zr13 Zr30=2Zr12=4Zr8=8. We will use short notation O64Zr
ðpsÞ
63

for this cluster when possible.

Three different small clusters will be considered. Cluster

OZr4=8 containing four bonds with cations at the border is

shown in Figure 10. Containing eight bonds cluster ZrO8=4

with anions at the border is shown in Figure 11. Cluster

O8Zr1Zr12=4 containing 32 bonds with one cation at its center

and 12 cations at the border is shown in Figure 12.

Assume that the finite crystal is calculated in the MO–LCAO

approximation and all molecular orbitals Wj (occupied and vir-

tual) and corresponding one-electron energies Ej (ionization

potentials) are known. The atomic basis functions are denoted

as vakðrÞ where a51; 	 	 	 ;Nat is the atom index and k51; 	 	 	 ;
ma is the basis function of the atom a index. The number of

basis functions for the atom a is denoted as ma. The total num-

ber of finite crystal atomic basis functions is N0. The total

number of finite crystal canonical orbitals is equal to the total

number of atomic basis functions. The number of finite crystal

occupied molecular orbitals is Nocc, so the number of finite

crystal virtual molecular orbitals is Nvirt5N02Nocc. The finite

crystal molecular orbitals Wj are canonical orbitals spread over

the whole volume of the crystal. In what follows, noncanonical

orbitals localized in a part of the crystal will be used, and, in

particular, orbitals localized in the region of one and only one

pair of the nearest anion and cation will be used. These orbi-

tals are referred to as bond orbitals. It is assumed that trans-

formation to the crystal noncanonical localized orbitals can be

made in which all occupied orbitals are the bond orbitals. The

cluster is a closed part of the finite crystal which contains an

Figure 9. Cluster O64Zr
ðpsÞ
63 .

Figure 10. Cluster OZr4=8 and positions of auxiliary basis functions.
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integer number nocc of bond orbitals; and these are the only

occupied orbitals of the cluster.

Two different localization procedures will be used to calcu-

late the cluster in crystal orbitals: one for occupied states and

the other for virtual states. In the case of occupied states, the

well localized auxiliary 1s Gaussian functions

gðrÞ5 2a
p

� �3=4

expð2ar2Þ

with the same sufficiently large parameter a are used. For

each bond of the crystal, a set of ng � 10; 20 functions

gnjðrÞ5gðr2RnjÞ; j51; 	 	 	 ; ng (32)

at equidistant points Rnj along the line connecting the corre-

sponding anion and cation of the nth bond is generated. Posi-

tions of auxiliary functions in clusters OZr4=8 and ZrO8=4 are

shown by dots in Figures 10 and 11. Projector onto the set of

nth bond auxiliary functions is

P̂ng5
Xng

j;k51

jgnji G21
� 	

nj;nk
hgnkj; (33)

where Gnj;nk is the overlap matrix of gnj and gnk auxiliary func-

tions. With the help of crystal occupied canonical orbitals Wj

the matrix of the projector P̂ng can be calculated, and its

eigenvectors and eigenvalues can be found

XNocc

j51

hWkjP̂ngjWjiD‘j5l‘D‘k; k51; . . . ;Nocc: (34)

The eigenvector corresponding to the largest eigenvalue li

provides coefficients C
ðbdÞ
nj 5Dij for bond orbital UðbdÞ

n ðrÞ expan-

sion over occupied canonical orbitals

UðbdÞ
n ðrÞ5

XNocc

j51

C
ðbdÞ
nj WjðrÞ:

This bond orbital is normalized to 1 and is the linear combina-

tion of all atomic basis functions vaj of the crystal.

At the same time, a bond basis can be made for each bond

as a union of atomic bases of corresponding atoms; and the

projector

P̂
ðbdÞ
n 5

Xða;bÞ
‘m

Xm‘
j51

Xmm

k51

jv‘ji S21
bd

� 	
‘j;mk
hvmk j

onto the nth bond basis can be calculated. Here, sum over ‘

and m is over atoms a and b of the bond and Sbd is the over-

lap matrix of bond basis functions. With the help of this pro-

jector, the bond orbital uðbdÞ
n ðrÞ in bond basis can be obtained

uðbdÞ
n ðrÞ5P̂

ðbdÞ
n UðbdÞ

n ðrÞ:

To estimate the quality of bond orbital uðbdÞ
n ðrÞ localization the

norm square was calculated for each bond. For any bond in

the O64Zr
ðpsÞ
63 cluster, the deviation of the norm square from 1

was found to be less than 0.03. So 97% of the bond electron

density is in the bond region.

The O64Zr
ðpsÞ
63 cluster contains 256 bonds and 104 of them

are inner bonds (not connected with border Zr). To check

whether occupied bond orbitals can be considered as equiva-

lent, all bond orbitals in bond basis uðbdÞ
n ðrÞ were normalized

to 1 and rotated to the same frame of reference. All overlap

integrals between rotated bond orbitals were calculated. The

maximum deviation from 1 of the overlap integral for inner

bonds was found to be 0.00013, and for all bonds, including

bonds with border Zr, the maximum deviation from 1 was

found to be 0.0041. Thus, the inner bond orbitals can be con-

sidered as equivalent and bond orbitals with border Zr are

close to them.

Figure 11. Cluster ZrO8=4 and position of auxiliary basis functions.

Figure 12. Cluster O8Zr1Zr12=4 with the diatomic bonds.
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The employment of the intermediate basis set (32) in the

bond orbitals uðbdÞ
n ðrÞ calculations is essential. For example,

when the bond orbitals in bond basis uðbdÞ
n ðrÞ were calcu-

lated from the occupied canonical orbitals Wj with the pro-

jector P̂
ðbdÞ
n used in the Eq. (34), the ratio between the

second largest and the largest eigenvalues of the projector

P̂
ðbdÞ
n was found to be 0.99. In this case, arguments in favor

of the function with the largest eigenvalue comparing with

the function with the second largest eigenvalue are rather

weak. In the case of the two steps procedure (the first step

with the projector P̂ng and the second step with the projec-

tor P̂
ðbdÞ
n ) the corresponding ratio (for eigenvalues of the

projector P̂ng) was found to be 0.02. In this case, the orbital

corresponding to the largest eigenvalue is undoubtedly the

most localized one.

Using the described localization procedure, the bond orbi-

tals UðbdÞ
n ðrÞ in the finite crystal total basis can be calculated

for all bonds, n51; . . . ;Nocc. It is assumed that the orbitals

UðbdÞ
n ðrÞ are numerated so that the orbitals corresponding to

the bonds belonging to the cluster are the first on the list.

The orbitals UðbdÞ
n ðrÞ; n51; . . . ; nocc localized on bonds belong-

ing to the cluster can be considered as occupied orbitals of

the cluster in the crystal. However, these are directed nonor-

thogonal orbitals, and therefore, they are noncanonical orbitals

of the cluster. Canonical orbitals are linear combinations of

directed orbitals, and coefficients in these linear combinations

can be found with the help of the Fock operator for the finite

crystal.

With operator spectral decomposition, the Fock operator of

finite crystal can be written as

F̂5
XN0

j51

jWji EjhWjj;

this operator can be considered as the sum

F̂5F̂
ðoccÞ

1F̂
ðvirtÞ

of

F̂
ðoccÞ

5
XNocc

j51

jWji EjhWjj (35)

the Fock operator for occupied states and

F̂
ðvirtÞ

5
XN0

j5Nocc11

jWji EjhWjj (36)

the Fock operator for virtual states.

Using the Fock operator for occupied states (35), one can

generate canonical occupied orbitals for the cluster in

the crystal and calculate corresponding energies. To do this,

the matrix of the operator F̂
ðoccÞ

can be calculated with

noncanonical orbitals UðbdÞ
n ðrÞ n51; . . . ; nocc, and the corre-

sponding eigenvectors and eigenvalues problem can be

solved

Xnocc

m51

hUðbdÞ
n jF̂ ðoccÞjUðbdÞ

m iCnm5EðclÞ
n

Xnocc

m51

hUðbdÞ
n jUðbdÞ

m iCnm;

n51; . . . ; nocc:

(37)

The orthonormal noncanonical orbitals of the finite crystal

UðclÞ
n ðrÞ5

Xnocc

m51

CnmUðbdÞ
m ðrÞ n51; . . . ; nocc (38)

are localized in the cluster volume and span the same func-

tional space as bond orbitals UðbdÞ
n . Therefore, orbitals UðclÞ

n ðrÞ
and energies E

ðclÞ
n will be considered as occupied canonical

orbitals and energies of the cluster in the crystal.

The canonical occupied orbitals UðclÞ
n ðrÞ are obtained in the

atomic basis of the finite crystal. However, for applications, it is

necessary to have cluster orbitals in the cluster basis. It is expedi-

ent to obtain these orbitals with the help of the projector

P̂
ðclÞ

5
XðclÞ

a;b

Xma

j51

Xmb

k51

jvaji S21
cl

� 	
aj;bk
hvbkj (39)

onto the cluster basis. Here, the sum is over all cluster basis

functions and Scl is the corresponding overlap matrix.

Functions

fnðrÞ5P̂
ðclÞ

UðclÞ
n ðrÞ n51; . . . ; nocc

are in the cluster basis, but they are, in general, not normal-

ized to 1 and not orthogonal to each other. However, the

overlap matrix

Snm5hfnjfmi; n;m51; . . . ; nocc

is usually close to the unit matrix. Using the Lowdin equation

for symmetrical orthonormalization

wðclÞ
n ðrÞ5

Xnocc

m51

S21=2
n o

nm
fmðrÞ; n51; . . . ; nocc (40)

the orthonormal orbitals wðclÞ
n ðrÞ in the cluster basis can be

obtained.

The orbitals wðclÞ
n ðrÞ and energies E

ðclÞ
n will be considered as

occupied canonical molecular orbitals and one-electron ener-

gies of the cluster in the ion-covalent crystal.

Note, that although no approximations were used in orbitals

UðclÞ
n ðrÞ calculations from the crystal molecular orbitals WjðrÞ,

the orbitals wðclÞ
n ðrÞ are approximate due to the projection

from the crystal basis to the cluster basis.

A somewhat different method will be used to calculate a

cluster in crystal virtual orbitals. Cluster virtual orbitals should

be calculated as linear combinations of finite crystal virtual

orbitals. It is essential that cluster virtual orbitals are spread

over the whole volume of the cluster and not only over its

inner part as occupied cluster orbitals. Therefore, instead of

projector (33) onto the auxiliary functions, the projector onto

the cluster basis (39) should be used. Hence, one arrives at the

following equation
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XNvirt

j51

hWk1Nocc
jP̂ðclÞjWj1Nocc

iD‘j5l‘D‘k; k51; . . . ;Nvirt (41)

to produce virtual orbitals localized in the cluster. In this equa-

tion, Nvirt is the number of virtual orbitals in the finite crystal.

The number n0 of cluster atomic basis functions is

n05
XðclÞ

a

ma;

where sum is over atoms of the cluster. Consequently, the

number of virtual orbitals in the cluster is nvirt5n02nocc. From

the Eq. (41), nvirt localized in the cluster virtual orbitals can be

obtained. Assume that eigenvectors D‘j and eigenvalues l‘ are

arranged in the decreasing l‘ value. Then functions

UðvÞn ðrÞ5
XNvirt

j51

DnjWj1Nocc
ðrÞ; n51; . . . ; nvirt

are virtual (noncanonical) orbitals of finite crystal (similar to

UðbdÞ
n ðrÞ in the case of occupied states) localized in the cluster.

These functions are considered as noncanonical virtual orbitals

of the cluster in the crystal. They are orthonormal as eigen-

function of one operator. To find the corresponding canonical

virtual orbitals, the Fock operator (36) for virtual states can be

used, and the following equation can be used

Xnvirt

m51

hUðvÞn jF̂
ðvirtÞjUðvÞm iCnm5E

ðclÞ
n1nocc

Cnn; n51; . . . ; nvirt: (42)

This equation eigenfunctions

UðclÞ
n1nocc

ðrÞ5
Xnvirt

m51

CnmUðvÞm ðrÞ; n51; . . . ; nvirt (43)

are cluster canonical virtual orbitals in the total atomic basis of

the crystal and E
ðclÞ
n1nocc

are the cluster in crystal virtual one-

electron energies.

The obtained cluster virtual orbitals (43) and occupied orbi-

tals (38) in the crystal atomic basis are orthogonal to each

other, because the cluster virtual orbital is a linear combina-

tion of crystal virtual orbitals; the cluster occupied orbital is a

linear combination of crystal occupied orbitals; and the crystal

occupied and virtual orbitals in the crystal atomic basis are

orthogonal to each other.

When considering cluster virtual orbitals in the cluster atomic

basis calculations, it is necessary to take into account that both

in the case of the cluster basis and in the case of the crystal

basis, all virtual orbitals should be orthogonal to occupied orbi-

tals. Therefore, a projector onto the whole cluster basis is not

appropriate. It is necessary instead to take a projector onto the

orthogonal complement to the cluster occupied orbitals. In this

case, each cluster virtual orbitals will be a linear combination of

functions orthogonal to occupied orbitals.

The projector onto the orthogonal complement can be writ-

ten as the difference

P̂
ðcmplÞ

5P̂
ðclÞ

2P̂
ðoccÞ

(44)

between projector (39) onto the cluster basis and projector

onto the cluster orthonormal occupied states (40)

P̂
ðoccÞ

5
Xnocc

n51

jwðclÞ
n i hw

ðclÞ
n j: (45)

Then projections of cluster virtual orbitals in the crystal atomic

basis

fnðrÞ5P̂
ðcmplÞ

UðclÞ
n1nocc

ðrÞ n51; . . . ; nvirt

are functions in the cluster basis which are orthogonal to the

occupied orbitals of cluster. However, these functions overlap

matrix

Snm5hfnjfmi; n;m51; . . . ; nvirt

usually deviates from the unit matrix. Using Lowdin equation

for the symmetrical orthonormalization

wðclÞ
n1nocc

ðrÞ5
Xnvirt

m51

S21=2
n o

nm
fmðrÞ; n51; . . . ; nvirt (46)

the orbitals wðclÞ
n1nocc

ðrÞ can be obtained which are orthonormal

and orthogonal to the cluster occupied orbitals.

The orbitals wðclÞ
n1nocc

ðrÞ and energies E
ðclÞ
n1nocc

with n51; . . . ; nvirt

will be considered as virtual canonical molecular orbitals

and one-electron energies of a cluster in an ion-covalent

crystal.

The cluster in crystal orbitals wðclÞ
n ðrÞ and energies E

ðclÞ
n for

n51; . . . ; n0 were calculated as it was described above for

cluster O64Zr
ðpsÞ
63 as a finite crystal and for several small clus-

ters in it. In Figure 13, the O64Zr
ðpsÞ
63 cluster density of states is

shown together with occupied and lowest virtual energy lev-

els for OZr4=8, ZrO8=4, and O8Zr1Zr12=4 clusters calculated with

the help of Eqs. (37) and (42). The obtained energy levels dis-

position can be considered as satisfactory.

Using the obtained occupied and virtual cluster orbitals

wðclÞ
n ðrÞ [Eqs. (40) and (46)] and energies E

ðclÞ
n [Eqs. (37) and

(42)], a short-range part of the embedding potential can be

generated. The problem is: given the orbitals wðclÞ
n ðrÞ and

energies E
ðclÞ
n for occupied and virtual stated of the cluster,

generate the embedding potential so that the self-

consistent field calculations of the cluster in the generated

embedding potential reproduce given orbitals and energies.

This problem has an exact solution.

To generate the embedding potential from given orbitals

and energy levels, the spectral decomposition of the Fock

operator for the cluster is used

F̂ cl5
Xn0

n51

jwðclÞ
n iEðclÞ

n hwðclÞ
n j: (47)

At the same time, the Fock operator for the cluster in the

embedding potential is
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F̂ cl5T̂ 1V̂ 01Û1V̂ fec1V̂ nec1V̂ sr: (48)

where T̂ is the kinetic energy operator, V0 is the nuclear attrac-

tion and the external field potential (if any), and Û is the

Coulomb-exchange operator

Ûf ðrÞ5
ð

qðr0jr0Þ
jr2r0j dr0f ðrÞ2 1

2

ð
qðrjr0Þ
jr2r0j f ðr

0Þdr0

with the cluster density matrix

qðrjr0Þ52
Xnocc

n51

wðclÞ
n ðrÞw

ðclÞ�
n ðr0Þ

calculated with cluster occupied orbitals wðclÞ
n ðrÞ, Vfec is the fec

potential (30), Vnec is the nec potential (31), and V̂ sr is the

short-range embedding potential.

Combining Eqs. (47) and (48), the following equation for the

short-range embedding potential can be obtained

V̂ sr5
Xn0

n51

jwðclÞ
n > En < wðclÞ

n j2T̂ 2V02Û2Vfec2Vnec: (49)

All terms in the right-hand side of the Eq. (49) are known; so

(49) is the equation for the exact short-range embedding

potential.

If the MO-LCAO approximation is used, then all operators

are in the matrix representation. From Eq. (49), the short-range

embedding potential matrix Vsrf gjk can be calculated. This

matrix is for the particular cluster with the particular atomic

basis used in calculations, and as is it can be used only for the

cluster considered. However, the short-range embedding

potential obtained for one cluster can be used in another clus-

ter calculations if the border regions of both clusters are the

same, and the difference is only in the inner parts of clusters.

For example, one cluster can be a cluster of the perfect crystal

and another cluster can have defects in its inner part, impurity

atom, vacancy, or different geometry of cluster atoms. In this

case, the perfect crystal short-range embedding potential

matrix Vsrf gjk can be used to generate the corresponding

operator

V̂ sr5
X

jk

jvji
X
‘m

S21
� 	

j‘
Vsrf g‘m S21

� 	
mk
hvkj; (50)

where vj are the perfect cluster atomic basis functions and S is

the basis overlap matrix. It is evident that operator (50) matrix

with vj basis functions is Vsrf gjk . However, Eq. (50) can be used

for the short-range embedding potential matrix calculations

with another basis. Therefore, operator (50) can be used for

the cluster with defect calculations.

The self-consistent field calculations were performed for

clusters OZr4=8, O8Zr1Zr12=4, and ZrO8=4 in the Coulomb

embedding potential. In Table 1, the lowest energy level, the

highest occupied energy level, and the lowest virtual energy

level are shown for clusters OZr4=8 and O8Zr1Zr12=4 with Zr

atoms at the border obtained as eigenvalues of Eqs. (37) and

(42) together with the corresponding energy levels of clusters

in the Coulomb embedding potential. From this table, one can

see that the occupied energy levels are in good agreement

and the agreement for O8Zr1Zr12=4 cluster is better. However,

the difference between the virtual levels is about 5 eV. At the

same time, there was no agreement at all in the case of

ZrO8=4 cluster with oxygen at the border in the Coulomb

embedding potential, and even the self-consistent field calcu-

lations convergence was problematic. Calculations of all three

clusters with the added short-range embedding potential

reproduced (as it should be) all occupied and virtual levels.

These results indicate that the short-range embedding poten-

tial is important, and it is really the short-range potential; so

its influence depends on the electron density at the border

atoms. For occupied states in clusters OZr4=8 and O8Zr1Zr12=4,

the electron density on border atoms is comparatively small,

whereas for virtual states in these clusters, the border density

is larger and in the ZrO8=4 cluster almost all electron density is

localized on border atoms both in the occupied and lowest

virtual states.

The embedding potential can be used not only for the clus-

ters with defect electronic structure calculations but also for

the ion-covalent crystals band structure calculations. In the

band structure calculations using atomic basis functions vaj,

the matrix elements with atomic basis functions are used,

Table 1. Energy levels (au) of OZr4=8 and O8Zr1Zr12=4 clusters.

OZr4=8 O8Zr1Zr12=4

n En E
0
n En E

0
n

1s 1 20.996 21.010 21.027 21.029

HOMO nocc 20.282 20.296 20.218 20.219

LUMO nocc11 0.370 0.233 0.361 0.205

Lowest energy level (1s), highest occupied level (HOMO), and lowest

virtual level (LUMO) are shown for both clusters. Here, En5E
ðclÞ
n are

eigenvalues of (37)) for occupied states and En5E
ðclÞ
nocc11 are eigenvalues

of (42)) for virtual state. E
0
n are the corresponding energy levels calcu-

lated for cluster in the Coulomb embedding potential

Figure 13. Density of states of the cluster O64Zr
ðpsÞ
63 and energy levels of

clusters OZr4=8, O8Zr1Zr12=4, and ZrO8=4.
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namely, the matrix elements of the crystal potential V̂
ðcrÞ

calcu-

lated with atomic basis functions vaj and vbk where the atom

a is in one unit cell and the atom b is in the neighboring unit

cell. However, the potential V̂
ðclÞ

of the cluster in the embed-

ding potential is an approximation to the crystal potential.

Therefore, the approximation can be used

hvajjV̂
ðcrÞjvbki � hvajjV̂

ðclÞjvbki;

if the cluster considered contains both atoms a and b. There-

fore, the set of necessary matrix elements for the band struc-

ture calculation can be accumulated from the results of

several clusters calculations. The advantage of this approach is

that the self-consistent field calculations for a cluster is much

simpler than for a crystal.

This approach was applied to the ZrO2 high-temperature

cubic phase band structure calculations.[76] Several clusters

with Zr border atoms containing neighbors up the fifth order

including were calculated with the Coulomb embedding

potential. The obtained band structure shown in Figure 14 is

in good agreement with obtained in[77] and[78].

Conclusions

In this article, the problem of the embedding potential genera-

tion for a ion-covalent crystal is described.

Considering a small system as part of the large system, it is

not sufficient to calculate the potential produced by the rest

of the large system and to consider the small system in this

potential. The state of the small system in this potential will

deviate from the state of the small system as part of the large

system, because of the difference in boundary conditions. This

deviation can be rather large. It is necessary to develop an

additional potential and to consider the sum of the additional

potential and the potential produced by the rest of the large

system as embedding potential. The additional potential

should be generated so as to obtain the least possible devia-

tion of the small system in the embedding potential state

from the state of the small system as part of the large system.

In this article, this approach is applied to ion-covalent crys-

tals within several approximations imposed to make corre-

sponding equations simpler.

The one-determinant HF approximation was used to

describe states of the large system, the small system, and the

small system as part of the large system. Here, the one-

determinant approximation is important; and the density func-

tional KS equations can be used instead of HF equations. How-

ever, the many-determinant approximation can also be used,

providing that the number of orbitals which are large in the

cluster border region coincide with that in one-determinant

approximation; all other orbitals are negligible small in the

border region and are designed to improve the wave function

inside the cluster. The corresponding equations in this case

will be much more elaborated and difficult for numerical

calculations.

The valence electrons only approximation was used, assum-

ing that all core states are described with ECP. This approxima-

tion is important only for border atoms; for atoms in the inner

region, it can be easily removed.

It is easy to override the two atoms and the bonds equiva-

lence assumptions.

The embedding potential has long-range and short-range

components. The long-range component in ion-covalent crys-

tals is universal and it can be used with any approximation

(one-determinant, many determinant, HF, DFT) used for the

cluster wave function. This component generation is described

in this article in detail.

To generate the short-range component of the embedding

potential, the state of the cluster as part of the crystal was

defined in the one-determinant approximation. Equations for

cluster in crystal occupied and virtual one-electron orbitals

and energies were developed in terms of orbitals and energies

of the large system (the finite crystal). Considering these orbi-

tals and energies as predefined, a method was described to

generate the short-range component of the embedding

potential. This embedding potential possesses the following

property: the self-consistent field calculations of the cluster in

this embedding potential reproduce exactly the whole set of

predefined occupied and virtual orbitals and energies.

For the embedded cluster, it is the occupied and lower vir-

tual states that are important. Thus, the higher virtual states

can be modified, providing that the functional space of the

cluster occupied and virtual state is the same. With this modifi-

cation, an embedding potential can be generated to satisfy

some auxiliary conditions, if necessary.

The embedding potential was generated with a particular

atomic basis set. To apply it to a system with a different

atomic basis set, separable potential representation of the

embedding potential can be used.
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Figure 14. Band structure of cubic ZrO2.
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Appendix A: Boundary Conditions Transfer

Consider one electron in the periodic potential problem

Ĥ0wðrÞ5 E wðrÞ Ĥ0 5 2
1

2
D 1 V0ðrÞ:

The periodic potential V0ðrÞ is invariant under any translation

V0ðr1R‘Þ5V0ðrÞ;

R‘5‘1a11‘2a21‘3a3;

where R‘ is the translation vector and a1; a2, a3 are primitive

translation vectors. The eigenvalue and eigenfunction problem

can be written as

2
1

2
D 1 V0ðrÞ

� �
wnðk; rÞ5 EnðkÞwnðk; rÞ;

where k is the wave vector in the first Brillouin zone and n is

the band number. The eigenfunctions wnðk; rÞ are Bloch

functions

wnðk; r1R‘Þ5 eiðk;R‘Þ wnðk; rÞ;

normalized to d-function

ð
w�nðk; rÞwmðk0; rÞ d3r5 dnm dðk2k0Þ:

In this case, the Green function is

G0ðr; r0; EÞ5
X

n

ð
BZ

wnðk; rÞw�nðk; r0Þ
E2EnðkÞ

d3k:

where integral over k is over the first Brillouin zone and the

sum over n is over all bands. The Green function G0 satisfies

equations

2
1

2
D 1 V0ðrÞ2E

� �
G0ðr; r0; EÞ5 2d3ðr 2 r0Þ; (A.1.1)

2
1

2
D 1 V0ðrÞ2E

� �
G0ðr0; r; EÞ5 2d3ðr 2 r0Þ: (A.1.2)

Now consider a closed surface S, the space X from S to infin-

ity, and the equation

2
1

2
D 1 V0ðrÞ

� �
wðrÞ5 E wðrÞ; r 2 X: (A.2)

It is shown below how zero boundary conditions for w at the

infinity can be transferred to the surface S. To do this, the sur-

face inverse G21
0 of G0 is introduced asð

S

G21
0 ðrs; r

00

s ; EÞG0ðr
00

s ; r
0

s; EÞ d2r
00

s 5 d2ðrs; r
0

sÞ;

where the subscript s means that rs belongs to the surface S.

Multiplying Eq. (A.1.2) by wðrÞ, Eq. (A.2) by G0ðr0; r; EÞ, sub-

tracting products and integrating the difference over space

X2, one obtains

wðr0Þ5 1

2

ð
X

wðrÞD G0ðr0; r; EÞ2 G0ðr0; r; EÞDwðrÞf g d3r: (A.3)

This equation can be transformed to the surface integral with

the help of Green’s theorem

ð
X

U1 D U2 2 U2 D U1f g d3r 5

ð
S

U1
@

@ns
U2 2 U2

@

@ns
U1

� �
d2rs;

(A.4)

where @=@ns is the normal derivative, the normal being exter-

nal to the volume X. Applying (A.4) to Eq. (A.3) one obtains

wðrÞ5 1

2

ð
S

wðrsÞ
@

@ns
G0ðr; rs; EÞ2 G0ðr; rs; EÞ @

@ns
wðrsÞ

� �
d2rs;

where n is external to X. Function wðrÞ satisfies zero boundary

conditions at the infinity. Therefore, surface integral at the

infinity vanishes. By reversing the n direction so that it will be

internal to X and by placing r on the surface, one obtains

wðrsÞ5
1

2

ð
S

G0ðrs; r
0

s; EÞ @

@n0s
wðr0sÞ2 wðr0sÞ

@

@n0s
G0ðrs; r

0

s; EÞ
� �

d2r
0

s:

(A.5)

This is a relation between wðrsÞ on the surface and its normal

derivative @w=@ns. Let us rewrite it. For this, we replace rs in

the Eq. (A.5) by r
00
s , multiply both sides by G21

0 ðrs; r
00
s ; EÞ and

integrate over r
00
s . The result is

1

2

@

@ns
wðrsÞ5

ð
S

G21
0 ðrs; r

0

s; EÞwðr0sÞ d2r
0

s

1
1

2

ð
S

ð
S

G21
0 ðrs; r

00

s ; EÞ @
@n0s

G0ðr
00

s ; r
0

s; EÞ d2r
00

s

8<
:

9=
;wðr0sÞ d2r

0

s:

Introducing function

Uðrs; r
0

s; EÞ5 G21
0 ðrs; r

0

s; EÞ1 1

2

ð
S

G21
0 ðrs; r

00

s ; EÞ @
@n0s

G0ðr
00

s ; r
0

s; EÞ d2r
00

s

one can write

1

2

@

@ns
wðrsÞ5

ð
S

Uðrs; r
0

s; EÞwðr0sÞ d2r
0

s: (A.6)

Any solution of Eq. (A.2) with zero boundary conditions at

the infinity must satisfy the Eq. (A.6). This equation is the non-

local form of an ordinary boundary condition relating the

value of the derivative of a function at the boundary to the

value of the function at the boundary.
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Appendix B: Adams-Gilbert Equations

In what follows the many-electron system is considered in one

determinant approximation. In this case, the system of HF equa-

tions for spin-orbitals can be obtained where each equation has

form of eigenfunction and eigenvalue equation with one common

operator (Fock operator) in each equation. This form of HF equa-

tions is usually referred to as canonical equations and the eigen-

functions of Fock operator are referred to as canonical spin-orbitals.

However, instead the canonical spin-orbitals their linear combina-

tions can be used, which are referred to as noncanonical spin-

orbitals. Sometimes the noncanonical spin-orbitals are preferable,

because they are easier to calculate, or because they provide sim-

pler physical interpretation of results.

In the next section, equations for noncanonical spin-orbitals

are derived and in the following section auxiliary conditions

are discussed.

Noncanonical spin-orbitals equations

In this section, equations for noncanonical spin-orbitals are

obtained using the total energy minimization without imposing any

orthonormality condition. The one-determinant approximation is

used. Canonical spin-orbitals are denoted as wpðxÞ; p51; . . . ;N,

where N is the number of electrons. The noncanonical spin-orbitals

(linear combinations of canonical spin-orbitals) are denoted as

uqðxÞ. The noncanonical spin-orbitals are assumed to be linearly

independent, because otherwise the one-determinant wave func-

tions is identically equal to zero, but they are not assumed to be

orthonormal. The total energy of many-electron system is

E5

ð
ĥðxÞqðxjx0Þ
h i

x05x
dx1

1

2

ð
gðx1; x2Þqðx1; x2jx1; x2Þdx1dx2;

where ĥðxÞ is one-electron operator (kinetic energy and the

energy in the external potential), gðx1; x2Þ is the electron-

electron interaction energy operator,

qðxjx0Þ5
XN

p51

wpðxÞw�pðx0Þ5
XN

p;q51

upðxÞðS21Þpqu
�
qðx0Þ

is the first-order reduced density matrix,

qðx1; x2jx
0

1; x
0

2Þ5qðx1jx
0

1Þqðx2jx
0

2Þ2qðx1jx
0

2Þqðx2jx
0

1Þ

is the second-order reduced density matrix, and

Spq5

ð
u�pðxÞuqðxÞdx

is the noncanonical orbitals overlap integral. With the help of

noncanonical spin-orbitals the equation for the system total

energy can be written as

E5
XN

p;q51

ðS21ÞqpHpq1
1

2

XN

p;q;l;m51

ðS21ÞpqðS21Þlm Gmq;lp2Gmq;pl


 �
;

where the following notations are used

Hpq5

ð
u�pðxÞĥðxÞuqðxÞdx

and

Gmq;lp5

ð
u�mðxÞu�qðx0Þgðx; x0ÞulðxÞupðx0Þdxdx0:

The equations for noncanonical spin-orbitals are Euler equa-

tions for the functional E without any imposed auxiliary

conditions

d
du�j

E50; j51; 2; . . . ;N; (B.1)

where d=du denotes the variational derivative. The variational

derivative over u�j only is used because variational derivative

over uj will yield the same equations but complex conjugate.

Taking into account the Gqm;pl5Gmq;lp equality the following

equation can be obtained

d
du�j

E5
XN

p;q51

ðS21Þqp

d
du�j

Hpq

1
1

2

XN

p;q;l;m51

ðS21ÞpqðS21Þlm
d

du�j
Gmq;lp2Gmq;pl


 �

1
XN

p;q51

d
du�j
ðS21Þpq

" #
Hpq1

XN

l;m51

ðS21Þlm Gmq;lp2Gmq;pl

� �" #
:

One has

d
du�j

Hpq5djpĥðxÞuqðxÞ

and

1

2

XN

p;q51

ðS21Þpq

XN

l;m51

ðS21Þlm
d

du�j
Gmq;lp2Gmq;pl


 �

5
XN

q51

ðS21Þqj ĴðxÞ2K̂ ðxÞ

 �

uqðxÞ;

where ĴðxÞ and K̂ ðxÞ are Coulomb and exchange operators

ĴðxÞ5
ð

qðx0jx0Þgðx; x0Þdx0;

K̂ ðxÞf ðxÞ5
ð

qðxjx0Þgðx; x0Þf ðx0Þdx0:

To find the variational derivative of the inverse matrix, one can

use the equation

S21S5I:

Hence,
d

du�j
S21S
� �

50

and

TUTORIAL REVIEWSWWW.Q-CHEM.ORG

International Journal of Quantum Chemistry 2016, 116, 211–236 231

http://q-chem.org/
http://onlinelibrary.wiley.com/


d
du�j

S2152S21 d
du�j

S

 !
S21:

Therefore,

d
du�j

S21
� �

pq
52

XN

l51

S21
� �

pj
ulðxÞ S21

� �
lq
:

Besides,

XN

l;m51

ðS21Þlm Gmq;lp2Gmq;pl

� �
5

ð
u�qðxÞ ĴðxÞ2K̂ ðxÞ


 �
upðxÞdx:

With the help of these equations, system (B.1) can be written

as

XN

q51

ðS21Þqj F̂ðxÞuqðxÞ2
XN

l;m51

ulðxÞðS21ÞlmFmq

" #
50; (B.2)

where

F̂ðxÞ5ĥðxÞ1ĴðxÞ2K̂ ðxÞ

is the Fock operator and

Fmq5

ð
u�mðxÞF̂ðxÞuqðxÞdx

is the Fock operator matrix element.

The density operator q̂ðxÞ is defined by the following equation

q̂ðxÞf ðxÞ5
ð

qðxjx0Þf ðx0Þdx0: (B.3)

One can use the equation

q̂ðxÞF̂ðxÞq̂ðxÞuqðxÞ5q̂ðxÞF̂ðxÞuqðxÞ

5

ð
qðxjx0ÞF̂ðx0Þuqðx0Þdx05

XN

l;m51

ulðxÞðS21ÞlmFmq:
(B.4)

Equation (B.2) can be written as

XN

q51

ðS21Þqj F̂ðxÞuqðxÞ2q̂ðxÞF̂ðxÞq̂ðxÞuqðxÞ

 �

50 (B.5)

after its second term transformation with the help of (B.4). Mul-

tiplying (B.5) by Sjp and calculating the sum over j one obtains

XN

q51

XN

j51

ðS21ÞqjSjp

 !
F̂ðxÞuqðxÞ2q̂ðxÞF̂ q̂ðxÞuqðxÞ

 �

5
XN

q51

dqp F̂ðxÞuqðxÞ2q̂ðxÞF̂ðxÞq̂ðxÞuqðxÞ

 �

50:

Therefore, the system of equations for noncanonical spin-

orbitals can be written as

F̂ðxÞuqðxÞ5q̂ðxÞF̂ðxÞq̂ðxÞuqðxÞ; q51; 2; . . . ;N: (B.6)

Auxiliary conditions

Although Eqs. (B.6) are written as equations for occupied spin-

orbitals uq these equations defines not the particular nonca-

nonical orbitals, but the N-dimensional functional space RN. It

becomes evident when Eq. (B.6) is written as

F̂ðxÞ2q̂ðxÞF̂ðxÞq̂ðxÞ
� �

uqðxÞ50; q51; 2; . . . ;N: (B.7)

All occupied noncanonical spin-orbitals are eigenfunctions of

one operator in the left-hand side of (B.7) with the same

eigenvalue equal to zero.

Suppose that the functional space RN is found, and we are

looking for N particular noncanonical spin-orbitals uk in this

space, which are normalized to 1

ð
jukðxÞj2dx51; k51; 2; . . . ;N

and provide the extremum to the functional

W5
XN

k51

ð
u�kðxÞŵðxÞukðxÞdx;

where ŵðxÞ is a Hermitian operator. The normalization condi-

tion can be taken into account with Lagrange multipliers kk

and one arrives at the stationary state problem with functional

W 05
XN

k51

ð
u�kðxÞðŵðxÞ2kkÞukðxÞdx:

The condition that spin-orbitals belong to the functional space

RN can be taken into account using the density operator q̂ðxÞ
(B.3) as the projector onto RN

ukðxÞ5q̂ðxÞfkðxÞ; (B.8)

where fkðxÞ are spin-orbitals on which no conditions are

imposed except their square modulus integrability. Then the

functional is obtained

W05
XN

k51

ð
ðq̂fkÞ�ðŵ2kkÞq̂fkðxÞdx5

XN

k51

ð
f �k q̂ðŵ2kkÞq̂fkðxÞdx

and annulling its functional derivatives

d
df �k

W 050

the system of equations for fkðxÞ are obtained

q̂ ŵ2kkð Þq̂fk50; k51; 2; . . . ;N:

Taking into account the Eq. (B.8), this equation can be written

as the following equation for ukðxÞ
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q̂ŵ q̂uk5kkuk: (B.9)

At the same time, any ukðxÞ belonging to RN obeys the

equation

F̂uk5q̂F̂ q̂uk:

Combining this equation with Eq. (B.9), the system of equa-

tions can be obtained

F̂1q̂Âq̂
� �

uk5kkuk; k51; 2; . . . ;N; (B.10)

where

Â5ŵ2F̂ :

The system of Eq. (B.10) is known as Adams–Gilbert equations.

Appendix C: Ewald Potential

The potential due to the finite system of point charges is

considered

VðrÞ5
XN

n

en

jr2Rnj
:

The Ewald method[60] is based on the identity

1

r
5

2ffiffiffi
p
p

ðG
0

e2x2r2

dx 1

ð1
G

e2x2r2

dx

8<
:

9=
;;

where G> 0 is any positive constant. With the help of this

equation, the potential can be written as a sum of two

components

VðrÞ5 V1ðrÞ1 V2ðrÞ

with

V1ðrÞ5
2ffiffiffi
p
p
XN

n51

en

ðG
0

e2x2jr2Rnj2 dx (C.1)

and

V2ðrÞ5
2ffiffiffi
p
p
XN

n51

en

ð1
G

e2x2jr2Rnj2 dx: (C.2)

Because the sum over n is finite the sum and integral can be

interchanged and the Eq. (C.1) for V1 can be written as

V1ðrÞ5
2ffiffiffi
p
p
ðG
0

XN

n51

ene2x2jr2Rnj2 dx: (C.3)

Now it is assumed that charges make an infinite periodic lat-

tice so that the position vector Rn is the sum of the lattice

vector Rk, and the position in the unit cell vector qj, and

charges en are the unit cell charges ej. Applying Eqs. (C.2) and

(C.3), in this case, one obtains

V1ðrÞ5
2ffiffiffi
p
p
ðG
0

X
k

Xn0

j51

eje
2x2jr2Rk 2qj j2 dx; (C.4)

V2ðrÞ5
2ffiffiffi
p
p
X

k

Xn0

j51

ej

ð1
G

e2x2 jr2Rk2qj j2 dx:

This is a redefinition of the potential. One cannot use an infi-

nite series for the potential from the very beginning because

in the case of infinite series the sum and integral can be inter-

changed if and only if the series is convergent and uniformly

convergent which is not true for the point ion lattice

potential.

The sum in Eq. (C.4) is the periodic function of r

Uðr; xÞ5 2ffiffiffi
p
p
X

k

Xn0

j51

eje
2x2jr2Rk 2qj j2 ;

which can be expanded into Fourier series

Uðr; xÞ5
X

m

0
UmðxÞ eiðgm;rÞ;

where the sum is over the reciprocal lattice and prime by the

sum means that term with m 5 0 is absent (the zero Fourier

component is equal to zero because of the electrical neutrality

condition),

UmðxÞ5
1

X

Xn0

j51

ej
2ffiffiffi
p
p
X

k

ð
X

e2x2 jr2Rk2qj j22iðgm;r2RkÞdr;

where X is the lattice unit cell. The integral over unit cell and

sum over all unit cells is the integral over the whole space.

Hence,

UmðxÞ5
1

X

Xn0

j51

ej
2ffiffiffi
p
p
ð

e2x2 jr2qj j22iðgm;rÞdr:

Finally, the equations for the Ewald potential are

V1ðrÞ5
ðG
0

X
m

0
UmðxÞ eiðgm;rÞdx5

p
XG2

X
m

0Xn0

j51

eje
iðgm;r2qjÞ e2vm

vm
;

vm5
g2

m

4G2

and

V2ðrÞ5
X

k

Xn0

j51

ej

erfcðGjr2Rk2qjjÞ
jr2Rk2qjj

:
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Appendix D: Ewald Potential Produced by the LP
Unit Cell Additional Charges

In this appendix, it is shown that because of the LP unit cell

additional charges specific disposition and the electroneutrality

condition (23)

X
n2T‘

eðnÞ50 (D.1)

the Ewald potential produced by additional charges alone is

identically equal to zero.

Consider the LP unit cell, exclude from it all charges of initial

unit cell and leave the additional charges only. The compo-

nents of the Ewald potential due to resulting unit cell are

V1ðrÞ5
4p
X

X
m

X
n1;n2 ;n22T‘

eðn1; n2; n3Þ
1

g2
m

exp iðgm; r2dðn1; n2; n3ÞÞ2
g2

m

4G2

� �
;

(D.2)

and

V2ðrÞ5
X

k

X
n1;n2;n22T‘

eðn1; n2; n3Þ
erfc Gjr2Rk2dðn1; n2; n3Þjð Þ
jr2Rk2dðn1; n2; n3Þj

:

(D.3)

However, in these equations, dðn1; n2; n3Þ is the translation

vector. Hence,

exp iðgm; dðn1; n2; n3ÞÞð Þ51: (D.4)

Therefore, the first component is

V1ðrÞ5
4p
X

X
m

X
n1;n2 ;n22T‘

eðn1; n2; n3Þ
1

g2
m

exp iðgm; rÞ2 g2
m

4G2

� �
:

This absolutely convergent series can be written as a prod-

uct of two sums, one over m and another over n1; n2; n3, and

the sum over n1; n2; n3 is equal to zero because of (23). Conse-

quently, V1ðrÞ50.

In the second component (D.3), one has

Rk2dðn1; n2; n3Þ5Rj:

Therefore,

V2ðrÞ5
X

j

X
n1 ;n2;n22T‘

eðn1; n2; n3Þ
erfc Gjr2Rjj
� �
jr2Rjj

:

Again, this absolutely convergent series can be written as a

product of two sums, one over j and another over n1; n2; n3,

and the sum over n1; n2; n3 is equal to zero. Consequently,

V2ðrÞ50.

So the Ewald potential from the LP unit cell additional

charges is equal to zero and consequently, Ewald potential

produced by the LP unit cell is equal to the Ewald potential

produced by the initial unit cell.

Appendix E: Solution of the Equation for the LP
Unit Cell Additional Charges

The LP unit cell contains n0 charges of the initial unit cell and N‘

additional charges introduced to make absolutely convergent the

series for the point ion lattice electrostatic potential. The positions

of additional charges are fixed and their values should be found to

annul N‘ multipole moments of the LP unit cell. In this appendix, it

is shown that the equation for the additional charges can be solved

analytically[69] for any lattice and for any value of ‘.

The LP unit cell multipole moment in Cartesian coordinates is

Qðn1; n2; n3Þ5
Xn01N‘

j51

qjq
n1

jx qn2

jy qn3

jz ; n1; n2; n2 2 T‘;

where qj is the charge of jth atom in the LP unit cell, and

qj5mj1a11mj2a21mj3a3 (E.1)

is the position vector of jth atom in the LP unit cell. Here,

a1; a2, a3 are the initial lattice elementary translation vectors,

mjk5ðqj; bkÞ (E.2)

are the jth atom dimensionless coordinates, and

bi5
½aj;ak�
ðai;aj3akÞ

; i; j; k is the cycle permutation of 1; 2; 3

(E.3)

are the reciprocal lattice elementary translation vectors. The

atom j in the initial unit cell dimensionless coordinates are in

the range

0 � mjk � 1; k51; 2; 3

and the dimensionless coordinates of the additional charge

eðn1; n2; n3Þ are integers n1, n2, n3.

Apart from multipole moments in Cartesian coordinates the mul-

tipole moments in dimensionless coordinates m1, m2, m3 can be used

Pðm1;m2;m3Þ5
Xn01N‘

j51

qjm
m1

j1 mm2

j2 mm3

j3 ; m1;m2;m2 2 T‘:

The multipole moments Qðn1; n2; n3Þ and Pðm1;m2;m3Þ are

connected by linear transformation with nonsingular matrix G

Qðn1; n2; n3Þ5
X

m1 ;m2;m32T‘

Gðn1; n2; n3jm1;m2;m3ÞPðm1;m2;m3Þ;

n1; n2; n2 2 T‘:

Therefore, annulling Qðn1; n2; n3Þ is equivalent to annulling

Pðm1;m2;m3Þ and vice versa. Here the equation

Pðm1;m2;m3Þ50; m1;m2;m3 2 T‘ (E.4)

will be used for the additional charges calculations instead

Eqs. (21), corresponding to annulling Qðn1; n2; n3Þ.
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The multipole moment Pðm1;m2;m3Þ is the sum of two

moments, one due to the initial unit cell charges

P0ðm1;m2;m3Þ5
Xn0

j51

qjm
m1

j1 mm2

j2 mm3

j3 ; (E.5)

which is known, and another due to additional charges

P1ðm1;m2;m3Þ5
X

n1;n2;n32T‘

eðn1; n2; n3Þnm1
1 nm2

2 nm3
3 : (E.6)

Therefore, the Eq. (E.4) can be written as system of linear inho-

mogeneous equations for charges eðn1; n2; n3Þ
X

n1;n2;n32T‘

nm1
1 nm2

2 nm3

3 eðn1; n2; n3Þ52P0ðm1;m2;m3Þ;

m1;m2;m3 2 T‘:
(E.7)

The method of this system solution will be demonstrated in

the simple 1-D case. In this case, the system of Eqs. (E.7) reads

X‘
n50

nmeðnÞ52P0ðmÞ; m50; . . . ; ‘: (E.8)

The first equation here, corresponding to m 5 0 and describ-

ing the LP unit cell electroneutrality condition,

X‘
n50

eðnÞ52P0ð0Þ (E.9)

is exceptional because the charge e(0) enters only this equa-

tion. It is expedient to solve at the beginning the system of all

equations except the first one and then to calculate e(0) from

the first equation. The system of all equations except the first

one can be written as

X‘
n51

TmneðnÞ52P0ðmÞ; m51; . . . ; ‘; (E.10)

where

Tmn5nm (E.11)

is a simple Vandermonde matrix with integer matrix elements.

The system of Eqs. (E.10) can be transformed to contain not

square but triangular matrix, hence the system of equations

can be converted into a recurrence relation.

The said transformation can be made with the help of ‘3‘

lower triangular matrix Gkm, each row of which contains partic-

ular polynomial expansion coefficients

~GkðxÞ5xðx21Þ 	 	 	 ðx2k11Þ5
Xk

m51

Gkmxm:

It is evident that G1151. Besides,

~Gk11ðxÞ5 ~GkðxÞðx2kÞ;

or, in the explicit form

Xk11

m51

Gk11;mxm5
Xk11

m52

Gk;m21xm2
Xk

m51

kGk;mxm:

Therefore,

Gk11;1 52kGk;1;

Gk11;m 5Gk;m212kGk;m; m52; 	 	 	 ; k;

Gk11;k11 5Gk;k;

k51; 	 	 	 ; ‘:

8>>>>><
>>>>>:

So all matrix elements Gk;m can be easily found.

Multiplying Eq. (E.10) by the matrix G from the left, one

obtains the system of equations

Xk

m51

X‘
n51

GkmTmneðnÞ52
Xk

m51

GkmP0ðmÞ; k51; . . . ; ‘: (E.12)

In this equation,

fk52
Xk

m51

GkmP0ðmÞ

are known values, and

Xk

m51

GkmTmn5
Xk

m51

Gkmnm5GkðnÞ:

However,

GkðnÞ5nðn21Þ 	 	 	 ðn2k11Þ5
0 if k < n

n!

ðn2kÞ! if k � n

8<
:

Therefore, Eq. (E.12) is

X‘
n5k

n!

ðn2kÞ!eðnÞ5f ðkÞ; k51; 	 	 	 ; ‘: (E.13)

This is the backward recurrence relation. The charge number ‘ is

eð‘Þ5 f ð‘Þ
‘!

; (E.14)

and all charges with numbers from k5‘21 to k51 can be

found one by one from the equation

eðkÞ5 1

k!
f ðkÞ2

X‘
n5k11

n!

ðn2kÞ!eðnÞ
 !

; k5‘21; ‘22; . . . ; 1:

(E.15)

Finally, the charge e(0) is found from the LP unit cell electrical

neutrality condition (E.9) as

eð0Þ52
X‘
n51

eðnÞ (E.16)
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because P0ð0Þ50 due to the electrical neutrality of initial

unit cell.

In Ref. 69, it is shown that similar equations can be obtained

for 2-D and 3-D lattices. The equations are similar to (E.14),

(E.15), and (E.16) if proper numeration order is used to arrange

all charges of tetrahedron in a one dimensional array e(n).

Keywords: ion-covalent crystal 	 electronic structure 	
embedding 	 cluster
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